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Preface

Herb Pohl’s seminal book, Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields, was pub-
lished in 1978. The aim of this present text is to describe the development since then of the theory and practice of
this subject. The primary focus is on the biomedical applications of dielectrophoresis (DEP), so many of the chapters
are written with a multidiscipliniary readership in mind. However, the theories and techniques described here are
valid for all types of particles – animate and inanimate. The subject has changed dramatically since 1978. Up to that
time only 16 scientific reports on biological applications of DEP had appeared in the scientific literature, with 12 of
them describing work performed by Herb and his postgraduate students at Oklahoma State University. One of these
papers deserves special mention, namely that written in 1966 with his MSc student, Ira Hawk. They describe, in the
journal Science (vol. 152, 1966), the first demonstration of a purely physical technique (i.e., DEP) that can be used to
distinguish and separate live and dead cells simultaneously. Furthermore, the live cells that had been exposed to the
DEP field for several minutes were found to be viable and capable of cell culture. A macroscopic pin-plate electrode
arrangement, composed of a rounded 0.66mm stainless-steel wire facing a flat steel plate, was used in these experi-
ments. Microfabrication andmicrofluidic techniques, taken for granted now in this subject, were not available to Herb
in 1978. Apart from the impact of microtechnologies, this present book has also to take into account the fact that, at its
time of completion (July 2016), more than 300 published papers are devoted solely to the DEP behaviour of yeast cells,
with more than 3000 other papers of relevance to biomedical applications of DEP. Herb’s initial interest in the motion
of particles induced by nonuniform AC fields (an effect he was later to term dielectrophoresis) was directed towards
industrial applications such as the removal of carbon-black filler from polyvinyl chloride samples. However, as I was
privileged to witness at first hand, he gained most amusement from observing the DEP behaviour of bioparticles. In
this way, Herb was able to describe in his book, in some detail, the DEP characterization of yeast cells and several types
of bacteria, as well as preliminary results for blood cells, chloroplasts, green algae and mitochondria. These results act
as the springboard for this book.
I suspect that I am not alone in finding more enjoyment in writing and reading about the biomedical applications of

DEP than of its use to separate carbon black from PVC, or particulate matter from petroleum, for example. How can
other such studies (potentially important as theymay be) induce the same ‘buzz’ as viewing the geometrical distinction
between life and death in the form of the Argand plots shown in Figure 11.9 of this book? Can studies of inanimate par-
ticles be as amusing as observing viable Giardia rotating in the opposite sense to nonviable ones in a rotating electric
field? Such entertainment will not occur with particles extracted from oil, for example, unless they are bacteria such
as oil-eating Alcanovorax. This explains, in part, why this present text is restricted to the DEP behaviour of biological
particles. An exception is the inclusion of polymer beads because they are used widely in biomedical and biosensor
devices, with DEP able to monitor the extent of attachment to them of target bioparticles. There is also a pragmatic
reason for focussing on biomedical applications of DEP. A search in the autumn of 2015, using theWeb of Science Core
Collection and other library data bases, revealed the existence of at least 4000 publications on the theory, technology
and application of DEP. Of relevance to the subject matter of this present text are also the many hundreds of scientific
papers on the theories of dielectric phenomena, as well as those that describe the dielectric and electrokinetic proper-
ties of cells, bacteria, viruses together with bio-macromolecules such as proteins and nucleic acids. By largely excluding
conference abstracts for possible citation, as well as papers not addressing a bio-related topic or not readily available
through normal library resources, the number of candidates for citation was reduced to around 3000 publications.
To avoid the text assuming the character of a list of disjointed citations, an attempt has been made to summarize the
development of bio-DEP over the past half-century through only around 800 references to relevant work. This does
not completely mirror important contributions to the subject made bymy own co-workers andmany researchers from
other laboratories. I apologize to those who inspect the index of cited authors and are disappointed to find that their
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innovative work has either not been described adequately or is not cited at all. Among past colleagues not cited at all
is John Morgan, who submitted his PhD thesis ‘Dielectrophoretic Studies of Biological Materials’ in 1978, whilst for
Paul Carnochan only one image (Figure 11.2) from his PhD thesis ‘Dielectric Properties of Biological Cell Suspensions’,
submitted in 1982, records his valuable contribution. An omission of work from the citation index does not reflect
its perceived lack of novelty or importance – it has simply suffered from the culling exercise performed for reasons
explained above (or from an unfortunate oversight on my part).
Another objective of this book is tomake large parts of its content agreeably accessible to those trained in the biomed-

ical sciences – not just engineering and physical science graduates. For those engaged in biomedical applications of
DEP, the guidance and involvement of those trained in the molecular and life sciences is greatly desired and in most
cases can be considered as essential. However, most published works on DEP appear in journals of engineering or the
physical sciences and are largely unhelpful in addressing the ‘so what, who cares?’ questions of interest and relevance
to those trained in the life and medical sciences. Chapter 1 addresses a common question about how the technique of
DEP can compete against other microfluidic methods for cell manipulation and separation, such as flow cytometry,
electrophoresis and magnetophoresis. Electrophoresis is a method well understood by biologists, but its similarity to
the term dielectrophoresis is not helpful in discouraging the impression that DEP represents no more than an esoteric
extension of what they already know. The purpose of Chapter 2 is to describe, in broad terms, how the special fea-
tures of DEP lend to it the promise of providing important contributions to cell biology, particularly to such areas as
drug discovery, medical diagnostics and regenerative medicine. As already stated, bearing in mind that an increasing
number of scientists trained in the biomedical fields are entering the subject area, the nontheoretical sections of the
text, throughout this book, are written in a style that is hopefully suitable for an interdisciplinary readership. To assist
this and to help maintain the narrative, separate boxes and worked examples are used throughout the book to act as
pedagogical material and to divert the more formal and quantitative details away from the main text.
In the preface of a special issue of the Journal of Electrostatics (Vol. 21, 119–364, 1988) to honour thememory ofHerb

Pohl, I mentioned that his devotion to science and generous nature had once been revealed to me by his statement that
‘senior scientists should act rather as oak trees, to give shelter and provide growing conditions to the younger ones’. I
also suggested that he would have gained much satisfaction and pleasure to see how some of his acorns had matured.
In this spirit, I wish to take this opportunity to thank and acknowledge the contributions that the following, as young
researchers at Bangor, made to my own understanding of DEP and to the content of this book: Talal Al-Ameen, W.
Michael Arnold, Julian P. H. Burt, Paul Carnochan, Ka-Lok Chan, Colin Dalton, Peter R. C. Gascoyne, Andrew D.
Goater, Clair Hodgson, Michael P. Hughes, Ying Huang, Richard S. Lee, GaryM. Lock, Zu-Hong Lu, Gerard H.Markx,
Anoop Menachery, Hywel Morgan, John R. Morgan, Jonathan A. R. Price, Mark S. Talary, Xiao-Bo Wang and Xiao-
Feng Zhou. It is with some pride that I know the DEP community will recognize the names of some fine oak trees in
this list. We benefited from having the following with us on sabbatical leave or year-long fellowships: Ralph Hölzel,
Takashi Inoue, Thomas B. Jones, Juliette Rousselet, Miguel Sancho, Herman P. Schwan and Junya Suehiro. A special
mention should be given to John Tame, who operated the photolithography and clean-room facilities at Bangor. In
the summer of 1986 he was asked if he could fabricate for us an array of gold, interdigitated, microelectrodes on a
microscope slide. After being informed what we intended to do with it, he impishly responded: “We usually keep our
electronic devices away fromwater, but I’ll give it a try”. For nearly 20 years thereafter (until his untimely death in 2004)
he provided various microelectrode arrays for the DEP and electrokinetic studies of the researchers mentioned above.
In 2005 a new clean-room facility at Bangor was named and dedicated to his memory.
At the School of Engineering in Edinburgh I have appreciatedmoral support and helpful interactions with Professors

Alan Murray, Ian Underwood, AnthonyWalton, as well as Drs Andrew Downes, Stewart Smith, Adam Stokes and Jon
Terry. I enjoyed working with Colin Chung, Massimo Muratore and Srinivas Velugotla during their PhD research
projects. I also acknowledge very fruitful research interactions at Edinburgh with Dr Paul de Sousa of the Centre for
Clinical Brain Sciences, Dr Steve Pells of the MRC Centre for Regenerative Medicine and Professor Christopher D.
Gregory of the MRC Centre for Inflammation Research. Chris Gregory deserves special mention – with the objective
of making the text accessible to biologists he undertook the herculean task of reading many of the draft chapters,
cleaning out much bio-unfriendly material. His research is directed towards understanding how apoptotic cancer cells
condition their microenvironment. His input was thus especially valuable for those sections of Chapter 11 dealing with
cell death – in so doing he performed what was not even required of Hercules, namely to replace the removedmaterial.
During the writing of this book I have appreciated valuable e-mail exchanges withMassimo Camarda, Cesare Cametti,
Rodrigo Martinez-Duarte, Nic Green, Mike Hughes, Ralph Hölzel, Hywel Morgan and Joel Voldman. Special thanks
also go to Anne Parkinson for translatingMossotti’s paper of 1850 into English and so helping to clarify certain aspects
of Chapter 6; Professor Peter Sarre of NottinghamUniversity for facilitatingmy access to that university’s original copy
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of George Green’s Essay. I have greatly appreciated the efforts of the international teamworking for JohnWiley & Sons,
especially the meticulous attention to detail given by David Michael in copyediting the manuscript.
Those with sharp eyes might notice a ‘smiley face’ in Chapter 6. This is by way of a personal tribute to Herb Pohl,

who in 1975 introduced me to this symbol and how to use it. Finally, the last lines on the dust cover of Herb Pohl’s
book of 1978 read: A far wider range of potential applications exists than Professor Pohl has been able to include. The
book should thus provide stimulating reading for imaginative research workers in the physical, medical and biological
sciences. It is probably pushing an ambition too far – but hopefully this present effort goes part way to achieving the
same sentiment.

The electronic supplemental content to support use of this text is available online at http://booksupport.wiley.com.
Ronald Pethig

Edinburgh

http://booksupport.wiley.com
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Nomenclature

Symbol Definition Value/units

a, b, c The semiaxes of an ellipsoid m
An Depolarization factor along axis n
A Unit area m2

𝛼 Polarizability factor C V−1 m−1

𝛼* Complex polarizability factor C V−1 m−1

B Magnetic flux density Wb m−2

C Molar concentration 103 mol m−3

Cmem Cell membrane capacitance C V−1 m−2

CM Clausius–Mossotti factor
D Electric flux density C m−2

D Diffusion coefficient m2 s−1
De Dean number
DH Hydraulic diameter (wetted perimeter) m
e Charge on an electron (1.602 × 10−19 C)
E Electric field V m−1

E Electric field vector N/C (V m−1)
fx01 Low-frequency DEP crossover Hz
fx02 Second (high-frequency) DEP crossover Hz
FDEP Dielectrophoretic force N
Fe Force exerted on a test charge in a field E N
FMAG Magnetophoretic force N
Fs Sedimentation force acting on a particle N
H Enthalpy J
i Complex unit (i2 = −1)
ı̂, ĵ, k̂ Unit vectors along the x-, y-, z-Cartesian axes.
Im[. . .] Imaginary part of complex parameter inside brackets
J Current density A m−2

k Boltzmann constant (1.3806 × 10−23 J K−1)
Kn Knudson number
m Electric dipole moment C m
N Number density m−3

NA Avogadro’s number (6.022 × 1023 mol−1)
p Dipole moment C m
p(n) Linear multipole of nth order C mn

P Polarization vector C m−2

q Electric charge (typically a test charge) C
Q Electric charge C
r Radial distance (Eqn 1.2) m
⌢r Unit radial vector
R Particle radius m
Rf Fluid channel flow resistance Pa m−3 s
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Symbol Definition Value/units

Re[. . .] Real part of parameter inside brackets
Re Reynolds number
S Entropy J T−1

t Time s
T Surface tension N m−1

T Absolute temperature K
U Potential energy J
v Velocity (or volume) m s−1 (m3)
V Electric potential J C−1 (V)
W Work done J
Z Atomic number
Ze Electrode impedance Ohm (Ω)
𝜒 Susceptibility
∇ Del vector operator
𝛿 Dielectric increment (or decrement)
Δ𝜀′ Magnitude of dielectric dispersion
𝜀cyt Cytoplasm relative permittivity
𝜀m Suspending medium relative permittivity
𝜀mem Membrane relative permittivity
𝜀o Permittivity of free space (8.854 × 10−12 F m−1)
𝜀r Relative permittivity of a dielectric
𝜀w Bacterial cell wall permittivity
𝜀∗m Complex permittivity of suspending medium
𝜀∗p Complex permittivity of particle
𝜀′ Real component [Re] of complex permittivity
𝜀′′ Imaginary component [Im] of complex permittivity
𝜀s Low-frequency relative permittivity
𝜀∞ High-frequency relative permittivity
𝜙 Angle (or electrical potential) rad (V)
ΦD D-field flux C
ΦE E-field flux C
𝜂 Dynamic viscosity Pa s
𝜆 Charge density (linear) C m−1

𝜇o Magnetic permeability of free space (4𝜋 × 10−7 H m−1)
𝜇e Electrophoretic mobility m2 V−1 s−1
𝜇eo Electro-osmotic mobility m2 V−1 s−1
𝜃 Angle Radians
𝜌 Charge density (volume) C m−3

𝜌 Mass density (Eqn (1.1) kg m−3

𝜎 Charge density (surface) C m−2

𝜎p Particle conductivity S m−1

𝜎m Particle suspending medium conductivity S m−1

𝜎∗
m Complex conductivity of suspending medium S m−1

𝜎∗
p Complex conductivity of particle S m−1

𝜎′ Real component [Re] of complex conductivity
𝜎′′ Imaginary component [Im] of complex conductivity
𝜏 Relaxation time s
𝜏MW Interfacial (Maxwell–Wagner) relaxation time s
𝜔 Angular frequency rad s−1
Ωo Rate of rotation rad s−1
𝜉 (T𝜂) Frictional torque N m
𝜁 Zeta potential V







Placing Dielectrophoresis into Context as a Particle Manipulator

. Introduction

For those interested in etymology, deciphering the origin
and hence probable meaning of compound words ending
in phoresis is relatively straightforward. Based on Greek
translation, such compound words imply something to
do with ‘carrying things around’. For example, stating
that electrophoresis describes an object being carried (i.e.,
moved) by an electrical effect is therefore an acceptable
definition. For a particle to be set into motion requires
the imposition on it of an external force. An example is
the buoyancy force acting on a particle suspended in a
fluid – the particle will either sink or rise under the action
of gravity, depending on whether its specific density is
greater or less than that of the surrounding fluid. If the
particle finds itself in a flowing fluid, it will also experi-
ence a viscous drag force and be accelerated to the speed
of the local fluid flow.The particle can be solid or take the
form of a fluid droplet or gas bubble. This book’s focus is
the use of dielectrophoresis as ameans to spatiallymanip-
ulate bioparticles such as cells, bacteria, viruses, proteins
and nucleic acids. In May 2013, in the United States, two
sessions were devoted to this subject at an international
conference on Advances in Microfluidics and Nanoflu-
idics. In the flyer that promoted the conference, it was
stated:

As dielectrophoresis (DEP) is arguably one of the
fundamental pillars of microfluidic manipulation
and given the continued advances in this mature
field, we will be organising special sessions on
dielectrophoresis with the aim of promoting inter-
action between researchers that work on funda-
mentals and applications of DEP across different
communities and disciplines.

Various methods can be used to manipulate particles
in a microfluidic device, so what justification is there to

state that dielectrophoresis can be singled out as ‘one
of the fundamental pillars’? Why is DEP considered an
important topic for a conference on microfluidics and
nanofluidics? Why devote a whole book to the subject?
Some answers are provided in this chapter by reviewing
those forces that can be used to manipulate bioparticles
in microfluidic devices. It is not intended as a compre-
hensive review, but covers sufficient ground to set dielec-
trophoresis into context and highlight some of its special
features and advantages. Bearing inmind that an increas-
ing number of scientists trained in the biomedical fields
are entering the subject area, the text is written in a style
intended to be suitable for an interdisciplinary reader-
ship. To help maintain the word flow, boxes and worked
examples are used in this chapter (and throughout the
book) to divert the more formal and quantitative details
away from the main text.
Dielectrophoresis is the induced motion of a particle

when it is placed in an electric field gradient. In Chap-
ter 2, we find that one advantage of this method is that
it scales favourably with a reduction in dimensions of the
electrodes used to generate the electric field. It is there-
fore ideally suited for applications inmicrofluidic devices
designed to perform, for example, as an electronically
controllable ‘laboratory on a chip’ or ‘micro-total anal-
ysis’ system. Although the terms are often used inter-
changeably, lab on chip is used to describe devices that
integrate several laboratory processes, whereas micro-
total analysis systems are considered to integrate all labo-
ratory processes required for an analysis. For both cases,
fluid flow in one or more channel networks, fabricated
into or from a single solid substrate, is an essential ele-
ment of the analytical or preparative function of the
device [1–6]. It is also generally accepted that to qualify
as a microfluidic device, at least one of its fluidic dimen-
sions should be in the range 1 μm ∼1 mm.
The fundamental features and potential advantages of

usingmicrofluidic devices for biomedical assays and pro-
cesses will now be outlined.

Dielectrophoresis: Theory, Methodology and Biological Applications, First Edition. Ronald Pethig.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.



 Dielectrophoresis

. Characteristics of Micro-Scale Physics

A simple form of a microfluidic device would be, for
example, a channel etched into a glass substrate of length
1 cm and internal cross section 10μm× 10μm, equipped
with an inlet and outlet fluid port. One envisaged appli-
cation of such a simple structure would be to study how
thrombocytes (platelets) in a flowing fluid interact with
immobilized proteins. The proteins can be immobilized
by coating them onto the internal surfaces of the chan-
nel. With our specified dimensions the channel has an
internal volume of 10−9 dm3 (1 nL). One small droplet
of water that leaks from a tap has a volume about 20 000
times larger than this! Physical effects or forces, such as
surface tension that controls the size of a water droplet,
may play relatively minor roles in our macro-scale world
of activity, but can dominate in microfluidic devices.The
ability to accommodate such forces, either by minimiz-
ing their disruptive effects or using them to advantage,
is an important aspect of the design and operation of a
microfluidic device.
The following are practical examples of dominant

physical phenomena at the micro scale:

� Microfluidic devices tend to have a large ratio of their
surface area to volume. Consider a spherical cham-
ber of radius R. This has a surface area of 4𝜋R2 and
a volume of (4𝜋R3)/3. The ratio of these two param-
eters is 3/R. Therefore, as the radius R decreases the
ratio of surface area to volume increases. For exam-
ple, a 10 dm × 10 dm × 10 dm cube has a surface-to-
volume ratio of 40m−1, whereas for the 1 cm× 10μm×
10μmchannel considered above, this ratio increases to
4 × 105 m−1. Scaling down the dimensions of a fluidic
device thus provides the opportunity for suspended
particles to interact with a large surface area. This can
represent a desired outcome, as in the study of platelet-
protein interactions, or lead to an undesirable result
such as the adventitious adherence of cells to the inter-
nal walls of narrow-bore tubing.

� In micro devices, capillary action and other surface
energy effects can be greater than gravitational forces.
This can result in an upward or transverse fluid move-
ment, or even block downward fluid flow in a capillary.

� A small drop of fluid placed in the inlet of a microflu-
idic device can evaporate very rapidly.

� Fluids that are brought together in a microfluidic cir-
cuit do not mix easily. Any mixing that does occur
arises mainly from the diffusion of solutes across
the boundaries between separate laminar flows of
fluid.

� Solute particles that are heavier than the surrounding
fluid settle to the channel bottom very quickly.

� Small fluid volumes will almost immediately take on
the temperature of the environment and cool down or
heat up very quickly.

1.2.1 Exploiting Micro-Scale Physics

Some of the physical effects outlined above may be
undesirable in the design and operation of microfluidic
devices. However, they can also be exploited as powerful
tools. Examples of such physical effects and their advan-
tages include:

� Fluid flow in microchannels is almost always lami-
nar, characterized by the parallel flow of the individ-
ual lamellar elements of the fluid (see Chapter 12, sec-
tion 12.4.5). The flow has a parabolic velocity profile
across a channel, with zero velocity at each channel
wall and amaximum velocity at the centre of the chan-
nel. These characteristics can be turned to advantage
in the design of particle separation devices, where an
external force drives target particles into different parts
of the fluid velocity profile or across the boundary
between adjacent fluid streams.

� A large surface-to-volume ratio provides an intrinsic
compatibility between the use of a microfluidic system
and surface-based assays.

� At micro dimensions, diffusion becomes a viable
approach to move particles, mix fluids and control
reaction rates. Small drug molecules, for example, can
diffuse at rates of ∼10 mm/s at 25 ◦C in aqueous solu-
tions. This allows the establishment of controlled con-
centration gradients in flowing systems, aswell as rapid
and complete equilibration of small molecular weight
particles across a microchannel. Relatively fast reac-
tion times are therefore possible when molecular dif-
fusion lengths are of the order of the microchannel
dimensions.

� Unaided by centrifugation, sedimentation becomes a
viable means to separate dispersed particles by den-
sity across small channel dimensions. For example, red
blood cells will sediment in a 100 μm deep channel in
about 1 minute and generate a 50 μm layer of plasma
in the process.

� Evaporation of small quantities of fluids can be
extremely rapid because of a typically large surface-to-
volume ratio. This effect can be used for the concen-
tration of suspended particles.

� Theenergy associated with surface tension can be used
to drive liquids throughmicrofluidic devices. By chem-
ically treating the surfaces of a microchannel to be
hydrophilic, water will be driven through the channel
without any applied pressure. This flow is driven by
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the attractive energy between the water and the chan-
nel wall surface. Surface tension effects can be con-
trolled electrically using the technique known as elec-
trowetting on dielectric (EWOD) described later in this
chapter.

� It is possible to design passive fluidic devices that uti-
lize inherent properties of the fluid and its microenvi-
ronment (e.g., capillary force, evaporation, heat trans-
fer, diffusion) for fluid movement, mixing, heating,
cooling and catalysing chemical reactions. Thus, dis-
posable stand-alone devices can be designed that
require no external power source or instrumentation,
yet still perform many, if not all, of the functions typ-
ically associated with full-scale automated chemical
analysis devices containing pumps, mixers and heating
elements.

Other advantageous characteristics of microfluidic
devices are associated with economic considerations. For
example, polymer-based microfluidic structures can be
mass produced at very low unit cost, allowing them to
be disposable. Micro devices require only small volumes
of sample and reagents (down to picolitres) and produce
only small amounts of waste. They are also amenable
to high throughput by processing multiple samples and
assays in parallel.

. Microfluidic Manipulation and
Separation of Particles

A critical action for many biological and medical diag-
nostic procedures is the selective manipulation and
separation of particles. By manipulation we mean the
relocation of a particle with respect to its position within
a fluidic device or to that of neighbouring particles. An
extension of this is particle separation, which implies
the physical isolation within or outside of a device of the
target particles from amixture of different particle types.

1.3.1 Defining the Performance of Cell Manipulators and
Separators

The performance of a particle manipulator can be mea-
sured in terms of howquickly, precisely, reproducibly and
how many target particles can be relocated to a specific
site or sites. The concept of a particle separation device
is quite straightforward – the input is a heterogeneous
mixture of particles and the output consists of target par-
ticles that can be collected or totally isolated from the
unwanted particles. The performance of such a device is
often given in terms of its throughput. Throughput can
be expressed in terms of either the volumetric flow rate

that can be handled by the device (e.g., mL/s) or the num-
ber of particles that can be processed in a given time (e.g.,
100 000 cells per second). However, we also want to know
how well the device performs as a separator. If for every
100 000 cells in a sample there are 100 target cells, can it
deliver 100 target cells per secondwith no contamination
from unwanted cells? The language employed to evalu-
ate this is not as straightforward as defining its through-
put. For example, suppose we have cells that have been
brought back to physiological temperature after a period
of cryopreservation. It is common experience to find that
many of these cells will have suffered as a result of being
frozen for a long time and will be nonviable (dead). We
will want our cell separation procedure to provide uswith
as many viable cells as possible and very few dead ones.
An evaluation of this is variously called the recovery rate,
the target capture efficiency or the yield, which should
be close to 100%. If we define the viable, live, cells as the
target cells and the dead ones as the unwanted cells, the
yield (or recovery rate, capture efficiency) can be defined
as the ratio of the number of viable cells collected at the
output to the total number of viable cells contained in the
original cryopreserved sample fed into the separator:

Yield =
Target cellsoutput
Target cellsinput

We can determine the yield parameter by perform-
ing viability assays for the input and output samples and
use this to compare the use of new buffers and cryop-
reservation procedures designed to maintain cell viabil-
ity. However, if we are using a cell separator to isolate
cancer cells from peripheral blood (to assess chemother-
apy treatment, for example) we have (as yet) no accu-
rate method to determine the number of cancer cells that
exist in blood samples taken from patients. In this case,
the use of terms such as yield, recovery rate or capture
efficiency cannot be used to describe the performance of
a separator used to extract cancer cells from blood. How-
ever, if a known number of cancer cells are ‘spiked’ into
a blood sample of defined volume, it is possible to deter-
mine the yield of a procedure to isolate them.
When using a separator to isolate specific cells for ther-

apy, an important parameter to define is the purity of the
output. This can be defined as the fractional content of
target cells in the output sample:

Purity =
(

Target cells
Target cells + Unwanted cells

)
output

Flow cytometry can be used to determine the concen-
tration of the target cells and the total cell count. In some
cases a cell separator is used to increase the percentage
of target cells in a heterogeneous cell population prior to
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PCR analysis, for example. This is referred to as enrich-
ment and is quantified using the following relationship:

Enrichment =
(Target cells/Unwanted cells)output
(Target cells/Unwanted cells)input

The subtle relationship between enrichment, yield (or
recovery rate, capture efficiency) and purity can be
obtained by combining the relationships given above for
yield and enrichment, to give:

Enrichment = Yield
(Unwanted cells)input
(Unwanted cells)output

. Candidate Forces for Microfluidic
Applications

Some forces scale downwell for applications inmicroflu-
idic devices and others do not. For example, centrifu-
gation is used to separate particles based on differences
in their size and density. A centrifugal force occurs as
a reaction to centripetal acceleration (R𝜔2) acting on a
mass moving with angular velocity 𝜔 (radians / s) along
a path of radius of curvature R. This does not scale
favourably with miniaturization, because with all other
factors remaining constant a reduction of R results in a
reduction of the centrifugal force. Another factor that
does not favour the incorporation of centrifugation into
lab-on-chip devices is that it requires a rotating compo-
nent. To subject a cell suspension to the relatively gen-
tle centrifugal acceleration of 100 times the gravitational
acceleration (100 g) requires that the sample is posi-
tioned at the end of an 18 cm long arm that is rotating
at ∼1000 revs/min.This rotation rate has to be increased
a hundredfold if wewish tomaintain the centrifugal force
but reduce the rotor arm length to 18 μm for example.
Examples of forces that do scale well with miniaturiza-

tion include those that induce electrophoresis and dielec-
trophoresis. These effects become more dominant as the
applied electric field is increased and for a fixed voltage
applied across an electrode pair the field increases with
reduction of the spacing between them. Indeed, using
microelectrodes and modest applied voltages of 10 V or
less, electric fields as large as 106 V/m can be generated,
together with useful associated electrokinetic forces that
are difficult to achieve at amacroscale. As the dimensions
of a fluidic system, such as channel width and height,
decrease the influences of laminar flow increase and can
be exploited in various ways. The forces that can use-
fully be scaled down to operate in microfluidic devices
are given in Table 1.1. Examples of how each one of these
forces can be used to selectively manipulate and separate
cells will now be outlined:

Table . Forces used to manipulate and separate cells in
microfluidic devices.

Type of force Example Basis of selectivity

Mechanical Filtration/sieving Size and deformability
Hydrodynamic Field flow fractionation

Inertial forces
Hydrophoresis

Size and various
physico-chemical
properties

Acoustic Acoustophoresis Size, density and
compressibility

Optical Optophoresis
Laser tweezers

Refractive index

Electrical 1. Electrophoresis
2. Dielectrophoresis
3. FACSa

1. Surface charge
2. Dielectric

polarization
3. Antibody label

Magnetic i) Magnetophoresis
ii) MACSb

i) Para- or
diamagnetic

ii) Antibody/ferritin
label

Surface Cell rolling
Cell patterning

Cell adhesion

Notes: aFACS: fluorescence activated cell sorting; bMACS: magnetic
activated cell sorting.

1.4.1 Mechanical

Particles can be selectively separated according to their
size by mechanical filtration or sieving. The particles are
suspended in a fluid (in which they do not dissolve) and
are then flowed throughmicrostructured perforations or
constrictions.Membranes composed of pure nylon fibres
or polycarbonate containing pores of precise diameter
have been widely used to separate blood cells by size and
deformability. Such membranes can easily clog, so that
the recovery of target cells from them is not straight-
forward. For such reasons efforts have been directed
towards replacing conventional membranes with phys-
ical structures such as weirs and arrays of microposts
or pillars that are built into fluidic channels. In a weir
structure the microchannel takes a sudden reduction of
cross section. Particles that are too big to pass through
such structures are retained. In some cases, especially at
high fluid flow rates, the deformability of a particle deter-
mines whether it is captured or not. Particle deformity is
an important consideration for the selective retention of
blood cells because, as shown in Table 1.2, there are over-
laps of the size distributions of the various blood cells.
An informative investigation of the mechanical filtra-

tion of erythrocytes (red blood cells) from leukocytes
(white blood cells) in whole blood was performed by
Wilding et al. [7]. Blood was passed between microposts
or over weirs etched into a silicon substrate in a chamber
capped with a glass top. This is shown schematically in
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Table . The volume (fL = 10−15 L), diameter, density, concentration ranges and properties of cells in normal adult human blood.

Volume Density Cell count

Cell diameter (g/cm) (cells/mL) Properties

Erythrocyte 95 ± 20 fL
7.5∼8.0 μm

1.09–1.10 4.8 ± 0.9 × 109 Biconcave disks, anucleated

Erythroblasts 270–4000 fL
8∼20 μm

1.07∼1.08 <1 × 104 Nucleated, (immature
erythrocytes)

Platelet 9 ± 6 fL
1∼3 μm

1.04–1.06 2.7 ± 0.5 × 108 Round or oval

Leukocytes
Lymphocyte
(90% population)
(10% population)

500∼2000 fL
10∼12 μm
12∼16 μm

1.055–1.065 2.7 ± 1.3 × 106 Mononucleated
(small cytoplasm content)
(larger cytoplasm content,
often with large granules)

Granulocytes 500∼2500 fL
Neutrophil 12∼15 μm 1.075–1.085 4.6 ± 2.9 × 106 Polynucleated, very

granulated cytoplasm
Eosinophil 12∼17 μm 1.075–1.085 2.3 ± 2 × 105 Polynucleated, larger

granules than neutrophils
Basophil 10∼14 μm 1.075–1.085 7 ± 6 × 104 Polynucleated, intermediate

granularity
Monocytes 900–4000 fL

12∼20 μm
1.055–1.065 4 ± 2 × 105 Mononucleated (nucleus

often irregular or kidney
shaped)

Sources: Bain, B. J. (1995) Blood Cells: A Practical Guide. 2 edn. Blackwell Science, Osney Mead. De Waele, M., Foulton, W. and Renmans, W.
(1988) Hematologic values and lymphocyte subsets in fetal blood. Amer. J. Clin. Prac. 89, 742–746. Lynch, D. C., Yates, A. P. andWatts, M. J. (1996)
Haematology, Churchill Livingstone, New York, NY.
Notes: Cell counts for adults vary due to demographic factors (e.g., sex, age, ethnic origin and geographical location) and biological factors (e.g.,
diurnal variation, pregnancy, menstruation, menopause, exercise, cigarette smoking, alcohol intake). About 70% of the lymphocytes are T cells
(approximately two-thirds CD4 and one-third CD8), 5–10% are B cells and the remainder are non-T, non-B-cells.

Figure 1.1. The objective was to demonstrate that isola-
tion of leukocytes from the erythrocytes, followed by the
polymerase chain reaction (PCR) for the DNA released

Trapped 
WBCs

RBCs

Figure . Schematic of a weir-type microfilter used to separate
blood cells. A small gap between the top of the weir and a glass
cover plate provides active filtration of cells based on size and
deformability. In this example white blood cells (WBCs) are
trapped on the weir whereas red blood cells (RBCs) flow freely
over it. (Based on Wilding et al. [7].)

directly from the trapped leukocytes, could be performed
as sequential processes in a single microfluidic chamber.
Removal of the erythrocytes from the whole blood sam-
plewas required because haemoglobin proteinmolecules
that can leak from them inhibit the PCR process.
Wilding et al. [7] found that sieving of blood cells was

influenced by several factors, namely: the deformability
of the cells; their concentrations; the pressure applied
to produce the fluid flow; the viscosity of the fluid; and
the physical gap between microposts and above the sil-
icon weirs. Erythrocytes readily passed through gaps as
small as 3 μm, whereas the larger leukocytes (diameters
in excess of 15 μm) could only squeeze through gaps
larger than 7μm.The filtrationmechanism shown in Fig-
ure 1.1 was presumed to rely on trapping the leukocytes
in the narrow gap between the top of the silicon weir and
the Pyrex glass cover, but cell adhesion may also have
played a role.
In other studies, Mohamed et al. [8] demonstrated

the use of a micromachined silicon device for separat-
ing foetal cells frommaternal blood, based on differences
in cell size and deformability. The device consisted of
four sections of successively narrower channels along the
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flow axis. These channels did not take the form of con-
tinuous structures with side walls, but as a series of pil-
lars. In total the device contained more than three mil-
lion of such ‘channels’. This design allowed the cells to
deform and recover as they passed between channels
and to migrate around regions where the cell flow was
locally hindered or clogged. The nucleated foetal ery-
throcytes, ranging in diameter from 9 to 12 μm, could
deform and pass through a channel as small as 2.5 μm
wide and 5 μm deep. The larger leukocytes, ranging in
diameter from 10 to 20 μm, could not deform to the
same extent and were retained by the 2.5 μm wide and
5 μm deep channels. Later studies, using the same fil-
tering device, demonstrated that cultured cancer cells
spiked into whole blood could be recovered, based solely
on their size and deformability [9].

1.4.2 Hydrodynamic

1.4.2.1 Basic Principles
The separation of particles using hydrodynamics often
relies on the principle that macroscopic particles sub-
jected to viscous drag forces in laminar fluid flowwill stay
within their fluid streamlines. An extreme example of this
is the way that the coloured strands of a certain brand of
toothpaste remain in place and do notmix together as the
paste is squeezed slowly from its tube (see Figure 12.9).
We can classify this as a deterministic effect – the indi-
vidual streamlines of paste will flow in a predictable way.
If particles within a streamline are small enough to be
buffeted about by the thermally induced motions of the
fluid’s molecules, we have a stochastic process because
theywill diffuse in a randommanner across adjacent fluid
streamlines. In a nondeterministic, stochastic regime we
are unable to separate particles according to the princi-
ples described in this section.
All fluid flow,whether in a channel or around an object,

can be broadly classified as either laminar or turbu-
lent. As described in Chapter 12 (12.4.5), which of these
fluid flow conditions is dominant depends on the rela-
tive importance of the inertial forces versus viscous shear
forces in the flow. An inertial force is the concept we
use to understand the principle of inertia as embodied
in Newton’s First Law of Motion (an object not subject
to any net external force moves at a constant velocity).
In fluidics we can relate this to the translational momen-
tum (mass × velocity) of a unit volume of a fluid ele-
ment. This is given by the product (𝜌v) of the fluid den-
sity 𝜌 and the bulk velocity v of the fluid flow. A fluid
element can also have rotational inertia, which refers to
the fact that the angular momentum of the fluid ele-
ment will remain unchanged unless an external torque
is applied. The shear forces that act to damp out trans-
lational and angular momentum of the fluid are viscous

in nature. They occur at the channel walls and between
fluid streamlines. The ratio of the inertial forces and vis-
cous shear forces is a dimensionless parameter, known as
the channel Reynolds number Re, given by the relation-
ship:

Re = 𝜌vL
𝜂

(1.1)

in which 𝜂 is the fluid’s dynamic viscosity and the param-
eter L is the effective wetted (hydraulic) diameter of the
channel. For low values of Re the viscous damping caused
by shear at the channel walls and between fluid stream-
lines quickly removes translational and rotational kinetic
energy fromafluid element and the flow is laminar. Lami-
nar fluid flow is characterized by a parabolic velocity pro-
file (see Figure 1.3). As a rough guide, described in more
detail inChapter 12, for a Reynolds number above∼1000,
the shear between streamlines is unable to dampen out
the inertia of transverse and rotational fluid motions. As
a result, the laminar streamline structure is destroyed
and the fluid flow becomes turbulent throughout the
channel. For aqueous fluids we have 𝜌 ∼103 kg m−3 and
𝜂 ∼10−3 Pa s, so that the factor (𝜌/𝜂) in Equation (1.1)
has a value of ∼106 m−2 s. In microfluidic devices we
typically have flow velocities much less than 1 cm/s and
L rarely exceeds 10 cm. In Equation (1.1) we therefore
have vL < 10−3 m2/s, giving us a Reynolds number of
less than 1000. Unless a very high fluid flow velocity is
achieved (driven by high pressure in a channel fabricated
to withstand such pressure) it is not possible to induce
high Reynolds number conditions. Therefore, as a work-
ing rule, we can assume that flow in a microfluidic device
is laminar. In such flow the fluid stream velocity is zero
at the boundary layer next to a channel wall or a wetted
object’s surface and increases with distance away from
such boundaries.
Equation (1.1) defines the Reynolds number for the

fluid flow inside a channel in the absence of suspended
particles or fixed objects such as posts. We can define a
Reynolds number Rp that includes details of a particle by
multiplying Re by the dimensionless parameter (R2/L2)
where R is the radius of the particle:

Rp = R2

L2
Re = 𝜌vR2

𝜂L
(1.2)

For low values of the particle’s Reynolds number
(Rp ≪ 1) viscous drag of the fluid will act over its sur-
face and accelerate it to the local velocity of a laminar
fluid streamline. For Rp ∼ 1 inertial forces can lift the
particle away from a channel wall and also cause it to
cross fluid streamlines. If the walls of the fluid chan-
nel are not straight but curved, rotational flow called
Dean flow [10], caused by fluid vortices induced by the
channel curvature, can also cause particles to cross
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streamlines and alter their position in the channel. This
effect is characterized by the Dean number De:

De = 𝛿1∕2Re (1.3)

In Equation (1.3), 𝛿 is the ratio L/2Rc, with Rc being the
radius of curvature of the channel of hydraulic diameter
L. The position of a particle in a curved channel can be
influenced by drag associated with Dean flow when De
> 1. It has also been demonstrated that particles can be
separated according to their size using slanted obstacles
in a channel [11,12]. Transverse flow streams perpendic-
ular to the direction of the main fluid flow result from
an anisotropic fluidic resistance of the slanted obstacles.
Their top or bottom areas represent a higher flow resis-
tance than their side areas. Particles subjected to the lat-
eral pressure gradients induced by this flow resistance
anisotropy are moved from the one sidewall of a chan-
nel to the other sidewall. This effect has been coined
‘hydrophoresis’ and is defined as the movement of sus-
pended particles under the influence of amicrostructure-
induced pressure field [11].
Whether or not a particle (defined by its centroid)

follows a fluid flow stream depends also on the rate at
which it can diffuse in that fluid. The constant thermally
inducedmotions ofmolecules in fluids ensures that when
one fluid stream is placed adjacent to another one, as
in laminar flow, its molecules percolate between flow
streams in a process called diffusion. It is convenient to
separate the actual diffusion process into two concep-
tual transport mechanisms: a molecular process mod-
elled as a statistical random walk that is proportional to
the degree of kinetic energy in the system and an advec-
tive process in which molecules are carried along by the
average velocity of the flow. The common practice is to
restrict the word diffusion to describe the first process

and label the second process advection (convection if heat
is being transferred). As described in Chapter 12 the rela-
tive importance of these two conceptual transport mech-
anisms is given by the Peclet Number Pe, the ratio of
advection and diffusion:

Pe =
vL
D

(1.4)

where D is the particle’s diffusion coefficient. If Pe < 1
the diffusion rate is smaller than the advection rate over
the characteristic distance L. The flow is deterministic
because a particle is confined to a fluid streamline. Cells
suspended in aqueous fluids exhibitD values of the order
10−15∼10−16 m2/s (see Table 12.3). From Equation (1.4)
such values of the diffusion coefficient ensure that when
working with cells Pe will greatly exceed 1.0 in any prac-
tical microfluidic device. Thus, in low Reynolds number
fluid flow and in the absence of an externally applied force
cells will remain within their fluid streamlines.

1.4.2.2 Practical Examples of Applying Hydrodynamic
Forces
When a microchannel splits into two channels that carry
different fluid flow rates, the suspended particles will fol-
low different streamlines depending on their locations in
the channel leading up to the bifurcation. This is gov-
erned by the ratio of the fluid flow rates in the bifurca-
tions and the difference in the shear force that acts on
the surface of a cell when near to the channel wall com-
pared to that when it is in the middle of the channel.This
shear difference contributes to a lift force that pushes a
cell away from direct contact with the channel wall. This
is known as the Bifurcation Lawor Zweifach–Fung effect,
depicted in Figure 1.2 and has been explored by Yang

High flow-rate channel

I

III

II

Stagnation point

Critical streamline

Low flow-rate channel

Figure . Schematic of the Zweifach–Fung effect where a
particle with its centroid on the critical streamline is
directed to the high flow rate channel in a bifurcation.
(Yang et al. [13] reproduced with permission of the
Chemical Society.)
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(a) (b) (c)

Figure . (a) Particles of various sizes are shown close to the wall of a channel that sustains a pressure-driven laminar flow of fluid. The
parabolic profile of the fluid velocity results in the larger particles moving more rapidly and eluting from the channel more quickly than the
smaller particles. This is the basis of steric field flow fractionation [14–16]. (b) If the fluid flow rate into a side channel is sufficiently low, only
the smaller particles contained within the fluid flowing near the sidewall will be withdrawn into it from the main channel [17]. (c) Particles
can be separated according to their size by a spreading flow profile at the exit of a pinched section of channel joining two flow streams. The
extent of particle separation is controlled by adjusting the flow rates in the two inlets to the pinched section. (Based on Yamada et al. [19].)

et al. [13] as a method to separate blood plasma from
blood cells.
As shown in Figure 1.3(a), in the situation where par-

ticles in a laminar fluid flow are forced close to a chan-
nel wall, the larger particles will have a larger velocity
than the smaller ones. The larger particles will on aver-
age be in the faster flowing streamlines because their cen-
troids cannot be closer to the wall than their radii. This
is the basis of the various forms of field flow fraction-
ation (FFF) pioneered by Giddings [14, 15] and exten-
sively reviewed by Roda et al. [16]. In FFF a force (field)
is applied perpendicularly to the parabolic flow to drive
the particles (or analytes) to a channel wall or into dif-
ferent laminar flows due to differences in their size, den-
sity and other physical features such as shape, rigidity and
surface properties. The applied field can be a centrifugal
force or electrical field, for example. Because the larger
particles will be swept downstreammore rapidly they can
be selectively collected from the fluid exit of the chan-
nel before the smaller particles are eluted. This mode of
elution is referred to as steric or hyperlayer FFF, respec-
tively, depending on whether the particles are all brought
to a wall of the channel or distributed into different lami-
nar streams, respectively. For submicron particles, where
diffusion down their concentration gradient becomes a
dominant process, the elution order of analyte size and
mass is reversed. This is known as the normal elution
mode.
Yamada et al. [17, 18] have exploited the properties

of laminar flow for the size-selective filtration of leuko-
cytes from blood and size-dependent separation of liver
cells. The operating principle is outlined in Figure 1.3(b),
which shows a narrow side channel branching off from
a broad main channel. The fluid flow rates in the main
and side channel will depend on their effective fluidic
resistance values and the pressures applied to drive them.
When the relative flow rate into the side channel is suf-
ficiently low, only the fluid stream near the main chan-
nel wall will be withdrawn into the side channel. As
shown in Figure 1.3(b), in this flow state particles whose

diameters are larger than a certain value will not enter
the side channel, even if they are flowing near the wall
of the main channel and have a diameter smaller than
the cross sectional size of the side channel. Depending on
their size, shape and other factors such as surface rough-
ness, the particleswill also experience lift forces that push
them away from the channel wall. This will influence the
selective filtration of the particles.
Yamada et al. [19] also introduced the concept of

pinched flow fractionation (PFF) outlined in Figure
1.3(c). A liquid containing the particles to be separated
by size is continuously introduced into another channel
containing particle-free fluid. By adjusting the flow rates
of these two fluids, the particles can be restricted to flow
at one sidewall of a ‘pinched’ section of the fluid channel.
At the end of the pinched section, where the flow veloc-
ity profile spreads out, the larger particles are directed
toward the centre of the channel and the smaller parti-
cles are directed within their slower moving stream lines
towards the sidewall. Consequently, slight differences of
particle elevations in the pinched channel section are sig-
nificantly amplified in the broadened outlet. Particles are
separated according to their size by deterministic lateral
displacement in the laminar flow.
Davis et al. [20] have described an interesting version of

size-dependent particle separation by deterministic lat-
eral displacement in a process they refer to as bumping.
As depicted in Figure 1.4, the particles flow through an
array of microposts. Each row of posts is offset later-
ally with respect to the preceding row. Particles below
a critical diameter follow streamlines cyclically through
the gaps, moving in an average forward flow direction.
Particles above this critical diameter cannot follow such
a streamline and are ‘bumped’ by hydrodynamic lateral
drag into the sequential streamline at each post. Thus,
such particles do not move parallel to the fluid flow but
at an angle determined by the ratio of post offset to row-
row spacing. Davis et al. have demonstrated that this
procedure can fractionate whole blood by separating the
erythrocytes from the leukocytes and allow them to be
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Figure . The size-dependent separation by deterministic
displacement of particles flowing through an array of microposts.
Small particles stay within a flow stream that skirts the surface of
posts in adjacent rows, whereas large particles are displaced
laterally at each post. The extent of lateral separation of the
particles is determined by the centre-to-centre post separation,
the diameter of the posts, and the relative shift of the post centres
in adjacent rows (based on Davis et al. [20]).

collected in separate fluid exit ports [20]. By modifying
this method of deterministic lateral displacement, Holm
et al. [21] were able to separate from human blood the
living parasites (trypanosomes) that cause sleeping sick-
ness.
As the rate of fluid flow is increased in curved channels

and the particle size is increased relative to the channel
diameter, the particle Reynolds number given by Equa-
tion (1.2) increases so that inertial effects can become sig-
nificant. Interesting examples of this have been demon-
strated by Di Carlo et al. [22] for the flow of particles
in curved channels. The superposition of lift forces from
the channel walls with centrifugal forces arising from
the fluid and particles was observed to induce precise
ordering of initially scattered particles both longitudi-
nally along the direction of fluid flow and laterally across
the channel. This inertial self-ordering effect is shown
schematically in Figure 1.5. A noteworthy application of

the combined effects of inertial forces and Dean flow
is a spiral microfluidic device, shown in Figure 1.5, for
separating asynchronous mammalian cell lines accord-
ing to their cell cycle [23]. This was achieved by exploit-
ing the relationship between cell diameter and cell cycle
and provided enriched subpopulations of viable cells in
the G0/G1, S and G2/M phases. A comprehensive theo-
retical study and modelling of inertial focusing dynam-
ics in spiral microchannels has been reported by Mar-
tel and Toner [24]. They conclude that the rich variety
of inertial focusing dynamics observed in curved chan-
nels offers the potential of wide applications and advan-
tages for future generations of microfluidic devices. Fur-
ther study is also required to elucidate the underlying
physical mechanisms and their associated limitations.

1.4.3 Acoustic

An acoustic radiation force [25] can be exerted on a
particle in a fluid stream using an ultrasonic transducer
located at the wall of the channel.The form of transducer
commonly consists of piezoelectric ceramic rings sand-
wiched and bolted between two metal blocks. When a
DC voltage is applied to the piezoceramics, they expand
and the pressure applied to the blocks is transmitted into
the bulk of the fluid. An applied AC voltage causes the
transducer to vibrate at the frequency of the applied volt-
age and this frequency is higher than that detectable by
human ears. The longitudinal pressure wave created in
the bulk fluid will travel at the speed of sound, which for
water is around 1500 m/s. The wavelength 𝜆 is related to
the frequency f and speed v by the relationship 𝜆 = v/f.
So, for the case where f = 15 MHz and v = 1500 m/s,
we have a wavelength of 100 μm. If the transducer faces
a sound reflector, the interactions between the emitted
and the reflected acoustic wave create regions of mini-
mum and maximum pressure amplitude changes (nodes
and antinodes, respectively). This effect is maximized by
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Figure . (a) The continuous inertial focusing, ordering and separation of particles can be achieved by increasing the particle Reynolds
number in a microchannel designed to have asymmetrically curved walls. The combination of lift forces at the channel walls and
centrifugal forces acting on the particles and fluid can result in both longitudinal ordering and lateral focussing of particles (based on Di
Carlo et al. [22]). (b) The spiral microfluidic design developed for cell cycle synchronization by Lee et al. [23]. (Reproduced with permission
of the Chemical Society.)
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placing the sound reflector amultiple of half wavelengths
from the transducer, to create a resonant standing wave
[26].
The acoustic radiation force consists of two com-

ponents. One component involves the gradient of the
potential energy of the wave interacting with the com-
pressibility difference between the particle and fluid,
whilst the other involves the gradient of the kinetic
energy interacting with the specific density differences
between the particle and fluid [25]. The particles expe-
rience a force that is directly proportional to their vol-
ume – in other words large particles experience a greater
acoustic force than small ones. Whether or not a par-
ticle is directed towards or away from a standing wave
pressure node depends on its density and compressibil-
ity compared to that of the surrounding medium. Cells
are of greater density and are less compressible than
an aqueous medium and both of these factors result in
their being directed to where minimal pressure ampli-
tude changes occur – i.e., towards a pressure node. Parti-
cles of the same density as the surrounding medium will
move towards a pressure antinode if they are more com-
pressible than the medium. An illustration of the degrees
of particle separation created in a half-wavelength acous-
tic standing wave is shown schematically in Figure 1.6.
In this illustration the acoustic force is generated at right
angles to the direction of the fluid flow. The suspended
particles interact with the acoustic force as they flow
along the channel and become spatially separated accord-
ing to their size, density and compressibility. Different

Figure . A schematic of particles moving at different rates
towards the pressure node at the centre of a half-wavelength
acoustic standing wave, according to their size, density,
compressibility, and acoustic pressure amplitude (based on
Petersson et al. [27]). The acoustic force is generated across the
channel, orthogonal to the fluid flow direction (into the page). The
different particle fractions can be collected downstream from
several exit ports [27, 28].

Viable
cells

Dead
cells

Dead
cells

Ultrasonic
transducer

Sample in

Sample in

Buffer in

Figure . Viable (white) and dead (black) cells are separated by
injecting them together with a buffer solution at a 1 : 3 flow ratio
into a fluidic channel. An acoustic radiation force preferentially
focuses the larger viable cells toward the acoustic pressure node
within the centre streamline but is insufficient to move the smaller
dead cells away from the channel walls. The viable and dead cells
are collected from separate exit fluid ports (based on Yang and
Soh [29]).

fractions of the particle mixture can then be collected
downstream through different fluid exit ports [27, 28].
In an aqueous suspension of mixed viable and dead

(nonviable) cells the dead ones tend to be more buoyant
(less dense) and smaller than the viable ones. In an acous-
tic standing wave the viable cells should therefore have a
greater tendency to move towards a pressure node than
the dead ones. This has been demonstrated, as depicted
in Figure 1.7, for the case of viable and dead breast can-
cer cells in a cell separation device constructed by Yang
and Soh [29]. Acoustophoresis appears to be particu-
larly well suited for processing fluids of high cell con-
tent in microfluidic devices. For example, whole blood
is particularly difficult to flow through microchannels
because of its high viscosity and clogging tendency. How-
ever, Lenshof et al. were able to produce plasma from
whole blood in a sequential blood cell removal procedure
in an acoustic force microdevice having a multiple out-
let configuration [30].The quality of the resulting plasma
fulfilled the standard defined by the Council of Europe
for plasma transfusion, namely an erythrocyte concen-
tration less than 6 × 106/mL. Furthermore, the plasma
was directly linked in the device to a microarray for the
detection of a prostate specific antigen via fluorescence
readout without any signal amplification at clinically rel-
evant levels of 0.19 to 21.8 ng/mL.
These applications of acoustophoresis have used bulk

acoustic standing waves, which require the microchan-
nel walls to exhibit good acoustic reflection properties
such as those fabricated from silicon. However, microflu-
idic devices are commonly made of polymeric materi-
als using soft lithography techniques, which have poor
acoustic reflection properties. Attaching a piezoceramic
transducer to the interior of a microchannel is also not
straightforward. To overcome these limitations, surface
acousticwaves (SAWs) can be generated usingmicroelec-
trodes that have been deposited onto a piezoelectric sub-
strate. SAWs are sound waves that propagate along the
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surface of an elastic material, with most of its acoustic
radiation force confined within a thin layer close to the
substrate surface. The energy density of a SAW is there-
fore high, making it an effective way for to focus, separate
and direct particles or fluid droplets in a microchannel.
Reviews of such applications of surface acoustic waves
have been provided by Yeo and Friend [31] andWang and
Zhe [32].

1.4.4 Optical

A beam of photons, in other words a light beam, carries
momentum. If a beam of photons is reflected off a parti-
cle’s surface, the particle experiences a radiation pressure
related to the optical momentum transfer to it. A quali-
tative assessment of the potential magnitude of this has
been given by Ashkin [33] as follows:

By focusing a laser beam of modest power, about
1 W, to a spot size of about a wavelength 𝜆, one
can subject a dielectric sphere 1 μm in diameter to
the very high light intensity of about 108 W/cm2.
Assuming the light is reflected from the sphere
with an average reflectivity of 10%, one achieves an
acceleration of approximately 106g, where g is the
acceleration due to gravity.

Ashkin and his colleagues at the Bell Laboratories went
on to demonstrate [34, 35] that particles can be trapped
and manipulated using highly focused laser beams, in
a technique now generally referred to as optical tweez-
ers. Of particular relevance to us is that they were able
to demonstrate [35] that infrared laser beams could trap
and manipulate individual cells such as yeast, E. coli
and red blood cells without damaging them. The cells
could be manipulated by optophoresis at velocities up to
100 μm/s. Organelles within individual protozoa could
also be manipulated. A similar effect has been demon-
strated using the DEP tweezer shown in Figure 10.44,
which was able to manipulate chloroplasts located inside
Eremosphaera cells.
An understanding of how particles can be optically

trapped is relatively straightforward for particles of diam-
eter significantly larger than the wavelength of the light
beam. In this case, as shown in Figure 1.8, simple optics
can be used to follow the paths of individual rays of light
as they are refracted on entering and leaving a dielectric
sphere. This refraction results in a light ray leaving the
sphere at a different angle to that of its incidence, which
in turn implies that there has been a change of momen-
tum of the light ray. According to Newton’s Third Law
of Motion there will be an equal and opposite momen-
tum change on the sphere. We say that there has been a
transfer of optical momentum from the light beam to the
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Figure . (a) A particle of refractive index larger than the
surrounding medium is located away from the axis of maximum
light intensity of an incident laser beam. Because the optical
momentum transfer of a refracted ray such as ray 2 is larger than
that of a weaker ray 1, a resultant force F acts on the particle to
direct it towards the high-intensity region of the laser beam.
(b) The refracted rays of a particle subjected to a focused light
beam are symmetrical. The net force F acting against the optical
momentum transfer to the particle thus has no lateral component
and acts against the force of gravity and light scattering towards
the focus point.

sphere. Formost practical examples of an optical tweezer
the intensity of light from the laser has a Gaussian pro-
file of intensity, as depicted in Figure 1.8 (a), composed
of a transverse combination of an electrical andmagnetic
field (an electromagnetic wave) in what is termed a TEM
mode. If a spherical particle of refractive index greater
than the surrounding medium is displaced from the cen-
tral axis of maximum light intensity, the rays of greater
intensity will impart a larger momentum change towards
the beam centre than that imparted away from the cen-
tre by the rays of weaker intensity. This imparts a lateral
force on the sphere towards the maximum beam inten-
sity. Once located at the centre of a focused beam, as
shown in Figure 1.8 (b), there is a symmetrical refraction
of the individual light rays and hence no net lateral force.
This cancels out the scattering force of the laser beam and
results in the stable trapping of the sphere just below the
point of focus of the laser beam. A spherical particle of
refractive index less than that of the surroundingmedium
will be pushed away from the laser beam.
MacDonald et al. [36] have demonstrated the princi-

ple of an optical particle sorter using a diffractive laser
beam splitter to create a three-dimensional, dynami-
cally reconfigurable, lattice of optical interference pat-
terns. The sorting by size of drug delivery microcapsules
was demonstrated (see Figure 1.9), as well as the sorting
by refractive index of polymer and silica particles. This
work demonstrates the main advantage of optophoresis,
namely that the light beam can be focussed deep within
the fluid sample to give three-dimensional control of the
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Figure . The optical fractionation by size of protein
microcapsules as they flow from right to left across a
three-dimensional optical lattice created by passing a laser beam
through a diffractive beam splitter. The video track (white) of a
4 μm diameter capsule shows no deflection, whereas significant
optophoretic angular deflection is seen from the black tracks of
two 2 μm diameter capsules. (MacDonald et al. [36], reproduced
with permission of Nature Publishing Group.)

position of a trapped particle. Multiple traps can be pro-
duced using separate steeringmirrors and beam splitters.
The development of holographic optical tweezers [37]
makes it possible to trap hundreds of particles in com-
plicated patterns, with simultaneous and easy control of
the axial position of the traps.

1.4.5 Electrical

An electric field, E, is created in the space surrounding a
distribution of electric charges at rest.This field will exert
a force F = qE on any other charge q that is present in the
field. In other words, the electric charge q does not itself
contribute to the electric field E acting on it. The elec-
tric force on a positive charge (+q) acts along the same
direction as the field vector, whilst that on a negative
charge (−q) acts against the field vector direction. The
electric force does not act at an angle to the electric field.
If the electrical charges responsible for creating the field
E are moving, they create an additional magnetic field
B. The resultant electric and magnetic force acting on a
particle in such a combination of fields is considered in
section 1.4.6.

1.4.5.1 Flow Cytometry
As the name implies, flow cytometry is the measurement
of cells in a fluid flow system. Cells are delivered one
at a time through a microchannel past a point of mea-
surement. The earliest form of flow cytometer uses the
Coulter counting principle, as invented by Wallace H.
Coulter and disclosed in his US Patent (2 656 508) of
1953. This principle relies on the fact that particles

moving in an electric field cause measurable distur-
bances of the field that are proportional to the volumes
of the particles. The practical requirements are that the
particles should be suspended in a conducting liquid; the
electrical field should be physically constricted so that
the movement of particles in the field causes detectable
changes in the electric current; and the concentration
of the particles should be low enough that they pass one
at a time through the physical constriction, preventing
an artifact known as coincidence. Direct current (DC)
or low frequency alternating (AC) fields are used, so
that a viable cell with an intact membrane will appear
as an insulating particle and cause a significant transient
change in the electrical resistance of the fluid when
detected in the constricted channel. By monitoring the
pulses in electric current, the number of particles for
a given volume of fluid can be counted. The size of the
electric current pulse is related to the size of the particle,
enabling a particle size distribution to be measured. The
most important application of the Coulter counter has
been in the characterization of blood cells and is the
standard method for obtaining red and white blood cell
counts for medical diagnostic purposes. Morgan et al.
[38, 39] have made significant progress in developing
microimpedance cytometry with integrated microflu-
idics for the detection of bacteria and for performing a
full blood count in clinical samples. This demonstrates
its potential clinical utility for point-of-care diagnostic
purposes.
The flow cytometry method mostly used in research

laboratories is fluorescence-activated cell sorting (FACS).
An essential element of this method is application of
the electric force, given by the relationship F = qE, to
physically separate cells according to the charge added
to a fluid droplet that contains each one. Cells are deliv-
ered one at a time in a fast flowing buffer sheath past
a point at which a laser beam is focussed. Light scat-
tered by the cells at right angles to the laser beam (side
scatter) and light scattered in a forward direction (for-
ward scatter) is measured. Side scatter is mainly influ-
enced by the optical homogeneity (granularity) of the
cells, whilst the forward scatter can provide a good esti-
mation of cell size. Fluorescence induced by the laser light
is also measured and, depending on the type of instru-
ment, up to ten different fluorescent wavelengths can
be monitored. Some algae and bacteria may naturally
fluoresce, but otherwise fluorescent chemicals attached
to antibodies are used to selectively bind to and so tag
specific surface proteins (antigens) on the cells. Fluo-
rescent chemicals and fluorescent nanocrystals (known
as quantum dots) can also be used to tag cell compo-
nents such as nuclei, DNA and chromosomes. Droplets
of the buffer solution are then created using a piezo-
electric vibrator (as in an inkjet-printer head) so as to
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encapsulate a single cell in each droplet. The next steps
are where an electrical effect and force are introduced.
Each droplet passes through a metal ring to which an
electric charge is applied. The magnitude and polarity of
this charge is controlled by the fluorescence wavelength
detected and hence on the antibody label and pheno-
type of the droplet-encapsulated cell. A charge of polar-
ity opposite to that applied to the ring is induced on the
droplet, which then passes through an electric field gen-
erated between two charged metal plates. The electric
force acting on a charged droplet deflects it into a des-
ignated collection tube, whilst uncharged droplets drop
directly into awaste container.This employs the so-called
forward sorting algorithm, where droplet-encapsulated
cells are directed to the waste exit port until a threshold
fluorescence signal is detected and an appropriate volt-
age signal is applied to the droplet charging ring. This
can slow down the process of seeking rare cells in a sam-
ple and multiple measurements of the same cell are not
possible. Sample volume throughputs for different FACS
instruments range from 12 μL/min to 60 μL/min. For
high throughput applications, 1–2 μL volumes are robot-
ically sampled from each 10 μL well volume of a 96-well
plate, with cell number densities up to 1000 per μL. A
schematic of a basic FACS instrument is shown in Figure
1.10 and represents a simplification of details provided by
Shapiro et al. [40].
Conventional FACS instruments are costly, technolog-

ically complex and require trained personnel to operate
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Figure . A simplified schematic is shown of a FACS instrument.
Cells flow one at a time through a fluorescence measurement site
before each one is encapsulate in a droplet. The droplet is charged
according to the fluorescence signal of its entrapped cell, and is
then deflected by an electric field into an appropriate reservoir.
This example shows the separation and collection of two cell
types, with removal as waste of cells that have not been
‘recognized’ by the two fluororescent antibody probes.

them. Clogging of the cell exit nozzle, the sterilization of
the fluid chamber between runs and malfunctions of the
droplet-encapsulation and charging processes are quite
common reasons for instrument down time. Relatively
large sample volumes are also required (typically a few
μL rather than pL or less) and significant background
fluorescence arising from the cell suspension medium
and chamber material can be present. Fu et al. [41, 42]
were the first to report efforts to avoid these problems by
exploiting microfluidics to produce an integrated micro-
FACS device, bringing with it many of the advantages
listed in section 1.2.1. The planar configuration of the
device allowed the use of high numerical aperture optics
and so increased the sensitivity of fluorescence detection.
The small size of the laser interrogation site also reduced
the backgroundfluorescence from themedia and channel
materials. A novel ‘reverse’ sorting algorithm was imple-
mented by Fu et al. [41,42], in which the cells were driven
at a high rate by pressure-driven flow from the input
to the waste reservoir. Upon fluorescent detection of
a target cell, the flow was stopped and the cell sent back
to the input. When the cell passed through the detec-
tion region a second time, it was directed into the col-
lection channel and fast transport of cells from the input
to the waste was resumed. Due to the simple fabrication
process and inexpensive materials, these micro-FACS
devices can be disposed so as to eliminate any cross-
contamination from previous runs. A similar microflu-
idic cell sorting system has been developed by Dittrich
and Schwille [43] who employed fluorescence correla-
tion spectroscopy to detect the tagged cells and pulses of
electro-osmotic force, rather than pressure-driven flow,
was used to deflect the cell stream into waste and hold
reservoirs. Cho et al. [44] have further advanced the
development of micro-FACS technology by developing a
device that operates by integrating microfluidics, optics
and acoustics to achieve a throughput better than 1000
cells/s. This was achieved using an integrated piezo-
electric lead-zirconate-titanate actuator, with a response
time of ∼0.1 ms, to hydrodynamically manipulate sub-
nanolitre volumes of fluid in which a single cell is
suspended.

1.4.5.2 Electrophoresis and Dielectrophoresis
These two electrokinetic effects are introduced in detail
in Chapter 2 and will not be dealt with in depth at this
point. In brief, electrophoresis is the effect where a par-
ticle carrying a net charge Q is induced to move in an
electric field. In most practical situations the field is uni-
form and does not vary with time. The electric force
F = QE acting on the particle accelerates it until there
is a balance between the frictional viscous force exerted
by the surrounding fluid and the electric force. At this
point the particle will move at a steady-state velocity v.
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The electrophoretic mobility μe of a particle is defined as
the velocity v that is induced per unit electric field and
so is given as μe = v/E. All mammalian cells so far stud-
ied exhibit a negative electrophoreticmobility under nor-
mal physiological conditions – they move in the oppo-
site direction to that of the applied electric field. This
corresponds to the cells carrying a net negative charge.
Some bacteria have been observed to exhibit positive
electrophoresis and so carry a net positive charge. The
μe values for different mammalian cells at physiologi-
cal pH generally lie in the range from −0.5 × 10−8 to
−3.5 × 10−8 m2 V−1s−1. The most studied cell type is
the human erythrocyte, with an established μe value of
−1.1× 10−8 m2 V−1s−1 and is often used to calibrate elec-
trophoresis equipment as a standard reference. A useful
insight of the magnitude of steady-state velocities and
cell migration distances typically observed in cell elec-
trophoresismeasurements can be obtained by expressing
the electrophoreticmobility in units ofμm/s per volt/cm.
Thus, for a cell with μe = −1.0 × 10−8 m2 V−1s−1, it will
travel 0.6 mm towards the anode after 60 s exposure to a
field of 1000 V/m in a stationary fluid. Spatial separation
and hence purification of a heterogeneous cell sample by
electrophoresis should therefore be possible forμe differ-
ences between the target and other cells of 10–20%.
Large DC fields are typically used in electrophore-

sis. This can result in unwanted motion of the fluid
medium as a result of heat-induced convection. This can
be avoided by using a gel, instead of an aqueous solution,
for suspending the particles between the electrodes. For
example, an agarosematrix can be used to separatemixed
populations of DNA and RNA samples according to their
fragment lengths. Nucleic acid molecules are negatively
charged and shorter fragments will exhibit larger elec-
trophoretic mobilities because they can migrate more
quickly through the pores of the agarose gel than the
longer fragments. This is an example of molecular siev-
ing. An added advantage is that the separated entities
remain fixed in position after removal of the electric
field. Proteins are separated according to their net charge,
because the pores of an agarose gel are too large to sieve
the proteins according to their size. An immobilized pH
gradient can be established in a gel by adding a mix-
ture of ampholytes (molecules that can act as either an
acid or a base). Different proteins can then be separated
in a method, known as isoelectric focusing or electro-
focusing, which takes advantage of the fact that the net
charge on a protein depends on the pH of its surrounding
medium. A pH value will exist, known as the isoelectric
point, pI, where a protein carries no net charge. A protein
that is in a pH region below its pI value will be positively
charged and migrate towards the cathode. At pH values
above the isoelectric point it will be negatively charged
and migrate towards the anode. A mixture of proteins

will therefore be focused into narrow bands on the gel,
each one positioned at a location in the pH gradient that
corresponds to the pI point of each protein type. Very
high resolution is possible, corresponding to spatial sep-
aration of proteins whose net charge differs by just one
electronic charge. Gel electrophoresis can also be used
to sort nanoparticles.
Dielectrophoresis depends on the fact that a particle,

for example a cell, when exposed to an electric field can
be electrically polarized and assume the form of an elec-
tric dipole moment p. Equal and opposite charges (+Q
and −Q) will appear on opposite sides of the particle,
so that for a particle of diameter d the induced dipole
moment is given by p = Qd. As explained in Chapter 2,
the orientation of the moment, with or against the field
direction, will depend on whether the electrical polariz-
ability of the particle is greater or less than that of the
surrounding medium. If the electric field is uniform the
positive and negatively charged poles of the moment will
each experience the electric force F = QE. The polarized
particle will experience a torque and align its induced
electric poles with the field and in order to minimize its
electrical potential energy. However, the particle will not
be induced to move laterally. If the particle is located
in an electric field gradient, the two poles (+Q and –Q)
of the moment p will not experience the same electric
force and the particle will move. This induced motion is
called dielectrophoresis and the force FDEP responsible
for inducing this motion is given by:

FDEP = (p ⋅ ∇)E (1.5)

This equation is derived in Chapter 2 (Box 2.4). The
symbol ∇ is a mathematical device known as a differ-
ential operator. It ‘operates’ on the electric field E so as
to provide a quantitative way to define how the elec-
tric field gradient varies in three dimensions. As an anal-
ogy we obtain the equivalent of a 3D image of a moun-
tain, so we can judge how the gradient of ascent (or
descent) depends on the route we take. Equation (1.5)
provides the magnitude and direction of the resultant
dielectrophoretic force acting on a small polarized parti-
cle.This in turn provides us with the means to determine
the direction and induced acceleration of the particle. In
Chapter 2 (Boxes 2.4 and 2.5) it is further shown that the
dielectrophoretic force depends on the parameter ∇E2.
This square law dependence on the electric field indicates
that we can apply either a direct current (DC) voltage,
or an alternating current (AC) voltage, to the electrodes
in a dielectrophoresis device. The dielectric properties
of a cell can vary significantly over the frequency range
from 10 kHz to 10 MHz and they can also be sensitive
to subtle changes in the physiological state of a cell. The
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implications of these in terms of the theory, experimenta-
tion and biomedical applications of dielectrophoresis are
described throughout this book.

Example 1.1 Dielectrophoretic Force Acting on a
Cell at a Low Frequency
A 5 V, 1 kHz, voltage applied to an electrode creates an
electric field and field gradient of 2.6 × 104 V/m and
−2.5 × 108 V/m2, respectively, at a distance of 20 μm
from the electrode edge. At 200 μm from the electrode
edge the corresponding field and field gradient values
are 1.3 × 104 V/m and −2 × 107 V/m2, respectively.
(The negative field gradient value reflects the fact that
the field decreases in magnitude with distance from the
electrode.) The dielectric properties of a 10 μm diame-
ter cell and the surrounding aqueous medium are such
that the induced dipole moment of the cell is −4 × 10−21
C.m and −2 × 10−21 C.m, at a distance of 20 μm and 200
μm, respectively, from the electrode edge. (A negative
inducedmoment implies that the polarizability of the cell
is less than that of the suspending medium. An induced
moment of absolute magnitude ∼10−21 C.m appears to
be very small, but is in fact enormous when compared to
that of the permanent dipolemoment of awatermolecule
(6 × 10−30 C.m) or a protein molecule (5∼10 × 10−28
C.m).)
Calculate the dielectrophoretic force acting on the cell

at a distance of 20 μm and 200 μm from the electrode
edge.

Solution 1.1 The dielectrophoretic force FDEP is given
by Equation (1.5):

FDEP = (p ⋅ ∇)E

At 20 μm from the electrode (p = −4 × 10−21 C.m,
∇E = −2.5 × 108 V/m2):

FDEP = (−4 × 10−21C m)(−2.5 × 108 V m−2)
= 1 × 10−12 C Vm−1 = 1 pN.

At 200 μm from the electrode:

FDEP = (−2 × 10−21C m)(−2 × 107 Vm−2)
= 4 × 10−2 pN

(Conversion ofCVm−1 to newtonsmakes use of the rela-
tionship F = qE.)
A newton (1 N) is the force required to accelerate a

mass of 1 kg at the rate of 1 m per second per second. A
force of 1 pN (10−12 N) will thus have a significant effect
when acting on a cell typically of mass ∼10−12 kg.

Example 1.2 Dielectrophoretic Force Acting on a
Cell at a High Frequency
The frequency of the 5 V signal applied to the elec-
trode described in Example 1.1 is changed from 1 kHz to

10MHz. At this frequency the induced dipolemoment of
the cell is 8 × 10−21 C m and 4 × 10−21 C m, at a distance
of 20 μm and 200 μm, respectively, from the electrode
edge. (The change from a negative to positive moment
indicates that the cell is now more polarizable than the
surrounding medium. This implies that the electric field
now penetrates into the cell interior and that themedium
is less conductive than the cytoplasm.)
Calculate the dielectrophoretic force acting on the cell

at a distance of 20 μm and 200 μm from the electrode
edge.

Solution 1.2 We will assume negligible polarization
effects at the electrode, so that the change of electrical
frequency will not alter the field and field gradient values.
Thus, at 20 μm from the electrode with p = 8 × 10−21 C
m and ∇E = −2.5 × 108 V/m2:

FDEP = (8 × 10−21 C m)(−2.5 × 108 V m−2)
= −2 pN

At 200 μm from the electrode:

FDEP = (4 × 10−21 C.m)(−2 × 107 V .m−2)
= −8 × 10−2 pN

The negative value indicates that the dielectrophoretic
force will direct the cell up the field gradient towards the
high field at the electrode edge. This is known as positive
dielectrophoresis. (The positive forces derived in Exam-
ple 1.1 indicate that the cell is directed by negative dielec-
trophoresis down the field gradient and away from the
electrode.)

Examples 1.1 and 1.2 highlight two important features,
namely that a dielectrophoretic force acting on a cell will
vary significantly as a function of distance away from an
electrode edge and that the effective electrical polariz-
ability of a cell can vary greatly in both magnitude and
polarity as a function of the applied electric field fre-
quency.

1.4.5.3 Electrowetting on Dielectric (EWOD)
The surface tension force described in Box 1.1 can be
modified and controlled electrically. An early demon-
stration of this, of relevance to lab-on-chip technolo-
gies, was given by Pollack et al. [45] who described the
manipulation of discrete microdroplets along a linear
array of electrodes.This could provide the means to inte-
grate microfluidic systems without the need for conven-
tional pumps, valves or channels. Such systems would be
flexible, power efficient and capable of performing com-
plex and highly parallel microfluidic processing tasks. To
achieve this effect a voltage is applied, as shown in Fig-
ure 1.12, between a conducting liquid droplet (e.g., an
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Box . Surface Tension and Young’s Equation

Surface tension is a significant and useful force in microflu-
idic devices. Its origin lies in the difference between the
attractive forces acting on a molecule in a bulk liquid and
at a free surface between the liquid and air. A molecule
in the fluid bulk experiences mutually attractive (van der
Waals) forces with neighbouring molecules and, for aque-
ous solutions, hydrogen-bond forces are also significant. A
molecule at the surface is attracted by a reduced number
of neighbours and so has a raised potential energy. The cre-
ation of a new liquid surface is thus energetically costly. This
is why small volumes of fluid assume a spherical shape, and
trickles of water break up into spherical droplets, to mini-
mize the total surface area.

If U is the total cohesive energy per molecule in the fluid
bulk, then this is halved to a value of U/2 for a molecule
located at a flat surface. The surface tension created per unit
area of surface is related directly to this cohesive energy
reduction. For a characteristic molecular dimension R, the
effective molecular area is R2 and the surface tension is
U/(2R2). Surface tension is thus directly proportional to the
intermolecular attraction and inversely proportional to the
molecular size. Water has a significantly larger surface ten-
sion than oils and alcohol, for example, reflecting not only
the relatively small size of the water molecule but also
the cohesive energy supplied by hydrogen-bonds in bulk
water.

Surface tension T is defined as the ratio of the surface
force F to the length d along which the force acts (T = F/d)
and thus has units of force per unit length (equivalent to
energy per unit area) and acts tangentially to the free sur-
face. As shown in Figure 1.11, a drop of liquid on a solid sur-
face has three interfaces, namely the solid-liquid, the liquid-
air and the solid-air interface. A line on the solid surface
(the xy plane) defines the boundary separating these three
interfacial areas. The contact angle 𝜃 is defined as the angle
formed at this three phase boundary between the tangent
to the liquid surface and the xy plane. A tension exists in
each interface, and different values for these result in differ-

ent liquids adopting different contact angles relative to dif-
ferent solid surfaces. An equilibrium situation exists when
the horizontal components of the surface free energies bal-
ance. From Figure 1.11 the equilibrium condition is readily
seen to be described by the following relationship, known
as Young’s equation:

TS−A = TS−L + TL−ACos 𝜃 (1.6)

where TS-A, TS-L and TL-A are the surface tensions at the solid-
air, the solid-liquid and the liquid-air interfaces, respectively
and 𝜃 is the contact angle defined above. A liquid with low
surface tension (low surface energy) resting on a solid sur-
face of higher surface energy will spread out on the sur-
face forming a contact angle 𝜃 less than 90◦. The liquid is
said to wet the surface – if the liquid is water we say the
surface is hydrophilic. If the surface energy of the liquid
exceeds that of the solid, the liquid will form a bead and 𝜃

will have a value between 90◦ and 180◦. In this case we have
a nonwetting liquid relative to the surface, correspond-
ing to a hydrophobic surface when considering aqueous
liquids.
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Figure . (a) A drop of liquid in air on a solid surface has three
interfaces (liquid-solid, liquid-air, solid-air). (b) The contact angle
𝜃 is defined as the angle formed between the tangent to the
liquid surface and the xy-plane at the boundary between the
three interfaces. At equilibrium the horizontal components of the
surface free energies balance, and this is expressed in the form of
Young’s equation (Equation (1.6) in Box 1.1).

electrolyte) at rest on a dielectric layer and a counter elec-
trode positioned below this dielectric.The electrode wire
shown in Figure 1.12 was replaced by Pollack et al. [45]
with a linear array of interdigitated electrodes formed of
thin chrome layers on glass. For maximum EWOD effect
the dielectric surface should be of poor wettability, man-
ifested as a contact angle greater than 90◦ at the inter-
face between the dielectric and the liquid. For an aque-
ous droplet this is achieved with a hydrophobic surface.
The resulting charge that accumulates at the dielectric-
liquid interface leads to a change in contact angle from
above 90◦ to less than 90◦, as shown in Figure 1.12.This is

equivalent to a transition from a nonwetting to a wetting
state.This effect is known as electrowetting on dielectrics
(EWOD). A theoretical treatment of this is given in
Box 1.2.

Example 1.3 EWOD – Voltage Control of Contact
Angle
In an EWOD device of the form shown in Figure 1.12, a
water droplet exhibits a contact angle of 110◦ on a dielec-
tric surface with no voltage applied to the counter elec-
trode. The dielectric is a PTFE layer of thickness 5 μm of
relative permittivity 2.0. What voltage should be applied
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Figure . Electrowetting on dielectric (EWOD) is achieved by
applying a voltage between a conducting liquid droplet at rest on
a thin dielectric film of poor wettability, situated above a counter
electrode. The resulting charge that accumulates at the film-liquid
interface results in the contact angle 𝜃 falling from above to below
90◦, which is equivalent to a transition from a hydrophobic to a
hydrophilic state if the droplet is aqueous.

to the counter electrode to change the contact angle to
70◦?

Solution 1.3 The voltage is calculated using a rear-
rangement of Equation (1.9) in Box 1.2:

V =

√
2tTL−A (Cos𝜃(V ) − Cos𝜃(0))

𝜀o𝜀r

Using a value for TL-A of 70 × 10−3 Nm−1 (the surface
tension of thewater-air interface)we calculate the voltage
required to reduce the contact angle from 110◦ to 70◦ as
follows:

V =

√
2(5 × 10−6 m)(70 × 10−3 Nm−1) (Cos 70◦ − Cos 110◦)

(8.854 × 10−12 Fm−1) × 2
= 164V

(To derive the unit of Volt requires unravelling
√
(Nm/F)

by equating force (newtons N) in units of coulomb volt/
metre and from capacitance (farad F) being defined as
coulomb / volt.)

From Solution 1.3 we find that a voltage of 164 V is
required to lower 𝜃 from 110◦ to 70◦ for an aqueous
droplet (TL-A = 70 × 10−3 Nm−1) if PTFE (Teflon) of
thickness t = 5 μm is used as the dielectric. The field
across the dielectric is V/t and so in this case has a value
of 32 MV m−1, which is not much lower than the dielec-
tric strength value of 60MVm−1 for PTFE. Increasing the
voltage can result in charge injection into the dielectric,

followed by electrical breakdown. Equation (1.9) indi-
cates that the EWOD effect is enhanced if the dielec-
tric permittivity 𝜀r is increased. Some polymers can be
vapour deposited as thin hydrophobic dielectric films – a
common example being various forms of poly(p-xylene)
known as parylene that have values for 𝜀r of around 3 and
a dielectric strength ∼7MVm−1. Other dielectrics being
investigated for EWOD applications include the high-𝜅
(high dielectric constant) oxides that have replaced sil-
icon dioxide as the gate material in the latest CMOS
devices. Silicon oxynitride, for example, has a value
for 𝜀r of around 8, a dielectric strength greater than
1000 MV m−1 and can be formed as a submicron layer
on conducting silicon.
Through the suitable physical arrangement and electri-

cal switching of electrodes, EWOD can be used to con-
trol the motion and delivery of fluid droplets in microflu-
idic devices. A droplet situated mainly on an electrode
element, but also overlapping an adjacent electrode area,
can be induced to relocate onto this neighbouring elec-
trode by bringing the first electrode to earth potential and
applying a voltage of sufficient magnitude to the neigh-
bouring electrode (so as to change the leading dielectric-
liquid contact angle from above to below 90◦). A droplet
can also be split into two separate portions by apply-
ing voltages to both of its adjacent electrodes. Refine-
ments of EWOD devices remain an active research area
[46,47]. Jones [48] has reviewed the fundamental aspects
of the effects of electrostatic fields upon the hydrostatic
behaviour of liquids and concluded that the term ‘elec-
trowetting’ should be restricted in its use to denote the
effect of the electric field upon the contact angle. The
translational forces acting to move droplets are in his
view better referred to as examples of the net electrome-
chanical force resulting from electric field nonunifor-
mity and should be recognized as liquid dielectrophore-
sis.The electric fields applied to droplets in most EWOD
devices are certainly nonuniform, but the possible dielec-
trophoretic effects resulting from this do not yet appear
to have been incorporated into the theoretical treatments
of EWOD effects.

1.4.6 Magnetic

As described in Box 1.3, magnetic fields are created by
electric charges that are in motion. When a particle is
placed in a magnetic field an effect known as Faraday’s
Law of Magnetic Induction occurs, which influences the
magnetic dipole moments of the atomic and molecular
structure of the particle. The origins of these magnetic
moments are the angular momentum (called the spin) of
electrons in an atomic orbital and the electrical current
loops associated with the orbital paths of electrons.
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Box . Electrowetting on Dielectric (EWOD)

The liquid droplet shown in Figure 1.12 is in contact with a
solid dielectric layer of thickness t and absolute permittiv-
ity 𝜀dl. A voltage V is applied between the conducting liq-
uid and a counter electrode situated beneath the dielectric
film. Before the voltage is applied we assume that the solid-
liquid interface is not electrically charged. When a voltage
is applied the conducting liquid drop and the counter elec-
trode form a capacitor C of value proportional to the area
AS-L formed by the solid-liquid interface at the base of the
droplet. The surface capacitance C (per unit area) is given by
C= 𝜀dl/t. The wetted dielectric surface will attain a charge of
magnitude Q= VC, and the water molecules will gain cohe-
sive energy arising from their dipole attraction to these sur-
face charges. This in turn will reduce the surface potential
energy of the water molecules at the solid-liquid surface. To
a first-order approximation the electrostatic energy (1/2CV2)
stored in the capacitor can be incorporated into an expres-
sion for the voltage-dependent solid-liquid surface tension

(interfacial energy) TS–L(V) to give:

TS−L(V) = TS−L(0) −
𝜀dl

2t
V2 (1.7)

where TS–L(0) is the surface tension with no voltage applied.
The V2 dependence indicates that either a direct current
(DC) voltage, of positive or negative polarity, or an alternat-
ing current (AC) voltage can be applied across the dielectric
layer. For an AC rather than a DC voltage, V2 is replaced by
V2

peak in Equation (1.7).
The contact angle 𝜃 will be modified according to

Young’s equation (see Box 1.1):

TS−A = TS−L(0) + TL−A cos 𝜃(0) = TS−L(V) + TL−A cos 𝜃(V)

(1.8)

From Equations (1.7) and (1.8) we obtain:

cos 𝜃(V) = cos 𝜃(0) +
𝜀o𝜀r

2tTL−A
V2 (1.9)

Box . Magnetic Field and Force

As described in section 1.4.5, an electric field, E, is created by
a distribution of electrical charges at rest. This field exerts a
force on any other charge that is present in the field. For
a positive charge the electric force acts in the same direc-
tion as the electric field vector. Magnetic interactions can
be described as follows:

� A moving charge or electrical current creates a magnetic
field, in addition to an electric field, in the surrounding
space.

� The magnetic field exerts a force on any moving charge
or electrical current that is present in this magnetic field.

The magnitude and direction of the force F acting on a
charge q moving with velocity v in a magnetic field B is
given by the vector cross product F = qv × B. Thus, the
magnetic force does not act, as for an electric force, along
the field direction but at a direction that is perpendicular to
both the magnetic field and the direction of travel of the
charge. The magnetic force is proportional to the compo-
nent of the charge’s velocity that is perpendicular to the
field. When that component is zero, namely when the veloc-
ity vector is parallel or antiparallel to the magnetic field vec-
tor, the magnetic force is zero. The largest magnetic force
occurs when the velocity vector is perpendicular to the
magnetic field vector and is given by F = qvB. It follows
that the units of magnetic field B are the same as the units

of F/qv, namely newtons⋅sec/coulomb⋅metre (N s/C m), or
newtons/ampere.metre (N/A.m).

The direction of a magnetic force is given by the so-called
‘right-hand screw rule’: wrap the fingers of the right hand
around a line that is perpendicular to the plane of v and
B, so that they curl around in the direction from vector v
to vector B. The thumb then points in the direction of the
force acting on a moving positive charge (or the direction
of advancement of a screw if turned in the same direction).
This rule also gives the vector direction of the magnetic
dipole moment m produced by a current-carrying loop.
For a negative moving charge, or reversal of the current in
the loop, the direction of the force and dipole moment is
reversed.

When a charged particle moves in a location where both
an electric field and a magnetic field exists, the particle
experiences a force that is the vector sum of the electric
(qE) and magnetic force (qv x B). This is known as the Lorenz
force law. The formal determination of the magnitude and
direction of the field B thus involves three steps: (i) Place a
particle of known charge in the field, and determine E by
measuring the force on the particle when it is stationary;
(ii) measure the force when the particle is moving at veloc-
ity v; (iii) repeat this measurement for a velocity v in another
direction. The magnetic field B is given by the value that sat-
isfies the Lorenz force law for these three results.
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In most molecular structures the electrons occur in
pairs with opposite spin, so that their associated mag-
netic moments cancel and the total magnetic moment
of all the atomic current loops is also zero. However,
the orbital paths of the electrons are altered by an exter-
nal magnetic field to produce current loops and induced
magneticmoments that do not cancel out.The additional
magnetic field generated by these induced current loops
is directed against the external field. A simple analogy
is to imagine an induced current of electrons circulat-
ing around a benzene ring, like current in a single loop
of wire. This will produce a magnetic field that reacts
against the external one, which is analogous to the back
emf generated by an inductor in an AC circuit. Materials
that exhibit this property are called diamagneticmateri-
als.When the externalmagnetic field is removed this dia-
magnetism disappears.Water, cells andmicro-organisms
are diamagnetic.The magnetic field at any point in a dia-
magnetic material is slightly less than it would be if the
material were to be replaced by vacuum. We can quan-
tify this effect by defining the relative permeability μr of
a material as the ratio of the permeability 𝜇 of that mate-
rial to the permeability of vacuum μo (i.e., μr = μ/μo).
The value of μo is by definition equal to 4𝜋 × 10−7 ≈
1.257 × 10−6 henries per metre (or newtons per ampere
squared). Diamagnetic materials thus have a relative per-
meability value (μr) slightly less than unity – typically in
the range 0.99990 to 0.99999. The amount by which the
relative permeability is less than unity is called the vol-
ume magnetic susceptibility 𝜒 (i.e., 𝜒 = μr – 1) and is a
negative and small dimensionless quantity (e.g., for water
𝜒 ≈ −9×10−9).
If the atomic structural unit of a material contains

unpaired electrons, or the magnetic moments of their
atomic current loops do not cancel, each unit will have
a small magnetic moment. The magnetic moment of a
current loop is defined as the product of the current and
area of the loop and so has units of ampere m2. The
magnetic moment is directed at right angles to the loop
area and when exposed to a magnetic field a torque is
exerted so to align it with the field. The magnetic field
within thematerial is thus slightly larger than the external
field.Thesematerials are known as paramagneticmateri-
als and the induced magnetism is not retained when the
externalmagnetic field is removed. Paramagneticmateri-
als typically have a relative permeability value in the range
1.000001 to ∼1.05 and thus have a small, positive, mag-
netic susceptibility (e.g., platinum 𝜒 ≈ 1.2 ×10−8; oxygen
gas 𝜒 ≈ 1.3 ×10−6; brass 𝜒 ≈ 5 ×10−2 [49]).
A ferromagnetic material exhibits a large, positive,

magnetic susceptibility that is retained when the exter-
nal magnetic field is removed. In ferromagneticmaterials
strong interactions between atomic magnetic moments
causes them to align into magnetic domains, even in

the absence of an externally applied magnetic field. In
the unmagnetized state these domains are randomly ori-
ented, but when an external field is applied a relatively
large torque is exerted on the domains to align them all
with the field. The magnetic field within a ferromagnetic
material can be significantly larger than the external one,
with a corresponding relative permeability and magnetic
susceptibility in the range from 1000 to 100 000. As the
strength of the external field is increased, the alignment
of the domains reaches a limiting stage (called satura-
tion) and no further induced magnetization occurs. On
removing the external field, some of this saturation mag-
netization is retained (called remanent magnetism) and
the material takes the form of a permanent magnet. The
most common ferromagnetic materials are compounds
formed from iron, nickel, cobalt or manganese. In some
of these compound materials, the atoms have opposing
magnetic moments of unequal magnitude and so still
exhibit a spontaneous magnetization. They are known
as ferrimagneticmaterials, examples of which are ferrites
and magnetic garnets.The oldest knownmagnetic mate-
rial, magnetite (Fe3O4), is ferromagnetic.

1.4.6.1 Magnetophoresis
A particle placed in a uniform magnetic field will be
magnetized. This magnetization takes the form of a net
induced magnetic moment, of magnitude and polarity
−mif diamagnetic, or+m if either paramagnetic or ferro-
magnetic. A torque will be exerted on this moment hav-
ing magnitude and direction given by the vector product
of the net moment and the magnetic field. This torque
will tend to align a magnetic moment −m against the
field direction and align a moment +m along the same
direction as the field. However, the particle will not expe-
rience a net force to cause it to move laterally. (A com-
mon example in student texts on magnetism is to show
that the net force on a current-carrying loop of wire in
a uniform magnetic force is zero, because the forces on
opposite sides of the loop cancel each other. However,
the net torque acting on the loop is usually not zero.) A
particle placed in a nonuniformmagnetic field will, how-
ever, experience a net lateral force and if freely suspended
will move. (The product of the loop current and the local
magnetic field will not sum to zero around the com-
plete loop, because one side of the loop will experience
a larger magnetic field than the other.) The lateral move-
ment of a particle induced by amagnetic field is known as
magnetophoresis.
The magnetophoretic force FMAG acting on a parti-

cle in a nonuniform field depends on the strength B
and local gradient ∇B of the magnetic field. The magni-
tude and polarity of this force also depends on the par-
ticle’s volume (Vp), the difference between the magnetic
susceptibilities per unit volume of the particle (𝜒p) and
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Box . Magnetophoresis

Magnetization of a material is defined as its magnetic
dipole moment per unit volume. When a magnetized par-
ticle is placed in a uniform magnetic field it will experience
a torque but no translational force. It will twist like a com-
pass needle so that its north seeking pole points along the
direction of the Earth’s magnetic field. To cause the parti-
cle to move requires a magnetic field gradient. A particle
of total magnetic moment m placed in a nonuniform mag-
netic field ∇B experiences a magnetophoretic force FMAG
given by the relationship:

FMAG = (m ⋅ ∇)B (1.10)

where the symbol ∇ is the grad vector operator used to
specify the spatial gradient variation of B. The magnetic
dipole moment m is given by:

m = (𝜒p − 𝜒m)VpH (1.11)

where (𝜒p − 𝜒m) is the difference between the magnetic
susceptibilities of the particle (𝜒p) and the medium it has
displaced (𝜒m), and Vp is the volume of the particle. In Equa-
tion (1.11), H is known as the magnetic field intensity or mag-
netizing field. The equivalent field B is given by B = μH,

where 𝜇 is the absolute permeability of the medium, calcu-
lated as 𝜇 = μo(1 + 𝜒m) with μo = 4𝜋 x 10−7 N/A2.

From Equations (1.10) and (1.11)

FMAG =
(𝜒p − 𝜒m)Vp(B ⋅ ∇)B

𝜇
(1.12)

Equations (1.10) and (1.12) are similar in form to Equation
(1.5) describing dielectrophoresis, and discussed further in
Chapter 2. In fact, for a magnetically linear particle of radius
R, the effective dipole method and the Clausius–Mossotti
function described in Chapter 2 remain the same for mag-
netophoresis, with the permeabilities of the particle and
medium replacing the corresponding permittivity values
used in the dielectrophoresis equation [50, p. 65]. Further-
more, because it is usually the case that no time-varying
electric fields or currents exist in the medium surrounding
the particle, from one of Maxwell’s equations we have ∇ x
B = 0. We can, in Equation (1.12), therefore express (B⋅∇)B
as 1/2∇B2 (see Box 2.5 for the vector transformation). This
implies that magnetophoresis can employ an alternating
applied magnetic field (although the author is not aware
of this being a common act).

the surrounding medium (𝜒m). The mathematical form
of these relationships is given by Equation (1.10) in
Box 1.4.
Themagnetic force FMAG may be interpreted as the net

result of the combination of the magnetic force acting on
the particle itself and the magnetic ‘buoyancy’ exerted by
the surroundingmedium. FromEquation (1.12) it follows
that if the particle is para- or ferro-magnetic (𝜒p > 0)
and the surrounding medium is aqueous (i.e., diamag-
netic with 𝜒m< 0) the magnetophoretic force is positive.
The force will act to direct the particle against the field
gradient, towards a region of high magnetic flux den-
sity. Iwasaka et al. [51] observed that muscle cells, yeast
and platelets suspended in an aqueousmedium exhibited
negative magnetophoresis – they were directed towards
lower magnetic field strengths. This was interpreted to
mean that the cells exhibited a larger diamagnetic effect
than the aqueous medium.
The function of an erythrocyte is to carry oxygen from

the lungs to where it is required in the blood’s circulatory
system. The cell is packed with haemoglobin, which is a
protein that contains four haem groups to each of which
an oxygen molecule can bind. The specific oxygen bind-
ing site is an iron atom in the centre of a haem group.
In the absence of oxygen binding, the iron atom has an
unpaired electron and so lends a paramagnetic property
to the haemoglobin molecule (and hence also to the ery-
throcyte). In the deoxygenated state, the susceptibility

of erythrocytes has been estimated to be +3.88 × 10−6
[52]. However, in fully oxygenated blood this unpaired
electron aligns itself in an antiparallel spin to that of the
unpaired electron in the bound oxygen.Thehaemoglobin
molecule and the erythrocyte are thus diamagnetic. In
fully oxygenated blood erythrocytes exhibit a magnetic
susceptibility of −(2.1∼3.5) × 10−6 [52, 53]. Leukocytes
do not contain haemoglobin or any other molecular
structure containing an unpaired electron and so are dia-
magnetic in both oxygenated and deoxygenated blood –
having an average magnetic susceptibility in both states
of −0.13 × 10−6. These differences in their magnetic
properties have been exploited to separate erythrocytes
and leukocytes from diluted blood [52, 53]. 89.7% sepa-
ration of the erythrocytes from diluted whole blood was
achieved in a continuous flow magnetophoretic device
described byHan and Frazier, using an external magnetic
field of 0.2 tesla and an electroplated nickel wire to create
a local and highly nonuniform magnetic field [52]. (See
Example 1.5 to appreciate the significance of this innova-
tive step.)

Example 1.4 Magnetophoretic ForceActing onCells
A cylindrical ‘Alnico’ magnet is fixed into a chamber
so that one of its circular end faces lies flush with an
internal chamber wall. The chamber contains a mixture
of erythrocytes and leukocytes suspended in a deoxy-
genated aqueous medium.
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Estimate themagnetophoretic force acting on each cell
type at the following locations along the magnet’s central
axis: (i) 50 μm and (ii) 500 μm into the chamber. Assume
that the cells are of equal size, with a radius of 5 μm.

Solution 1.4 Themethod to determine the force FMAG
is given by Equation (1.12) in Box 1.4:

FMAG =
(𝜒p − 𝜒m)Vp(B ⋅ ∇)B

𝜇

In a deoxygenated state, the susceptibility (𝜒p) of ery-
throcytes and leukocytes can be taken as +3.88 × 10−6
and −0.13 × 10−6, respectively [52, 53] and 𝜒m for an
aqueous solution has a value of−9× 10−8 [49].The factor
(𝜒p − 𝜒m) is thus of value 3.79 × 10−6 for an erythrocyte
and −4 × 10−8 for a leukocyte.The absolute permeability
of the medium is given by μo(1 + 𝜒m) ≈ μo = 4𝜋 × 10−7
N/A2. The volume Vp for the cells is equal to 4𝜋R3/3 =
5.2 × 10−16 m3. The factor (B.∇)B in Equation (1.12) can
be evaluated using the following relationship:

B =
Br
2

⎡⎢⎢⎢⎣
L + x√

(L + x)2 + R2
− x√

R2 + x2

⎤⎥⎥⎥⎦ (1.13)

This equation gives the magnetic field B at a distance x
from the pole face of a cylindrical magnet, along the cen-
tral axis of the magnet [54]. Br is the remanence of the
magnet, of length L and radius R. The value of Br for a
permanent ‘Alnico’ magnet, made of an Al-Ni-Co cast
alloy, ranges from 0.6 to 1.4 tesla [49]. We will assume
Br = 1 tesla , which can also be expressed as 1 newton per
amperemetre (1 N/A.m) and values of 5mm for both the
radius and length of the magnet.
From Equation (1.13) with L = R = 5 mm we find that

the magnetic field decreases slightly from 0.35 N/A.m at
x = 50 μm to 0.32 N/A.m at 500 μm. The value for the
magnetic field gradient ∇B remains almost constant at
−70 N/A.m2 over this distance, giving values for (B.∇)B
of −24.5 N2/A2.m3 at x = 50 μm and −22.4 N2/A2.m3 at
500 μm.

i) Calculation of the magnetophoretic force FMAG acting
on a deoxygenated erythrocyte at a distance of 50 μm
into the chamber is as follows:

FMAG = (3.79 × 10−6)(5.2 × 10−16 m3)(−24.5N2 A−2 m−3)
4𝜋 × 10−7 NA−2

= −3.84 × 10−14 newtons (N)

The negative sign indicates that the force acts against
the magnetic field and its gradient, so that the ery-
throcytes are directed up the field gradient towards the

maximum field at the pole face of the magnet. This is
the same effect as commonly observed when a magnet
is used to attract iron filings. Deoxygenated erythro-
cytes and iron filings are both paramagnetic.
The value of FMAG for the leukocytes is calculated

by inserting a value of −4 × 10−8 for the parameter
(𝜒p − 𝜒m) into Equation (1.12) instead of+3.79 × 10−6
as used for an erythrocyte, whilst keeping unchanged
all the other parameter values. This leads to a value
for FMAG of +4.05 × 10−16 newtons, which is ∼100
times smaller than the force acting on an erythrocyte
at the same distance from the magnet. However, the
positive sign for the force indicates that the leukocytes
are directed down the field gradient and away from the
magnet – in the opposite direction to that of the ery-
throcytes.

ii) Calculations of FMAG for the situation where the
cells are located 500 μm into the chamber are per-
formed by changing the value of (B.∇)B (from−24.5 to
−22.4N2/A2.m3)whilst using the appropriate values of
(𝜒p − 𝜒m) for an erythrocyte and leukocyte.This gives
the following results:

FMAG = −3.5 × 10−14 N for erythrocytes
located 500μm into the chamber
and FMAG = +3.7 × 10−16 N for leukocytes
located 500μm into the chamber.

These results show that a magnetic field produced by a
magnet will penetrate deeply into a microfluidic cham-
ber, with little change in the field gradient. The magne-
tophoresis effect will therefore be exerted almost uni-
formly throughout a microchamber. We have used a
short ‘stubby’ magnet in this example. From Equation
(1.13) it can be seen that increasing the ratio of mag-
net length to its radius, whilst maintaining the same vol-
ume, will increase the magnetic field close to the pole
face. However, the field of a pencil-shaped magnet will
decrease more rapidly with distance than a ‘stubby’ mag-
net of the same volume. The practical advantages to be
gained from altering the magnet’s dimensions are rela-
tively small for microfluidic applications.

Example 1.5 Magnetophoretic Velocity
Estimate the magnetophoretic velocities of the erythro-
cytes and leukocytes at locations of 50 μm and 500 μm
away from the magnet described in Example 1.4.

Solution 1.5 The magnetophoretic forces calculated
for Example 1.4 will accelerate the cells until a balance
with the fluid viscous drag is reached. At this point
the cells will reach a steady velocity vm. As explained
more fully in Chapter 2, the pertinent viscous drag force
is equal to 6𝜋𝜂Rvm, where 𝜂 is the fluid viscosity and
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Box . Superparamagnetism

A ferromagnetic or ferrimagnetic material normally under-
goes a transition to a paramagnetic state above what is
known as its Curie temperature. However, if sufficiently
small (i.e., below 3∼50 nm) ferromagnetic or ferrimagnetic
nanoparticles can exhibit a transition to the paramagnetic
state below the Curie temperature. They are said to exhibit
superparamagnetism. These particles are so small that they
take the form of a single magnetic domain, in which all
of the magnetic moments of the atoms in the nanoparti-

cle cooperate to form a single, giant, magnetic moment.
There is a coupling of all the angular momentums (spins) of
the unpaired electrons in all the atomic orbitals, and physi-
cists refer to this as the ‘macro-spin approximation’. Such
nanoparticles can be magnetized by an external magnetic
field and their effective susceptibility is considerably larger
than that of a normal paramagnetic material – hence the
term ‘superparamagnetic’.

R is the radius of the cell. The steady-state magne-
tophoretic velocity can therefore be evaluated using the
relationship:

vm =
FMAG
6𝜋𝜂R

(1.14)

The viscosity of water is 10−3 Pa.s (pascal second) and our
cells have a radius of 5 μm. Using the values obtained in
Example 1.4 for FMAG, then from Equation (1.14) for an
erythrocyte at 50 μm from the pole face:

vm = −3.84 × 10−14N
6𝜋(10−3 Pa.s)(5 × 10−6m)

= −4.1 × 10−7 N/Pa.m.s

A pascal is a measure of stress or pressure, with units of
N/m2.The value obtained for vm above is thus equivalent
to −0.4 μm/s – a very small velocity towards the magnet.
The corresponding velocity at 500 μm can be calculated
as −0.37 μm/s. It would take a deoxygenated erythrocyte
about 20 s to travel a distance equivalent to one diameter.
Based on the values for the magnetophoretic force cal-

culated in Example 1.4 for a leukocyte, we can expect
its induced velocity to be even smaller (∼a hundredfold
less) and practically imperceptible. We conclude from
this example that the magnetophoresis of cells, based
solely on their own intrinsic magnetic properties, is not
a significant effect if we rely on a single external magnet
to produce both the field and field gradient. We need to
increase the magnitude of the factor (B.∇)B. One way to
achieve this is to use two or more magnets with oppos-
ing magnetic fields [54]. For example, with two opposing
magnets the field strength will be zero at the midpoint
between them and increase rapidly towards each pole
face. This increases the complexity of a device and may
also be difficult to incorporate into amicrofluidics design.
Inspection of Equation (1.13) reveals that the magnitude
of (B.∇)B will increase as the dimensions of the mag-
netic field source become smaller. Practical examples of
this include the use of a current carrying wire, as demon-
strated by Hans and Frazier [52] and the use of micro-
magnet arrays as described in section 1.5.1.

1.4.6.2 Magnetic Nanoparticles
Magnetic nanoparticles are commonly formed from
compounds of nickel, cobalt or iron. Particles above
∼150 nm diameter exhibit normal bulklike static and
dynamic magnetic properties, but smaller particles
deviate from this. For example, 5 nm magnetite (Fe3O4)
nanoparticles display superparamagnetic behaviour
at room temperature [55]. Superparamagnetism is
described in Box 1.5. The particles can be coated with
an organic shell or molecules that chemically bind
preferentially to a biological entity, such as a specific
sequence of DNA or a particular protein receptor on
a cell membrane. Larger (≥ 50 nm) magnetic particles
can be externally tagged to a cell by co-culturing them
with the cell sample, whilst those less than 10 nm
diameter can be internalized into a cell by endocytosis.
The number of magnetic nanoparticles entering the
cells by endocytosis depends on the concentration of
the co-cultured extracellular magnetic nanoparticles.
About 2∼5 million magnetic nanoparticles of 10 nm
diameter are required to be internalized for a cell
to exhibit significant magnetophoresis [56, 57]. An
advantage that magnetic tagging has over fluorescence
labelling is that at normal temperatures the magnetism
of a magnetic nanoparticle is stable over time and is
not affected by reagent chemistry or quenched as a
result of photobleaching. Detection of a fluorescent tag
can also be compromised by background fluorescence
produced by biological agents or glass and polymeric
substrates. No significant magnetic background occurs
from such sources and the magnetic fields of magnetic
nanoparticles are also not screened by aqueous reagents
or biological cells and tissues.

Example 1.6 Magnetic Labelling of Cells
Magnetized beads of diameter ∼3 μm are available com-
mercially, with each bead having a quoted magneti-
zation of ∼10−13 A.m2. Estimate the magnetophoretic
force and resulting velocity of such a bead when
located 50∼500 μm from the magnet described in
Example 1.4.
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Solution 1.6 We need to be careful concerning the
termmagnetization.This term should be used to describe
the effective magnetic moment per unit volume of a
material, with units of ampere permetre (A.m−1).We can
view a magnet as the electrical equivalent of a current-
carrying solenoid, of length L and cross-sectional areaA.,
with volume LA m3. By definition, the magnetic dipole
moment of a current-carrying loop is given by the prod-
uct of the current and the loop area and so has dimen-
sions of A.m2.This Example quotes the magnetization of
each bead as 10−13 A.m2 and so refers to the magnetic
moment m given in Equation (1.10) of Box 1.4. (Magne-
tization should strictly speaking be given units of A.m−1.)
The magnetophoretic force FMAG acting on each mag-

netic bead is thus given by Equation (1.10):

FMAG = (m ⋅ ∇) B

Inserting into this equation m = 10−13 A.m2 and ∇B =
−70 N/A.m2 we have:

FMAG = (10−13A m2)( − 70N A−1m−2)
= −7 × 10−12 N

From Equation (1.14) we calculate the steady state
velocity of the bead as:

vm =
FMAG
6𝜋𝜂R

= −7 × 10−12N
6𝜋(10−3 Pa.s)(1.5 × 10−6m)

= −2.5 × 10−4 m/s.

These values obtained for the magnetophoretic force and
velocity are considerably larger than those obtained for
the blood cells and is the reason why suitably labelled
magnetic beads can be used to selectively manipulate
target cells.

Example 1.7 Magnetic Labelling of Cells
Estimate the number of 10 nm diameter maghemite
(𝛾Fe2O3) nanoparticle that would need to be internalized
by endocytosis into a monocyte of diameter 15 μm for it
to exhibit a magnetophoretic velocity of 200 μm/s in the
chamber of Example 1.4. Assume the remanent magne-
tization of a maghemite nanoparticle is 5 × 104 A.m−1.

Solution 1.7 To calculate the value of FMAG that pro-
duces a velocity of 200 μm/s (towards the magnet) we
rearrange Equation (1.14):

FMAG = 6𝜋𝜂 R vm = 6𝜋(10−3 Pa s)
(7.5 × 10−6 m)(−2 × 10−4 ms−1) = −28 pN

To achieve this force will require an effective magnetic
moment for the cell given by rearranging Equation (1.10):

m =
FMAG
∇B

= −2.8 × 10−11N
−70N .A−1 .m−2 = 4 × 10−13 A m2

We are provided with the information that the magne-
tization value of a maghemite nanoparticle is 5 × 104
A.m−1. The magnetic moment of a single 10 nm diam-
eter nanoparticle mp is thus given by the product of this
magnetization value and the volume of the particle:

mp = (5 × 104 A.m−1)
[4
3
𝜋(10−8)3m3

]
= 2.1 × 10−19 A m2

The number n of such nanoparticles required to be inter-
nalized by a 15μmdiameter cell to give it a totalmagnetic
moment of 4 × 10−13 A.m2, is thus:

n = 4 × 10−13A.m2

2.1 × 10−19A.m2 = 1.9 × 106

This number of internalized nanoparticles is typically
reported in the literature [56, 57]. The volume taken up
by 2 × 106 nanoparticles, each of diameter 10 nm is
∼10−18 m3 and will occupy only ∼0.06% of the internal
volume of a 15 μm diameter cell.

Magnetic nanoparticles have been applied in various
areas of biomedicine to deliver therapeutic drug, gene
and radionuclide agents, destroy tumours by radio fre-
quency hyperthermia, to act as contrast enhancement
agents for magnetic resonance imaging and for the mag-
netic separation of labelled cells and other biological
entities [58, 59]. Furthermore, most of the necessary
functions required in a lab-on-chip bioassay can also
be accomplished using magnetic nanoparticles, such as
sample purification, mixing, target labelling and the spa-
tial manipulation, transport and isolation of the biolog-
ical target [59]. The separation of magnetically labelled
cells is known asmagnetic activated cell sorting (MACS).
The process is shown schematically in Figure 1.13. For
positive cell selection or enrichment, magnetic particles
coated with antibodies specific for a cell surface protein
of interest are bound to the target cells by incubating the
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Figure . A schematic is shown of magnetic activated cell
selection (MACS). (a) A magnetic bead coated with an antibody
specific to a cell-surface protein is shown bound to a cell. (b) Beads
labelled with an antibody specific for the CD3 protein on T cells are
added to a mixture of B and T cells. (c) The labelled beads bind to
the T cells and are attracted to a magnet. The B cells can be
separated from the T cells by pipetting or flushing them out of the
tube.
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cells and particles in a reagent tube. Magnetically tagged
cells can then be isolated by placing a magnetic near the
tube and pipetting off the supernatant (or by flushing the
supernatant through the tube). With negative selection,
the target (magnetically tagged) cells are the unwanted
cells and the cells of interest can either be pipetted out or
eluted through the tube. The choice of positive or neg-
ative cell selection depends on the antibodies available
and the subsequent use of the cells. The main disadvan-
tage ofMACS is that it is a discontinuous process, requir-
ing additional steps for sample preparation before and
after sorting. Having to magnetically label a target cell
requires the use of expensive labelled magnetic beads,
which may then require removal after the cell separation
process. This may be relatively straightforward for exter-
nally tagged cells, but is not possible where the nanopar-
ticles have been internalized.
An interesting application of magnetically tagged par-

ticles has been described by Xie et al. [60], who used
carboxyl-functionalized magnetic particles to preferen-
tially adsorb leukocytes and proteins from whole blood.
After isolation and lysis of the leukocytes, it was found
that the released genomic DNA was readily adsorbed
onto the nanoparticles in isopropyl alcohol.This particle-
bound DNA could then be used directly as a PCR tem-
plate.The significance of this is that although blood is the
universal source of DNA, it is a complex mixture of cells,
proteins, lipids, carbohydrates and other low molecular-
weight compounds. All of these adversely affect most
of the chemical analyses one would wish to perform on
blood. For example, haem groups in the haemoglobin
released from red blood cells bind to the DNA poly-
merase enzyme used in the PCR amplification of DNA.
Even a 1% by volume concentration of whole blood can
inhibit PCR. Only the leukocytes (white blood cells) in
blood contain DNA, the erythrocytes do not. FromTable
1.2 we find that the erythrocytes exceed the number den-
sity of leukocytes by a ratio of about 700 : 1. Xie et al.
[60] were able to extract a sufficient number of leukocytes
fromwhole blood to allow PCR to be performed, without
the use of an expensive (and often unstable) coating of a
leukocyte-specific antibody such as CD45 on the mag-
netic particles.

1.4.7 Surface Forces (Cell Patterning)

The forces considered so far can be used to sort or
selectively move suspended cells and other bioparticles
when they are suspended in solution. In this way it
is possible to direct cells to specific locations on the
surface of a substrate or within a specified location of
a fluidic channel. The reliable localization of cells in a
fluidic device is important in the fabrication of cell-based
biosensors, such as those to be used for the detection

of toxic substances or for high throughput screening
of new pharmaceutical drugs. Such localization is also
required for studies of cell–cell communication and
signal transduction pathways in artificial neuronal
networks.
Choi et al. [61] have demonstrated that by coating

the floor of a fluidic channel with specific cell adhesion
molecules (CAMs), target cells can be induced to roll
over the channel floor surface. With slanted ridges in the
channel floor (as used in hydrophoresis [11]) cells that
roll along the surface remain attached to the surface at
the ends of the ridges and so roll into the adjacent trench.
Cells that do not bind to the adhesion molecules follow a
different flow trajectory at the ends of the ridges and do
not enter the trenches.Thus, by coating the surface of the
ridges with P-selectin, HL60 and K562 leukaemia cells
were separated through a combination of hydrophoresis
and cell rolling [61]. HL60 cells express a high level of a
receptor ligand that binds to P-selectin and so rolled into
the trenches, whereas K562 cells do not express this lig-
and and were directed away from the trenches.
Lai et al. [62] have demonstrated that magnetically

tagged cells can be patterned on a microstructured fer-
romagnetic thin film by controlling themagnetic domain
walls in the film. Once the magnetic domain walls are
formed by an applied magnetic field, no magnetic field
is then needed to maintain the magnetization direc-
tions and positions of the domain walls. The local mag-
netic forces, which results from the high stray field pro-
duced by the magnetic domain walls in their remanent
states, attract the cells to selected positions.Without this
remanence the tagged cells would not remain attracted
to the ferromagnetic film. Thus, in general, unless the
cells strongly adhere to the surface they will drift back
into the bulk solution once the manipulating force is
removed. Protocols have been developed to pattern sin-
gle cells onto defined areas by attaching (printing) pep-
tidemolecules or proteins onto the substrate.Thepeptide
or protein is chosen so as to bind to aCAMof a target cell.
CAMs are protein receptors located on a cell membrane
surface and are responsible for the specific binding of a
cell with other cells or with its surrounding extracellular
matrix.This process is called cell adhesion. CAMsmostly
fall into four main protein categories (immunoglobulins,
integrins, cadherins and selectins) and typically consist of
an intracellular part that interacts with the cytoskeleton,
a part that spans across the cell membrane and an extra-
cellular component that has a high specificity of binding
to chemical ligands of other CAMs or of the extracellular
matrix. The strategy to pattern cells of a specific type is
therefore to modify the surface of a substrate with cell-
adhesion ligands. Examples of this include the attach-
ment of peptides onto supported lipid bilayers [63], of
peptides onto gold patterned SiO2 substrates [64] and the
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patterning of multiple antibodies along the cross-section
of a single microfluidic channel [65].

. Combining Dielectrophoresis with
other Forces

In section 1.4we have considered applications of the indi-
vidual forces listed in Table 1.1 – but advantages can
result by applying some of them together in a hybrid
device. Most of the applications of dielectrophoresis
described in this book are performed in fluidic devices
and so we will find examples of where hydrodynamic
effects such as laminar flow and hydrophoresis play an
integral part. As described in section 1.2, microfluidic
channels are characterized by having large ratios of their
interior surface area to volume. These surfaces carry a
net electric charge and attract counterions from the bulk
fluid in the channel, to create what is known as a thin
electrical double layer, more fully described in the next
chapter and in Chapter 12 (section 12.7). This thin layer
carries a net charge (𝜌), which can respond to an applied
DC electric field or low-frequency AC field. If the field is
applied along the axis of the channel, the laminar of fluid
next to the channel wall is accelerated as a result of the
volume coulombic force (𝜌E). Adjacent fluid annuli are
accelerated by themomentum transfer caused by viscous
forces, until the velocity gradient approaches zero across
the whole microchannel. A charged fluid layer effectively
‘drags’ its adjacent fluid layer along, until finally the entire
fluid in the microchannel moves at a uniform velocity.
This is known as electro-osmosis (see section 12.8) and
can be used to advantage in what is known as insulator-
based DEP (iDEP), described fully in section 10.4.2 of
Chapter 10. A combination of an applied DC and AC
field in iDEP can also add the extra force of electrophore-
sis, so that the net movement of suspended particles can
depend on its electrophoretic and DEP mobility, as well
as the direction and magnitude of the electroosmotic
fluid flow.
Optical effects have also been incorporated in the form

of so-called optoelectronic tweezers or light-induced
dielectrophoresis. Optical forces are not used directly,
as in an optical tweezer, instead light beams illuminate
photoconductive structures to switch them on as virtual
electrodes. Single cells can be manipulated in a mas-
sively parallel fashion across a large area with either laser
beam generated multispot diffraction patterns, or using
incoherent light sources such as LEDs or micromirror
displays. Recent notable examples of this include the
use of optically addressable carbon nanotube electrodes
[66] and the dielectrophoretic patterning of cells using
diffraction images and spin-coated organic titanium

oxide photoconductors [67]. Xu et al. [68] have reviewed
the progress in developing dielectrophoretically tunable
optofluidic devices, such as adaptive lenses, optical
attenuators and single pixel displays.
Examples of where dielectrophoresis has been com-

bined in microfluidic devices with magnetic forces,
acoustic forces and surface-wetting effects will now be
described.

1.5.1 Hybrid Dielectrophoresis-Magnetophoresis

Issadore et al. [69] have described a hybrid microflu-
idic chip that can independently and simultaneously trap
and move particles using both electric and magnetic
fields. Below an array of metal pixels used for dielec-
trophoretic manipulation, two sets of perpendicularly
oriented metal wires were electrically addressed to pro-
duce local high-gradient magnetic fields.The system was
tested using lipid vesicles with internalized magnetic
nanoparticles.The elastic deformation properties of such
vesicles were examined by holding a vesicle in place by
a dielectrophoretic force and applying a magnetic force.
James et al. [70] used magnetophoresis to bring mag-
netic particles down to an array of electrodes, where
dielectrophoresis could then be used for their accurate
lateral placement. The objective was to develop a sys-
tem similar to flow cytometry in which a high through-
put of flowing antibody labelled magnetic particles can
be optically interrogated for captured fluorescent tar-
get analytes. A detection level of 50 ppb of a surrogate
biotoxin (ovalbumin) in a raw milk sample was demon-
strated. Lyuksyutov et al. [71] and Kauffmann et al. [72]
have demonstrated that the lateralmovement and assem-
bly of small particles can be achieved by diamagnetic levi-
tation and pulsed electric field induced dielectrophoresis.
By positioning two neodymium-iron-boron permanent
magnets to have opposing magnetic fields, a value of 700
N2A−2m−3 was generated for the factor (B.∇)B (i.e., some
20-fold larger than that calculated for a single magnet
in Example 1.4). This combination of magnetophoretic
and dielectrophoretic manipulation can be applied to
manipulate a range of diamagnetic particles, including
cells, fluorescent beads and droplets of aqueous, oil and
alcohol solutions, for example. Jung et al. [73] reported
a 20 000-fold enrichment of circulating nucleated cells
from peripheral blood using a hybrid device compris-
ing a ferromagnetic wire array to create a local high-
gradient magnetic field (when exposed to an external
magnetic field) together with interdigitated electrodes to
create a dielectrophoretic force. By applying an external
magnetic flux of 0.3 T and a 2 MHz sinusoidal voltage
of 4 Vp-p to the interdigitated electrodes, paramagnetic
red blood cells in deoxygenated blood were driven by
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magnetophoresis in the opposite direction to dielec-
trophoretically transported white blood cells [73]. The
design and simulated functioning of a hybrid magneto-
and dielectrophoresis microfluidic device for the con-
tinuous collection of magnetically tagged particles has
been described by Blaire et al. [74]. In this device mag-
netic beads are trapped using an interdigitated micro-
magnet array to create high-gradient magnetic fields and
then released by dielectrophoresis using an interdigitated
array of indium tin oxide (ITO) electrodes.

1.5.2 Hybrid Dielectrophoresis-Acoustophoresis

Dielectrophoresis can provide accurate particle manip-
ulation over short distances and length scales, whereas
acoustophoresis can operate over much larger distances
and scales. This complementary relationship has been
used by Lock et al. [75] to employ travelling acoustic
waves to bring particles suspended in a large volume
container down onto an electrode array, where travelling
dielectrophoresis can then be used to concentrate the
particles in a chamber of much smaller volume.Wiklund
et al. [76] describe how the competition between long-
range ultrasonic forces, short-range dielectrophoretic
forces and viscous drag forces can provide flexible and
gentle manipulation functions of individual cells in
microfluidic devices. A system that integrates a bulk
lead zirconate titanate (PZT) slab, to produce acoustic
forces, with substrate patterned microelectrodes for
dielectrophoresis manipulation of particles has also been
described by Ravula et al. [77].

1.5.3 Hybrid Dielectrophoresis Electrowetting

An effect referred to as liquid-dielectrophoresis (L-DEP)
can be demonstrated by placing a droplet of fluid (volume
1∼2 μL) at one end of a track formed between two paral-
lel coplanar electrodes over which a thin layer of dielec-
tric has been deposited. On application of an AC volt-
age (e.g., 100 kHz, 700 V) across these electrodes a liquid
‘finger’ projects from the deposited droplet and moves
rapidly along the electrode track [48, 78]. On removing
the applied voltage, this finger of liquid breaks up into
small droplets of spacing and individual volume (pL∼nL)
predicted by Rayleigh’s instability criterion [79]. These
liquid droplets can then be transported and mixed
with other reagents or droplets using dielectrophoretic
forces – referred to as droplet-dielectrophoresis (D-
DEP) and also involving aspects of the EWOD effect as
described by Jones [48]. Chugh andKaler [79] have exam-
ined the integration L-DEP andD-DEP as ameans to pro-
vide rapid and automated sample handling and bioassays,
without the need for pumps or valves, on a compact chip-
based platform.

These developments lead naturally to the concept of
being able to transport liquid droplets that contain par-
ticles such as cells; to then separate a target cell from
other cells inside the droplet by dielectrophoresis; and by
EWOD to split the droplet into two smaller ones, one of
which contains the isolated target cell. Valley et al. [80]
have made significant progress along these lines by uni-
fying optoelectrowetting and optoelectronic tweezers on
the same chip. This enables the transportation of aque-
ous droplets by electrowetting, as well as manipulation
of individual particles within those droplets by dielec-
trophoresis. In this device a liquid droplet is sandwiched
between a top Teflon-ITO electrode and a bottom ITO
electrode that is coated with a photosensitive layer of
a-Si:H, an insulating layer of Al2O3 and a Teflon layer.
When an external voltage is applied between the two ITO
electrodes, in the absence of incident light, the electric
field primarily exists in the highly resistive a-Si:H layer.
However, upon illumination, the conductivity of the a-
Si:H layer increases dramatically and causes the electric
field to drop across a combination of the dielectric (oxide
and Teflon) and liquid layers. If the majority of the field
drops across the dielectric layer, then the droplet will
experience a net optoelectrowetting force towards the
illuminated region. However, if the electric field drops
mainly across the liquid layer, electric field gradients will
exist in the liquid (depending on the spatial localization of
the light beam) and particles within the droplet will expe-
rience a dielectrophoretic force. As a demonstration, the
device was used to select a single cell out of a mixture of
cells and then encapsulate it in its own aqueous droplet.

. Summary

The singular feature that distinguishes dielectrophoresis
from the other techniques listed in Table 1.1 is that it
selectively manipulates a target cell based on its intrinsic
dielectric polarizability. As will be described in later
chapters, two parameters contribute to this polariz-
ability – namely the effective electrical capacitance
and conductance of the cell. These properties in turn
depend on such features as: the size and shape of the
cell; cell surface topography associated with blebbing or
microvilli; the integrity of the cytoplasmic membrane;
internal features such as cytoplasm conductivity and the
nucleus-cytoplasm volume ratio. All of these features
contribute to the frequency spectrum of the cell’s
electrical impedance, which can be examined over a
wide range of electrical frequencies and be uniquely
characteristic of a particular cell type.Themost common
methods currently used to quantitatively characterize
or purify cell populations are flow cytometry (FACS) or
magnetic bead-coupled cell separation (MACS). These
methods are dependent on the existence of specific cell
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surface antigens and the formulation or availability of
high affinity probes to these antigens. Dielectrophoresis
does not require the use of fluorescent or magnetic
labels – although using antibody-coated dielectric beads
could be used to increase the yield or purity of target cell
separation.
Magnetophoresis compares unfavourably with dielec-

trophoresis on two counts as a cell separation method.
The electrode geometry required to produce a high value
for the parameter (E.∇)E is straightforward to fabricate
for a microfluidic device for dielectrophoresis, whereas
quite complicated magnetic geometries are required to
give high values for (B.∇)B. Also, with the exception of
the separation of deoxygenated erythrocytes from leuko-
cytes, the separation of cells based solely on differences of
their intrinsic diamagnetic properties is not a practicable
proposition. The situation where target cells can be sub-
jected to the opposite polarity of dielectrophoretic force
to other cells can certainly not be achieved for leukocytes
using magnetophoresis.

A significant negative aspect of dielectrophoresis is
that it operates only over a short distance (< 300∼
500 μm) from an electrode array. Acoustophoresis can
operate over significant distances into a fluidic channel,
but is not good at small scale manipulations of cells. The
discrimination of cell type separation by acoustophoresis
is based on differences in cell size, density and compress-
ibility and this is less sensitive than discrimination based
on dielectric polarizability. Optophoresis also operates
over awide scale of distances, but selective cell separation
will depend on differences in the internal refractive index
of the cell and will not be as sensitive as dielectrophoresis
in sensing differences inmembrane properties, for exam-
ple. However, because dielectrophoresis is easily incor-
porated into a microfluidic device, its major drawback in
terms of its short range of effectiveness can be offset by
combining it with either acoustophoresis or optophoresis
and taking advantage of the special features and advan-
tages that are lacking in these two other complementary
methods.
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How does Dielectrophoresis Differ from Electrophoresis?

. Introduction

In Chapter 1 the methods of electrophoresis and dielec-
trophoresiswere placed together as electrokinetic effects,
with only brief descriptions of their nature.The intended
objective of this book is to create an increased awareness
of how dielectrophoresis can contribute to the biomed-
ical sciences as both a research and practical tool. For
those of us already engaged in these pursuits, the guid-
ance and involvement of those trained in the molec-
ular and life sciences is greatly desired and in most
cases considered to be essential. However, published
works on dielectrophoresis are mostly written by and for
researchers having backgrounds in engineering or the
physical sciences. Many of these publications are thus
largely unhelpful in addressing the ‘so what, who cares’
questions of interest and relevance to those trained in
the life and medical sciences. The similarity of the terms
electrophoresis and dielectrophoresis is also not helpful in
discouraging the impression that the latter represents a
relatively esoteric extension of the former. The purpose
of this chapter is therefore to describe in broad terms not
only how the two subjects do share common foundations,
but also how the special features of dielectrophoresis lend
to it the promise of providing important contributions to
cell biology in general and, in particular, to such areas
as drug discovery, medical diagnostics and regenerative
medicine.
Chapter 1 began by deciphering the origin and hence

probable meaning of the compound word electrophore-
sis.We concluded, based onGreek translations, it implies
something to do ‘with electricity’ and also ‘with carry-
ing things around’. We can therefore as a working defini-
tion assume that dielectrophoresis refers to an object car-
ried by a dielectric effect.This was certainly the intended
interpretation ofHerbert Pohlwho coined this term,with
his statement [1]: ‘Themotion of suspensoid particles rel-
ative to that of the solvent resulting from polarization

forces produced by an inhomogeneous electric field is
defined as “dielectrophoresis”.’
But what do we mean by a ‘dielectric’ effect? The pre-

fix ‘di-’ translates from the Greek to mean ‘across’ as in
to cut across or block. Thus, a dielectric can be thought
of as a nonmetallic conductor, to include gases, liquids
and solids that exhibit characteristic interactions with
electric, magnetic and electromagnetic fields. Such inter-
actions include the storage and dissipation of electric
energy, where the dynamics and polarization of electric
charges are fundamental aspects of this and are charac-
terized by macroscopic properties such as permittivity,
dielectric loss and electrical breakdown.
It took some time for the definition proposed by Pohl

in 1951 to gain wide recognition. Twenty-six years later
the title of a paper [2] was changed (despite the vocif-
erous dissent of the senior author) to include the words
‘measurements using nonuniform electric field effects’
because an eminent referee in the field of electromag-
netics insisted that there was no such word as ‘dielec-
trophoresis’! Pohl went on to write the seminal book on
his subject [3]. A summary provided by an unknown
reviewer on the book’s dust cover concludes with the
prophetic statement: ‘A far wider range of potential
applications exists than Professor Pohl has been able
to include. The book should thus provide stimulating
reading for imaginative research workers in the physical,
medical and biological sciences.’
The two subjects of this chapter fall under the general

category of ‘electrokinetics’. It is well appreciated by
molecular and biomedical scientists that the kinetics
involved in the various forms of electrophoresis result
from the interaction of the electrical charge carried by
a particle and an applied electric field. Less familiar, and
the subject of this book, are the electrokinetic effects
that do not depend on the nature or even presence of
a charge carried by a particle, but do depend on its
dielectric properties. By bringing into consideration the

Dielectrophoresis: Theory, Methodology and Biological Applications, First Edition. Ronald Pethig.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.



 Dielectrophoresis

dielectric properties of a particle we introduce a new set
of theories, technologies and applications. These are all
introduced in this chapter by describing
� common aspects aswell as important differences of the
principles of electrophoresis and dielectrophoresis;

� differences between their methods of measurement;
� different information that each technique can provide
of the physico-chemical properties of cells and other
bioparticles.

As in Chapter 1, the material is presented at two levels
of detail. The style of the main text is largely descriptive,
with the more theoretical details provided separately in
‘boxes’. Worked examples are also included as a means to
highlight the practical significances of the theory.
A common feature of electrophoresis and dielec-

trophoresis is that the motion of a particle is induced by
its interaction with an applied electric field. A discussion
of the concept of an electric field is thus a good starting
point.

. Electric Field

In most applications of electrophoresis the applied elec-
tric field E does not vary significantly as a function of
space (i.e., it can be considered uniform in magnitude)
and is generated using a direct current (DC) voltage
applied to two electrodes. A schematic of how such a field
can be produced is given in Figure 2.1.
Although the practical aspect of generating an electric

field appears from Figure 2.1 to be straightforward, the
concept involved is more subtle and takes us to the core
of our subject. The convention is to define the electric
field E at a point in space in terms of the electric force
Fe it will exert on a test electrical charge q at that point,
divided by the charge q. The force Fe is variously known
as the electric force, electrostatic force or coulombic force.

DC 
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- - - - -
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+
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d

Anode

Cathode

Figure . An electric field produced by applying a DC voltage
difference V to two parallel metal plates. In the central section,
away from the ends of the plates, the electric field E is uniform, has
a magnitude of V/d volts per metre and is directed away from the
positive voltage potential (anode) towards the negative potential
(cathode).

We assume that the electric field already exists and that
the test charge is used to measure the field. As analogies
to this we can use a thermometer to test a temperature
field and a mass suspended from a spring balance to test
a gravitational field. The electric field is expressed math-
ematically as:

E =
Fe
q

(2.1)

The electric field E at a point in space is thus equal to
the electric force per unit charge experienced by a test
charge at that point. In SI units the unit of force is 1
newton and the unit of charge is 1 coulomb (C), so that
from Equation (2.1) the unit of electric field strength is
1 newton per coulomb (1 N/C). Recognizing that elec-
tric field strength or intensity is a force acting on a unit
charge is important. For example, as shown in Chapter 6,
it is central to understanding the concepts of electric dis-
placement and internal field in a dielectric, as well as the
derivation of an important parameter in dielectrophore-
sis – namely the Clausius–Mossotti factor.
Students trained in the physical and engineering sci-

ences will often express electric field strengths in units of
volts per metre rather than newtons per coulomb. This
follows because the potential energy per unit charge asso-
ciated with the test charge q is defined as the potential V
at that point. V is a scalar quantity having magnitude but
not direction. E is a vector field that possesses both mag-
nitude and direction – it points in the direction of the
greatest rate of decrease of the potential V. Mathemati-
cally the relationship between E and V is written as:

E = −∇V (2.2)

where the nabla symbol ∇ denotes the gradient oper-
ator used in vector calculus (the name for this symbol
is related to its shape being similar to an ancient Greek
harp).∇V is also read as grad V and the gradient refers to
the rate of change of the potentialVwith distance along a
particular direction. As given by Equation (2.2) the elec-
tric field vector E thus has units of volts per metre and
points directly away from a positive potential towards
a less positive or negative potential. Referring to Fig-
ure 2.1, the uniform field produced in the central region
between the plate electrodes (away from the nonuniform
fringing fields at their ends) has a magnitude given by
V/d. As an example, for electrode plates spaced 1 cm
apart and with a potential difference of 10V applied to
them, the field E produced has a magnitude of 1000V/m
(or 1000N/C). Fields of between 500 and 8000V/m are
used in electrophoresis devices to separate cells in a cell
mixture, according to differences in their electrophoretic
mobilities.
We normally know or can calculate the magnitude of

the electric field at any point of interest. By rearranging
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Figure . Force Fe exerted on a test charge q by an electric field
E. (a) If q is a positive charge, Fe is directed along the same
direction as E. (b) For the case where q is negative, Fe and E act in
opposing directions. (Reproduced with permission of Wiley.)

Equation (2.1) the corresponding force exerted on a point
test charge is given by:

Fe = qE (2.3)

As q is a scalar quantity, having either positive or nega-
tivemagnitude but no direction, then fromEquation (2.3)
the electric force Fe like E is also a vector. As shown in
Figure 2.2, if q is a positive charge the force Fe acts in the
same direction as E; if q is negative then Fe and E act in
opposite directions.

. Electrophoresis

Equation (2.3) was formulated for a point test charge
because in general the electric force acting on it could
vary at different points. However, we have noted that
practical applications of electrophoresis mostly involve a
uniform electric field, such as the one shown in Figure
2.1. In this situation, or where the dimension of the test
particle is small compared to the length scale of a varia-
tion of the field strength, the electric field E can be con-
sidered to be the same in magnitude and direction at all
points on the particle. Thus, we can dispense with the
concept of a point charge and instead consider situations
where an electric force acts on a real physical object, such
as a cell or other bioparticle.
Measurement of the electrophoretic responses of cells

freely suspended in solution represented one of the ear-
liest of analytical methods to study the surface proper-
ties of cells and especiallymembrane surface charge [4,5].
Electrophoresis has also been developed as a preparative
method to separate cell subpopulations from cell mix-
tures [6–9]. Inmethods known as free flow electrophore-
sis ormicroelectrophoresis, an electric field is established
in a rectangular or cylindrical cuvette or chamber, so that
with the aid of a microscope either the time taken for a
cell to move a defined distance can be determined, or the
deviation of a cell from a vertical fluid flow path (caused
by applying an electric field perpendicular to the flow
stream) be measured [10–12]. In the method known as
laser Doppler electrophoresis, cells are induced to move
through a laser beam and their velocities are determined

by the extent to which light scattered from each cell is
shifted in frequency [13,14]. An important aspect of such
methods is that care is taken to ensure electro-osmotic
flow of the liquid does not influence the measurements.
Determinations of cell motion must be made in what is
termed the stationary layer of fluid in the closed chamber,
where the fluid flow is found to remain zero after appli-
cation of the electric field.
All eukaryotic cells so far studied exhibit a nega-

tive electrophoretic mobility under normal physiological
conditions – they move towards the anode and hence in
the opposite direction to that of the applied field [15].
According to Figure 2.2 this informs us that mammalian
cells carry a net negative charge. The number of nega-
tively charged chemical groups per unit area of the exter-
nal surface of a cell’s plasmamembrane exceeds the num-
ber of positively charged groups. These groups are most
commonly associated with the carboxyl (COOH) and
amino (NH2) side chains of proteins and other molecules
incorporated into the membrane structure. As a rough
estimate there are about 10∼20 acidic and basic groups
per square nanometre of the membrane surface. An
acidic carboxyl group can dissociate to give an ionized,
negatively charged, COO− group and a mobile proton
(H+), whereas a basic amino group can accept a proton
to produce a positively charged NH3

+ group. If the acid-
ity of the solution around a cell is increased, for example
by lowering the pH below pH 7, there will be a relatively
large number of free protons in the solution. The prob-
ability that a proton will neutralize an ionized carboxyl
group (COO− + H+ → COOH) will be greater than the
tendency for an ionized NH3

+ group to give up its pro-
ton to the solution. On the other hand, raising the pH
above pH 7 will have the opposite effect because there
will be a relatively low concentration of free protons.
There will be an increased tendency for carboxyl groups
to give up a proton and become negatively charged and
for NH3

+ groups to give up their protons to the solu-
tion and become an uncharged NH2 group. At a cer-
tain pH of the solution, depending on the relative num-
ber per unit area of carboxyl and amino side groups, the
net charge on a membrane surface will be zero.The elec-
trophoretic mobility of the cell will also be zero. This is
known as the isoelectric point, given the symbol pI. In an
early study of this effect Coulter [4] determined the iso-
electric point for sheep red blood cells to occur at pH 4.6
(the cellsmoving towards the anode and then towards the
cathode above and below this pH value, respectively). A
quantitative analysis of the ionization of acidic and basic
groups as a function of pH is provided by theHenderson–
Hasselbalch equation derived in Box 2.1.
Although we may assume that mammalian cells carry

a net, uncompensated, negative charge under normal
physiological conditions at pH 7, bacteria may carry
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Box . The Henderson–Hasselbalch Equation

According to the classical definition of acid and base, H3O+

is acidic (it can donate a proton) and OH− is basic or alkaline
(it can accept a proton). The generalized expression for the
dissociation of an acid into a proton H+ and its anion A− is:

HA ↔ H+ + A−

Acids such as HCl dissociate completely and this reaction
goes to completion:

HA ↔ H+ + A−

Other acids such as acetic acid dissociate only partially. In
such cases, an acid dissociation equilibrium is established
with a significant amount of undissociated acid [HA] being
present. The acid dissociation constant Ka is defined as:

Ka = [H+][A−]
[HA]

Taking the log of both sides of this equation, we obtain:

log Ka = log [H+] + log [A−]
[HA]

, or

−log [H+] = −log Ka + log [A−]
[HA]

Substituting pH for −log [H+] and pKa for −log Ka we
obtain:

pH = pKa + log [A−]
[HA]

, or

pH = pKa + log
[proton acceptor]

[proton donor]

This is the Henderson–Hasselbalch equation, which per-
mits the calculation of the degree of dissociation of an acid,
given the pH of the solution and the pKa of the acid.

either a net negative or positive charge [15,16]. Depend-
ing on their relative contents of ionizable carboxyl side
groups (aspartic acid, glutamic acid) and amino groups
(arginine, histidine, lysine) protein particles may also
carry a net negative or positive charge at pH 7. Exam-
ples of acidic proteins with pI values below 7.0 include
pepsin, casein, insulin and albumin – and basic proteins
with pI values above 7.0 include cytochrome-c, lysine and
salmine. Haemoglobin andmyoglobin have pI value close
to 7. Nucleic acid particles (DNA, RNA) at pH 7 carry
a net negative charge associated with the ionized phos-
phate groups in their polynucleotide chains.

Example 2.1 Net Charge on a Cell Membrane

1. Estimate, under normal physiological conditions at
pH 7.2 the sign and magnitude of the net, uncompen-
sated, charge density on a cell that contains on aver-
age 11.6 carboxyl and 1.93 amino groups per square
nanometre of membrane surface. The pKa values for
the carboxyl and amino groups can be taken as 4 and
11, respectively.

2. Estimate the surface charge density at pH 3.4.

Solution 2.1

1. Using the Henderson–Hasselbalch equation derived
in Box 2.1 we can write:

log [COO−]
[COOH]

= 7.2 − 4 = 3.2

where COO− and COOH act as the proton accep-
tor and donor, respectively. The ratio of ionized

(negatively charged) to nonionized (uncharged) car-
boxyl groups = antilog 3.2 = 1585. We can also write:

log
[NH2]
[NH+

3 ]
= 7.2 − 11 = −3.8

The ratio of charged to uncharged amino groups =
antilog 3.8 = 6310. We can therefore assume that
almost 100% of the carboxyl and amino groups carry a
charge. The net membrane charge is therefore (2.93 −
11.6) electronic charges per square nanometre =
−9.67 × (1.6 × 10−19) C/nm2 = −1.55 × 10−6 C/cm2.

2. At pH 3.4 we can assume that all of the amino groups
(1.93 per nm2) carry a positive charge. The ratio
of charged to uncharged carboxyl groups = antilog
(3.3 − 4) = 0.2. Therefore of the 11.6 carboxyl groups
per nm2, 1.93 per nm2 carries a negative charge.Thus,
the density of negative COO− charges exactly bal-
ances the density of positive NH3+ charges. The cell
membrane carries no net charge. This corresponds to
the cell’s isoelectric point.

Example 2.2 Electric Force Acting on a Cell
Estimate the magnitude of the electric force Fe that will
act on a mammalian cell of diameter 10μm in an electric
field of 1000V/m.

Solution 2.2 Wewill assume thatmammalian cells typ-
ically carry an uncompensated negative charge density of
∼1.5μC/cm2. A spherical cell of diameter 10μm has a
surface area (4𝜋R2) of ∼3 × 10−6 cm2 and so will carry a
net charge of about −4.5 × 10−12 C. From Equation (2.3)
the force Fe acting on this cell when subjected to a field
of 1000N/C is given by:

Fe = (−4.5 × 10−12 C) × (1000N∕C) = −4.5 × 10−9 N
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The negative sign indicates that this force acts in the
opposite direction to that of the electric field. To place
the magnitude of this force into context, it is very small
compared to the earth’s gravitational force of 1.5N that
acts on an apple of mass ∼150 g.

Example 2.3 Sedimentation Force Acting on a Cell
Estimate the force of sedimentation acting on a cell
of diameter 10μm when suspended in an aqueous
electrolyte.

Solution 2.3 Two forces act on the cell, namely the
gravitational force (weight) acting downwards and the
buoyant force acting upwards. The buoyant force relates
to Archimedes’ principle:

A body that is partly or entirely submerged in a fluid
is buoyed upwards by a force equal in magnitude to
the weight of the displaced fluid.

For a spherical particle of radius R of mass density 𝛾1
suspended in a fluid of mass density 𝛾2, the net force Fs
acting on the particle is given by:

Fs =
4
3
𝜋 R3 (𝛾1 − 𝛾2) g

where g is the gravitational acceleration vector
(9.815m/s2). The density of a weak electrolyte is
∼1010 kg/m3 and that of a typical cell ∼1050 kg/m3. For
R = 5μm:

Fs ≈ (4𝜋∕3)(5 × 10−6)3(40) × 9.815 kgm∕s2

= 2 × 10−13 N

The estimated electric force of 4.5 × 10–9 N obtained for
Example 2.2 is thus some 20 000 times larger than the
sedimentation force acting on the cell. It is also useful to
compare the electric force with the randomizing Brow-
nian force (kT/2R) experienced by particles when sus-
pended in solution. For a cell of radius 5μm the Brow-
nian force will have a magnitude of around 4 × 10–16 N.
The electric force is thus 10million times greater than the
randomizing force the cell will experience from thermally
induced motions of surrounding water molecules.

The electric field E appearing in Equation (2.3) is gener-
ated by charges such as those shown induced in the par-
allel plate electrodes in Figure 2.1. A test charge brought
into this field will generate its own electric field, but this
field will not act on the test charge.This follows from the
physical principle that a body cannot exert a net force on
itself. If this were not so, we could for example lift our-
selves off the ground by standing in a bucket and tugging
with our hands on its handle! A familiar example, where
a body sets up a field around itself and a second body
responds to it, is the gravitational field set up by the Earth
that exerts a gravitational force on othermasses. Particles
accelerated to Earth under the action of the gravitational
field attain a terminal velocity, corresponding to the situ-
ation where there is a balance between the gravitational
force and an opposing force (air friction) generated by
its interaction with the surrounding atmosphere. A cell
suspended in a liquid and subjected to an electric field
will attain a steady-state velocity when the retarding fluid
viscous force builds up to exactly counteract the electric
force.
Viscous forces oppose the motion of one portion of a

fluid relative to another (gases and liquids are classified as
fluids). This results in the tendency for a boundary layer
of fluid to remain in intimate contact with the surface
of a body as it moves through a fluid. A phenomenon
known as laminar flow is created around a body that
moves relatively slowly through a fluid and an example
of this is shown in Figure 2.3. As shown schematically in
Figure 2.3(a) the flow speeds of intermediary fluid lay-
ers between the moving solid surface and the bulk fluid
decreases uniformly as a function of distance away from
body surface.The fluid layer immediately in contact with
the body surface moves with the same velocity as the
body – we say there is the condition of zero slip at the
body-fluid interface. In principle, at some distance away
from the body surface there will also be zero slip between
the outermost fluid laminar layer carried by the moving
body and its ‘interface’ with the bulk fluid. However, it is
commonly the case that a body and its associated lam-
inar layers of fluid ‘part company’ from the bulk fluid
at a so-called ‘slip plane’. Each elemental fluid layer car-
ried by a moving body in a fluid is in a state of continu-
ously increasing shear strain, caused by the fluid velocity

v
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(b)Figure . (a) A schematic of the laminar fluid layers
moving with a cell relative to the stationary bulk
fluid. The laminar boundary layer in contact with the
cell surface moves at the same velocity v as the cell.
(b) The velocity v of each fluidic laminar relative to
the bulk fluid decreases linearly with distance x
from the cell surface. A fluid volume Adx contains a
positive ion charge density 𝜌(x) associated with the
electrical double layer.
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Box . Application of Stokes’ Law

The viscous fluid force Fs that will resist an applied force Fa
of acceleration experienced by a spherical particle is given
by Stokes’ Law:

FS = 6𝜋𝜂Rv (2.4)

where R and v are the particle’s radius and velocity, respec-
tively and 𝜂 is the dynamic viscosity of the fluid medium.
The steady-state (terminal) velocity is attained when this

force exactly balances the applied force (i.e., when FS = Fa)
and is thus given by:

FS = Fa∕(6𝜋𝜂R) (2.5)

This is an application of Newton’s First Law of Motion, which
states that ‘A body acted on by no net force moves with con-
stant velocity (which may be zero) with zero acceleration.’

gradient across it. To counteract this distorting effect a
viscous force (a shear stress) is generated in proportion
to the rate of change of shear strain (known as the strain
rate) given by the velocity gradient (dv/dx). The dynamic
viscosity 𝜂 of the fluid is defined as the ratio of the shear
stress (force F per unit area A) to the strain rate:

𝜂 = Shear stress
Strain rate

=
F∕A
dv∕dx

The force F acting on each element of fluidmovingwith
the body is thus given by:

F = 𝜂 Adv
dx

The total viscous force acting on a moving body is the
summation (integration) of all of the forces acting on
each fluid element that moves with the body. For the case
of a spherical body of radius R moving with velocity v
the viscous drag force is given by Stokes’ Law. This law
is used in Box 2.2 to derive an expression for the steady-
state velocity of a spherical particle under the influence
of an accelerating force and a viscous drag force.
The concept of an electrophoretic mobility 𝜇e is used

to quantify electrophoresis and is defined as the ratio of
the steady-state velocity v and the applied field E:

𝜇e =
v
E

(2.6)

with units of m2 per volt second (m2 V−1s−1). In a
data base comprising 288 types of eukaryotic cells, 𝜇e
values from 0.5 × 10−8 to 3.5 × 10−8 m2 V−1s−1 are
reported [15]. The most studied cell type is the human
red blood cell, having an established 𝜇e value of 1.1 ×
10−8 m2 V−1s−1. A simple way to calibrate electrophore-
sis equipment is to first make measurements using red
blood cells as a standard reference. The 𝜇e value for a
cell is commonly expressed in units of μm/s per volt/cm
and in this form provides a useful insight of the mag-
nitude of steady-state velocities and cell migration dis-
tances we are likely to observe in cell electrophoresis
measurements (e.g., a red blood cell will travel 0.44mm
after 40 seconds exposure to a field of 1000V/m in a sta-
tionary fluid). Purification of heterogeneous cell samples

by electrophoresis should be possible for 𝜇e differences
of 10–20% if the equipment used can distinguish mobil-
ity values within ± 0.05 × 10−8 m2 per volt second.

Example 2.4 Stokes’ Law has Limited Applicability
to Cell Electrophoresis
A cell, of diameter 10μm and carrying a net charge of
−4.5 × 10−12 C, is suspended in an aqueous electrolyte at
pH 7 and exposed to a uniform field of 1000V/m. Esti-
mate, taking into account the fluid viscous drag force
given by Stokes’ Law, the electrophoretic mobility 𝜇e of
the cell. How does this estimate compare with typical val-
ues obtained experimentally?

Solution 2.4 Aqueous electrolytes have dynamic vis-
cosities 𝜂 ∼ 10−3 Pa s (1 pascal = 1 Pa = 1N/m2). When
the accelerating force is equal to the electric force given
by Equation (2.3), then from Equation (2.5) in Box 2.1 the
steady-state velocity v for a cell of radius 5μm, net charge
−4.5 × 10−12 C, in a 1000V/m field is given by:

v =
q E
6𝜋𝜂R

= [(−4.5 × 10−12 C)(103 NC−1)]∕
[6𝜋(10−3 Nm−2 s)(5 × 10−6 m)] = − 47.8mm∕s.

The corresponding electrophoretic mobility value is
given by Equation (2.6):

𝜇e = v∕E = −47.8 × 10−3∕103

= −4.8 × 10−5 m2 V−1 s−1

This value is more than 1000 times larger than that found
experimentally for cells maintained at physiological pH
[15]. We need to re-examine our application of Stokes’
Law in calculating electrophoretic mobilities.

Stokes’ Law, employed in the analysis presented in Box
2.1 to derive Equation (2.6), can be used to calculate the
viscous drag force acting on an electrically uncharged
spherical particle. However, as our analysis in Example
2.4 indicates, it is not applicable to the case of an elec-
trically charged particle moving in an electrolyte under
the influence of an electric field. This is because Stokes’
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Box . Electrical Double-Layer Influence on Electrophoretic Mobility

As shown in Figure 2.3 the relative velocity (with respect to
the bulk fluid) of the laminar fluid layers decreases linearly
as a function of distance x from the membrane-fluid inter-
face. In Chapter 12 (Equation 12.3), the shear stress 𝜏 exerted
on each fluid layer is given by:

𝜏 = 𝜂dv∕dx (2.7)

At the steady-state condition of electrophoresis, the
velocity of each fluid layer will be constant. The shear force
and electric force acting on each fluid volume element Adx
containing an ion charge density 𝜌(x) must therefore be
equal and opposite:

𝜂Adv
dx

= E𝜌(x) A dx or E𝜌(x) = 𝜂
d2v
dx2

Replacing 𝜌(x) using the Poisson equation (Equation
(3.30) of Chapter 3):

−𝜀o𝜀m E
d2𝜙(x)

dx2
= 𝜂

dv
dx

As boundary conditions for the integration of this equa-
tion, we can assume that as x tends to infinity the charged
cell is effectively screened by the counterions (i.e., the elec-
tric potential 𝜙(x) tends to zero) and that the velocity of a
fluid element Adx is zero. We also define an electrokinetic
potential 𝜁 , generally known as the zeta potential, as the
potential at the boundary between the stationary bulk fluid
and the surface layer of fluid moving with the cell (𝜁 will
be less than the potential exactly at the surface of the cell
membrane). On integration, we obtain the result:

−𝜀o𝜀m E𝜍 = 𝜂v

This is the so-called Helmholtz–Smoluchowski equa-
tion and provides the following expression for the elec-
trophoretic mobility 𝜇e:

𝜇e =
v
E
=

𝜀o 𝜀m𝜍

𝜂
(2.8)

Law does not take into account the influence of the elec-
trical double layer associated with a charged particle.
As described in Chapter 12 counterions are attracted to
uncompensated surface charges on a particle and are dis-
tributed into the laminar fluid layer that moves with the
particle. This situation is shown schematically in Figure
2.3(a). Because they carry a charge of opposite polarity to
that of the net charge on the particle, the electric forces
acting on the counterions act against the electric force
given by Equation (2.3).The overall scheme of forces act-
ing on a charged particle is shown in Figure 2.4.
A derivation of the Helmholtz–Smoluchowski equa-

tion, used to relate the electrophoretic mobility with sur-
face charge carried by a particle, is presented in Box
2.3. (An earlier theory of Helmholtz assumed that the
counterions are located in a monolayer next to the
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Figure . The steady-state velocity of a charged particle in an
electric field is established when the electric force Fe is exactly
balanced by the viscous drag force that includes the retardation
resulting from the interaction of the field and the counterions in
the electrical double layer.

uncompensated charges on the particle surface, but
Smoluchowski later included the more diffuse nature of
the electrical double layer.) Equation (2.8) derived in Box
2.3 works well for cases where the electrical double-layer
thickness 𝜅−1 (defined inChapter 12 as theDebye screen-
ing length) is much less than the particle radius R. This
applies to the case for cells suspended in aqueous elec-
trolytes because the effective value for 𝜅−1 is at most a
few nanometres.

Example 2.5 Application of the Helmholtz–
Smoluchowski Equation
The reported electrophoretic mobility of rat kidney cells
is −1.26 × 10−8 m2 V−1s−1 when suspended in 150mM
NaCl at 306K [15, 17]. Determine, using Equation (2.8),
the corresponding value for the zeta potential.

Solution 2.5 Rearranging Equation (2.8) given in Box
2.3 the zeta potential 𝜁 is:

𝜍 =
𝜇e𝜂

𝜀o𝜀m

in which 𝜀o is the permittivity of free space (8.85 ×
10−12 F/m) and 𝜀m is the relative permittivity of the sus-
pendingmedium. For an aqueous electrolyte 𝜀m = 79 and
the dynamic viscosity 𝜂 = 10−3 Pa s (1 pascal = 1 Pa =
1N/m2). From the equation above:

𝜍 = (−1.26 × 10−8 m2 V−1 s−1) × (10−3 Nm−2 s)∕
(8.85 × 10−12 m−1 × 79)
= −18 × 10−3 NmV−1 F−1 = −18mV.
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(This result is obtained by noting that a farad has units of
C/V and using the equivalence N/C=V/m in defining an
electric field.)

The value for the zeta potential 𝜁 obtained in Solu-
tion 2.5 corresponds to the electrostatic potential a small
distance beyond the cell surface at the hydrodynamic
plane of shear. No satisfactory theory appears to exist
to calculate the corresponding potential at the charged
membrane surface itself. However, based on a free rad-
ical quenching technique to probe the surface charge of
ascites cells, a value of 5.7mV was deduced as the dif-
ference between the cell surface potential (−20.3mV)
and the zeta potential of −14.6mV [18]. Assuming a
value close to −24mV for the surface potential of a rat
kidney cell, we can estimate the surface charge density
using theories first developed byGouy andChapman and
later extended by Grahame [19]. For cells suspended in a
monovalent electrolyte such as NaCl the uncompensated
charge density 𝜎 (μC/cm2) on the cell membrane is given
to a good approximation by:

𝜎 = 12
√
C

q𝜓
2 k T

in which q is the absolute magnitude of the charge on
an electron (1.6 × 10−19 C), 𝜓 is the membrane surface
potential, C the molar concentration of ions in the bulk
fluid and k Boltzmann’s constant (1.602 × 10−23 J/K).
Substituting C = 150mM, 𝜓 = −24mV, T = 306K into
this expression we obtain a value for the cell surface
charge density of −1.8μC/cm2.
The electrophoretic mobility given by the Helmholtz–

Smoluchowski equation (2.8) in Box 2.3 does not include
any details regarding the size or shape of the particle.
The separation by electrophoresis of particles suspended
in solution therefore relies solely on differences in their
surface charge densities. However, if the particles are
immersed within a gel or other porous matrix, physical
hindrance or entanglement effects can lead to separa-
tions that depend on particle size and shape, as well as
surface charge density differences. This method is com-
monly used to separate bioparticles such as DNA and
RNA, which have similar charge-to-mass ratios and thus
exhibit similar electrophoretic mobilities.

. Induced Surface Charge and Dipole
Moment

Our discussion of the electrophoretic mobility of a
macroscopic particle has taken no account of how an
established uniform electric field might be disturbed as
a result of inserting such a particle into it. This is a prob-
lem, presented in classical texts on electrostatics [e.g.,
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Figure . (a) A cell with an intact and viable plasma membrane
will resist passive ion flow and appear to an imposed DC electric
field as an electrically insulating particle. The resulting ionic
currents will skirt around the cell to seek more conductive paths in
the surrounding electrolyte. Induced charges appear at the
membrane-electrolyte interface to produce a dipole moment p
orientated against the applied field. (b) A cell with an impaired
plasma membrane, suspended in a poorly conducting fluid, can
appear as a conducting particle. The field will then penetrate into
the cell interior and induced charges will lend to the cell a dipole
moment aligned in the same direction as the field.

20, 21] that can be traced back to Maxwell’s first for-
mulation of the concept of an electromagnetic field [22].
The relevant theory is presented in detail in Chapter 10,
but for our present purposes we can consider the imag-
inary exercise of first establishing a uniform field in a
fluid. We then insert into this field an uncharged spheri-
cal particle whose electrical properties (conductivity and
permittivity) match exactly those of the fluid. The inser-
tion of the particle, requiring the displacement of fluid
of equal volume, geometry and dielectric properties as
the particle, will not be ‘perceived’ by the field. The uni-
form nature of the field will remain unaltered. However,
consider the cases shown in Figure 2.5. If the test particle
(e.g., a viable cell) is less conducting than the surrounding
fluid the field and current flux lines will tend to concen-
trate in the fluid and avoid the particle by skirting around
its surface. The counter effect occurs if the particle, such
as a dying cell with an impaired membrane resistance,
is more conductive than the surrounding fluid. The flux
lines are now deflected into the cell interior and avoid
the fluid near the particle. For these two cases and, as
depicted in Figure 2.5, electric charges are induced at
the interface between the fluid and the cell membrane.
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Figure . Equal and opposite surface charges are induced
on a particle in an electric field, and form a dipole moment
p that generates positive (solid lines) and negative (dotted
lines) electric potential distributions. The dipole moment
orientations and potential distributions shown in (a) and
(b), respectively, correspond to the polarizations of the cells
shown in Figures 2.5(a) and (b), respectively.

As described in greater detail in Chapters 5 and 10, the
induced charges are distributed as equal numbers of pos-
itive and negative charges and polarized so as to occupy
opposite sides of the particle to form a dipole moment.
The net magnitude of the additional charge taken up by
the particle is thus zero and will not influence the elec-
trophoretic mobility in a uniform electric field. In a uni-
form field, the coulombic forces acting on each half of
the dipole will be equal and of opposing direction. The
induced dipole moments generate distributions of elec-
tric potentials as shown in Figure 2.6. Superposition of
each potential distribution onto the original uniformfield
will produce the corresponding field distortions depicted
in Figure 2.5.
The magnitude of the dipole moment p induced by

the field E is determined by the effective polarizability
𝛼 of the particle’s material. The polarizability is defined
as the induced dipole moment per unit volume in unit
field. For cases where the particle consists of a material
that is homogeneous, isotropic and whose polarization
is linearly proportional to the applied field, the induced
moment p is thus given by:

p = 𝛼vE (2.9)

where 𝜈 is the volume of the particle. For the case of a
spherical particle of radius R and, as described in detail
in Chapter 6, the polarizability factor 𝛼 can be presented
as:

𝛼 = 3𝜀o𝜀m[CM] (2.10)

The factor [CM], generally known as the Clausius–
Mossotti factor, depends on the electrical properties
(conductivity 𝜎 and permittivity 𝜀) of the particle and its
surrounding fluid and is bounded by the values:

− 0.5 < [CM] < 1.0 (2.11)

Negative [CM] values arise where the particle is less
polarizable than the fluid (i.e, its 𝜎 and / or 𝜀 value is
less than the fluid’s) and corresponds to the situations
shown in Figure 2.5 (a) and Figure 2.6 (a). The situations
shown in Figure 2.5 (b) and Figure 2.6 (b) correspond to a
positive [CM] valuewhere the particle ismorepolarizable

than its surrounding medium. Substitution of Equation
(2.10) into Equation (2.9), together with the volume for a
spherical particle of radius R, gives the following expres-
sion for p:

p = 4𝜋 R3𝜀o𝜀m [CM] E (2.12)

Example 2.6 Magnitude of DipoleMoment Induced
in a Cell
Acell of diameter 10μm is suspended in an aqueous elec-
trolyte and exposed to a uniform field of 1000V/m. Cal-
culate the magnitude and direction (with respect to the
applied field) of the dipole moment induced in the cell
for the two values of the Clausius–Mossotti factor: [CM]
= 0.5 and [CM] = −0.2.

Solution 2.6 The induced dipole moment is given by
Equation (2.12):

p = 4𝜋R3𝜀o𝜀m [CM] E
p = 4𝜋(5 × 10−6 m)3 × 79 (8.854 × 10−12 F∕m)

[CM] 103 V∕m

Noting that farad volt ≡ coulomb, then

p = 1.1 × 10−21[CM]Cm

For [CM] = 0.5, p = 5.5 × 10−22 C m (aligned in the
same direction as the field). For [CM] = −0.2, p =
−2.2 × 10−22 C m (aligned against the field direction).

Historically, the magnitude of a dipole moment has
been measured in debye units; 1 debye (1D) = 3.34 ×
10−30 coulombmetre and so is of the order of magnitude
of a fraction of electronic charge multiplied by the order
of molecular dimensions. Water, considered to be one of
the more polarizable of small molecules, has O–H bond
lengths of∼0.1 nm and dipole moment of 1.86D, giving a
polarization charge+0.33e on each hydrogen and−0.66e
on the oxygen atom (where e is the electronic charge of
1.6 × 10−19 C). A myoglobin protein molecule exhibits
a dipole moment of ∼150D [23]. Thus, expressed in
debye units we gain an appreciation of the magnitudes of
the polarized charges and molecular sizes involved. The
dipolemoment of 5.5× 10−22 Cm, calculated in Example
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Figure . The induced surface charge density (shown as grey
shading) on a spherical particle is distributed as a cosine function
of the angle 𝜃 between the radius vector R and the direction of the
induced dipole moment p aligned with the field E.

2.6 for a 10μm diameter cell is equivalent to 1.6 × 108 D
and thus represents a gigantic combination of charge and
dimension compared to a water or protein molecule. We
can estimate the magnitude of polarized chargeQ for the
cell using the definition of a dipole moment p:

p = Qd (2.13)

and treating Q as a localized charge on opposite sides
of a cell of diameter d (see Figure 2.8). From Equation
(2.13), a dipole moment of 5.5 × 10−22 C m for a 10μm
diameter cell corresponds to Q = 5.5 × 10−17 C. This is
smaller in magnitude, by a factor of ∼105, than the typ-
ical net surface charge of −4.5 × 10−12 C carried by a
cell at physiological pH (see Example 2.2). However, this
net physiological charge is distributed uniformly around
the cell surface and so produces a net dipole moment
of zero, whereas the induced charges of +5.5 × 10−17 C
and −5.5 × 10−17 C are each located on opposite sides of
the cell. The induced charges are not in fact localized as
point charges, but are distributed around the cell surface
according to a cosine function of the angle between the
field direction and the radial vector from the centre of the

Dipole

p = Qd

–Q

+Q

d

E
(a)

Ftan
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Figure . (a) A spherical particle with a dipole moment p is
shown oriented at an angle 𝜙 to an imposed uniform electric field
E. (b) The coulombic force experienced by each charge of the
dipole is shown resolved into its radial and tangential
components. The radial components (Frad =±QEcos𝜙) cancel each
other, but the tangential components (Ftan = QEsin𝜙) combine to
produce a net rotational torque (T = pEsin𝜙).

spherical cell. The induced surface charge distribution is
shown schematically in Figure 2.7.

. Dielectrophoresis

If a polarized cell is aligned with a uniform electric field,
as shown in Figure 2.7, the induced positive and negative
charge distributions experience the same magnitude
of coulombic force but in opposing directions. In this
situation the net electric force acting on the polarized
particle is thus zero. However, if the particle’s moment
p is oriented at an angle 𝜙 with the uniform field E, as
shown in Figure 2.8, the particle will experience a net
electrical force. This is not a translational force, but one
that causes the particle to rotate about its axis at right
angles to the plane of the field and induced moment.The
radial force (Frad) shown in Figure 2.8(b) that acts on the
positive charge +Q is given by the product of the charge
and the field component Ecos𝜙 acting along the radial
direction. The net radial force (+QE − QE)cos𝜙 acting
along the axis of the moment p cancel out each other.
The particle will not be induced to move laterally. The
component of force (Ftan) at right angles to the radial
force that acts on the positive charge is given by Ftan =
+QEcos(90◦−𝜙) = QEsin𝜙. This force acts on what can
be thought of as a lever of length d/2 connected to the
centre of the particle. The torque T of a force about a
point is given by the product of the force magnitude and
the lever arm length and so for the positive charge T+ =
(QEsin𝜙)d/2). The torque T− acting on the negative
charge of the dipole has the same magnitude and its
direction is such as to add to T+. There is thus a total
torque T = QdEsin𝜙 = pEsin𝜙 acting on the particle.
This torque will act to align the moment p along the field
direction, at which situation sin𝜙 = 0 and T = 0. We can
therefore assume that under equilibrium conditions the
dipole moment induced in a particle is aligned with the
local external electric field. We should note, though, that
a polarized particle of molecular dimension will be ‘buf-
feted’ by thermal randomizing forces (Brownian motion)
so that angle 𝜙 will be small but always changing. From
this we can deduce that although a cell might exhibit
an electrophoretic mobility in a uniform field, this will
depend on the net surface charge associated with ionized
chemical groups on the cell membrane, but will not be
influenced by the existence of an induced dipolemoment.
As shown in Figure 2.9, for a cell exposed to a nonuni-

form field the algebraic sum of the translational forces
acting on the positive and negative elements of the
induced dipole moment is not zero. The resultant trans-
lational force is known as the dielectrophoretic force and
themathematical expression for this is derived in Box 2.4.
The force is found to be proportional to the product of the
local field E and its gradient ∇E.
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Figure . (a) The component charges of a dipole are
shown located in a field gradient (illustrated by the
unequal spacing of the field lines). (b) Because the field
has a gradient, the component charges of the dipole
experience different coulombic forces F1 and F2. The
vector difference between F1 and F2 is the
dielectrophoretic force acting on the dipole.

Example 2.7 Magnitude of the Field Factor (E⋅∇)E
A particle is located a radial distance of 40μm from the
inner electrode in the electrode arrangement shown in
Figure 2.10. Derive a value for the field E and the field fac-
tor (E⋅∇)E at this location for the case where r1 = 150μm,
r2 = 750μm and a voltage of 5V is applied to the inner
electrode.

Solution 2.7 The spherical electrode geometry shown
in Figure 2.10 can be approximated as a spherical capaci-
tor composed of an inner sphere of radius r1 and an outer
concentric shell of radius r2. The potential V(r) at a point
r (r2 ≥ r ≥ r1) when a voltage V is applied to the inner
electrode and the outer one is grounded is given by:

V (r) =
V r1 (r2 − r)
r (r2 − r1)

Box . Dielectrophoretic Force

Consider Figure 2.9, which shows the general case of a
polarized small sphere located in a nonuniform electric
field. The component charges, +Q and −Q, of the sphere’s
induced dipole moment will experience different electric
forces. The net difference between these forces is defined
as the dielectrophoretic force FDEP.

The force FDEP is given by:

FDEP = Q [E(r + r) − E (r)]

On performing a Taylor series expansion of E(r + d) about r,
and taking the effective length of the dipole shown in Fig-
ure 2.9 as d = 2R, (i.e., p = Q2R) then:

FDEP = Q
[

E(r) + 2R ⋅
𝜕E
𝜕r

+ ⋅2R2 ⋅
𝜕2E
𝜕r2

⋅ ⋅

+ (2R)n

n!
⋅
𝜕nE
𝜕rn

+ ⋅ ⋅ ⋅
]
− QE(r)

If the sphere’s diameter 2R is much smaller than the scale
of the field nonuniformity 𝛿nE∕𝛿rn, we can ignore the terms
where n > 1, to give to a good approximation:

FDEP = Q 2 R ⋅
𝜕E
𝜕r

= (p ⋅ ∇)E (2.14)

Substituting into this equation the expression given in
Equation (2.12) for p:

FDEP = 4𝜋 R3𝜀o𝜀m [CM] (E ⋅ ∇)E (2.15)

As ∇ is a differential operator with respect to the space
coordinates, it operates only on what follows it. Thus (E⋅∇)E
is interpreted as the scalar (or dot) product of the vector
E and the vector ∇E. As shown in Figure 2.12, the dielec-
trophoretic force acts along the direction of ∇E and not
along the field lines.

Box . Refinement of Dielectrophoretic Force Equation

From Equation (2.15) in Box 2.4 we have:

FDEP = 4𝜋R3𝜀o𝜀m [CM] (E ⋅ ∇)E

This can be simplified by employing the vector transforma-
tion [24]:

(A ⋅ ∇)B = ∇(A ⋅ B) − (B ⋅ ∇)A − A × (∇
× B) − B × (∇ × B)

In our case A = B = E. We have also, in Equation (2.2),
defined E as the gradient of a scalar quantity. This is a neces-
sary and sufficient condition to classify E as an irrotational

field, so that∇× E= 0 [24, p. 149]. The vector transformation
of (E⋅∇)E thus leads to the identity:

2(E ⋅ ∇)E = ∇E2

Validation of this relationship for the field generated by
coaxial cylindrical electrodes is given by Equations (3.45)
and (3.46) in Chapter 3, and can also be checked for the
fields produced by various forms of charge distributions
given in Table 3.2.

Equation (2.15) for the dielectrophoretic force can thus be
written as:

FDEP = 2𝜋R3𝜀o𝜀m [CM]∇E2 (2.16)
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Figure . A particle located at radial distance r in a nonuniform
electric field generated by electrodes of spherical geometry and
radii of curvature r1 and r2. A voltage V is applied to the inner
electrode and the outer one is grounded to earth potential. The
product of the field strength and field gradient (E.∇E) acting on
the particle is given by Equation (2.18).

The field at this point is given by:

E = −∇V =
r1 r2 V

r2 (r2 − r1)
ro

where ro is the unit radial vector. For r1 = 150μm, r2 =
750μm, r = 190μm, V = 5V, from this equation:

E = 2.6 × 104 V∕m.

∇E = 𝜕E
𝜕r

= −
2 r1 r2 V
r3 (r2 − r1)

ro (2.17)

The negative sign indicates that the field gradient ∇E
decreases with increasing radial distance r from the

inner electrode. From these expressions for E and
∇E:

(E ⋅ ∇)E = −
2 r21 r

2
2 V

2

r5 (r2 − r1)2
ro (2.18)

For r1 = 150μm, r2 = 750μm, r = 190μm, V = 5V, from
Equation (2.18):

(E∇)E = −7.1 × 1012 V2∕m3

Values for E and −(E⋅∇)E as a function of the radial dis-
tance r from the inner electrode are given in Figure 2.11.

Example 2.8 Magnitude of the Dielectrophoretic
Force
Consider the particle in Example 2.7 to be a cell of diam-
eter 10μm suspended in an aqueous medium. Calculate
the dielectrophoretic force FDEP acting on the cell for the
two values of the Clausius–Mossotti factor: [CM] = 0.5
and [CM] = −0.2.

Solution 2.8 From Equation (2.15) in Box 2.4:

FDEP = 4𝜋 R3𝜀o𝜀m [CM] (E ⋅ ∇)E

For R = 5μm, 𝜀m = 79 (noting 𝜀o = 8.854 × 10−12 F/m)
and using the value for (E⋅∇)E of −7.1 × 1012 V2/m3

obtained in Example 2.7:

FDEP = −7.8 × 10−12 [CM] (V F.V∕m = N)

For [CM] = 0.5: FDEP = −3.9 × 10−12 N.
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Figure . (a) Value of the field E with radial distance
from the inner electrode of the geometry shown in
Figure 2.9, with r1 = 150 μm, r2 = 750 μm and an
applied voltage of 5 V. (b) The corresponding value of
the field factor −(E⋅∇)E (note the negative sign).
(Reproduced with permission of Wiley.)
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(c)(b)(a)Figure . Particles moving by positive
dielectrophoresis for different electrode geometries.
(a) Particles move along the ∇E vector parallel to the
electric field lines. (b) Particles move along the ∇E
vector perpendicular to the field. (c) Particles move
along the ∇E vector at a small angle to the field. For
all three geometries, positively charged particles
exhibiting electrophoresis would move along the
field line directions.

The magnitude of this dielectrophoretic force is about
20 times larger than the sedimentation force acting on the
cell (see Example 2.3) and 10 000 times larger than the
randomizing Brownian force. The minus sign indicates
that this force will direct the cell along a radial direction
towards the inner electrode – i.e.,up the electric field gra-
dient. This is termed positive dielectrophoresis.
For [CM] = −0.2: FDEP = 1.6 × 10−12 N. This positive

value indicates that the dielectrophoretic force is such
as to direct the cell along a radial direction away from
the inner electrode – i.e., down the electric field gradient.
This is termed negative dielectrophoresis.

From Box 2.4 we have the following expression for the
dielectrophoretic force:

FDEP = 4𝜋 R3𝜀o𝜀m [CM](E ⋅ ∇)E

From this equation we have confirmation of the follow-
ing:

� The dielectrophoretic force is zero if the field is uni-
form (i.e., if ∇E = 0).

� Thedielectrophoretic force is ponderomotive.With all
other factors remaining constant the larger the particle
volume the greater will be the dielectrophoretic force
acting on it.

� Electrode geometry is an important experimental
design consideration in the control of the field factor
(E.∇)E. From Examples 1.7 and 1.8 we find that a value
for this factor of 1016 V2/m3 can result from a modest
applied voltage of 1V and produce a significant dielec-
trophoretic force on a cell. (E.∇)E has dimensions of
V2/m3 and so its magnitude can be increased by a
suitable scaling down of the electrode dimensions. For
example, a fixed value of the dielectrophoretic force
can be achieved for a hundredfold reduction of the
applied voltage with a thousandfold reduction of the
characteristic scale of the electrodes.

� The polarity (positive or negative) of the dielec-
trophoretic force is determined by the particle’s polar-
izability relative to that of the surrounding medium,
as expressed by the Clausius–Mossotti factor [CM]. If
[CM] is positive (i.e., the particle is more polarizable
than the suspending medium) the force is directed up
a field gradient towards an electrode.This provides the

condition for positive dielectrophoresis. If [CM] is neg-
ative (the particle is less polarizable than the medium)
the force is directed down a field gradient away from
an electrode. This provides the condition for negative
dielectrophoresis.

� The direction of motion of a particle induced by a
dielectrophoretic force is determined by the field gra-
dient vector ∇E. The concept of the scalar product
(E.∇)E is discussed in Chapter 10, but for our present
purposes it is sufficient to state that the direction of
motion is determined by the direction of ∇E, which as
shown in Figure 2.12 depends on the electrode geom-
etry. For example, for a cyclindrical or spherical geom-
etry∇E is parallel to the field E, but for a funnel design
such as that shown in Figure 2.12(b) ∇E acts at right
angles to the field lines.

These facts highlight the following differences between
electrophoresis and dielectrophoresis:

� Electrophoresis can be performed using fields that are
either uniform or nonuniform, but dielectrophoresis
requires the application of a large field gradient.

� The electrophoretic force is zero, but the dielec-
trophoretic force is not, if the particle carries no net
fixed charge. Dielectrophoresis depends on the exis-
tence of field-induced charges that lead to the cell hav-
ing the properties of a dipole moment.

� Particle size does not influence electrophoretic mobil-
ity, but the dielectrophoretic force is directly depen-
dent on particle size (as shown in Chapter 10).

� Electrode geometry is not of major consideration for
enhancing electrophoresis, but is important in the
design of dielectrophoresis devices, where high field
strengths and specific forms of field nonuniformity are
often important.

However, an important distinguishing feature of dielec-
trophoresis is revealed in Equation (2.16), where the field
factor (E⋅∇)E is shown to relate to the square of the
applied voltage. Thus, dielectrophoresis is independent
of the polarity of the applied field direction (because
(−1)2 = (+1)2 = 1). Alternating current (AC) as well
as direct current (DC) voltages can be used, whereas
meaningful electrophoresis experiments can only be per-
formed using DC fields. This conclusion is drawn not
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Figure . (a) A simple form of an AC generator consists of a coil of wire placed above a rotating bar magnet. A current I and voltage V is
generated when the coil experiences a change in magnetic field, cycling through positive and negative peaks when the north and south
pole, respectively, pass close to it. The rate of rotation of the magnet can be expressed as either cycles or radians per second, where one
radian 𝜃r is defined as the angle subtended by an arc of length equal to the radius. The circumference of a circle is 2𝜋r, so that 2𝜋 radians is
equivalent to 360◦. (b) If the bar magnet is rotated at a constant rate the generated voltage (and current) takes the form of a sine wave,
with a repeat wavelength of 360◦ (2𝜋 radians). The root mean square (rms) value of the sinusoid is given by the peak value divided by the
square root of two, and is equal to 0.707 Vpk.

solely from the use of the particular electrode geometry
shown in Figure 2.10, but as stated in Box 2.5 is appli-
cable to all the fields that can be generated using elec-
trodes. An alternating current is one in which the flow
of charge periodically reverses direction, whereas in a
direct current the charges flow consistently in one direc-
tion.The abbreviations AC and DC are also used to indi-
catewhether a voltage or electric field is either alternating
or direct, respectively. A simple concept, based on Fara-
day’s discovery of magnetoelectric induction, describing
the generation of an AC current and voltage is shown in
Figure 2.13.
From Box 2.5 we have an alternative expression to

Equation (2.15) for the dielectrophoretic force:

FDEP = 2𝜋R3𝜀o𝜀m [CM]∇E2 (2.19)

in which the magnitude of the field E is the root mean
square (rms) value as derived in Box 2.6 and also defined
in Figure 2.13. Using the rms field value can be useful
because this equation also gives the dielectrophoretic
force for the case of an applied DC field. AC voltmeters
and ammeters show the rms value of the voltage and
current and the rms value is also used to specify the
household AC mains supply (e.g., 120V in the United
States, 230V in Europe and many other countries).
Equation (2.19) is the one most often presented in
publications on dielectrophoresis and in this form
emphasizes the square-law dependence of the force
upon the applied field E.This means that the direction of

the dielectrophoretic force is independent of the polarity
of the voltage applied to an electrode, as for example the
inner one shown in Figure 2.10. The voltage can be AC
or DC. On the other hand, electrophoresis produces a
particle motion whose direction depends on the polarity
of the charge on the particle and also upon the polarity
of the applied voltage. Reversal of the voltage polarity
and hence also of the field, reverses the direction of
electrophoretic motion. Above a certain frequency, the
inertia of the particle will bring it to a halt.
But what is the advantage of using an AC voltage to

achieve dielectrophoresis? The particle radius R does
not depend on the field frequency and even if the sus-
pending medium permittivity 𝜀m and field factor ∇E2
did change appreciably (which they do not over the fre-
quency range usually employed) this would not be of
much use or interest. The only factor in Equation (2.19)
that can change with frequency is [CM]. In Chapter 10
it will be shown that [CM] depends on the effective
conductance and electrical capacitance of the particle
and that under appropriate experimental conditions a
cell can be observed to change from positive to nega-
tive dielectrophoresis simply by altering the frequency of
the applied field. An example of this is shown in Figure
2.14 for yeast cells, using electrodes of similar geometry
to that shown in Figure 2.10.
The effect shown in Figure 2.14, where a transition

from negative to positive dielectrophoresis occurs as
the field frequency is increased from the kHz range of
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Box . The RMS Value of a Sinusoidal AC Waveform

The usefulness of the root mean square (rms) value of a
sinusoidal current or voltage waveform is that it gives the
same heating effect (IDC)2R or (VDC)2/R) as the equivalent
DC power dissipated in a resistor R. Consider a sinusoidal
voltage of constant radian frequency 𝜔= 2𝜋f, where f is the
frequency (cycles / second):

V(t) = Vpksin(𝜔 t)

The periodic time constant T is the reciprocal of the fre-
quency, so that T = 2𝜋/𝜔. At any instant in time the power
dissipated is V2(t)/R, and the time-averaged value of this
over a complete cycle of the sinusoidal voltage is given by:⟨

V(t)2

R

⟩
= 1

T ∫

T

0

V2
pk

R
sin2(𝜔t) dt = 1

R

V2
pk

2 T[
t − 1

2𝜔
sin(2𝜔 t)

]T

0
=

V2
pk

2 R
This is defined as the equivalent heating effect of the rms
voltage, so that:

V2
rms

R
=

V2
pk

2 R
, or Vrms =

Vpk√
2
= 0.7071 × Vpk

Vpk sin

Vpk sin2(ωt)

(ωt)

Vrms

1

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

–1
0 45 90 135 180

Degrees

M
ag

ni
tu

de

225 270 315 360

This figure shows plots of the AC voltage waveform
V(t) = Vpk sin(𝜔t) and the square of this function (for Vpk = 1 volt).
The root mean square voltage (Vrms) is indicated.

frequencies to the MHz range, can be employed as a
check on cell viability. When suspended in an appro-
priate medium, the high resistance to passive ion flow
across the plasma membrane of a viable cell lends to it
the properties of a particle of low polarizability having
a negative [CM] value. For cells suspended in a weakly
conducting medium, this can result in negative dielec-
trophoresis. As the field frequency is increased to the
MHz region, the capacitance of the membrane can act
to electrically bypass its high resistance so that the elec-
tric field penetrates into the conducting cytoplasm. In a
weakly conducting medium the [CM] value can change
from a negative to a positive value so that the cell exhibits
positive dielectrophoresis. A cell with a compromised
plasma membrane, resulting from apoptosis, necrosis or
cell damage, will generally not exhibit a negative dielec-
trophoretic response at low frequencies. As discussed in
Chapter 11, this can be used to separate dead cells from
viable cells, or to monitor by dielectrophoresis the effect

of cytotoxic agents on a cell population. Changes in the
surface morphology of a cell (e.g., appearance of blebs,
microvillii or extra membrane folding) either through
apoptosis or cell differentiation, will influence the mem-
brane capacitance and along with it the frequency at
which the crossover from negative to positive dielec-
trophoresis occurs. Changing the conductivity of the cell
suspending medium will also change the value of [CM]
and an example of this is shown in Figure 2.15. With the
applied field frequency fixed at 10 kHz, the same cells can
either be collected at the electrode or repelled from them
into a ‘field cage’, simply by changing the conductivity of
the suspending medium. Forcing cells to gather together
by negative dielectrophoresis can be used tomanufacture
artificial cell structures, for example.
The experimental quantification of cell electrophore-

sis is commonly achieved either by monitoring the
cell movement through a microscope or by detect-
ing the back scattering of laser light from the cells.

(a) (b)
Figure . Viable yeast cells suspended in 280 mM mannitol of
conductivity 40 mS/m. (a) Repelled from an electrode by negative
dielectrophoresis with an applied 1 kHz field. (b) Collecting at an
electrode by positive dielectrophoresis at 10 MHz [25]. (Reproduced
with permission of the Institute of Physics.)
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(a) (b)

Figure . Viable yeast cells suspended in 280 mM mannitol with
a 10 kHz voltage signal applied to the quadrupole electrodes. (a)
Positive dielectrophoretic collection with mannitol conductivity
0.36 mS/m. (b) Negative dielectrophoretic collection into a field
cage with mannitol conductivity 17 mS/m [26]. (Reproduced with
permission of the Institute of Physics.)

Dielectrophoresis can also be monitored at the single
cell level and has been used to determine the so-called
DEP crossover frequency where the dielectrophoresis
(DEP) motionmakes the transition from negative to pos-
itive DEP. A simple way to monitor the dielectrophoretic
response of many cells in suspension is shown in Figure
2.16. The absorbance of a light beam directed through a
gap between a set of opposing electrodes (e.g., through
the central axis of the four electrodes shown in Figure
2.15) will be influenced by the presence of cells acting
as light scattering centres. The reduction of the num-
ber of cells in the bulk solution, as a result of their being
attracted to the electrodes by positive dielectrophoresis,
will result in an increased intensity of the light transmit-
ted through the electrode array. An example of this is
given in Figure 2.16 for measurements at 10Hz, which
is at a low enough frequency for an electrophoretic
response to be detected. The cells are steadily attracted
to the electrodes by positive dielectrophoresis, but they

are also pushed back and forth at a regular rate of ten
times a second by the electric force associated with their
permanent charge. This is detected by a slow increase of
optical transmittance (decrease of absorbance) with a
superimposed oscillatory perturbation at 10Hz. With
increasing frequency, the inertia of the cell mass damps
out the electrophoretic response – the cell cannot
respond fast enough to changes of the field polarity.

. Summary

The main contrasts between electrophoresis and dielec-
trophoresis can be summarized as follows.

2.6.1 Electrophoresis

The direction of electrophoretic motion of a particle
depends on the polarity (positive or negative) of the fixed
electric charge that it carries, as well as on the polar-
ity of the applied electric field. A DC field is employed
and is usually uniform, but can in principle be nonuni-
form. The size and shape of the particle is not a lim-
iting or controlling factor – electrophoresis can readily
be observed for macroscopic objects such as cells and
charged colloidal particles, as well as much smaller parti-
cles such as proteins, nucleic acids, molecular and atomic
ions. Counterions, which form an electrical double layer
with the fixed charge on the particle, influence the mag-
nitude of the steady-state electrophoretic velocity. Appli-
cation of Stokes’ Law to describe the viscous drag force
overestimates this velocity because it does not account
for the electric force that acts on the counterions in the
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Figure . A simple method to observe the
dielectrophoretic behaviour of cells suspended between
two electrode arrays involves monitoring changes in the
intensity of a light beam passing through the suspension.
The optical absorbance, after applying a 1 Hz voltage signal
(ON) to a suspension of Micrococcus luteus exhibits
oscillations of magnitude associated with electrophoresis
[27].
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laminar fluid layer thatmoveswith the particle.The effec-
tive charge on the particle, as given by the zeta potential
at the hydrodynamic shear surface between the particle-
associated fluid layer and the bulk solution, is employed
in theHelmholtz–Smolchowski equation to give an accu-
rate electrophoretic mobility value.

2.6.2 Dielectrophoresis

Dielectrophoresis does not require the particle to pos-
sess a fixed electric charge, but instead relies on the
generation of induced surface charges related to the
intrinsic dielectric properties of the particle and its
surrounding medium.These induced charges lend to the
particle the properties of a large dipole moment. The

direction of dielectrophoretic motion does not depend
on the polarity of the applied electric field – both DC
and AC fields can be used – but the field employed
must be nonuniform. The size and shape of the particle
is a controlling factor for dielectrophoresis, because
this determines the magnitude of the induced dipole
moment. Significant efforts are required to observe the
dielectrophoretic motion of molecular-sized objects. In
AC applications of dielectrophoresis, Stokes’ Law can
be employed to estimate the steady-state velocity of a
cell or other large particle and use of the Helmholtz–
Smolchowski equation is not relevant. However, as will
be described in Chapter 11, for cases where the electrical
double-layer thickness is comparable to or greater than
the size of submicron particles, the dielectrophoretic
response can depend on the fixed particle charge.
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Electric Charges, Fields, Fluxes and Induced Polarization

. Introduction

A dielectric can be defined as a material that is a poor
conductor of electricity and is capable of supporting
an electrostatic field. Other definitions that are given
sometimes also include words to the effect that a dielec-
tric becomes polarized when exposed to an electric
field. Thus, introductions to the theoretical concepts of
dielectric phenomena [e.g., 1] often commence with the
scheme shown in Figure 2.1 of Chapter 2, where a voltage
potential difference is applied across two parallel metal
plates located in a vacuum. The applied potential differ-
ence generates a distribution of equal and opposite free
electrical charges on the faces of the plates (denoted by
symbols +, − in Figure 2.1). The next step is to remove
the external voltage source and to replace it with a volt-
age measuring device, such as an electrometer. The only
factor that controls the voltage across the metal plates is
the density of free charge on the surfaces of the plates.
To ensure that this voltage remains constant and is not
affected by themeasurement of it, a voltmeter is designed
to have a very high resistance to electric current flow.
We can therefore ignore any leakage of charge through
the electrometer that might reduce the density of pos-
itive and negative free charges on the plates. The volt-
age potential difference across the plates with vacuum
between them is measured as V0. The exercise is then
performed of inserting a solid slab of dielectric material
into the space between the plates, whilst noting the read-
ing on the electrometer. It is found, as depicted in Figure
3.1, that the voltage reading falls to a new value V1. The
distance d between the plates remains fixed, so we can
assume that the electric field (V/d) between the plates has
also dropped from E0 to E1. The ratio E0/E1 (or V0/V1)
is defined as the relative permittivity 𝜀r (also called the
dielectric constant) of the dielectric material:

E0
E1

= 𝜀r (3.1)

In Chapter 2 we noted that electrical potential V is
defined in terms of potential energy per charge. So, for

the potential difference across the plates to have fallen,
the number of effective free charges on each plate must
also have fallen. But positive and negative charges on the
plates could not have neutralized each other by leaking
through the electrometer or through the electrically insu-
lating dielectric – so what has happened? To answer this
we need to revisit the concepts of electric charge and field
discussed in Chapter 2 and, in particular to understand
the relationship between the electric field at the surface
of a charged surface and the number and distribution of
the charges on that surface. This is discussed in sections
3.2.2 and 3.3.2.4, where we find that the uniform field E0
between two oppositely charged metal plates in vacuum
is given by:

E0 =
𝜎

𝜀o
(3.2)

where 𝜎 is the uniform free charge density per unit area
on each metal plate and 𝜀o is the permittivity of vacuum.
From Equation (3.2) the apparent free surface charge
density (𝜎1) on each plate when the dielectric is fully
inserted is equal to E1𝜀0. Employing Equation (3.1) to
substitute for E1, the reduction Δ𝜎 in apparent free sur-
face charge density that occurs on inserting the dielectric
between the plates is calculated to be:

Δ𝜎 = 𝜎 − 𝜎1 = 𝜀oE0 −
𝜀oE0
𝜀r

= 𝜀oE0
(
1 − 1

𝜀r

)
= 𝜎

(
1 − 1

𝜀r

)
C m−2. (3.3)

Clearly, even though free charges cannot leak through
the dielectric, the material property we have defined as
the relative permittivity 𝜀r is capable of neutralizing some
of the free surface charge applied to the metal plates.
The physical process responsible is the appearance of
polarization charges produced by the dielectric. These
polarization charges do not contribute to the measured
voltage across the capacitor, but each one neutralizes a
free charge on an electrode surface. We say that a free
electronic charge has become a bound charge. The basic
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Figure . (a) An electrometer gives a voltage reading of V0 across
two parallel metal plates in vacuum, distance d apart, which have
been electrically charged according to the scheme shown in
Figure 2.1 of Chapter 2. (b) As a dielectric slab of relative
permittivity 𝜀r = 2 is inserted between the plates the voltage
reading falls. (c) When the dielectric slab is fully inserted between
the plates, the voltage reading is V0/2 = V1. From Equation (3.3) this
corresponds to a reduction by one-half of the effective charges on
the plates – but no charge leakage has occurred through either
the electrometer or the dielectric slab.

nature of this process is revealed in the derivation of
Equation (3.34) and later in this chapter. It is an impor-
tance aspect of dielectrophoresis.
The practical application of the electrode system

shown in Figure 3.1 is as a capacitor (also called a con-
denser) – a device for storing electrostatic potential
energy. As described in section 3.5, this ability is quan-
tified as its capacitance C, the amount of charge it can
store at each electrode per unit of voltage applied across
the electrodes. (We specify ‘at each electrode’ because the
bound charges at opposite electrodes are equal in mag-
nitude but opposite in polarity. The net charge stored
in the capacitor is thus zero.) The stored charge at each
electrode is the polarization charge of the dielectric, the
amount of which is directly proportional to the reduc-
tion of voltage shown in Figure 3.1. The ratio C1/C0 of
the capacitance for a dielectric inserted between the elec-
trodes to that with no dielectric (i.e., vacuum) is thus
given by:

C1
C0

=
V0
V1

= 𝜀r

This provides another definition of relative permittiv-
ity 𝜀r.

. Charges and Fields

3.2.1 Early Investigations of Electrostatic Interactions
and Conduction

Electrostatic interactions involve particles that carry an
electrical charge and are stationary (i.e., static). Mass and
electric charges are fundamental properties of matter.
Unlikemass, which is generated through theHiggs effect,
we donot knowwhat it is that endows a particlewith elec-
tric charge. For some time, though, the properties and
behaviour of charge have been observed and discussed.
Thales of Miletus, from whose school came Socrates and
who is known as one of the seven wise men of Greece,
is said to have been the first (∼590 BC) to describe
the electrical effects created by the frictional rubbing of
amber (Greek name elektron). Thales and other Greek
and Roman writers mention that ‘when a vivifying heat
is applied to amber it will attract straws, dried leaves
and other light bodies in the same way that a magnet
attracts iron’ [2]. We now understand this effect in terms
of the amber acquiring a negative electric charge after
being rubbed with fur (which gains a positive charge).
When a piece of negatively charged amber is placed near,
but not in touch with, another particle it can induce
charges in it. No net charge is transferred to this second
particle – instead two equal distributions of charge are
created of opposite polarity, with the positive distribu-
tion of charges located nearest to the negatively charged
amber. Being nearer to the negative charges on the amber,
the induced positive charges are attracted to the amber
more strongly than the more distant induced negative
charges are repelled. A net electrostatic force of attrac-
tion towards the amber is therefore exerted on the second
particle. From Chapter 2 we recognize this as a dielec-
trophoretic force. On taking the charged amber away, the
induced charges in the second particle disappear.
In the eighteenth and nineteenth centuries, electro-

static interactions were studied using pith balls sus-
pended by silk threads in arrangements such as those
shown in Figure 3.2. (In Britain the pith was commonly
obtained from the stems of elderberry bushes.) Typically,
in such an experiment a polished glass rod is rubbed
with a silk cloth. On bringing this rubbed rod near a pith
ball, the ball moves towards the rod but after touching
and thereby electrifying the ball it is repelled. The same
sequence of effects is observed onbringing a piece of seal-
ing wax rubbedwith silk to touch a pith ball. However, on
bringing an electrified piece of sealing wax towards a pith
ball electrified by touching a rubbed glass rod, the elec-
trified ball is attracted to the sealing wax and not repelled
from it. Likewise, if two suspended pith balls are elec-
trified by touching them with a rubbed glass rod they
are repelled from the rod and from each other, but on
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(a) (b)

Figure . (a) Using pith balls to demonstrate electrical attraction
and repulsion. (b) Using two suspended pith balls to demonstrate
electrical conduction and insulation. When the balls are
connected by a metal wire, electrification of the uppermost ball is
carried to the lower ball (and is of the same electrical polarity). If
the lower ball is suspended from the upper one by a silk thread
instead of a metal wire, and the experiment is repeated, the lower
ball will exhibit no sign of electrification because silk acts as an
insulator. (Reproduced from R. M. Walmsley (1904) Electricity in the
Service of Man, Cassell & Co., London, with permission of Octopus
Publishing Group.)

bringing near a rubbed piece of sealing wax they are
strongly attracted to it.Materials of the same kind rubbed
with the same material repel each other, but between a
glass rod and sealing wax rubbed with silk, for exam-
ple, there is an attractive force. Likewise, a glass rod is
attracted to the silk cloth or pad used to electrify it and
so on.
Through such experiments it was deduced that

the nature of electrification (charging with electricity)
depends on the body being rubbed and on the rubbing
material. The treatment of the surface of a material was
also found to be important. For example, rubbing a pol-
ished glass rod with silk was found to give it a posi-
tive charge, whereas the charge produced on a ground
glass rod was negative. The materials given in Table 3.1
are so arranged that any one of them becomes positively

charged when rubbed by any material listed after it. Two
kinds of electrification were thus identified – that of the
rubbed glass, which was termed vitreous, and that of the
rubbed sealing wax, which was termed resinous. Ben-
jamin Franklin (1706–1790) recommended that these
two kinds of electrification be called positive and nega-
tive, respectively.Therefore, positively charged bodies are
those that exhibit the same properties as glass rubbed
with silk, and negatively charged bodies are those that
exhibit properties of the opposite kind.
The main evidence available before the twentieth cen-

tury for a body being charged was the force it exerted on
other bodies, whether that force is one of attraction or
repulsion. (Modern methods include studying the tracks
revealed in a liquid hydrogen bubble chamber of particles
moving in a uniform magnetic field.) It was established
from the early investigations that two positive or twoneg-
ative charges repel each other, whilst a positive and a neg-
ative charge attract each other. In 1785 Charles Augustin
de Coulomb (1736–1806) used a torsion balance (inde-
pendently invented by JohnMichel (1724–1793) but usu-
ally known as Coulomb’s torsion balance) to verify that
‘the repulsive force between two small globes charged
with the same kind of electricity is in the inverse ratio
of the square of the distance of their centres’. He then
extended this law ‘to the attraction of opposite electrici-
ties’ [3] and also found that the forces were proportional
to the amounts of electrification of the globes. Coulomb’s
Law can be written mathematically as:

F = k
|q1q2|
r2

(3.4)

In this equation F is the magnitude of the force that
each of two point charges q1 and q2, distance r apart,
exert on the other. The direction of the force is along the
line joining their centres. The parameter k is a constant
whose numerical value depends on the units of measure-
ment employed. As for all modern texts, we are using the
international SI system of units (Système international
d’unités). In this system the unit of force is one newton
(N), the unit of charge is one coulomb (C) and length
is given in the unit of one metre (m). The value of k in

Table . Vitreous and resinous electrification. The materials given in this table are arranged in such an order that they become positively
charged when rubbed by any material listed after it. Thus, glass rubbed with cat fur becomes negatively charged, but is positively charged
when rubbed with silk. Resins are negatively charged when rubbed with either cat fur or silk. (Reproduced from R.M. Walmsley (1904)
Electricity in the Service of Man, Cassell & Co., London, p. 60.)

+ Catskin or fur The hand Ebonite
Wool Wood Resins
Glass Sulphur Guttaperche
Ivory Flannel Metals
Silk Cotton Guncotton
Rock crystal Shellac
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Equation (3.4) is given as k = 1/(4𝜋𝜀0) where 𝜀0 is the
permittivity of free space (8.854 × 10−12 C2 N−1 m−2).
To a very close approximation k therefore has a value
of 9 × 109 N m2 C−2. The absolute value |q1q2| of the
product of the two charges is taken in Equation (3.4)
because although they can be either positive or negative
the magnitude of the force F always has a positive value.
When the charges are the same in polarity, either posi-
tive or negative, each charge exerts a repulsive force on
the other (see Figure 2.2 in Chapter 2).When the charges
have opposite polarities the forces are ones of attraction.
Coulomb’s Law describes the interaction of two point
charges located in vacuum and a modification of Equa-
tion (3.4) is required to take into account the effect of any
molecularmatter thatmay exist between the charges.The
modification is the inclusion ofwhatwas once termed the
specific inductive capacity, but now known as the dielec-
tric constant or relative permittivity (𝜀r) of the medium
between the charges. By including the factor 𝜀r we take
into account the kind of effect described by Equation (3.3)
where polarization of the medium partially shields the
charges from one another. In SI units the full mathemat-
ical form of Coulomb’s Law is thus given by:

F = 1
4𝜋𝜀o𝜀r

|q1q2|
r2

(3.5)

If the charges are located in a vacuum, then 𝜀r = 1 and
Equation (3.5) is equivalent to Equation (3.4) when using
SI units.
The distinction between an electrical conductor and

a poorly conducting material (an insulator) were investi-
gated using the second arrangement shown in Figure 3.2.
A typical experiment to confirm the electrical conducting
properties of a metal would be to suspend a pith ball by
means of a silk thread and a second one below it bymeans
of a metal wire. By touching the upper ball with a rubbed
glass rod it becomes positively electrified and is conse-
quently repelled by the glass rod. The bottom pith ball is
also repelled from the glass rod, even though it has not
been touched by it. Furthermore, both electrified balls
are able to attract small objects and are attracted to elec-
trified rubbed sealing wax. No electrical charge has been
given to the lower ball by direct contact with the glass
rod, yet it shows the same properties as the upper ball
that has been electrified by direct contact. It follows that
electricity from the upper ball must have passed to the
lower one – the metal wire has conducted the electricity
between them. If the lower ball is suspended from the
upper one by a silk thread, instead of a metal wire and
these experiments are repeated, the lower ball will exhibit
no signs of being electrified. The silk thread behaves as
an insulator – it is a poor conductor of electricity.
Experiments to demonstrate that the presence of

an electrified body is sufficient to induce signs of

(a)

(b)

Figure . (a) The induction of electric charges has historically
been demonstrated by bringing an insulated, uncharged, metal
rod to within a short distance of an insulated, positively charged,
metal sphere. It is found that the end a of the rod nearest the
sphere is electrified with negative charges, whilst end b farthest
from the sphere is electrified with positive charges. (b) The electric
lines of force starting from b are entirely distinct from those
ending at a. The two sets are equal in number because no net
charge has been transferred to the rod, and therefore the sum of
all the positive electrifications (or the lines starting from b) must
be equal to the sum of all the negative electrifications (or the lines
ending at a. (Reproduced from R. M. Walmsley (1904) Electricity in
the Service of Man, Cassell & Co., London, with permission of
Octopus Publishing Group.)

electrification of a neighbouring conductor withoutmak-
ing contact with it were performed using an arrangement
such as that shown in Figure 3.3. An insulated sphere
is charged (say positively) and an uncharged, insulated,
metal rod is placed near it. Negative electrification is
found on the end of the rod a nearest to the sphere,
whilst an equal amount of positive electrification is found
on the end b farthest from the sphere. Careful examina-
tion of the charge distributions show that it is no longer
uniform around the sphere but that there is a distinctly
greater charge density on the side nearest to the rod.This
is shown approximately by the dotted line drawn around
the sphere. The dotted lines around the rod show the
approximate charge distributions at ends a and b. Lines
of electric force are drawn in the lower schematic of Fig-
ure 3.3.The convention is to draw a line of electrical force
leading away from a positive charge and to terminate at
a negative charge.The negative electrification on the end
a of the metal rod shown in Figure 3.3 indicates that a
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certain number of lines end there, whilst the positive
electrification on end b similarly indicates that an equal
number of lines set out from that end. One of the fun-
damental properties of an isolated electrical conductor is
that no electrical force can be permanently formedwithin
it.Otherwise the free electrical chargeswithin itwould be
in motion and form a net current of electricity. This does
not correspond to an electrostatic situation. Hence the
force lines starting from b are entirely distinct from those
ending at a. The two sets are equal in number because
no charge has been given to the rod, either positive or
negative and so the sum of all the positive electrifications
(or the lines starting from b) must be equal to the sum of
all the negative electrifications (or the lines ending at a).
In Figure 3.3, nine lines have been drawn at each end of
the rod, leaving thirteen lines emanating from the sphere,
which do not run on to the rod. If the metal rod with its
induced charges is now withdrawn some distance away
from the charged sphere, the rod will show no signs of
electrification, whilst the sphere will be restored to its
original uniformly charged condition. Twenty-two lines
of force are shown emanating from the sphere in Figure
3.4, with their negative ends terminating at ‘earthing or
grounding points’ on the table top and other distant sur-
faces not shown in the figure.
Coulomb’s Law, as given by Equation (3.5), describes

the electrostatic interaction between two point charges.
However, when two or more charges act at the same time
on another one, the total electrostatic force acting on it
is the vector sum of each individual force exerted by the
other charges. This is known as the principle of superpo-
sition of forces and examples of this are given below.

Figure . Lines of electric force are shown emanating from the
positively charged sphere of Figure 3.3 after removal of the
insulated metal rod. These lines terminate at negative charges
distributed on the table top or other distant surfaces. (Reproduced
from R. M. Walmsley (1904) Electricity in the Service of Man, Cassell &
Co., London, with permission of Octopus Publishing Group.)

Example 3.1 Lines of Force aroundThree Charges
The lines of electric force associated with three point
charges are shown in Figure 3.5. What can be deduced
about the polarities of the charges and their relative mag-
nitudes?

q3q2q1

Figure . Three point charges, spaced 1 mm apart along a
straight line, are shown with their associated electric force lines.

Solution 3.1 The lines of force are directed away from
charge q1 and q3 and so they are of positive polarity. The
lines of force are directed into charge q2, which is thus of
negative polarity. We could draw in many more lines of
force in Figure 3.5 and so we have no quantitative detail
to allow us to judge the relative magnitudes of the three
charges. The symmetrical distribution of the force lines
would suggest that charges q1 and q3, are of similar mag-
nitude and that theymayhave a largermagnitude than q2.

Example 3.2 Electrostatic Force Calculation

1. Calculate the net electrostatic force acting on charge
q3 in Figure 3.5 fromq1 and q2.The charges are equally
spaced in air along a straight line and are of sizesmuch
smaller than their spacing apart of 1mm. Assume that
q1 = q3 = 1.4 pC; q2 = −1.0 pC.

2. What is the force acting on q2 from q1 and q3?

Solution 3.2

1. The forces F13 and F23 acting on q3, due to q1 and q2,
respectively, both act along the line joining the charge
centres. The magnitude of the force F acting on q3 is
thus the sumof these two forces, given by F= F13 + F23
(see Figure 3.6). Because they can be treated as point
charges located in air, we can use Coulomb’s Law in
the form of Equation (3.5) and to a very good approx-
imation take 𝜀r = 1.0:

F13 = 1
4𝜋𝜀o

|q1q3|
r2

= (9 × 109 N m2 C−2)

(1.4 × 10−12 C)(1.4 × 10−12 C)∕(2 × 10−3 m)2

= 4.4 × 10−9N = 4.4 nN



 Dielectrophoresis

- +
q2q1 q3

1 mm 1 mm

+
q3

F13F23

(a)

(b)

+

Figure . (a) Linear arrangement of the three charges shown in
Figure 3.5. (b) The electrostatic force on charge q3 is given by the
vector sum of the forces F13 and F23 acting on it by q1 and q2,
respectively.

This force repels q3 along the line to the right.

F23 = 1
4𝜋𝜀o

|q2q3|
r2

= (9 × 109 N m2 C−2)

(−1 × 10−12 C)(1.4 × 10−12 C)∕(10−3 m)2

= −1.26 × 10−8 N = −12.6 nN

This force attracts q3 to the left. The force acting on
q3 is thus given by:

F = F13 + F23 = 4.4 + (−12.6) = −8.2 pN

The negative sign indicates that this force acts to the
left in Figure 3.6.

2. The net force acting on q2 is zero, because the forces
of repulsion due to q1 and q3 are of equal magnitude
and act in opposing directions.

Examples 3.1 and 3.2 consider the superposition of
electrostatic forces acting along a straight line. The vec-
tor sum of the forces was obtained by simply adding the
magnitudes of the forces exerted on one charge by the
others. If all the charges were not located along a straight
line, wewould have had to take into account the direction
of each individual force. To do this we can make use of
the concept of a unit vector ⌢r , which points along the line
joining two of the point chargeswhose electrostatic inter-
action is being considered. The concept of a unit vector
is explained in Box 3.1 and an example of its use is given
in Example 3.3. By using the unit vector ⌢r we can write
Equation (3.5) in a form that expresses Coulomb’s Law as
a vector equation:

F = 1
4𝜋𝜀o𝜀r

q1q2
r2

r̂ (3.6)

Example 3.3 Electrostatic Vector Force Calculation
Charge q2 in Figure 3.6 is moved, in a direction at right
angles to the line joining q1 and q3, to the location shown
in Figure 3.7. Calculate the net electrostatic force acting
on charge q3 as a result of the interactions from q1 and q2.

+
q3 F13

F23

x

y

45°

2 mm

(a)

(b)

θ

Fx

Fy

F

- q2

+ +
q1 q3

1 mm

1 mm

y

x45°

r23

Figure . (a) The arrangement of the three charges for Example
3.3. (b) The electrostatic force on charge q3 is the vector sum of the
net forces Fx and Fy acting along the x-axis and y-axis, respectively.
The angle 𝜃 is given by the magnitude of the inverse tangent
function tan−1(Fy/Fx).

Solution 3.3 The net force F acting on q3 is the vector
sum of the two forces due to q1 and q2, given by F = F13
+ F23 (see Figure 3.7). We will denote the plane contain-
ing all three charges as the xy-plane and assign the line
directed from charge q1 to q3 to be the positive x-axis.
The magnitude of F13 is given by:

F13 = 1
4𝜋𝜀o

|q1q3|
(r13)2

= (9 × 109 N m2C−2)

(1.4 × 10−12 C)(1.4 × 10−12 C)∕(4 × 10−3 m)2

= 1.1 nN

As depicted in Figure 3.7, F13 is a force that acts along
the positive x-axis and has no component along the y-
axis.
To calculate F23 we require the distance r23 between

charges q2 and q3 in Figure 3.7. We calculate r23 using
Pythagoras’ theorem to find the hypotenuse of a right-
angled triangle:

r23 = {(1 × 10−3 m)2 + {(1 × 10−3 m)2}1∕2 = 1.41 mm

F23 = 1
4𝜋𝜀o

|q2q3|
(r23)2

= (9 × 109 N m2 C−2)

(−1 × 10−12 C)(1.4 × 10−12 C)∕(1.41 × 10−3 m)2

= −6.3 nN

F23 is a vector force of attraction directed from q3
towards q2, acting at 45◦ to the (negative) x-axis as shown
in Figure 3.7. F23 therefore has a component F23Cos45◦
= 6.3Cos45◦ = 4.45 nN acting along the negative x-axis
and a component Fy = F23Cos45◦ = 4.45 nN acting along
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Box . Unit Vectors

The concept of a unit vector has just one purpose, namely
to act as a directional pointer. It has a magnitude of 1.0 and
no units of measurement. In a two-dimensional (xy-plane)
it is the convention to define ı̂ as the unit vector that points
along the positive direction of the x-axis, and ĵ as the unit
vector pointing along the positive direction of the y-axis.

Thus, for example, a force Fx of 0.5 N acting along the
negative direction of the x-axis is written as Fx = −0.5ı̂ N,
whereas 2ĵpN represents a force of 2 piconewtons directed
along the positive direction of the y-axis. On extending to
three-dimensional space, we define the unit vector that
points along the positive z-axis (orthogonal to the xy-plane)

as
⌢

k.
Consider the case of a particle subjected to a fluidic drag

force Fx acting along the x-axis of a channel, as well as an
electrophoretic force Fy acting along the y-axis. The total
force FT acting on the particle is the vector sum of these
two forces, given by:

FT = Fx ı̂ + Fyĵ

This emphasizes that adding two vectors requires a geo-
metrical procedure of adding together two quantities that
have both magnitude and direction. This procedure is not
the same as adding together two scalar quantities, such as
in the sum 7 + 2 = 9.

The vector form of Coulomb’s Law is given in Equation
(3.6) as:

F = 1
4𝜋𝜀o𝜀r

|q1q2|
r2

r̂

The unit vector r̂ is equal to the displacement vector from
one charge to the other, divided by the scalar distance r
between the charges. In the xy-plane we can thus express r̂
as (xı̂ + yĵ)/r. If the line joining the charges is directed at an
angle 𝜃 to the x-axis, the displacement vector is given by
(rCos𝜃 + rSin𝜃 ). Hence, the unit vector r̂ given in Equation
(3.6) can also be written as:

r̂ = Cos𝜃 ı̂ + Sin𝜃ĵ.

the positive y-axis.Themagnitude and polarity of the net
vector force along the x-axis is given by F13 − F23Cos 45◦
= 1.1− 4.45=−3.35 nN.The resultant electrostatic force
F acting on charge q3 can thus be written in terms of the
unit vector notation described in Box 3.1 as:

F = Fx ı̂ + Fyĵ = −3.35 ı̂ + 4.45ĵ nN

The angle 𝜃 shown in Figure 3.7 is the angle whose tan-
gent is given by the ratio Fy/Fx:

𝜃 = tan−1(Fy∕Fx) = tan−1(4.45∕3.35) = 53◦

(The notation arctan is also sometimes used for the
inverse tangent function tan−1.)

In these examples we have calculated the forces of
interaction between separated charges. To do this we
used Coulomb’s Law, which was formulated on the basis
of experimental observations. But we have not exam-
ined the physical process responsible for such interac-
tions.What exactly is themechanismbywhich charges in
free space become ‘aware’ of each other?Michael Faraday
(1791–1867) introduced the concept of lines of electric
force in free space, such as those depicted in Figure 3.5.
He envisaged that these lines of force represent the direc-
tion of a vector, rather like the velocity of an incompress-
ible fluid, whose magnitude is inversely proportional to
the cross-section of a narrow tube formed by such lines.
But, of course, this is an imaginary concept. So, what is
going on in the empty space between the charges?

3.2.2 Electric Fields

René Descartes (1596–1650), regarded as the first mod-
ern philosopher, gave particular thought to how mag-
netic, electric and gravitational influences can be trans-
mitted through space. He was greatly influenced by
Johannes Kepler (1571–1630) who had demonstrated
the importance of mathematics in bringing clarity and
certainty to the study of natural phenomena. A major
problem for natural philosophy was to understand how
actions are transmitted between bodies that are not in
contact. Typical examples would be the observed inter-
action of magnets, or how the position and phases of the
moon influence the extent of the fall and rise of tides.
To interpret these as occult influences, or examples of
action at a distance, would be contrary to Kepler’s teach-
ing. Instead, Descartes considered that one body could
only act on another one through the actions of pressure
and impact and for this to occur the bodies would have
to be contiguous. A medium of some sort had to con-
nect the separate bodies physically and to describe this he
introduced the concept of aether. The space, the aether,
between separated bodies was envisaged to consist of
continuallymoving particles. Since no spaces would exist
formoving particles tomove into, themovement of a sin-
gle particle of the aether would be incorporated into the
motion of an entire closed chain of particles in the form
of vortices.
Unlikely as it may seem now, this fanciful concept

was taken seriously and to good advantage. For example,
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the Swiss mathematician Johann Bernouilli (1710–1790)
considered all space to be

permeated by a fluid aether, containing an immense
number of excessively small whirlpools. The elas-
ticity which the aether appears to possess, and in
virtue of which it is able to transmit vibrations, is
really due to the presence of these whirlpools; for,
owing to centrifugal force, each whirlpool is con-
tinually striving to dilate, and so presses against the
neighbouring whirlpools. [3, p. 95]

James Clerk Maxwell (1831–1879) employed a model
of the form postulated by Descartes in his monumental
achievement [4–7] of unifying the magnetic and electri-
cal phenomena deduced experimentally byMichael Fara-
day (1791–1867).Maxwell makes the following summary
statements in his 1865 paper [7]:

� ‘Themost obviousmechanical phenomenon in electri-
cal and magnetic experiments is the mutual action by
which bodies in certain states set each other in motion
while still at a sensible distance from each other.’

� ‘The theory I propose may therefore be called a theory
of the electromagnetic field, because it has to do with
the space in the neighbourhood of the electric or mag-
netic bodies, and it may be called a dynamical theory,
because it assumes that in that space there is matter in
motion, by which the observed electromagnetic phe-
nomena are produced.’

In his model the motion of the particles constituted
an electric current, the centrifugal force acting on them
represented the electromotive force, and the pressure of
the particles on each other corresponded to the tension
or potential of the electricity. The particles themselves
were capable of being magnetized. Having obtained the
equation of motion of his system of particle vortices,
Maxwell proceeded to determine the rate of propagation
of electromagnetic disturbances through it – and thereby
proved that light is an electromagnetic wave [7]. A major
concept he employed was that magnetic energy repre-
sents the kinetic energy of a medium and that electric
energy is the energy of strain of the same medium. ‘By
this conception electromagnetic theory was brought into
such close parallelism with the elastic-solid theories of
the aether, that it was bound to issue in an electromag-
netic theory of light’ [3, p. 255].
The final summary statement by Maxwell in his 1865

paper [7] provides the solution to our question as to how
an isolated electric charge senses the existence of another
charge: ‘The electromagnetic field is that part of space
which contains and surrounds bodies in electric or mag-
netic conditions.’

An isolated charge therefore interacts with the elec-
tric field created by other charges.Maxwell employed the
vortices model of Descartes as an aid to develop equa-
tions to describe the electrical and magnetic phenom-
ena established previously by Johann Carl Gauss (1777–
1855), André-Marie Ampère (1775–1836) and Faraday.
Whether or not the concept of aether was a valid one did
not matter. Einstein’s theory of special relativity in 1905
had its origin in efforts by Poincaré and Lorentz to deter-
mine the relative motion of the earth and the aether, but
its existence was already in doubt following experiments
such as those of Michelson and Morley in 1887 [8]. By
1900 Poincaré was able to ask [9] ‘Our aether – does it
really exist?’ Although on the fringes of current thought,
the concept of aether is still evoked [10], with the vortices
formed by rotating electron-positron dipoles, it forms no
part of modern dielectrics.
In Chapter 2, Equation (2.1), the magnitude of an elec-

tric field E at a point in space is defined as being equal to
the electric force experienced by a unit test charge at that
point. Based on this relationship, the electrostatic force F
acting on a point test charge q2 is:

F = q2E (3.7)

If the field E is generated by a single point charge q1,
then from inspection of Coulomb’s Law given by Equa-
tion (3.5) the magnitude of the electric field experienced
by charge q2 at a distance r away from it is:

E = 1
4𝜋𝜀o𝜀r

|q1|
r2

(3.8)

The convention is that the electric field of a point
charge points away from a positive charge, but points
toward a negative charge. At the end of section 3.2.1 we
described how Faraday introduced the concept of lines
of electric force, examples of which are given in Figures
3.5 and 3.8. These lines of force were taken to represent
the direction of a vector, rather like the velocity of an
incompressible fluid, whose magnitude is inversely pro-
portional to the cross-section of a narrow tube formed
by such lines. This was used as a mathematical tool by
Maxwell, to show that rather than representing fluid flow
the lines of force show the direction of the vector fieldE at
any point in space.The concept of a ‘line of electric force’
is thus replaced with the concept of an ‘electric field line’.
An indication of the field magnitude is provided by the
spacing of these lines. Where the field is strong the lines
are bunched together and they are spaced far apart where
the field is weak. For the case of a point positive charge,
its field radiates out with spherical symmetry and from
Equation (3.6) the magnitude and direction of the vector
field E are given by:

E = 1
4𝜋𝜀o𝜀r

q1
r2

r̂ (3.9)
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Figure . Some of the field lines are drawn between a positive
and negative charge. The direction of the electric field vector E at
point (e.g., A or B) is given by the tangent to the field line at that
point. The magnitude of the field will vary along a field line, and
have components Ex, Ey, Ez, along the x-, y- and z-directions.

where ⌢r is the unit radial vector. The more general case
of field lines produced by two or more charges in three-
dimensional space is shown in Figure 3.8. The direction
of the electric field vector at any point along a field line is
given by the tangent at that point. Apart from the special
case of a uniform electric field, the magnitude of the field
varies from point to point along a field line. In general,
therefore, a vector field E in three-dimensional space has
components Ex, Ey, Ez, along the orthogonal x-, y- and
z-axes:

E = Exî + Eyĵ + Ezk̂ (3.10)

where ı̂, ĵ, and k̂ are the unit vectors along the x-, y-
and z-axes, respectively. The components Ex, Ey, and Ez
may exhibit gradients (i.e., each varying as a function of
distance along the x-, y- and z-axes, respectively). This
is important for us, because as given by Equation (1.5)
of Chapter 1, and in Box 2.4 of Chapter 2, the dielec-
trophoretic force depends on the gradient of the elec-
tric field.This gradient is expressedmathematically as the
vector ∇E (variously known as ‘grad’ E or ‘del’ E) where
the symbol ∇ functions as a differential operator, such
that:

∇E =
(
î 𝜕

𝜕x
+ ĵ 𝜕

𝜕y
+ k̂ 𝜕

𝜕z

)
E = î𝜕E

𝜕x
+ ĵ𝜕E

𝜕y
+ k̂ 𝜕E

𝜕z
(3.11)

Although Faraday’s lines of electric force cannot be
interpreted as the lines of flow of a liquid, Maxwell was
able to show that a hydrodynamic analogy can be made
by defining an electric ‘displacement’ fieldD in amedium
of specific inductive capacity (i.e., dielectric constant or
relative permittivity) 𝜀r as:

D = 𝜀0𝜀rE (units of coulomb per square metre)
(3.12)

In equation (3.12) the relative permittivity 𝜀r is a num-
ber – it is dimensionless. The factor D/𝜀0 therefore

has dimensions of an electric field (i.e., force per unit
charge). Thus, in Maxwell’s view, electric charges no
longer appear as the centres of force envisaged by Fara-
day, but rather as sources of flux of force.
The term ‘displacement’ was used to describe the

imagined subtle movement (shift) of bound charges
within each molecular element of a dielectric material in
response to an imposed electric field. In modern terms
we know that a dielectric consists of an electrically neu-
tral atomic structure, where the total negative charge of
all the electrons exactly balances out the positive charges
of the nuclei about which they orbit. Although these
charges cannotmigrate through the dielectric to produce
a conventional electric current, they can exhibit subtle
displacements in an electric field. Electrons will attempt
to minimize their potential energy by distorting their
orbital paths against the electric field (i.e., towards the
anode) and the positive nuclei will try to move along the
field (towards the cathode). We call this the polarization
of the bound charges within the dielectric. Collectively,
these microscopically small displacements create a dis-
placement current density dD/dt, in analogy to a con-
ventional electric current density j = d𝜎/dt caused by the
long range flow of free charges.The charges shown on the
metal plates in Figure 3.1 are free charges. If the electrom-
eter is replaced with a metal wire, the free charges on the
plates will discharge momentarily through the wire as an
electric current, but will not flow through the dielectric.
Instead, the electric circuit is completed by a momentary
displacement current dD/dt caused by the depolarization
of the bound charges within the dielectric. The displace-
ment current is confined to the dielectric. From this qual-
itative description it becomes apparent that the steady
reduction of the charges on themetal plates shown in Fig-
ure 3.1, as the dielectric is steadily inserted, is related to
the displacement field D and the collective polarizations
of all the bound charges. Amore quantitative description
of this effect follows in this chapter.

Example 3.4 Electric Field of a Point Charge
Find the magnitude and direction of the electric field at a
distance of 1 cm away in air from a small metal sphere of
diameter 1 μm that carries a negative charge of −10 nC.
If the medium surrounding the sphere is changed to an
aqueous solution, what effect will this have?

Solution 3.4 The charged metal sphere is very much
smaller than the distance to the point of determination of
the field, sowe can treat it as a point charge and use Equa-
tion (3.8) to calculate the field. As shown in Figure 3.9 the
field has spherical symmetry about the point charge. We
do not require the x, y, z coordinates of the location for
which the field value is wanted – only the radial distance
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r

E

q

Figure . The electric field E of a point charge q falls off with
radial distance r in all directions as a function of 1/r2.

from the point source is required.

E = 1
4𝜋𝜀o𝜀r

q1
r2

r̂ = (9 × 109 N m2C−2) 1
𝜀r

(−10 × 10−9 C)∕(10−2 m)2 r̂

= −9 × 105 1
𝜀r

r̂ N∕C

In air 𝜀r = 1 and E = −9 × 105 N/C and is directed
towards the charged sphere, against the direction of the
unit vector r̂. If the sphere is immersed in an aqueous
medium, the value for 𝜀r in Equation (3.8) changes from
𝜀r = 1 to 𝜀r ≈ 80. The resulting electric field magnitude
can be calculated as E ≈ −1.13 × 104 N/C, where the
minus sign again indicates that the field points in the
opposite direction to the unit vector r̂.

Example 3.5 Electric Field of a Line of Charge
A glass rod of length 2l is given a uniformly distributed
positive charge +Q by rubbing it with a silk cloth. Derive
an equation to calculate the electric field of this rod in air
at a radial distance r perpendicular to the centre of the
rod.

Solution 3.5 We align the rod along the x-axis, as
shown in Figure 3.10, and take the origins of the x- and
y-axes at the centre of the rod. The electric field is calcu-
lated at a position P located distance y along the y-axis.

x-axis

0 dQ+Q +l

dx

−l

x

y
r

y-axis

P
dEx

dEyθ

θ

dE

Figure . Procedure to find the field of a charged rod at a point
along the perpendicular axis that bisects it.

We can define a linear charge density 𝜆 for the rod as the
total charge +Q divided by its length 2l (𝜆 = +Q/2l). An
infinitesimal segment dx at a point x along the rod will
thus carry a charge dQ = 𝜆dx = +Qdx/2l. We use Equa-
tion (3.9), with 𝜀r = 1, to calculate the vector field ele-
ment dE produced by the elemental (point) charge dQ at
point P:

dE = 1
4𝜋𝜀o

Qdx
2l

1
r2
r̂ (3.13)

where r is the distance from point x to location P and r̂
is the radial unit vector. This vector field element has x-
and y-components given by:

dEy = dECos 𝜃;
dEx = dESin 𝜃 with Cos 𝜃 = y∕r and Sin 𝜃 = x∕r

where r = (x2 + y2)
1
2

The total field E at P produced by the whole rod is
obtained by summing up all the dE elements. We do this
by integrating Equation (3.13) for all x values−l≤ x≤+l,
but before ploughing through this exercise it is a good
idea to check if the symmetry of the problem can lead to
a shortcut. From inspection of Figure 3.10we deduce that
the summations of all the contributions todEx should add
up to zero, because dEx values for 0 ≤ x ≤ +l all point
along the negative x-axis and are balanced for −l < x ≤ 0
by the dEx values, which all point along the positive x-
axis. This result applies only along the y-axis with its ori-
gin at themidpoint of the rod. Away from this axis of sym-
metry the total field will have both x- and y- components.
A net Ey component does exist because the dEy values

for −l ≤ x ≤ +l all point along the positive y-axis. The
summation of all the dEy values to give Ey is obtained as
follows:

Ey =
∫

+l

−l
dECos𝜃dx =

∫

+l

−l
dE

y
r
dx

= 1
4𝜋𝜀o

Qy
2l ∫

+l

−l

dx
r3

= 1
4𝜋𝜀o

Qy
2l ∫

+l

−l

dx
(x2 + y2)3∕2

= 1
4𝜋𝜀o

Qy
2l

[
1
y2

x
(x2 + y2)1∕2

]x=+l
x=−l

= 1
4𝜋𝜀o

Q
y(l2 + y2)1∕2

The total field vector E has no component Ex and so
acts along a radial direction perpendicular to the centre
of the charged rod and is expressed as:

E = 1
4𝜋𝜀o

Q
y(l2 + y2)1∕2

ĵ (3.14)

If position P is moved further and further from the rod,
we can expect the rod to appearmore andmore as a point
charge. This should lead the field to have an inverse y2
dependency as in Equation (3.9). We can check this by
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taking y ≫ l so that the square of l can be neglected in
the denominator of Equation (3.14). This gives:

E = 1
4𝜋𝜀o

Q
y2
ĵ

This indeed shows that at a distance far enough away
from a charged rod its field is close to that of a point
charge. Using the relationship 𝜆 = Q/2l to express Equa-
tion (3.14) in terms of the linear charge density 𝜆:

E = 1
2𝜋𝜀o

𝜆

y(1 + y2∕l2)1∕2
ĵ (3.15)

We can now enquire what the field value is at a dis-
tance so close to the rod that, from the perspective of
a test charge at P, the rod appears to be of near infinite
length. In this case, the term y2/l2 is much smaller than
unity and Equation (3.15) simplifies to:

E = 1
2𝜋𝜀o

𝜆

y
ĵ (3.16)

The electric field close to a long line of smoothly dis-
tributed charge thus varies as the inverse of the radial dis-
tance from that line. At a distance verymuch greater than
the length of the line of charge, the field varies with the
inverse square of the distance. Between these two limit-
ing situations, the field along a radial line bisecting the
rod is given by Equation (3.15).

Example 3.6 Electric Field of a Charged Ring and
Circular Disk

1. Find an expression to calculate the field on the axis of
a ring of charge.

2. Use this result to find the field applied to a dielectric
material, of relative permittivity 𝜀r, placed on top of a
uniformly charged circular disk.

Solution 3.6

1. Field of a Uniformly Charged Ring in Air
The procedure for calculating the field along the axis of
a charged ring of radius a is shown in Figure 3.11(a). We
assume that the ring carries a positive charge Q and that
it lies in the xz-plane, with the y-axis orthogonal to this.
The origins of the x-, y- and z-axes are taken to be the
centre of the ring. We divide the ring into infinitesimal
elements ds such that the charge dQ on each element acts
as a point positive charge.
The vector field dE produced at point P by each charge

dQ of an element ds is:

dE = 1
4𝜋𝜀o

dQ
r2

r̂ (3.17)

where r is the distance from an element ds to location P
of value

r =
√

y2 + a2

The fields produced by diagonally opposite dQ charges
on the ring cancel out within the xz-plane, but are addi-
tive along the y-axis. The components dEx and dEz of dE
are thus zero, but the y-component dEy along the y-axis
component is given by:

dEy = dECos𝜃 = dE y∕r = 1
4𝜋𝜀o

dQ
(y2 + a2)

y√
y2 + a2

= 1
4𝜋𝜀o

ydQ
(y2 + a2)3∕2

The total y-component Ey of the field is found by sum-
ming up (integrating) all of the dEy contributions around
the ring:

Ey =
∫

dEy =
∫

1
4𝜋𝜀o

ydQ
(y2 + a2)3∕2

= 1
4𝜋𝜀o

y
(y2 + a2)3∕2 ∫

dQ = 1
4𝜋𝜀o

Qy
(y2 + a2)3∕2

The total vector field E along the y-axis of the ring of
charge shown in Figure 3.11 is:

E = 1
4𝜋𝜀o

Qy
(y2 + a2)3∕2

ĵ (3.18)

2. Field in a Dielectric above a Uniformly Charged
Circular Disk
Our approach is to recognize from Figure 3.11(b) that the
free charge distribution on a circular disk can be viewed
as being equivalent to a large number of concentric rings,
of width dr and free charge dQ. We have the solution for
the field along the axis of symmetry of a charged ring in
air, so to find the field for a charged disk all we do is sum
up all the contributions from the concentric system of
rings that make up the total disk area. We also need to
take into account that above the disk we have a medium
of relative permittivity 𝜀r.
In Example 3.5 we denoted a linear charge density

(dQ/dx C/m) using the symbol 𝜆. For free charge dis-
tributed over a surface we will denote the charge density
per unit area (dQ/dA C/m2) by the symbol 𝜎. (The sym-
bol 𝜌 will be used later in this chapter to signify a volume
charge density per unit volume (dQ/dV C/m3.)
In Figure 3.11(b) an elemental ring of charge dq has a

circumference 2𝜋r, width dr and an area dA≈ 2𝜋rdr.The
surface charge density on an elemental ring is:

dQ = 𝜎dA = 𝜎2𝜋rdr
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Figure . (a) Procedure to find the field at a point P
along the axis of a charged ring. (b) Adopting the
result for a charged ring to find the field in a dielectric
medium above a uniformly charged disc of radius R.

Employing the result obtained in part 1 of this solu-
tion for the component dEy of the field along the axis of
a charged ring, then for each elemental ring in the disk:

dEy =
1

4𝜋𝜀o𝜀r

ydQ
(y2 + r2)3∕2

= 1
4𝜋𝜀o𝜀r

y(2𝜋𝜎rdr)
(y2 + r2)3∕2

The total field Ey applied to the dielectric medium
above the complete disk is given by integrating this
expression for dEy for all the elemental rings from the
disk’s centre to its outermost radius R:

Ey =
∫

R

0

1
4𝜋𝜀o𝜀r

y(2𝜋𝜎rdr)
(y2 + r2)3∕2

=
𝜎y

2𝜀o𝜀r ∫

R

0

rdr
(y2 + r2)3∕2

=
𝜎y

2𝜀o𝜀r

[
− 1
(y2 + r2)1∕2

]r=R
r=0

i.e.

Ey =
𝜎y

2𝜀o𝜀r

[
− 1
(y2 + R2)1∕2

+ 1
y

]
(3.19)

We can now enquire as to what the field will be if we
increase the size of the disk, whilst maintaining the sur-
face charge density 𝜎 constant, to the situation where the
disk’s radius R is very much larger than the distance y to
the field measurement point P. In the limit, where R ≫ y,
from Equation (3.19) we have:

E = 𝜎

2𝜀o𝜀r
(3.20)

This informs us that the field applied to the dielectric,
in the central area (away from the edges) of a very large
sheet of charge 𝜎, does not vary as a function of the dis-
tance from the sheet. In other words, the field is uniform.

Equation (3.20) in Example 3.6 allows us to examine the
electric field generated between two oppositely charged
plates separated by a thin dielectric. This situation is
shown in Figure 3.12.
The two plates carry the same magnitude of charge

and so the fields EAi and EBi generated by them within

the dielectric are equal in magnitude, given by Equation
(3.20):

EAi = EBi =
𝜎

2𝜀o𝜀r
The field produced by the upper plate A is directed

away from the positive charges of that plate, both within
the dielectric and in the surrounding air. Within the
dielectric EAi is thus pointing towards the negatively
charged lower plate B. The field EBi is directed towards
the negative charges on plate B. Within the dielectric,
therefore, fields EAi and EBi are additive, so that the
resultant field Ei in the dielectric between the plates is
given by:

Ei = EAi + EBi =
𝜎

𝜀o𝜀r
(3.21)

This result applies only to regions within the dielec-
tric that are not close to the edges of the plates, where
the ‘fringing’ field is nonuniform. As shown in Figure
3.12, away from the edges, the fields EAo and EBo that
extend away from the outer surfaces of the plates can-
cel each other, so that the external field is zero. The field
generated by the oppositely charged plates is constrained
mostly within the dielectric between them. Apart from
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Ei = EAi + EBi
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+

+
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Figure . Plates (A and B) with equal and opposite charge
densities (+𝜎 and −𝜎) are separated by a thin dielectric of
thickness d and relative permittivity 𝜀r. The field Ei in the dielectric
between the plates is the vector sum of the fields EAi and EBi. The
field Eo outside the plates is zero because the fields EAo and EBo
are opposed.
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where a ‘fringing’ field occurs between the edges of the
two plates, the field is zero elsewhere. If we draw an imag-
inary surface that completely surrounds the two oppo-
sitely charged plates, the electric flux entering or leaving
this closed surface area is zero. A net flux emerges from
a closed surface surrounding the positively charged plate
and enters a closed surface around the negatively charged
plate.The relationship between the net electric flux ‘flow-
ing’ across a closed surface and the net charge enclosed
within this surface is given by a law formulated by Johann
Carl Gauss.This law is important because it provides the
means to determine the electric potentials and fields pro-
duced by electrodes in a more straightforward way than
applying Coulomb’s Law. It also helps us to understand
what is happening in the process shown in Figure 3.1 that
leads to the conclusion expressed by Equation (3.3).

. Gauss’s Law

Gauss’s Law states that the net electric fluxΦ through any
closed surface that surrounds a defined volume is propor-
tional to the net charge located within that volume. Two
types of flux can be considered, namely the E-field flux
ΦE and theD-field fluxΦD. In this bookMaxwell’sD-field
flux, given by Equation (3.12), will mainly be employed.
(The difference between the fields D/𝜀0 and E will be dis-
cussed more fully in Chapter 6.) For any infinitesimal
element of area dA on a closed surface the D-field flux
through it is equal to the product DpdA, where Dp is the
component of the D vector normal (at right angles) to
the surface of dA. The total flux ΦD through a surface
that totally surrounds a system of charges is obtained by
adding up all the values of DpdA on that surface. This
total D-flux is equal to the total free charge Qfree that is
enclosed. In shorthand, Gauss’s Law is expressed as:

ΦD = Qfree (3.22)

Example 3.7 Electric Flux through a Small Surface
Area
A surface element of dimensions 1mm × 1mm is
exposed, in a vacuum, to an electric field vectorE ofmag-
nitude 5 × 104 N/C.

1. Calculate the flux through this surface element when
it is perpendicular to E.

2. Calculate the fluxwhen the surface element is oriented
at 40◦ to E.

3. Calculate the flux when the surface element lies paral-
lel to E.

At this small scale the field can be considered to be uni-
form.

Solution 3.7 The three situations to be analysed are
shown in Figure 3.13. The small surface element, of area
A = 10−6m2, is not a closed Gaussian surface for which
an inside and outside can be defined. We define a pos-
itive flux through a surface element as an outward flux,
where the angle between the normal to this surface and
the vector field is between 0◦ and 90◦. In Figure 3.13 this
is defined using the concept of a normal unit vector n,
so that our small surface element can be defined to have
a vector area A = An. In this format the magnitude A
and also the orientation of the element’s surface area is
provided. This information is required in order to evalu-
ate the electric fluxΦ passing through such an elemental
vector area. From Figure 3.15 it is evident that the maxi-
mum E-field or D-field flux value occurs when the angle
𝜃 between the normal unit vector n and the vector E is
zero. When the plane of the elemental area lies parallel
to the field lines (i.e., 𝜃 = 90◦) no field lines pass through
the area and the flux is zero. From the geometry of the sit-
uation we can see that the component of the vector area
A along the direction of E varies as cos𝜃.

1. With the surface oriented perpendicular to E, 𝜃 = 0◦,
the E-field flux ΦE is:

ΦE = EAcos0◦ = (5 × 104 N∕C)(10−6 m2) × 1
= 5 × 10−2 N.m2∕C

The correspondingD-field in vacuum is 𝜀oE, so that
the D-field flux is given by:

ΦD = 𝜀oEAcos0◦ = (8.854 × 10−12 C2 N−1 m−2)
(5 × 10−2 N.m2∕C) = 4.4 × 10−13 C

40°

En
n

90°

(a) (b) (c)

n

(εE)

Figure . A small square surface area is shown oriented
(a) perpendicular to a uniform electric field E, (b) at 40◦ to
E, (c) parallel to E. Four electric field lines (D-lines if
written as 𝜀E) are drawn. The small arrow labelled n
represents the normal unit vector directed at right angles
to the plane of the square surface area.
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Note how the unit (coulomb) of the D-field flux is
easier to comprehend than those (N.m2/C) of E-field
flux. The temporal change of a D-field flux (dΦD/dt)
has units of coulomb / second, or ampere, the unit of
electrical current.This is Maxwell’s displacement cur-
rent and from Gauss’s Law we can deduce that it will
relate to a change of the concentration of free charge
in the system under study.

2. With the element’s surface area oriented at 40◦ to E:

ΦE = EAcos40◦ = (5 × 104 N∕C)(10−6 m2)
×0.766 = 3.8 × 10−2 N.m2∕C

andΦD = 𝜀oEAcos𝜃 = (8.854 × 10−12 C2 N−1m−2)(3.8
× 10−2 N.m2/C) = 1.7 × 10−13 C

3. When the element’s surface lies parallel to E, 𝜃 = 90◦,
the E-field flux is:

ΦE = EAcos90◦ = (5 × 104 N∕C)(10−6 m2)
×0 = 0

The D-field flux ΦD is also zero.
The direction of the field vector E shown in Figure 3.13

implies that a net positive charge is located to the left of
the surface element. If this situation is changed by replac-
ing the charge on the left with a net negative charge, the
direction of E is reversed. The angle between the normal
unit vector n and E is now (180◦−𝜃). Since cos(180◦−𝜃)
=−cos𝜃 the magnitude of the fluxes calculated in (a) and
(b) abovewill be the same, but ‘flow’ in the opposite direc-
tion. The results for (c) will still be zero.

In principle, Gauss’s Law can be used in two ways.The
spatial distribution of free charges can be determined by
measuring the electrical field everywhere around them,
or knowing the charge distribution we can determine
the generated electric field. The second application is
the more important for our purposes, as, for example,
in determining the electric fields produced by electrified
electrodes or surfaces.
A simple validation of Gauss’s Law is to calculate the

flux created by a positive free point charge Q. Around
this charge we construct an imaginary ‘Gaussian’ surface

in the form of a concentric sphere of radius R, as shown
in Figure 3.14(a). D-field lines radiate from the charge
and because of the symmetry of the arrangement they
pass through the imaginary sphere at right angles to its
surface. For every infinitesimal surface area dA on the
sphere’s surface the electric fieldmagnitude E is the same
and given by Equation (3.8) as:

E = 1
4𝜋𝜀o𝜀r

Qfree

R2 (newton per coulomb)

Themagnitude of the correspondingD-field in a dielec-
tric medium of relative permittivity 𝜀r is:

D = 𝜀o𝜀rE = 1
4𝜋

Qfree

R2 (coulomb per square metre)

The total electric flux ΦD emerging from the spherical
surface is the product DA, where A is the total surface
area of the sphere (A = 4𝜋R2):

ΦD = DA = 1
4𝜋

Qfree

R2 (4𝜋R2) = Qfree (coulomb)

(3.23)

This is the result stated in Equation (3.22) for the form
of Gauss’s Law dealing with free charges. If the positive
charge is replaced with a negative one of the same mag-
nitude, the convention is to visualize the ‘flow’ of elec-
tric flux as entering the imaginary spherical surface and
terminating at the negative charge. For this case the flux
ΦD is defined to be negative. We can think of a positive
charge as source of flux and a negative charge as a flux
sink.The result obtained in Equation (3.23) indicates that
the total flux is independent of the radius of the Gaussian
sphere. We can demonstrate this by introducing another,
smaller, spherical surface around the charge, as shown
in Figure 3.14(a). Field lines passing through the inner
sphere of radius r also pass through the larger sphere of
radius R. According to Coulomb’s Law, the field Er at any
point on the surface of the innermost sphere is larger
than the field ER on the outer sphere by an amount pro-
portional to (R/r)2. However, the elemental area dAr on

+

E
θ
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dA

dA cosθ

dAR

+

εER

R
r

dAr
εER

εERεER

εER
(a) (b)

Figure . (a) Electric flux (D = 𝜀E) lines passing
through two concentric spherical surfaces centred on a
positive charge. The same magnitude of flux passes
through the surface of both spheres. (b) On an irregular
surface the projection of a surface element dA onto a
spherical surface at the same point is dA.cos𝜃. The
electrical flux (𝜀EpdA) through an element on the
irregular surface translates to a flux (𝜀EdA.cos𝜃)
through a corresponding spherical surface element.
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projection from the outer sphere is smaller than dAR by
the factor (r/R)2. The two fluxes given by the products
Dr.dAr and DR.dAR are thus equal. The radius of a con-
structed imaginary Gaussian sphere is of no significance
when determining the total flux. We can use this fact to
accommodate situationswhere the field varies frompoint
to point over a closed surface that is irregular rather than
spherical.
The Gaussian surface in Figure 3.14(b) is irregular in

shape. The magnitude of the normal field Ep and hence
flux Dp, at an elemental surface dA varies over this sur-
face. As shown in Figure 3.14(b) we now construct a cor-
responding spherical surface element at the same point
as dA. The area of this spherical element will be smaller
than dA and have the value dA.cos𝜃, where 𝜃 is the angle
between Ep and the field E emerging from the spheri-
cal element.The two fluxes DpdA and DdA.cos𝜃 are thus
equal in magnitude.This procedure can be repeated over
the whole surface, where each elemental area dA is pro-
jected onto a corresponding spherical surface. If we sum
up all of these fluxes (themathematical equivalent of per-
forming a surface integral, represented by the symbol ∫ S)
the total flux through the irregular surface will give the
same result as Equation (3.23), namely:

ΦD = ∫S Dcos𝜃dA = ∫S DpdA = ∫S 𝜀o𝜀rEpdA = Qfree

(3.24)

The procedure of summing up the fluxes through a
distribution of spherical surface elements of different
radii may appear to be a dubious approach to verifying
Equation (3.24). However, such doubt can be removed
by showing that all of the elemental surfaces EdA.cos𝜃
can be projected onto a smaller closed spherical surface
around the charge Q.
A particular reason for drawing an irregular Gaussian

surface would be to surround an irregular array of sin-
gle point charges. To accommodate this situation we can
employ the principle of superposition, which for this pur-
pose states that the net flux of a collection of charges is
the same as the sumof the fluxes produced by each charge
on its own. For a numberN of free chargesQi in a volume
V surrounded by a closed Gaussian surface S, Equation
(3.24) takes the form:

ΦD = ∫S DpdA = ∫S 𝜀o𝜀rEpdA =
N∑
i=1

Qi = ∫V 𝜌edV

(3.25)

where 𝜌e is the density of free charge contained in a vol-
ume element dV inside the closed surface. The symbol
∫ V represents the mathematical process of integrating
(adding up) all the charged volume elements in the total
volume V.

+

Figure . A closed Gaussian surface is shown, which surrounds
a volume containing zero charge. Field lines from an external
charge that enter this surface will exit the surface at another point.
The net flux through the closed surface is zero. An electric field line
can only start at a source (positive charge) and terminate at a sink
(negative charge).

It follows from Equations (3.24) and (3.25) that, if the
positive charge shown in Figure 3.14 is removed, or if
negative charges are introduced so as to cancel the posi-
tive charges, the net flux through the Gaussian surface is
zero.Thepresence of charges outside a closed surface that
contains zero charge will not produce a net flux through
that surface. As demonstrated in Figure 3.15, the field
lines from an external point charge that enter the Gaus-
sian surface will emerge from it at another point. Field
lines can begin or end in a volume of space only when
there is a net charge in that volume.

3.3.1 Alternative Forms of Gauss’s Law

Equations (3.22–3.25) relate the total D-field flux
through a closed surface to the total enclosed free charge.
It is usually the case that we know the concentration
of free charges, for example those located on a capaci-
tor plate electrode or transferred as static charge from
one surface to another.The corresponding useful form of
Gauss’s Law is to define the total flux as given by Equa-
tions (3.22) or (3.25). However, in some cases it is help-
ful to consider the total charge, comprising both the free
charges and the bound charges. In this case an alternative
form of Gauss’s Law is expressed in terms of the E-field
flux as:

ΦE =
∫S

EpdA = 1
𝜀o

N∑
i=1

Qi =
QT
𝜀o

(3.26)

where QT is the total charge, free plus bound, contained
within the Gaussian surface.
Equations (3.25) and (3.26) are known as the integral

forms of Gauss’s Law (they involve surface and volume
integrations, ∫ S and ∫ V). An alternative way to express
Gauss’s Law is the differential form, involving the gradi-
ent, or differential operator, ∇, introduced in Chapter 1
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Box . Laplace’s Equation

Laplace’s equation has important applications in electro-
statics, gravitation, and in analyses of steady-state heat flow
and fluid flow. For Cartesian coordinates x, y, z in space it
takes the general form:

∇2u = 𝜕2u∕𝜕x2 + 𝜕2u∕𝜕y2 + 𝜕2u∕𝜕z2 = 0

∇2u is called the Laplacian of u, and the theory for find-
ing solutions for it is called potential theory. Practical prob-
lems involve boundary conditions for a particular volume
or region T of space with a well defined boundary surface
S or a region defined by some curve such as a circle. Two
commonly used boundary surfaces are those having cylin-
drical or spherical symmetry. For a rod T at a fixed potential
surrounded by a cylinder S, the coordinates r, 𝜃 and z (see
figure) are related to x, y, z by x = r cos 𝜃, y = r sin 𝜃, and
z = z. The Laplacian has the form:

∇2u = 𝜕2u
𝜕r2

+ 1
r
𝜕u
𝜕r

+ 1
r2

𝜕2u
𝜕𝜃2

+ 𝜕2u
𝜕z2

For spherical symmetry (a ball T surrounded by a sphere
S) the spherical coordinates r, 𝜃 and 𝜙 (see opposite) are
related to x, y, z by x = r cos 𝜃 sin 𝜙, y = r sin 𝜃 sin 𝜙, and

z = r cos 𝜙, so that the Laplacian has the form:

∇2u = 1
r2

[
𝜕

𝜕r

(
r2 𝜕u

𝜕r

)
+ 1

sin𝜙

𝜕

𝜕𝜙

(
sin𝜙

𝜕u
𝜕𝜙

)
+ 1

sin2
𝜙

𝜕2u
𝜕𝜃2

]
Where the boundary condition (e.g., electrostatic poten-

tial) on a sphere S is independent of angle 𝜃 (i.e., has cylin-
drical symmetry), the solution u(r, 𝜙) will also be indepen-
dent of 𝜃. Thus, 𝜕2u/𝜕𝜃2 = 0 and Laplace’s equation takes
the form:

∇2u = 𝜕

𝜕r

(
r2 𝜕u

𝜕r

)
+ 1

sin𝜙

𝜕

𝜕𝜙

(
sin𝜙

𝜕u
𝜕𝜙

)
= 0

z

x y

z

rθ

Cylindrical coordinates

z

x y

ϕ
r

θ

(r, θ, ϕ)

(r, θ, z)

Spherical (polar) coordinates

and further described in Equation (3.11).The differential
form of Equation (3.22) is:

∇ ⋅D = 𝜌e (3.27)

where 𝜌e is the free charge density and ∇⋅D is the diver-
gence of the D-field. The notation ∇⋅D is variously ver-
balized as div D, grad dot D, or del dot D. If we consider
a vector D-field in three-dimensional space, having com-
ponents Dx, Dy, Dz, along the orthogonal x-, y- and z-
axes, we can express vector D as:

D = Dx ı̂ + Dy ĵ + Dzk

where ı̂, ĵ and k̂ are the unit vectors along the x-, y- and
z- axes, respectively. To calculate ∇⋅D we take the com-
ponents of the differential operator ∇, apply them to the
components ofD and sum the results, to obtain the non-
vector (scalar) version of Gauss’s Law:

∇ ⋅ D =
𝜕Dx
𝜕x

+
𝜕Dy

𝜕y
+

𝜕Dz
𝜕z

= 𝜌e (3.28)

In terms of the hydrodynamic analogy we have used to
describe the ‘flow’ of electric flux, we can envisage ∇⋅D
to represent the amount of flux flowing out of, or into, a
certain volume element.This is obtained by adding up all
the sources of flux (positive charges) and subtracting all

of the sinks of flux (negative charges) inside that volume
element.The corresponding differential formof Equation
(3.26) for the E-field is:

∇ ⋅ E =
𝜕Ex
𝜕x

+
𝜕Ey
𝜕y

+
𝜕Ez
𝜕z

=
𝜌T
𝜀o

(3.29)

where 𝜌T is the total charge density (free plus bound).
In Chapter 1, Equation (1.2), we define the electric field
as the negative gradient of the voltage potential (E =
−∇V). Substituting this relationship into Equation (3.29),
we obtain:

∇2V = −
𝜌T
𝜀o

(3.30)

This is known as Poisson’s equation. For the case where
the total charge is zero, we have Laplace’s equation:

∇2V = 0 (3.31)

Poisson’s and Laplace’s equations are valid only for
electrostatics [11, 12]. They are modified when we have
time-varying fields. In Chapters 5, 6 and 9 we find that
solutions to Laplace’s equation are important in the
development of dielectrophoresis theory. Details given in
Box 3.2 provide the first steps in this process. The E-field
form of Gauss’s Law, Equation (3.26), holds a particularly
important position in electromagnetics – it is the first
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Box . Maxwell’s Equations

James Clerk Maxwell not only developed the concept of a
displacement flux and showed that an electromagnetic dis-
turbance travels through free space at the speed of light –
in 1865 he also demonstrated that the basic principles of
electromagnetism discovered by himself and others can
be reduced to four equations. These are now known as
Maxwell’s equations, which in their integral and differential
forms are:

1.
∫S

EdA =
QT

𝜀o
;∇ ⋅ E = 𝜌

𝜀o
(Gauss’s Law for electric fields).

2.
∫S

BdA = 0;∇ ⋅ B = 0 (Gauss’s Law for magnetic fields).

This second equation reflects the fact that single mag-
netic ‘charges’ or magnetic monopoles do not exist. The
surface integral of a magnetic field over a Gaussian sur-
face is always zero because the surface can enclose nei-
ther a net source nor sink of a magnetic field. A magnetic
field line always takes the form of a closed loop. An elec-
tric field starts at a source (positive charge Q) and ends at
a sink (negative charge).

3.
∫l

Bdl= J
𝜀oc2

+ 1
c2

dΦE

dt
;∇× B= J

𝜀oc2
+ 1

c2
𝜕E
𝜕t

.

This is the generalized Ampère’s Law, which states that
the conduction current J and the displacement current in
a closed circuit both act to produce a magnetic field. In

this equation, c is the speed of light c2 = 1
𝜇o𝜀0

.

4.
∫l

EdA = −
dΦB

dt
;∇ × E = −𝜕B

𝜕t
.

This is Faraday’s Law, which states that a time-varying
magnet flux or field creates an electric field.

In the forms written above, these equations apply to
electric and magnetic fields in free space. When a material
is present, the permittivity and permeability of free space
(𝜀o and 𝜇o, respectively) are replaced by the material’s
dielectric and magnetic properties, 𝜀o𝜀r and 𝜇o𝜇r, respec-
tively. Maxwell’s equations inform us that a point electric
charge at rest creates a static electric field but no magnetic
field, whereas a point charge moving at a constant veloc-
ity produces both an electric and magnetic field. To pro-
duce an electromagnetic wave, the point charge must be
accelerated.

of the four famousMaxwell’s equations.These equations
are described in Box 3.3.

3.3.2 Applications of Gauss’s Law

Careful inspection of Figure 3.1 indicates that the excess,
stationary, positive and negative charges are shown dis-
tributed along an outer edge of the two metal plates,
rather than uniformly inside the metals. Was this a care-
less execution of the drawing, or an intentional attempt to
reflect reality? Gauss’s Law can provide an answer. In Fig-
ure 3.16 a Gaussian surface S is shown constructed so as
to enclose almost the entire internal volume of an isolated
solid metal rod. In our discussion of Figure 3.3, depicting
electric lines of force (field lines) formed outside the ends
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Figure . A Gaussian surface S, depicted as the closed
dotted-line, is constructed within an isolated metal rod that has
been electrified with excess positive charges. Because no electric
field can permanently exist within the rod, Gauss’s Law informs us
that none of the charges can exist within the rod and must all be
distributed at the rod’s surface.

of an electrified and isolated metal rod, it was stated that
no electrical force can permanently exist within the rod.
This corresponds to the statement that no electric field
can exist at any point within an isolated metal conductor
that has been electrified or is subjected to an imposed
constant electric field. The atomic structure of an elec-
trical conductor is such that the electrons occupying the
outermost atomic orbitals are delocalized – they are not
bound by an electrostatic force of attraction to any one
particular atomic nucleus. They can be thought of as a
gas of free electrons. On imposing an electric field in a
conductor that does not form part of a continuous elec-
tric circuit, its delocalized electrons are displaced (leav-
ing behind an effective net positive charge) until they pro-
duce an internal field that exactly counterbalances the
applied one. A continuous electric current is not pro-
duced in an electrified isolated conductor. Thus, if the
electric field within the Gaussian surface shown in Figure
3.16 is zero, from Gauss’s Law given by Equation (3.24)
we can deduce that the net charge densitywithin it is also
zero. The electronic charges induced to move in an elec-
trified metal conductor and the corresponding deficit of
electronic charges that appear as positive charges, must
therefore be located solely at the surface of the conduc-
tor. This also applies to situations such as that shown in
Figure 3.1 where two metal plates have been electrified
by application of a voltage potential difference to them.
The surface distribution of charges shown in the drawing
of Figure 3.1 was a conscious attempt to depict this fact.
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It is also instructive to explore how Equations (3.25)
and (3.26) can assist an understanding of the effect shown
in Figure 3.1, where insertion of a dielectric slab between
two charged metal plates leads to an apparent reduction
of the free charge. In Figure 3.17, two cylindrical Gaus-
sian surfaces have been constructed in a region close
to the boundary between the positively charged metal
plate and dielectric of Figure 3.1. Cylinders, rather than
spheres and the orientation of them have been chosen
to take advantage of their symmetry and the nature of
the electric field produced within the dielectric.The field
E given by Equation (3.21) obtained in Example 3.6(b)
is uniform and directed at right angles to the interface
between the metal plate and the dielectric. This field is
therefore parallel to the sides of the cylinders, corre-
sponding to the situation shown in Figure 3.13(c) and
so no net flux passes through the sides of either cylin-
der. Cylinder 1 in Figure 3.17 has one circular end in the
metal, where the field is zero. No flux passes through this
end of cylinder 1. The total flux through the surface of
Gaussian cylinder 1 occurs across the end located in the
dielectric (total area A = ∫S dA = 𝜋r2). For cylinder 1 the
D-field form of Gauss’s Law gives:

∫S
DdA =

∫S
𝜀o𝜀rEdA = 𝜀o𝜀rE

∫S
dA

= 𝜀o𝜀rE(𝜋r2) = 𝜎free (3.32)

For the E-field form of Gauss’s Law we will define the
total charge density as:

𝜎T = (𝜎free + 𝜎bound)

For Gaussian cylinder 1 the E-field form of Gauss’s Law
gives:

∫S
EdA = E(𝜋r2) = 1

𝜀r
(𝜎free + 𝜎bound) (3.33)

From Equations (3.32) and (3.33) we can derive the
relationship:

(𝜎free + 𝜎bound) =
1
𝜀r

𝜎free

i.e.

𝜎bound = 𝜎free

(
1
𝜀r

− 1
)

(3.34)

This result, when compared with Equation (3.3), shows
that 𝜎bound = −Δ𝜎. In other words the reduction Δ𝜎 of
the free charge density on themetal plate that is observed
on inserting a dielectric slab does not result from a leak-
age away of free charge, but from a fraction of the free
charge being neutralized by the creation of an induced
bound charge of equal magnitude and opposite polarity.
But where does this bound charge reside in the dielectric?
The answer is given by inspecting the Gaussian cylinder
2 shown in Figure 3.17, which is located totally within
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Figure . A Gaussian cylinder 1 is constructed at the interface
between a dielectric and a metal plate carrying a distribution of
positive free charges. The only flux passing through this cylinder’s
surface is that which emerges through the end in the dielectric.
This flux is generated by the free and induced bound charges
enclosed within its surface. No net flux passes through the
Gaussian cylindrical surface 2, and so it contains zero charge. The
induced bound charge must therefore be located at the surface of
the dielectric in direct contact with the metal.

the bulk of the dielectric. The net flux through the sur-
face of this cylinder is zero. All of the E-flux through
the top of the cylinder exits through the bottom. There-
fore, no charge (bound or free) can exist within the vol-
ume enclosed by the surface of cylinder 2 and by exten-
sion no bound charge can exist anywhere else within the
bulk of the dielectric. The important conclusion arising
from this is that: the polarization charges produced by
the dielectric can exist only as bound charges at the sur-
faces of the dielectric that directly face the metal electrode
plates.
Further aspects of polarization and induced bound

charge within dielectrics are considered later in this
chapter, after first describing other useful applications of
Gauss’s Law.

3.3.2.1 Field Created by a Long Linear Charge
Distribution
We will examine again, using Gauss’s Law, the scheme
shown in Figure 3.10 of a distribution of positive charge
on a long metal rod or wire. The first step is to con-
sider the shape of the Gaussian surface to be constructed
around the distributed charge and to accomplish this we
need to examine the symmetrical characteristics of the
system to be analysed. From Example 3.5 we know that
at locations away from the ends of the rod the field is
directed radially outwards at right angles to the wire.
The component of the field parallel to the central axis
along the rod is zero. If we rotate the wire about this
axis, the field at a fixed distance away from the wire
does not change in value. The radial and rotational sym-
metry of the field indicates that the Gaussian surface
should take the form of a coaxial cylinder, as depicted in
Figure 3.18.



3 Charges, Fields, Fluxes and Induced Polarization 

+ + + + + + + ++ + + + + + +

r

L

Ep = 0

dA
Ep = E

Figure . A Gaussian surface, in the form of a coaxial cylinder of
radius r and length L, is drawn around a section of a long,
positively, charged rod.

The electric field produced by the charged rod can
be obtained from Gauss’s Law, in the form of Equation
(3.24), using the relationship:

∫S
EpdA = 1

𝜀o𝜀r

N∑
i=1

Qi (3.35)

In this equation ∫S EpdA represents the sum of the
product (EpdA) taken over the whole surface of theGaus-
sian cylinder shown in Figure 3.18. We have noted that
the component of the field parallel to the central axis
along the rod is zero.Thus, at each point on the two ends
of the cylinder the product (EpdA) is zero, because Ep
(being directed parallel to the rod’s axis) is zero.The only
contribution to ∫S EpdA over the Gaussian surface is thus
from the cylindrical wall, of length L and radius r. The
value for Ep everywhere over this surface is E and the total
surface area ∫S dA = 2𝜋rL.The left-hand side of equation
(3.35) can thus be written as:

∫S
EpdA = E(2𝜋rL) (3.35a)

For the right-hand side of Equation (3.35)

1
𝜀o𝜀r

N∑
i=1

Qi =
1

𝜀o𝜀r

l=L∑
l=0

𝜆dl = 𝜆L
𝜀o𝜀r

(3.35b)

where 𝜆 is the linear charge density per unit length of the
rod. Inserting the results given by Equations (3.35a) and
(3.35b) in Equation (3.35) we have:

E(2𝜋rL) = 𝜆L
𝜀o𝜀r

or

E = 𝜆

2𝜋𝜀o𝜀rr
(3.36)

This gives, but with less effort, the same result obtained
in Example 3.5, Equation (3.16), for the magnitude of the
field of an infinite length of charge.

3.3.2.2 Field Created by a Charged Metal Sphere
We have demonstrated, with the use of Figure 3.16, that
all of the excess charge Q given to a solid metal conduc-
tor must be located on its surface – no charge or electric
field can exist inside it. This is the principle by which a
‘Faraday cage’ operates. Sensitive electronic systems can
be protected from interference by external electric fields
by enclosing them in a metal cage. At any point out-
side the surface of a positively charged sphere we know,
from Equations (3.8) and (3.9), the field is directed radi-
ally outwards from the centre of the sphere and depends
only on the distance r from the centre. Thus, the field
has the same value at any point on a spherical surface
that is concentric with the charged sphere. A spherical
Gaussian surface of radius r, constructed concentrically
around a charged metal sphere of radius R as shown in
Figure 3.19(a), will take advantage of this spherical sym-
metry of the field.
In Equation (3.35) the expression ∫S EpdA now repre-

sents the sum of the product (EpdA) taken over the whole
surface of the Gaussian sphere shown in Figure 3.19 and
has the value 4𝜋r2E.The left-hand side of equation (3.35)
can thus be written as:

∫S
EpdA = 4𝜋r2E (3.37a)

For the right-hand side of Equation (3.35)

1
𝜀o𝜀r

N∑
i=1

Qi =
Q

𝜀o𝜀r
(3.37b)

where Q is the total excess charge on the metal sphere.
From Equation (3.35), using the results given by Equa-
tions (3.37a) and (3.37b), we obtain:

E = 1
4𝜋𝜀o𝜀r

Q
r2

(r > R) (3.38)

This is the same result as Equation (3.8), which was
obtained usingCoulomb’s Law. Inside the charged sphere
(r < R) the field is zero, but outside the sphere (r > R)
the field varies as 1/r2 as if all of the excess charge Q dis-
tributed on the surface is concentrated as a point charge
at the centre of the metal sphere. The same result is
achieved for a hollow spherical shell of metal. No charge
exists in the interior of a hollow shell, so no field can exist
there either.The variation of the field as a function of dis-
tance from the sphere’s centre is shown in Figure 3.19(a).
From this result we can also conclude that the excess

charge is uniformly distributed on the surface of the
metal sphere. If it were not uniformly distributed, then
the field would not vary at every point outside its sur-
face as 1/r2 – but in some places as some other power law
of the distance r. We could anticipate this conclusion by
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Figure . (a) A spherical Gaussian
surface (dashed line) is shown constructed
concentrically around a positively charged
metal sphere of radius R. Inside the metal
sphere the field E is zero, but outside the
sphere (r > R) the field ‘jumps’ to the value
it would have if the metal sphere and its
excess charge Q were to be squashed into a
point source at the centre. (b) A spherical
Gaussian surface is constructed
concentrically around a dielectric sphere
containing a uniform distribution of
trapped positive charges. Inside the
dielectric sphere the field E is proportional
to the distance from its centre. The field
outside is equal to that produced if the
sphere and its charge took the form of a
point source.

imagining ametal sphere with excess electrons on its sur-
face. These charges repel each other equally in all direc-
tions, until equally spaced apart and thus collectively
at their minimum potential energy. If electrification of
the metal sphere is accomplished by removing electrons
from its atomic lattice, this removal of negative charges
from otherwise electrically neutral matter will lend to
the electrification the properties of an excess of posi-
tive charges. The most energetic electrons in the metal’s
atomic structure will rearrange themselves so that the
positively charged electronic ‘vacancies’ are uniformly
distributed apart by theirmutual electrostatic repulsions.
Excess negative or positive electronic charges are thus
always distributed uniformly over spherical metal sur-
faces, or away from the edges of flat and cylindrical
surfaces.
By extension, we can use this result for a metal sphere

to deduce the field generated by a solid metal cylinder.
For an infinite metal cylinder with charge per unit length
𝜆, the field at any point outside the cylinder’s surface is
given by Equation (3.36), as if all the surface charge was
located along the central axis of the cylinder. The field is
zero inside the metal cylinder.

3.3.2.3 Field Created by a Charged Dielectric Sphere
For a sphere composed of a dielectric material (i.e.,
an electrically insulating material) we can assume that
excess charges (not induced ones) are localized (trapped)
throughout the material, with a corresponding uniform
volume charge density 𝜌e (C/m3). Because an insulting
material is unable to conduct electricity to any significant
extent, a large electric field can be sustained across and
within it without disturbing an electrostatic state where
all excess charges are assumed to be stationary. If the
charge is uniformly distributed within a spherical par-
ticle of radius R, we can explore the field within it by

constructing an internal Gaussian sphere of radius r
(r < R) as shown in Figure 3.19(b).
The appropriate form of Equation (3.24) with which to

apply Gauss’s Law is:

∫S
EpdA = 1

𝜀o𝜀m ∫V
𝜌edV (3.39)

where 𝜀m is the relative permittivity of the dielectric
material. For an internal Gaussian sphere of radius r, the
left-hand side of this equation can bewritten as ∫S EpdA=
4𝜋r2E. To elucidate the right-hand side of Equation (3.39)
it is convenient to define the total charge carried by the
dielectric sphere as QT, such that:

QT = 4
3
𝜋R3𝜌e

For a spherical Gaussian surface of radius r within the
charged dielectric sphere, the enclosed internal charge qi
is given by:

qi = 𝜌e

(4
3
𝜋r3

)
= QT

r3
R3

Gauss’s Law in the form of Equation (3.39) is thus given
as:

4𝜋r2E =
QT

𝜀o𝜀m

r3
R3

to give

E =
QT

4𝜋𝜀o𝜀m

r
R3 (r < R) (3.40)

The field within a charged dielectric sphere is thus pro-
portional to the distance r from the centre of the sphere.
At the centre point of the sphere there is no charge, the
value for r is zero and so as given by Equation (3.40)
the field E is zero. For a Gaussian spherical surface con-
structed beyond the surface of the charged dielectric
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sphere, the enclosed charge is QT and we can use the
result of Equation (3.38) to give the external field as:

E = 1
4𝜋𝜀o𝜀r

QT
r2

(r > R) (3.41)

where 𝜀r is the relative permittivity of the medium sur-
rounding the charged dielectric sphere. The variation of
the electric field from the centre of the dielectric sphere
to beyond its surface is shown in Figure 3.19(b).

3.3.2.4 Field between Oppositely Charged Parallel
Electrodes
Figure 3.20 depicts a dielectric material situated between
a top metal plate that carries a positive charge density
per unit area +𝜎 and a bottom plate with an opposite
charge density−𝜎.The thickness of the dielectric is small
in comparison to the dimensions of the plates, but this
relationship is distorted in Figure 3.20 in order to show
the construction of two Gaussian surfaces in the form of
cylinders with their sides parallel to the direction of the
uniform field E. Because opposite charges attract each
other, the free charge density distributions, +𝜎 and −𝜎,
are shown as close as they can get to each other, namely
distributed along the interfaces between the metal plates
and the dielectric.
A positive flux ofmagnitude 𝜀o𝜀rEA flows out of the top

Gaussian cylinder through the end, of area A, located in
the dielectric. There is no flux through the sides of the
cylinder, or in the end located in the metal. The positive
free charge enclosed within the top Gaussian cylinder is
+𝜎A. From Gauss’s Law we have 𝜀o𝜀rEA = 𝜎A, and so

E = 𝜎

𝜀o𝜀r
(3.42)

This is the same result given by Equation (3.21),
obtained using Coulomb’s Law and from superposition
of the fields created by the charges on each metal plate.
The charge on the bottom plate did not enter into the
evaluation of Equation (3.42), butwe can check this result
by performing Gauss’s Law for the bottom Gaussian
cylinder. A negative flux (−𝜀o𝜀rEA) flows out of the bot-
tom Gaussian cylinder, which encloses a negative charge

+ + + + + + ++ ++++ +
Metal

Dielectric 
εr

E

E = 0

- - - - - - -- ---- -
E = 0Metal

Figure . The electric field in a thin dielectric between
oppositely charged (±𝜎), large area, metal plates can be derived
by applying Gauss’s Law to either the top or bottom Gaussian
cylinder shown in this figure. In each case we obtain E = 𝜎/𝜀o𝜀r.

+Q
–Q

r2

r

Figure . A concentric Gaussian sphere, radius r, is constructed
to calculate the field produced in the dielectric occupying the
space between two spherical metallic shells. The inner shell, radius
r1, has a total charge of +Q. The outer shell has radius r2 and total
charge −Q.

−𝜎A. From Gauss’s Law we have −𝜀o𝜀rEA = −𝜎A, which
gives the same result as equation (3.42).

3.3.2.5 Field between Oppositely Charged Concentric
Spherical Electrodes
We construct a spherical Gaussian surface, radius r,
between the two spherical conducting shells shown in
Figure 3.21. The inner shell carries a total charge +Q
on its surface, whilst the outer shell carries an equal but
opposite charge −Q.
In section 3.3.2.2 it was shown that the field inside a

solid or hollow metal sphere is zero (the ‘Faraday cage’
principle).The outer shell with charge−Q does not there-
fore contribute to the field E generated in the space
between the outer and inner shells. The field is created
by the charge +Q on the inner shell and is determined
by calculating the total flux through the Gaussian sphere.
The surface integral to be used in Gauss’s Law is ∫S dA =
4𝜋r2 and the field E in the dielectric between the coaxial
electrodes is given by:

∫S
𝜀o𝜀rEdA = 𝜀o𝜀rE(4𝜋r2) = Q (r2 > r > r1)

to give

E = Q
4𝜋𝜀o𝜀rr2

(r2 > r > r1) (3.43)

3.3.2.6 Field between Oppositely Charged Coaxial
Electrodes
We construct a cylindrical Gaussian surface, radius r and
length L, in the dielectricmaterial that separates and sup-
ports two coaxial electrodes shown in Figure 3.22. The
inner cylindrical electrode has a surface charge density
+𝜆 (C/m) whilst the outer electrodes has the form of a
cylindrical metallic shell and has charge density −𝜆.
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r2 L Coaxial Gaussian 
surface, radius r.

+λ

–λ Inner charged 
conductor, radius r1.

Outer 
conductor

Figure . The field in the dielectric between two
oppositely charged coaxial conductors is found by
constructing a coaxial, cylindrical, Gaussian surface around
the inner conductor.

At sufficient distances from the ends of the coaxial elec-
trodes, the field generated by the inner one is directed
radially towards the outer electrode and has no compo-
nent parallel to the central axis (see section 3.3.2.1). The
flux through the surface of the Gaussian cylinder is thus
totally normal to its surface and no flux passes through its
two ends. The surface integral to be used in Gauss’s Law
is ∫S dA = 2𝜋rL and the field E in the dielectric between
the coaxial electrodes is given by:

∫S
𝜀o𝜀rEdA = 𝜀o𝜀rE(2𝜋rL) = 𝜆L (r2 > r > r1)

to give

E = 𝜆

2𝜋𝜀o𝜀rr
(r2 > r > r1) (3.44)

A summary is given in Table 3.2 of the electric fields
created for the various charge distributions considered in

this section.Themagnitude of the dielectrophoretic force
depends on the product (E⋅∇)E of the applied field and its
gradient (see Equation (2.15) in Box 2.4 of Chapter 2). If
the field is uniform (i.e., does not depend on position r)
then ∇E is zero and the dielectrophoretic force is thus
also zero. From Table 3.2 we see this is the situation for
the field produced by a charged metal plate, or between
two oppositely charged plates. This will not be the case
in regions near the edges of the plates, because the fields
produced in such areas will not be uniform.
A valuable principle can be learnt from Table 3.2,

namely that the electric field and its gradient vary as an
inverse function of the size of an electrode. Consider the
case of concentric spherical electrodes. For distances r
greater than the radius r1 of the inner conductor and less
than the radius of the outer coaxial conductor, the prod-
uct (E⋅∇)E is proportional to the factor Q2

r5 . A very large

Table . The magnitudes of the electric field E and field gradient ∇E are given for a point free charge and various arrangements of
charged conducting surfaces. The field is determined at distance r from the charge or charged surface (magnitude Q, 𝜆 or 𝜎) in a medium
of relative permittivity 𝜀r. The parameter 1

4𝜋𝜀o
is written as k.

Distribution of charge Field at point r Field gradient

Point free charge Q. Eq. (3.8) E = kQ
𝜀r

1
r2

∇E = −2kQ
𝜀r

1
r3

Flat metal plate (𝜎). Eq. (3.20) E = 𝜎

2𝜀o𝜀r
zero

Parallel metal plates (±𝜎). Eq. (3.42) E = 𝜎

𝜀o𝜀r
zero

Charge Q on metal sphere of radius R. Eq. (3.38) E = zero (r < R)

E = kQ
𝜀r

1
r2

(r > R)

∇E = zero (r < R)

∇E = −2kQ
𝜀r

1
r3

(r > R)

Charge Q in dielectric sphere, radius R, relative permittivity 𝜀m.
Eqs (3.40) and (3.41)

E = kQ
𝜀m

r
R3 (r < R)

E = kQ
𝜀r

1
r2

(r > R)

∇E = kQ
𝜀m

1
R3 (r < R)

∇E = −2kQ
𝜀r

1
r3

(r > R)

Charged (𝜆) long wire. Eq. (3.36) E = 2k𝜆
𝜀r

1
r

∇E = −2k𝜆
𝜀r

1
r2

Concentric spherical electrodes (±Q). Eq. (3.43) E = kQ
𝜀r

1
r2

(r2 > r > r1) ∇E = −2kQ
𝜀r

1
r3

Coaxial cylindrical electrodes. Eq. (3.44) E = 2k𝜆
𝜀r

1
r
(r2 > r > r1) ∇E = −2k𝜆

𝜀r

1
r2
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increase of the value for (E⋅∇)E is achieved by reducing
the radius of the inner conductor, whilst maintaining the
charge on the inner conductor to the same sort of level.
For example, a value of r = 2mm is permitted for an
inner conductor radius of 1mm, but can be reduced to
r= 0.2mm for an inner conductor of radius 0.1mm. Such
tenfold reduction of r corresponds to a 105-fold increase
of (E⋅∇)E.
In Box 2.5 of Chapter 2 a simplification of (E⋅∇)E was

given as:

2(E⋅∇)E = ∇E2

Validation of this relationship is evident in Table 3.2.
For example, for the case of coaxial cylindrical electrodes,
we find that

2(E⋅∇)E = 2
(
2k𝜆
𝜀r

1
r

)(
−2k𝜆

𝜀r

1
r2

)
= −8

(
k𝜆
𝜀r

)2 1
r3

(3.45)

The value for∇E2 is calculated from the following pro-
cedure:

∇E2 = 𝜕

𝜕r

(
2k𝜆
𝜀r

1
r

)2
= 4

(
k𝜆
𝜀r

)2
𝜕

𝜕r

( 1
r2

)
= −8

(
k𝜆
𝜀r

)2 1
r3

(3.46)

This gives the same result as Equation (3.45) and pro-
vides the validation we sought.

3.3.3 Summary Guidelines in Applying Gauss’s Law

The examples given in this last section provide us with
the following guidelines in using Gauss’s Law to find the
electric field at any point:
The important first step is to choose the Gaussian sur-

face. This surface must be a closed surface. If the field at
a particular point is to be found, this point must lie on it.
The Gaussian surface may be real, such as the face of a
solid body, or an imaginary one that is constructed partly
or wholly in space or another medium.
The integral ∫S EpdA over a closed Gaussian surface

is readily evaluated analytically if the Gaussian surface
and the charges within it have some form of geometric
symmetry. Otherwise, some form of numerical compu-
tation is required. For example, if the charge distribution
possesses a spherical or cylindrical symmetry, the Gaus-
sian surface should take the form of sphere or cylinder,
respectively.
In the integral ∫S EpdA, Ep is the perpendicular com-

ponent of the total field E at each point on the Gaussian
surface. The total field may result from charges that exist
within and outside the Gaussian surface. If the vector Ep

is directed outwards from the interior of the closedGaus-
sian surface and has the same magnitude at every point
on the surface, then Ep = E and ∫S EpdA = EA. If Ep is
directed inwards and is constant over the surface, then
∫S EpdA = −EA. If no net charge at all exists within the
Gaussian surface then ∫S EpdA is zero.
A closed Gaussian surface can be deconstructed into

separate surfaces and the integral ∫S EpdA evaluated for
each one of them.The integral over the whole closed sur-
face is equal to the sum of the integrals over the sepa-
rate surfaces. The following guidelines can assist in the
choice of Gaussian surface: If the total field at every point
is tangential to the Gaussian surface, then Ep is zero and
∫S EpdA is zero.This fact can be used to choose the orien-
tation of the sides or ends of a cylindrical Gaussian sur-
face. If the total field is zero at every point on a surface,
such as within a metal, then ∫S EpdA is also zero.

. Induced Dielectric Polarization

The result given by Equation (3.34), together with the
conclusion drawn from applying Gauss’s Law to the
scheme shown in Figure 3.17, enable us to understand
what is happening in Figure 3.1 in terms of the distri-
butions of the free and induced bound charges. During
the stages before and after the insertion of the dielectric
slab between the charged metal plates, the total number
of charges per unit area of the plates remains unchanged.
This charge cannot dissipate through either the electrom-
eter or the dielectric insulator. However, a proportion
of these charges are neutralized (bound) by the appear-
ance of polarization charges at the surfaces of the dielec-
tric that interface with the metal plates. The amount of
the free charge density so bound is directly proportional
to the observed reduction of the electrometer reading
shown in Figure 3.1. If A is the surface area of each plate,
an induced charge −A𝜎bound appears on the dielectric
surface next to the positively charged plate (the anode)
and +A𝜎bound appears on its opposite surface next to the
cathode. Two electric charges of opposite polarity, ±q,
separated by a distance d, represent a dipole of moment
p = qd. As depicted in Figure 3.23 this electric dipole
moment is symbolized by a vector pointing from the neg-
ative to the positive charge.
The dielectric slab of thickness d therefore possesses an

induced dipole moment p = (A𝜎bound × d). The macro-
scopic polarization P of a dielectric material is defined as
the average induced dipole moment per unit volume. For
the dielectric slab shown in Figure 3.1 the polarization
charge is:

P = p∕(volume) = (A𝜎bound × d)∕Ad = 𝜎bound.

(3.47)
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p

+q

−q

d

Figure . Two electric charges, of polarity +q and −q, separated
by a distance d, represent a dipole of moment p = qd, and is
represented as a vector p directed from the negative to the
positive charge.

The polarization P is therefore the induced (bound)
charge densities that appear on the faces of the dielectric
slab. The distribution of free and bound charges on the
electrode plates, together with the polarization (bound)
charges on the dielectric, are shown in Figure 3.24. The
polarization vector P, which corresponds in magnitude
to the surface charge density bound at the electrodes
by the polarized dielectric, is shown directed along the
direction of the applied field.
From Equation (3.3) we have the bound charge (Δ𝜎) on

an electrode plate as

𝜎bound = 𝜎free

(
1 − 1

𝜀r

)
= 𝜎free

(
𝜀r − 1

𝜀r

)
and from Equation (3.42) the field E imposed on the
dielectric is

E =
𝜎free

𝜀o𝜀r

Equation (3.47) can thus be written as:

P = 𝜎bound = 𝜎free

(
𝜀r − 1

𝜀r

)
= E𝜀o𝜀r

(
𝜀r − 1

𝜀r

)
=

(
𝜀r − 1

)
𝜀oE (3.48)

The quantity (𝜀r − 1) is termed the electric susceptibil-
ity 𝜒e of the dielectric material, so that Equation (3.48) is
often expressed as:

P = 𝜒e𝜀oE (3.49)

The concept of electric susceptibility 𝜒e is illustrated
by writing

𝜒e =
P

𝜀oE

which corresponds to the ratio of the bound charge den-
sity to the free charge density. We have thus been able to
relate the macroscopic, bulk, polarization P of the dielec-
tric slab to a microscopic property characterized by its
relative permittivity 𝜀r and to the average electric field
E inside the dielectric. The local field acting on an indi-
vidual molecule in the bulk of the dielectric is consid-
ered in Chapter 6, leading to the defining of a purely
molecular quantity known as themolar polarization.The
microscopicmechanisms responsible for themacroscopic
polarization of a dielectric material are also described in
Chapter 7. For our present discussion of induced polar-
ization it is sufficient to consider the basic concept shown
in Figure 3.25.
Viewed at the microscopic level the bulk polarization

of a dielectric can be viewed as the collective interac-
tion of the induced dipole moments of each of atom or
molecule. Figure 3.25 gives an exaggerated depiction of
this, where each induced microscopic dipole is shown
aligned with the internal field E. In the bulk of the dielec-
tric the positively charged end of a microscopic dipole
is cancelled by a neighbouring induced negative charge.
Uncompensated induced positive charges appear only
at the dielectric surface facing the metal plate that car-
ries negative free charge density (the cathode), whilst
uncompensated induced negative charges appear only at
the surface facing the plate that carries the positive free
charge density (the anode). From the definition given by

free

free

V0

bound = P
bound = P

V1

(a)

(b)

Figure . The initial and final stages of Figure 3.1
are simplified to show the distribution of the free and
bound charge densities on electrodes of surface area
A. (a) Positive and negative free charge densities are
shown on the anode and cathode, respectively,
before insertion of the dielectric slab. (b) On insertion
of the dielectric, the voltage falls because bound
charges induced at the surface of the dielectric
partially neutralize the free charges. This lends to the
dielectric slab the properties of a macroscopic dipole
moment of magnitude p = (A𝜎bound x d).
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Figure . In the bulk of a polarized dielectric (enlarged circle)
the induced molecular dipoles tend to align with the internal field
E. Charges at each end of an induced dipole are neutralized by
neighbouring induced dipoles. The net induced charge per unit
volume within the dielectric bulk is thus zero. Uncompensated
dipole charges at the face of the dielectric (enlarged rectangle)
next to an electrode appear as bound charges that partially
neutralize the free charges on the electrode.

Equation (3.12) for the displacement vector D, Equation
(3.48) can be given in the form:

D = P + 𝜀oE (3.50)

If a dielectric medium such as a gas or liquid of relative
permittivity 𝜀r1, rather than a vacuum already existed
between the electrode plates shown in Figure 3.1, on
inserting another dielectric between the electrodes so as
to replace the first one the observed polarization is given
by:

P = (𝜀r2 − 𝜀r1)𝜀oE (3.51)

where 𝜀r2, is the relative permittivity of the replacement
dielectric. For the case where 𝜀r1 < 𝜀r2, as for exam-
ple where a plastic sheet of relative permittivity 𝜀r2 ≈
2.5 is inserted to replace an aqueous medium (𝜀r2 ≈
80) between electrically charged electrodes, the appar-
ent polarization of the second dielectric will appear to be
negative with respect to the one it has replaced. This is
manifested as an increase of the voltage V1 above the ini-
tial voltage V0. This effect arises because of an increase
of the free charge density on the electrode surfaces, as
depicted in Figure 3.26.

. Capacitance

From Table 3.2 we find that the electric field at any point
in the region of a charged conductor is proportional to
the density of the charge. In particular, for the case of two
parallel plate electrodes, situated in a vacuum with equal
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Figure . (a) An electrometer gives a voltage reading of V0
across two charged metal plates in an aqueous solution (𝜀r ≈ 80).
(b) On inserting a dielectric sheet (𝜀r = 2.5) the voltage decreases
because the induced charges at the surface of the dielectric sheet
counteract some of those induced at the solution-electrode
interface. The polarization (induced dipole moment per unit
volume) in the dielectric sheet opposes that of the aqueous
dielectric.

and opposite free charge densities ±𝜎o, Equation (3.42)
gives the uniform field between the plates as:

Eo =
𝜎o
𝜀o

As depicted in Figure 3.1, if the plates are separated by
a uniform distance d, a voltage difference Vo can be mea-
sured between the plates of magnitude given by:

Vo = Eod

If the space between the electrodes is now filled with
a dielectric of relative permittivity 𝜀r the voltage falls, as
shown in Figure 3.1, to V1:

V1 = E1d =
𝜎1

𝜀o𝜀r
d (3.52)

where 𝜎1 is the new density of free charges on the plates,
having been reduced from 𝜎o by an amount given by
Equation (3.3) due to the appearance of induced bound
charges at the dielectric’s interfaces with the electrodes.
To increase V1 back to the original value Vo will require
an increase of free charge on the plates above the ini-
tial value 𝜎o. From a practical electronics perspective the
ratio of ‘stored’ chargeQ in the device to the applied volt-
age V has increased. This ratio is defined as the capaci-
tance C of the device (capacitor):

C = Q
V

(3.53)

The voltage difference V is directly proportional to
the field E, which in turn is directly proportional to the
charge on the electrodes. Thus, Equation (3.52) can be
used to derive the capacitance of a pair of parallel plate
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electrodes, each of area A spaced distance d apart and
containing a dielectric of relative permittivity 𝜀r, as:

C =
A𝜎1
V1

=
A𝜀o𝜀r
d

(3.54)

. Divergence Theorem and Charge
Density Relaxation Time

Before giving a formal description of the divergence the-
orem, also known as Gauss’s theorem, we can enquire as
to why we should be interested in it. In Chapters 6 and 7
we learn that interfacial charges accumulate on the sur-
face of a dielectric particle when immersed in another
medium and subjected to an imposed electric field. As
depicted in Figure 6.12 these charges are distributed non-
symmetrically around the particle so that it assumes the
properties of a macroscopic dipole moment. The mag-
nitude and polarity of this induced dipole moment, as
well as the relaxation time for the buildup and decay of
the interfacial charges, dictate the dielectric and dielec-
trophoretic characteristics of the particle. Application of
the divergence theorem can provide an insight into the
mechanism controlling the relaxation time.
The divergence theorem relates the flux of a vector field

through a surface to the behaviour of that vector field
in the volume element enclosed by that surface. In for-
mal language the theorem states [13]: Let T be a closed
bounded region in space whose boundary is a piecewise
smooth surface S. Let F(x, y, z) be a vector function that is
continuous and has continuous first partial derivatives in
some domain containing T. Then

∫v
∇ ⋅ Fdv =

∫s
F ⋅ ndA (3.55)

where n is the outer unit normal vector of S, pointing to
the outside of S.
A formal proof of this theorem is given by Kreyszig

[13], which can be interpreted as stating that the outward
flux of a vector field through a closed surface is equal
to the volume integral of the divergence over the region
enclosed by the surface. More simply put – the sum of all
the sources minus the sinks within a defined region gives
the net flow out of or into that region. This situation is
commonly referred to as the equation of continuity.
Consider an electrical current density J flowing across

a surface S. This surface encloses a volume V containing
a charge density 𝜌, which we will assume can vary as a
function of time. By charge density we mean the ratio
Δq/Δv, where Δq is the charge contained within a vol-
ume element Δv. The current across the surface S is the
rate at which charge crosses it. We will take this current
as being positive if the current density vector J forms an

angle of less 90◦ with the positive normal vector n (see
Figure 3.13 for the case of an electric field). Also, there
are no sources or sinks of charge, reflecting the fact that
charge, like mass, can neither be instantaneously created
nor destroyed.The integral taken over the surface S of the
normal component of J therefore equals the net change
of the initial charge density 𝜌 contained within it. We can
express this relationship as:

∫s
J ⋅ nda = −

∫v

𝜕𝜌

𝜕t
dv (3.56)

This equation can be simplified by applying the diver-
gence theorem of Equation (3.55); so that

∫s
J ⋅ nda =

∫v
∇ ⋅ Jdv

and Equation (3.56) becomes:

∫v

(
∇ ⋅ J + 𝜕𝜌

𝜕t

)
dv = 0

Both terms in the function enclosed in the brackets of
this equation are spatially continuous, so the only way
that the volume integral can be zero is for the function
itself to be zero, i.e.,

𝜕𝜌

𝜕t
+ ∇ ⋅ J = 0 (3.57)

This result has the same form as the analogous case
of the flow of a fluid, which is called the condition for
the conservation of mass or the continuity equation of
a compressible fluid [13, p. 455]. In our case, Equation
(3.57) describes the condition for the conservation of elec-
trical charge or the continuity equation of electrical cur-
rent flow.
We can now proceed to investigate how the charge

density 𝜌 varies with time. We will assume that the
medium containing this charge obeys Ohm’s Law. This
is most recognizable as the relationship V = IR, but in
terms of the current density and electric field is given as
J = 𝜎mE, where 𝜎m is the conductivity of the medium.
Equation (3.57) can thus be written as:

𝜕𝜌

𝜕t
+ ∇ ⋅ 𝜎mE = 0

From Equation (3.29) we also have for a homogeneous
medium of relative permittivity 𝜀m

∇ ⋅ E = 𝜌

𝜀o𝜀m

so that Equation (3.57) has the form:

𝜕𝜌

𝜕t
+

𝜎mE
𝜀o𝜀m

𝜌 = 0
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The solution to this differential equation is given by:

𝜌 = 𝜌o exp
(
−

𝜎m
𝜀o𝜀m

t
)

(3.58)

where 𝜌o is the initial charge density at time t = 0. Thus,
the charge density decays to 1/e (i.e., to 37%) of its original
magnitude 𝜌o (which may be positive or negative) in a
time 𝜏 given by

𝜏 =
𝜀o𝜀m
𝜎m

(3.59)

This is known as the characteristic relaxation time
describing the decay of the charge density to zero and
can also be expressed as a characteristic frequency fc =
1/(2𝜋𝜏). This result demonstrates an important theorem
in electrostatics, namely that within a normal dielectric
medium (i.e., not an ideal dielectric exhibiting zero con-
ductivity) a permanent distribution of free charge can-
not exist for an indefinite period of time. If we make the
analogy that a dielectric with an initial local region of
stored charge density behaves as a microscopic resistor-
capacitor (rc) element, of effective areaΔA and thickness
Δd, then r = Δd/(𝜎ΔA) and c = 𝜀o𝜀rΔA/Δd. Inserting
these identities into Equation (3.59) leads to the relation-
ship 𝜏 = rc, which students of basic electronics will recog-
nize as the characteristic time constant for the charging
and discharging of a capacitor. However, a more appro-
priate analogy is to consider the heterogeneous capac-
itor depicted in Figure 7.10, with our bounding sur-
face S touching the interface between the two different
dielectric media. It is shown in Chapter 7 that this form
of heterogeneous system exhibits interfacial (Maxwell–
Wagner) polarization with a relaxation time given by
Equation (7.28):

𝜏MW = 𝜀o
𝜀′1d2 + 𝜀′2d1
𝜎1d2 + 𝜎2d1

For the situation d1 ≈ d2 and where region 2 is an
aqueous electrolyte in contact with a cell membrane
material (region 1), then 𝜀2 < 𝜀1 and 𝜎2 ≫ 𝜎2 and
the predicted relaxation time is close to that given by
Equation (3.59). Of particular relevance to the dielec-
trophoretic behaviour of a biological cell is the relaxation
time derived for the interfacial polarization of a spheri-
cal particle suspended in a dielectric medium, given by
Equation (9.7) and of the form:

𝜏 = 𝜀o
𝜀p + 2𝜀m
𝜎p + 2𝜎m

(3.60)

We will find in Chapter 9 that below ∼1MHz the
dielectric properties of a viable mammalian cell are dom-
inated by the conductivity (almost zero) and capacitance
of its plasma membrane.The applied electric field hardly

penetrates into the cell interior. From Table 9.3 a typi-
cal value for the relative permittivity of the membrane
material is ∼6, which can be taken as the value for 𝜀p
in Equation (3.60). A cell thus appears as an insulating
particle so that the value for 2𝜎m is much larger than
𝜎p. We also have 2𝜀m (∼160) as being significantly larger
than 𝜀p. The approximate value for the relaxation time
of the interfacial polarization, known as the dielectric 𝛽-
dispersion, for a mammalian cell is thus 𝜏 ≈ 𝜀o𝜀m/𝜎m.
The aqueous buffers used for the suspending medium in
dielectric and dielectrophoretic measurements with cells
typically have an 𝜀m value close to 80 and conductivities
of 20∼50mS/m. A value for 𝜏 of around 15∼35 ns can
therefore be predicted, corresponding to a characteris-
tic frequency ([1/(2𝜋𝜏]) of 5∼10MHz.The characteristic
frequency observed for the 𝛽-dispersion of blood cells is
typically in this range, as shown in Figure 9.8 for the case
of a suspension of red blood cells.

. Summary

Two important facts have been described in this chapter:
An ideal metal conductor is unable to sustain an inter-

nal electrostatic field. The conduction electrons in the
bulk of a metal respond to an applied field in a way that
exactly cancels an applied electric field. If a metal is elec-
trically charged, either positively or negatively by con-
necting it to the positive or negative terminal of a battery,
for example, the deficiency or excess of electronic charges
are located solely on the surface of the metal.
An ideal dielectric is unable to conduct electrical cur-

rent and can support a large electrostatic field. A dielec-
tric is electrically polarized in an electric field, manifest-
ing itself as the appearance of bound polarization charges
on the surface of the dielectric. A polarized dielectric
takes on the form of an electric dipole characterized by
an induced dipole moment per unit volume P, related to
the bulk relative permittivity 𝜀r and the average field E
within the dielectric by the relationship:

P = (𝜀r − 1)𝜀oE

The polarization vectorP corresponds inmagnitude to
the bound surface charge density induced on an electrode
surface by the polarized dielectric and is directed along
the direction of the applied field.
A nonideal dielectric, or a region of nonvanishingly

small conductivity within an ideal dielectric, cannot
support a permanent distribution of free charges. An
example of direct relevance to the dielectric and dielec-
trophoretic behaviour of biological cells in suspension
is interfacial polarization arising from the field-driven
accumulation of charges at the cell’s surface. On removal
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of the field this charge decays back to zero with a charac-
teristic relaxation time 𝜏 . Details and the consequences
of this are described more fully in Chapters 6, 7 and 9.
These concepts follow on directly from the nature of

electric charges and how, through the electric fields they
produce, are able to exert a force on other distant charges.
An isolated charge interacts with the electric field E cre-
ated by other charges but is not influenced by its own
field.
Two other important concepts have also been

described in this chapter, namely:
The net electric flux of force (D = 𝜀o𝜀rE) through

a closed surface surrounding a distribution of charges
in a medium of permittivity 𝜀o𝜀r is equal to the net
magnitude of the enclosed charges. This result is given

by Gauss’s Law and is an equivalent way of express-
ing the empirical relationship obtained by Coulomb that
describes the interaction of two point charges located in a
vacuum.
Gauss’s Lawprovides a simpleway to calculate the elec-

tric field produced by various uniform distributions of
charge on conducting surfaces. Examples of this include
the field produced by a uniform distribution of charge
along a wire or on a flat surface and between charged
flat, spherical or cylindrical electrodes. The fields and
field gradients produced by such charge distributions are
given in Table 3.2. The charge distributions are assumed
to be infinite in extent – the field relationships given in
Table 3.2 do not apply in regions close to an electrode
edge.
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Electrical Potential Energy and Electric Potential

. Introduction

An enduring memory for this author is of a filmed lec-
ture given several times by the famous physicist, Richard
Feynman, in which he used a ‘swinging ball of death’ to
demonstrate the principle of conservation of energy. He
took hold of a heavy brass ball suspended by a long chain
andwalked backwardswith it until the chainwas taut and
the ball touched the end of his nose. He released the ball,
allowing it to swing across the auditorium and over the
heads of the students, who began gasping in horror when
it gathered momentum on a return path back towards
his face. Feynman stood still and remained so even as
the gasps grew louder and more frantic. But of course,
he was not at all concerned – he knew that the kinetic
energy gained by the ball would not exceed the gravita-
tional potential energy it had gained when lifted to touch
his nose. On its return the ball would not smash into his
face, but come to rest just in front of it before swing-
ing back again. In doing this he illustrated the reversible
conversion between potential and kinetic energy, which
is a characteristic of a conservative force, as described
more fully in Box 4.1. Examples of nonconservative
forces include air resistance and friction. Their effect in
reducing the kinetic energy of a body is not reversible.
Feynman’s ‘ball of death’ experienced frictional air resis-
tance and this is why on its return path it came to rest just
in front of his nose.
On bringing the ball from its hanging-down, resting,

position up to his nose, Feynman’s hands exerted an
equal but opposite force to that acting to accelerate the
ball downward in the earth’s gravitational field.This force
is the weight mg of the ball, where m is the ball’s mass
and g is the acceleration due to gravity. Close to the sur-
face of the Earth the gravitational force can be assumed
constant. Lifting the ball a height h above its equilib-
rium position increased the ball’s gravitational potential
energy by an amountU =mgh. At the moment of releas-
ing the ball its velocity v was zero and hence its kinetic
energy 1/2(mv2) was also zero. Assuming negligible air

resistance, when the ball executed its swing back down
to its initial resting position it would at that moment
have lost the added potential energy and converted all of
it into kinetic energy. This increase in the ball’s kinetic
energy from its initial resting state was thus also equal
to the work done on the ball by Feynman’s hands. As
explained in Box 4.1, this is an expression of the work-
energy theorem, which states that the work done by the net
force on a body is equal to the change in the body’s kinetic
energy. At any instant during its swinging back and
forth, the algebraic sum of the ball’s potential and kinetic
energy remained constant. As the potential energy
increased by a certain number of joules, the kinetic
energy decreased by the same amount and vice versa.This
is why Feynman knewhe could stand stock still during his
demonstration.
Feynman’s lecture concerned the action of the earth’s

gravitational field on an object having mass. An electri-
cal force shares the same property as a gravitational force
in being a reversible, conservative, force. The purpose of
this chapter is to describe how the concepts of a conser-
vative force and the work-energy theorem, widely used in
the subject ofmechanics, are also relevant to understand-
ing an electrokinetic effect such as dielectrophoresis.

. Electrical Potential Energy

The concepts of work and potential energy described in
Box 4.1 will now be applied to examples of the interac-
tion of electric fields with charged bodies, commencing
with the situations described inChapter 2. In Figure 4.1, a
positively charged particleQ is located in a uniform elec-
tric field Ex. There are no components of the field acting
along the y- and z-axes.
The field exerts a force of magnitude QEx on the posi-

tively charged particle and this force is directed along the
positive x-axis and remains constant irrespective of the
particle’s location in the field. From Equation (4.1) given
in Box 4.1, the positive workW done by the fieldwhen the

Dielectrophoresis: Theory, Methodology and Biological Applications, First Edition. Ronald Pethig.
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Box . Work, Potential Energy and the Work-Energy Theorem

In the SI system the unit of work is the joule, with dimen-
sions of newton-metre (1 J = 1 N.m). The unit of work is thus
the product of the unit of force and the unit of distance. If a
constant force F acts on body so that it moves a distance s
in a straight line along the direction as the force, the magni-
tude of the work W done on the body by the force is given
by:

W = Fs (4.1)

For the general case, where the force is not constant
and the body moves at an angle 𝜃 to it, the work done is
calculated by summing up the product Fcos𝜃.ds for each
incremental distance ds taken along the total displacement
between points a and b. Mathematically this is given by the
equation:

W =
∫

b

a
Fcos𝜃 ds (4.2)

In this equation, if b=a, the integral is zero, meaning that
when the end and start points are the same the total work
is zero, no matter how tortuous the total path has been. The
work done can be positive, negative or zero. When the dis-
placement is at 90◦ to the force, cos𝜃 = 0 and so the work
done is zero. For example, the work done on Feynman’s
brass ‘ball of death’ by the tension in the pendulum arm is

zero, because this force has no component in the direction
of the ball’s motion.

The work Wab done by a conservative force in displacing
a body from point a to point b is equal to the negative of the
changeΔU in the body’s potential energy (i.e., Wab =−ΔU=
−(Ub − Ua). In other words, a conservative force acts to
push an object towards a lower potential energy. Note how
the gravitational force acts on the ‘ball of death’ described
in the introduction to this chapter. The gravitational force
does positive work when the ball is released and its poten-
tial energy decreases as it falls and then performs negative
work when the ball swings back up again as the potential
energy increases.

The work-energy theorem states that the change in
kinetic energy (ΔKE = KEb − KEa) following the displace-
ment of a body from point a to point b is equal to the total
net work Wab done on that body. We thus have the rela-
tionship Wab = (KEb − KEa), which, taken together with the
expression Wab = −(Ub − Ua), leads to the result:

KEa + Ua = KEb + Ub (4.3)

Thus, if the only work done on a body is accomplished by
a conservative force the sum of the kinetic energy and the
potential energy remains constant.

particle moves a distance s in the field direction is given
by:

W = Fs = QEs

This positive work by the field results in a reduction of
the particle’s electrical potential energy U. An analogy is
the reduction of potential energy of a rock sinking to the
bottom of a lake as a result of the work done on it by the
gravitational field. To move the positively charged par-
ticle in the opposite direction, back to its original loca-
tion where it had a higher potential energy, will require

+
Q

Ex

(a) (b)
+
Q

y

U xz

Figure . (a) When a positively charged particle Q moves in the
direction of a uniform electric field Ex, the field does positive work
on the particle and its potential energy U decreases. (b) If the
particle moves in the opposite direction, against the field, the field
does negative work and the particle’s potential energy increases.

work to be done against the electrostatic force – so that
the field performs negative work. (This is analogous to
working against gravity in order to bring the rock back
up to the surface of the lake.) If we replace the positive
charge on the particle with negative charge, its potential
energy will increase when it moves in the direction of the
field along the positive x-axis and will decrease when it
moves against the field. (This is analogous to exchanging
the rock for an air bubble of the same size and shape in
water.)
To illustrate the conservative nature of an electrostatic

force, Figure 4.1 is reconfigured to the form of Figure 4.2
to reinforce the analogy between a particle moving under
the action of an electrical force and a gravitational force.
In Figure 4.2, a positively charged particle is located at

position a in a uniform field E generated between two
parallel plate electrodes. The electrostatic force QE is
constant and acts on the particle so as to accelerate it
towards the bottom electrode (cathode). This is analo-
gous to the particle having massm with a constant grav-
itational forcemg acting to accelerate it downwards. The
potential energy of a particle at a height x and acted on by
a gravitational force ismgx and so by analogy the poten-
tial energy of a positively charged particle at a location x
and acted on by an electrical force QE is QEx. The work
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Figure . The dotted lines show two possible paths that can be
taken by a positive charge Q moving from location a to location b
in a uniform electric field E established between two charged
parallel electrodes. Although the paths differ, the work done by
the field is the same and equal to QEs. In moving from a to b the
electrical potential energy of the particle decreases by the amount
QEs.

Wab done by the electric field is given by Equation (4.2)
in Box 4.1 and is independent of the path taken by the
charged particle in moving from location a to location b
in Figure 4.2. The change in potential energy ΔU is given
by the relationship:

Wab = −ΔU

where ΔU = Ua − Ub = QE(a − b). In Figure 4.2, loca-
tion b is farther than location a along the x-axis, so that
(a − b) is a negative quantity (equal to −s). The change in
electrical potential energy ΔU is thus negative and equal
to −QEs.

Example 4.1 Work Done and Electrical Potential
Energy
An extra force is applied to a particle carrying a charge
of 10−9 C so as to move it slowly against the direction
of a uniform field of magnitude 104 N/C. The particle is
moved a distance of 1 cm against the field direction.

1. Has the particle lost or gained electrical potential
energy after this displacement?

2. Calculate the change in electrical potential energy of
the particle.

3. Why has it been specified that the particle is moved
‘slowly’?

Solution 4.1

1. The extra force slightly exceeds and is opposite to
that exerted by the electric field and so does positive
work on the particle – equivalent to saying that the
field does negative work (−W). From the definition
W = −ΔU we deduce that because the work done is
negative the particle has gained potential energy.

2. The work done is given by:

W = force × displacement.

+
q1

rb

ra

Q0

Figure . The work done on the test charge Q0 in moving it from
location a to location b, in the radial electric field produced by
charge q1, depends on the difference between the radial distances
ra and rb and not on the path taken by Q0, or whether the field is a
uniform one.

The displacement is −d (i.e., is in a direction oppo-
site to that of the field), so that:

W = (QE) × −d = −(10−9 C)(104 NC−1)
× 10−2 m = −10−7 J

3. The particle is specified as moving ‘slowly’ so that any
kinetic energy given to it can be neglected in calculat-
ing the change in potential energy.

The concept of electrical potential energy can be applied
to the general case of charged particles in an arbitrary
electric field.The field need not be uniform. For example,
consider the case shown in Figure 4.3 of a point chargeQ0
that is moved slowly in the vicinity of a stationary point
charge q1.
An electric force is a conservative one so the change

in potential energy in movingQ0 from location a to loca-
tion bwill not depend on the path taken.The field around
the single point charge q1 has radial symmetry and so
we can consider an equivalent path to be along a radial
line from a to b as shown in Figure 4.3. This can also be
deduced from Equation (4.2) in Box 4.1 because the fac-
tor cos𝜃.ds is equivalent to a small displacement dr along
a radial field line.
The magnitude of the radial field Er at a distance from

charge q1 is given by Equation (3.8) of Chapter 3:

Er =
1

4𝜋𝜀o𝜀r

q1
r2

The force acting on charge Q0 is given by:

Fr = Q0Er =
1

4𝜋𝜀o𝜀r

Q0q1
r2

(4.4)

This force is not constant along the displacement path
and so calculation of the work doneWab requires the fol-
lowing integration:

Wab =
∫

b

a
Frdr =

∫

b

a

1
4𝜋𝜀o𝜀r

Q0q1
r2

=
Q0q1
4𝜋𝜀o𝜀r

(
1
ra

− 1
rb

)
(4.5)
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This work done by the field is equal to the negative of the
change in the potential energy, so that

Wab = −ΔU = −(Ub − Ua) (4.6)

Equations (4.5) and (4.6) are compatible if we define

Ua = 1
4𝜋𝜀o𝜀r

Q0q1
ra

(4.7)

and

Ub =
1

4𝜋𝜀o𝜀r

Q0q1
rb

(4.8)

Equation (4.7) describes the potential energy of the sys-
temof both chargeswhenQ0 is at a radial distance ra from
the stationary charge q1. When ra is an infinite distance
away the potential energy Ua is zero. We can therefore
interpret Equation (4.6) as the work required to bring a
test chargeQ0 from rest at infinity up to a radial distance
ra from the stationary charge q1. If Q0 and q1 are of the
same polarity (either both positive or both of them neg-
ative) then an added force must be applied to oppose the
repulsive electrostatic force between the two charges. In
this case there is an increase of the potential energy of
the charges, taken as a pair. If Q0 and q1 are of opposite
polarity the field of q1 does positive work on Q0 and the
potential energy decreases. Equation (4.8) can be used to
describe the situation where Q0 remains stationary and
q1 is the test charge at a radial distance rb.
In general we are interested in the case where a test

chargeQ0 is displaced in an electric field created by a dis-
tribution of point charges q1, q2, q3, . . . qi (e.g., along an
electrode edge) at distances r1, r2, r3, . . . ri from the test
charge. The electric field at each location along the dis-
placement path taken by qi will be the vector sum of the
radial fields created by each of the point charges qi. The
total work done onQ0 by this fieldwill be the sumof these
contributions. From Equation (4.7) the electrical poten-
tial energy associated with the test chargeQ0 located at a
specific point is given by:

U =
Q0

4𝜋𝜀o𝜀r

(q1
r1

+
q2
r2

+
q3
r3

+⋯ +
qi
ri

)
=

Q0
4𝜋𝜀o𝜀r

∑
i
qi
ri

(4.9)

where r1, r2, r3, . . . ri are the distances from the fixed
point charges q1, q2, q3, . . . qi to the location of the test
charge Q0. When Q0 is displaced the distances r1, r2,
r3, . . . change accordingly. The work done by the field
on Q0 to give such displacement is equal to the negative
of the potential energy difference between the start and
finish points of this displacement.

The total electrical potential energy for the general case
of a collection of point charges is given by the following
modification of Equation (4.9):

U = 1
4𝜋𝜀o𝜀r

∑
i<j

qiqj
rij

(4.10)

We can interpret Equation (4.10) as the result of ini-
tially having a collection of charges widely separated
apart from each other. This establishes our reference for
zero electrical potential energy. The charges are then
brought together so that the distance between q1 and q2
is r12 and so on for the general situation where qi and qj
are separated by the distance rij. The electrostatic inter-
actions between all possible pairing of the charges are
added. The inequality expressed as i < j and attached to
the summation symbol Σ ensures that we do not include
a charge interacting with itself and also that we include
any one pair of charges only once.

Example 4.2 Work Done in Assembling a Distribu-
tion of Charges
We revisit Example 3.2 and Figure 3.6 of Chapter 3, in
the form of Figure 4.4.Three charges q1, q2, q3 are shown
spaced in air along a straight line. Their sizes are much
smaller than their spacing apart (i.e., they can be treated
as point charges). We are given that: x = y = 1mm; q1 =
q3 = 1.4 pC; q2 = −1.0 pC.
Calculate the work performed when q3 was brought

from infinity to its location alongside q2 and q3 as shown
in Figure 4.4.

Solution 4.2 The potential energy of the assembly of
three charges is given by Equation (4.10) as:

U = 1
4𝜋𝜀o𝜀r

(q1q2
r12

+
q1q3
r13

+
q2q3
r23

)
(4.11)

q2q1 q3

x y

+

+-+

Figure . A positive charge q3 (+1.4 pC) is brought from ‘infinity’
to the location shown alongside charges q2 (−1.0 pC) and q1
(+1.4 pC). What is the work required to achieve this action and has
the net potential energy of the system of charges increased or
decreased?
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Thepotential energy associated with q1 and q2 when q3 is
located at infinity is calculated fromEquation (4.11) using
the values r13 = r23 =∞:

U∞ = 1
4𝜋𝜀o𝜀r

(q1q2
r12

)
(4.12)

The differenceΔU between Equations (4.12) and (4.11)
equates to the negative of the work W done by the field
created by q1 and q2 on bringing q3 to its location from
infinity. We can express this relationship as:

W = −(U −U∞) = − 1
4𝜋𝜀o𝜀r

(q1q3
r13

+
q2q3
r23

)
= −

q3
4𝜋𝜀o𝜀r

( q1
r13

+
q2
r23

)
(4.13)

As expected, this gives the equivalent result to Equation
(4.9).We have q1 = q3 = 1.4 pC; q2 =−1.0 pC; r13 = 2mm;
r23 = 1mm.Thus, from Equation (4.13):

W = −
q3

4𝜋𝜀o𝜀r

( q1
r13

+
q2
r23

)
= −1.4× 10−12 C

4𝜋𝜀o𝜀r

(
1.4× 10−12 C
2× 10−3 m

− 1.0× 10−12 C
1× 10−3 m

)
= −1.4 × 10−12 C

4𝜋𝜀o𝜀r

(
−0.6 × 10−12 C

2 × 10−3m

)
= (9 × 109 Nm2C−2)(4.2 × 10−22 C2m−1)

= 3.78 × 10−12 Nm (joules)

Positive work has been performed by the net field of q1
and q2 in bringing q3 into position. The attractive force
that q2 exerts on q3 is thus greater than the repulsive force
exerted by the far more distant q1 and the net electri-
cal potential energy has decreased. (Bringing like charges
together increases their potential energy; bringing unlike
charges together decreases their potential energy.)

. Electrical Potential

Theelectrical potentialV at any point in an electrical field
is defined as the potential energy U per unit charge asso-
ciated with a test charge Q0 located at that point in the
field:

V = U
Q0

N⋅m∕C (4.14)

In the SI system of units the unit of electrical potential is
the volt:

1 volt = 1 joule per coulomb.

In Chapter 2 the concept of an electrical field was
described as the force per unit charge that the field exerts
on a test charge Q0. An electric field E thus has units
of N/C, which is equivalent to (N.m/C)/m. From Equa-
tion (4.14), a potential V has units of N.m/C. In other
words, the unit of electric field can be expressed as one
volt per metre. This is the unit commonly used by electri-
cal and electronic engineers and will be adopted in this
book.
Expressing Equation (4.6) on a per unit charge basis we

have:

Wa−b
Q0

= −ΔU
Q0

= −
(Ub
Q0

−
Ua
Q0

)
= −

(
Vb − Va

)
= Va − Vb (4.15)

We interpret this equation as stating: ‘Thepotential dif-
ference (Va − Vb) between location a and location b is
equal to the work done by an electric field in moving a
body of unit charge from a to b in this field.’
A potential difference (Va − Vb) becomes a useful

concept if we can define Va as a reference potential.
Although the Earth’s surface is on average charged neg-
atively with respect to the atmosphere and this charge
fluctuates as a result of precipitation and lightning
strikes, the Earth serves as a reasonably stable reference
potential for practical electrical devices. Electrical
engineers commonly employ the Earth’s potential (also
known as ground potential) as a fixed reference and use
the expression ‘voltage’ when referring to the potential
difference with respect to ground at a particular part of
an electrical circuit.
For the theoretical calculations in this book we will

employ a physicist’s usual practice of using as our ref-
erence the zero potential associated with a test charge
at rest and located an infinite distance away from any
other charge. Being at rest ensures that the test charge
has zero kinetic energy. Being an infinite distance away
from any other charges ensures that the test charge is
not exposed to the influence of the electrical field from
any other charge and is at a location of zero potential.
Using this convention, where V∞ is zero, we can rear-
range Equation (4.15) to the form:

W∞−b
Q0

= −
(
Vb − V∞

)
= −Vb (4.16)

This equation provides another way to define electrical
potential: ‘the potential Vb at location b is equal to the
negative of the work done by an electric field in moving
a body of unit charge from infinity to location b in this
field.’
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From Equation (4.13), which relates to bringing a test
charge q3 from infinity to a location b in a field created
by charges q1 and q2, we can calculate the potential at
the location of q3 using the following equation:

Vb =
−W
q3

= 1
4𝜋𝜀o𝜀r

( q1
r13

+
q2
r23

)
(4.17)

This equation informs us that a body having positive
charge will have a positive potential when placed in an
electric field created by a distribution of positive charges.
A body of negative charge placed in the field created by
a distribution of negative charges will also have a posi-
tive potential.This is equivalent to stating that the poten-
tial energy of a system of like charges increases as they
are brought closer together. An added external force is
required to bring a charged body at rest from infinity
towards a field created by charges of the same polarity as
itself. This is equivalent to the field of the other charges
performing negative work on the body. On the other
hand, a positive charge brought into the field created by
a distribution of negative charges will find itself in a loca-
tion of negative potential. The same result occurs for a
negative charge brought into the field of positive charges.
The field does positive work when a charged body moves
from infinity towards a collection of charges of opposite
polarity to that of the body.
The potential at any point in space due to a collection

of charged spherical electrodes, each treated as a point
charge, is given by the algebraic sum of the potentials of
each charge.This involves evaluation of the more general
form of Equation (4.17):

V (r) = 1
4𝜋𝜀o𝜀r

∑
i

Qi
ri

(4.18)

In this equation the potential V is evaluated at a distance
ri from each charge Qi and all of the values are added
together algebraically. A positive charge Qi produces a
positive contribution to the overall potential and if Qi is
negative its contribution is a negative potential. An arbi-
trary value can be used for the positive test charge used
to define the work done to bring it from infinity to the
location of evaluation. A simple example is two charges
Qi of equal magnitude and opposite polarity that form an
electric dipole.This is equivalent to designating q2 =−q1
in Equation (4.17). Figure 4.5 shows how the potential
varies with distance from a dipole formed of two point
charges. Contours that join potentials of the same value
can be drawn as shown in Figure 4.5 and these are known
as equipotential contours – or equipotential surfaces if
drawn in three-dimensional space.
If instead of a collection of point chargeswe have a con-

tinuous distribution of charge along a wire (𝜆 C/m), or
over a surface (𝜎 C/m2), or within a volume (𝜌 C/m3) the

zero

+–

positive

negative

(a)

(b)

+
–

Figure . (a) A 2D plot of the equipotentials of a dipole. Along
the line equidistant from both charges the potential is zero. The
potential is also zero at infinite distances from both charges. (b) A
3D plot of the variation of the potential in the vicinity of a point
dipole.

charge is divided up into small elements dq and the sum-
mation sign Σ in Equation (4.18) becomes an integration
sign av

V (r) = 1
4𝜋𝜀o𝜀r ∫

dq
r

(4.19)

where r is now the distance from the charge element dq
to the point of evaluation of the potential V.
Equations (4.18) and (4.19) can be used to find the

potential due to a collection of charges or a uniform dis-
tribution of charge. However, in some cases we have the
situationwhere these quantities are not known, butwe do
know or can calculate the electric field E. In this case we
are able to calculate the potential difference between two
locations.The force on a test chargeQo used to probe the
potential is given by F = QoE. From Equations (4.2) and
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(4.15) the potential difference (Va − Vb) between loca-
tions a and b is given by the relationship:

(Va − Vb) =
∫

b

a
Eds =

∫

b

a
E cos 𝜃ds (4.20)

If the integral on the right-hand side of Equation (4.20)
is positive, the electric field has performed positive work
on a positive test charge as it moves from location a
to location b. This means that the potential energy per
unit charge has decreased and Va is greater than Vb. The
reverse is true if the integral is negative in value. This is
consistentwith the convention shown in Figure 4.2where
movement of the test charge in the same direction as the
field vector E is equivalent to moving in the direction of
decreasing potentialV.Movement against the field vector
is the same as progressing in the direction of an increas-
ing potential.

Example 4.3 Potential at a Point in a Field

1. With reference to Figure 4.4, calculate the potential at
the location of charge q3, for the case x = y = 1mm.
How does the potential at q3 change as distance x
tends to zero but the distance (x + y) between q2 and
q2 remains fixed at 2mm?

2. Calculate the potential at the location of charge q3
when distance x remains fixed at 1mm and distance y
increases to 1 cm. How does the potential at q3 change
as distance x remains fixed at 1mm, but distance y is
extended beyond 10m?

Solution 4.3

1. The potential at the location of q3 shown in Figure 4.4,
with x= y= 1mm, is equal to the negative of the work
W done per unit charge by the field in the movement
of q3 from infinity to that location.We have calculated
this work done in Example 4.2, obtaining the result:

W = 3.78 × 10−12 Nm

The potential at q3 is equal to the negative of this
work done per unit charge:

V = −W
q3

= (−3.78 × 10−12 Nm)∕(1.4 × 10−12 C)

= −2.7 Nm∕C = −2.7 V

The potential has decreased in magnitude on bring-
ing it from infinity. This agrees with the conclusion
expressed in Solution 4.2 that the attractive force of
the negative charge q2 dominates over the repulsive
force associated with the more distant q1.

We can determine how the potential V at q3
changes as a function of distances x and y using
Equation (4.17):

V = 1
4𝜋𝜀o𝜀r

( q1
r13

+
q2
r23

)
= 1

4𝜋𝜀o𝜀r

( q1
(x + y)

+
q2
y

)
(4.21)

As q2 is brought closer and closer to q1 (i.e., x → 0)
but the position of q3 remains fixed with respect to q1,
Equation (4.21) tends to the form:

V = 1
4𝜋𝜀o𝜀r

(q1 + q2
y

)
With q1 = 1.4 pC; q2 = −1.0 pC; y = 2mm:

V = 1
4𝜋𝜀o𝜀r

(
(1.4 × 10−12 C − 1 × 10−12 C)

2 × 10−3 m

)
= (9 × 109Nm2C−2)(2 × 10−10 Cm−1) = 1.8 V

This result informs us that when q3 is located at a
distance that is far greater than the separation between
q2 and q1, the combination of q2 and q1 acts as a net
positive charge (approaching a magnitude 0.4 pC as
the distance between q2 and q1 becomes very small).
An external force is required to bring the positive
charge q3 from infinity to a location 2mm from q2 and
q1. The field of q2 and q1 performs negative work and
the potential at the location of charge q3 has a positive
value.
The potential reverses polarity, from +1.8V to

−2.7V, as the distance x increases from a very small
value to 1mm. This indicates that at some value of x
the potential at q3 is zero. From Equation (4.21) this
situation occurs when:( q1

(x + y)
+

q2
y

)
= 0 (4.22)

For our case where q1 = 1.4 pC, q2 = −1.0 pC and
(x+ y)= 2mm, the solution for Equation (4.22) occurs
when x = 0.57mm and y = 1.43mm. When charges
q1, q2 and q3 are arranged as shown in Figure 4.4 with
these values for x and y, the potential at the location
of q3 is zero. No work at all was required to bring q3
from infinity to this location!

2. The potential V at q3 when it is located 1 cm
from q2 can be calculated using Equation (4.17) with
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q1 = 1.4 pC, q2 = −1.0 pC, r13 = 1.1 cm, r23 = 1.0 cm:

V = 1
4𝜋𝜀o𝜀r

( q1
r13

+
q2
r23

)
= 1

4𝜋𝜀o𝜀r

(
1.4 × 10−12 C
1.1 × 10−2 m

− 1 × 10−12 C
1 × 10−2 m

)
= (9 × 109 Nm2 C−2)

(
0.3 × 10−14 C
1.1 × 10−4 m

)
= 0.25 V

The positive value of this potential indicates that
the negative charge q2 now acts to screen q3 partially
from the repulsive force of q1. As q3 is moved further
away from q2, but keeping the distance between q2
and q1 fixed at 1mm, we approach the situation where
r13 ≈ r23 and V is given by:

V ≈ 1
4𝜋𝜀o𝜀r

(q1 + q2
r23

)
When q3 is located 10m from q2 we have:

V ≈ (9 × 109 Nm2C−2)
(
0.4 × 10−12C

10 m

)
= 3.6 × 10−4 V

For practical purposes we can therefore take dis-
tances greater than 10m as being a good approxi-
mation to an ‘infinite’ distance away from charges q1
and q2.

Example 4.4 Potential outside a Charged Metal
Sphere

1. Calculate the potential at a point 100μm in air outside
the surface of a copper sphere of radius 10μm , which
carries a total charge of 10 pC.

2. Calculate the value of this potential if the charged
sphere is now immersed in an aqueous electrolyte.

Solution 4.4

1. To solve this problem we make use of the result
obtained in section 3.3.2.2 of Chapter 3, where Gauss’s
Law was applied to find the field inside and outside of
a charged (solid or hollow) metal sphere of radius R.
The field inside the sphere is zero, but for distances
(r > R) outside the sphere the field is given by equa-
tion (3.38):

E = 1
4𝜋𝜀o𝜀r

Q
r2

This is the ‘Inverse Square Law’ given by Equa-
tion (3.8) obtained using Coulomb’s Law. Outside the
sphere the field varies as 1/r2. Thus, all of the charge
Q distributed on the sphere’s surface acts as a point
charge Q at the sphere’s centre. The potential at any
point r outside the sphere is thus equal to the negative
of the work done by the field in themovement of a unit
test charge from ‘infinity’ to the location r measured
from the centre of the sphere. We will use Equation
(4.17) for the casewhere the unit test charge is brought
towards a single point chargeQ.The potential at point
r > R is thus given by:

Vr =
1

4𝜋𝜀o𝜀r

Q
r

(4.23)

Inside the copper sphere (r < R) the electric field
is zero (see section 3.3.2.2 and Figure 3.19). No work
is therefore required to move a test charge within the
copper sphere and the potential inside and on the sur-
face is constant and fixed at the value given by Equa-
tion (4.21) with r = R. If we assume that the charged
sphere is located in air, then 𝜀r = 1.0 and 1/(4𝜋𝜀o𝜀r)
= 9 × 109 Nm2C−2. In Equation (4.23) we also have
Q = 10 pC and r = 110μm (we take r as the distance
from the centre of the sphere, not from its surface).
We thus calculate the potential at a point 100μm in air
(i.e., 𝜀r = 1.0) outside the surface of the copper sphere
as:

V = (9 × 109 Nm2C−2)
(

10 × 10−12 C
110 × 10−6 m

)
= 818 V

The potential at the surface and within the copper
sphere is given by setting r = 10μm in Equation (4.23)
and is 9000V.

2. On immersing the charged sphere in an aqueous elec-
trolyte the value of the relative permittivity of the
surrounding medium changes from 𝜀r = 1.0 to 𝜀r ≈
80. From Equation (4.23) the potential at a location
100μm from the surface is ∼818V/80 = 10.2V.

Example 4.5 Equipotential Surfaces around a Spher-
ical Electrode
A spherical metal electrode of radius R = 20μm,
immersed in an aqueous medium, is electrically ener-
gized at a potential of −10V with respect to a reference
zero potential located an infinite distance away from it.
At what distances d from the surface of the electrode has
the potential increased to values of −8V, −6V, −4V and
−2V?

Solution 4.5 At all points within the electrode and at
its surface, the potential is fixed at −10V. For locations
outside the electrode surface, Equation (4.23) gives an
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Figure . A cross-section is shown of the equipotential surfaces
(−8 V, −6 V, −4 V and −2 V) around a spherical electrode of radius
20 μm, electrified to a potential of −10 V with respect to a zero
reference at infinity. The radial field lines E intersect the spherical
equipotential surfaces at right angles.

inverse relationship between the potential and the dis-
tance r from the electrode centre:

Vr
VR

= R
r

Setting VR = −10V and R = 20μm, electric potential
values of −8V, −6V, −4V and –2V, respectively, occur
at distances d (d = r − R) of 5μm, 13.3μm, 30μm and
80μm, respectively. Each equipotential lies on a spher-
ical surface that is co-centric with the electrode. Cross-
sections of these equipotential surfaces are shown in Fig-
ure 4.6, together with the radial field lines that point
towards the centre of the electrode.
Figure 4.6 demonstrates an important relationship

between equipotential surfaces and electric field lines. If
a point test charge is moved over an equipotential sur-
face, the electric field can perform no work on it. There
can therefore be no component of the field tangential
to an equipotential surface. Thus, a field line will always
cross an equipotential contour at right angles, or stated
another way: equipotential surfaces and electric field lines
are always mutually orthogonal.

Example 4.6 Relationship between Electrode Sur-
face Charge Density and the Potential Difference
between Parallel Electrodes
Derive an expression that relates the charge density per
unit area on parallel electrodes, of the form shown in Fig-
ure 4.2, to potential difference between the electrodes.
Assume that the width of the electrodes is much greater
than the distance d between them, so that the field gen-
erated between them can be considered uniform.

Solution 4.6 The workWx done by the field E in mov-
ing a test charge q from the cathode to a location x above
the cathode is given by:

Wx = −qEx

From Box 4.1 this work done is equal to the negative of
the change in potential energy U, so that:

Ux −Uc = qEx

where Uc is the potential at the cathode. The potential V
at any location is the potential energy per unit charge, so
that:

Vx − Vc = Ex

When the distance x is equal to the distance d between
the cathode and the anode, Vx is the potential Va at the
anode, so that:

Va − Vc = Ed

The electric field between parallel electrodes is thus
equal to the potential difference between the electrodes
divided by the distance between them:

E =
(Va − Vc)

d
(4.24)

From Equation (3.21) of Chapter 3, the field in the
dielectric between two parallel electrodes is:

E = 𝜎

𝜀o𝜀r

where 𝜎 is the charge per unit area on the anode (or
−𝜎 on the cathode). From Equation (4.24) we derive the
relationship between the electrode surface charge den-
sity and the potential difference between the electrodes
(anode and cathode) as:

𝜎 =
𝜀o𝜀r(Va − Vc)

d
(4.25)

Example 4.7 Potential close to a Long Linear Distri-
bution of Charge
Determine the potential at a location r that is close
enough to a line of positive charge density 𝜆 for this
charge distribution to be considered of infinite length.

Solution 4.7 In section 3.3.2 the electric field E at a dis-
tance r from an effectively infinitely long linear charge
distribution was found to have only a radial component
given by Equation (3.16). This equation can be simplified
to the form:

E = 𝜆

2𝜋𝜀o𝜀rr
(4.26)
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We can now derive the potential difference between
the potential at r and a reference Vb by performing the
integration given by Equation (4.20):

(Va − Vb) =
∫

b

a
Eds

The field has only a radial component, so Eds= Edr. From
Equation (4.26) we thus have:

(Va − Vb) =

rb

∫

ra

𝜆dr
2𝜋𝜀o𝜀rr

= 𝜆

2𝜋𝜀o𝜀r
loge

rb
ra

(4.27)

We now have the interesting exercise of defining Vb
more clearly. We have usually defined a zero potential
reference to be a test charge at rest at infinity. However,
inspection of Equation (4.27) reveals that if we chooseVb
to be zero when rb is set at infinity, then Va has an infi-
nite value for all distances ra!This situation arises because
we have assumed that our linear charge density 𝜆 extends
to infinity – otherwise Equation (4.26) is not valid (see
Example 3.5). However, we can avoid this problem by
defining the potential Vb to be zero at an arbitrary radial
distance of r0 from the linear charge distribution. The
potential at a radial distance r, with respect to this ref-
erence zero, is thus given by:

V (r) = 𝜆

2𝜋𝜀o𝜀r
loge

r0
r

(4.28)

The linear charge density 𝜆 is positive, so that for radial
distances less than r0 the potential is positive and for
distances further away than r0 the potential is negative.
When r = r0 the factor loge(r0/r) in Equation (4.28) is
equal to loge1 (i.e., zero) and so the potential is zero. It is
important to note that Equation (4.28) gives a potential
value relative to our artificial reference zero at r0 – we do
not obtain the absolute value of the potential at any loca-
tion.This is clear from Equation (4.27), which shows that
we are determining the change of potential (Va − Vb) in
moving from location b to a and have chosen Vb to be
zero at a location given b = r0.

Example 4.8 Potential Close to a ChargedMetal Rod
Determine how the potential varies with radial location r
outside a long charged metal rod, far away from the ends
of the rod.

Solution 4.8 As shown in the derivation of Equation
(3.36), Equation (4.26) also describes the potential close
to a charged long metal rod or wire. The field within and
at the surface of a metal rod is zero. Equation (4.28) can
thus be modified by defining the radius R of the rod to
be the radial distance r = r0 at which V(r) is designated
as the reference zero. The potential at radial distances r

outside a charged metal rod of radius R carrying a linear
charge density 𝜆 (C/m) is thus given by the relationship:

V (r) = 𝜆

2𝜋𝜀o𝜀r
loge

R
r

(r ≥ R) (4.29)

For radial distances r ≤ R, measured from the central
axis of a metal rod, the electric field is zero. The poten-
tial is constant and the same as the reference value desig-
nated as zero at the surface of the rod. Again, as for Exam-
ple 4.7 it is important to appreciate that we do not obtain
absolute values of the potential using Equation (4.29).
The rod carries an electrical charge and so its absolute
potential value cannot in reality be zero. We have simply
chosen, for mathematical convenience, to designate the
potential of the rod as our reference zero level.

4.3.1 Molecular Electrical Potential Surface

Molecules are formed from atomic nuclei and their
electrons. The electrons create a negative electrical
potential in the space surrounding the molecule, whilst
the positively charged nuclei create a positive potential.
The nuclei can be considered as point charges, whereas
the electrons form a diffuse cloud of negative charge.
The electrical potential V(r) at each point r in space
around a molecule can be represented as a combination
of Equations (4.18) and (4.19):

V (r) = 1
4𝜋𝜀o𝜀r

[∑
A

ZA||RA − r|| − ∫

𝜌(r′)|r′ − r|dr′
]

(4.30)

In this equation ZA is the charge on nucleus A, located
at RA and 𝜌(r) is the electronic charge density function
[1, 2]. The charge density function is a measure of the
probability of finding an electron at any location and is
quantified in units of electrons / bohr. The atomic radius
of the hydrogen atom (Z = 1) is given by the most prob-
able radius of orbit of its single electron. This is known
as the Bohr radius and has a value of 5.3 × 10−11 m. A
contour in three dimensions of 𝜌(r) = 0.002 electrons
per cubic bohr is normally assumed to encompass at
least 95% of the electronic charge of a molecule and
represents a physically reasonable representation of its
shape and dimensions [1].
Knowledge of the electrostatic potential surface of a

molecule has become an effective tool for interpreting
and predicting the reactivity of a molecule towards other
chemical ligands. An approaching electrophile will tend
to head towards those surface regions of the molecule
whereV(r) attains itsmost negative values (i.e., localmin-
ima of the electrostatic surface) because this is where the
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molecule’s electrons are most dominant and potentially
available to form valence bonds with other atoms.

. Electrostatic Field Energy

From Equation (4.16) the electrical potential (defined as
the potential energy per unit charge) at a point in an elec-
trical field is equal to the work done against the field E in
bringing a unit charge from infinity to that point. We can
thus write the energy of a point charge q2 in the field of a
single point charge q1 as:

U = q2V21

where V21 is the potential at q2 due to q1. We can also
say that the potential is equal to the work returned by the
system as one of these charges is taken back to infinity.
The two charges therefore have a mutual and reciprocal
energy, so that

U = q1V12 =
1
2
(q1V12 + q2V21)

Bringing another charge q3 into the field increases the
energy:

U = q2V21 + q3(V31 + V32)

The mutual energies of charge pairs also allow us to
express this as:

U = 1
2
(V12 + V13)q1 +

1
2
(V21 + V23)q2

+ 1
2
(V31 + V32)q3

Extending this logic to a complete and closed system of
n charges:

U = 1
2

n∑
i=1

n∑
j=1

Vijqi =
1
2

n∑
i=1

Viqi(i ≠ j)

where Vi is the potential qi due to the remaining n − 1
charges in the closed system. If we designate Vo as the
potential arising from the charges being uniformly dis-
tributed with a volume density 𝜌 throughout a dielectric,
the energy can be expressed as a volume integral:

U = 1
2 ∫v

Vo𝜌dv (4.31)

This integral must be carried out over a volume that
encloses all of the charge.
Charges are rarely distributed throughout the bulk vol-

ume of a dielectric, but appear as a surface charge density
𝜎 on conductors that form, for example, the electrodes
of a capacitor. In this case the increase in the potential
energy of the field results from work done by the elec-
tromotive force of a battery in building up this surface

charge and can be evaluated from a surface integral of
the form:

𝛿U =
∫s

Vo𝛿𝜎da

Stratton [3, p. 110] makes the analogy of the energy
stored in the field resembling the potential energy stored
within an extended spring. The elastic energy of an ideal
spring is equal to (kx2)/2 where k is the force constant
of the spring and x is the extension or compression of
the spring length. We will find in section 4.4.1 that the
energy stored in a capacitor is equal toQ2/2C.With Strat-
ton’s analogy the charge Q is equivalent to x and 1/C to
the force constant k. The energy of an inhomogeneously
stressed elastic medium such as a spring is concentrated
principally in regions of greatest strain. In this case the
elastic energy per unit volume has a very definite sense.
Although the analogy of the electrostatic to the elastic
field is not a close one, Stratton considers it plausible to
suppose that the electrostatic energy is localized in the
more intense regions of the field and distributed with a
density:

𝛿u = E ⋅ 𝛿D

where D is the displacement vector D = 𝜀o𝜀rE. The total
energy stored in the field can thus be obtained from the
volume integral:

U =
∫v

D

∫

0

E ⋅ 𝛿Ddv

where, following the form of Equation (3.50), the incre-
ment 𝛿u is integrated from the initial state D = 0 with-
out an applied field to the final state D = 𝜀oE + P. If the
dielectric medium is isotropic and linear in its response
to an applied field, then 𝜀r (and hence D) may possibly
be a function of location but will be independent of E. In
which case the integration of E ⋅ 𝛿D for increments 𝛿u is
equal to (𝜀o𝜀r 𝛿E2)/2, so that

U = 1
2 ∫

v

𝜀o𝜀rE2dv (4.32)

The integral in this case must be carried out over a vol-
ume that encompasses all regions where the field E exists.
The electric field energy (joules) per unit volume is thus
given by:

u = 1
2
𝜀o𝜀rE2 (4.33)

4.4.1 Potential Energy of a Charged Capacitor

From the work-energy theorem we can derive the poten-
tial energy of a charged capacitor by evaluating the work
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required to give it a final charge (per electrode) Q and a
potential difference V across its electrodes. If we assume
that during this charging process we have attained a
charge q and potential difference v, then from Equation
(3.53) at this stage we have v = q/C, where C is the
capacitance of the capacitor. The increment of work dW
required to add another elemental charge dq is

dW = vdq =
qdq
C

The total workW required to fully charge the capacitor
is given by integrating these increments:

W =

W

∫

0

dW =

Q

∫

0

1
C
qdq = Q2

2C
(4.34)

This is the work done by an electromotive force derived
from a battery. It is also the work done by the field
between the capacitor electrodes on the charges during
the discharging of the capacitor. If we define the totally
discharged state of the capacitor to be the reference zero
of its potential energy, then from the work-energy theo-
rem Equation (4.34) defines the potential energyU of the
charged capacitor:

U = Q2

2C
= 1

2
CV 2 (4.35)

where V is the potential difference across the electrodes
when the capacitor is at its full charge Q per electrode.
A capacitor device can therefore store both charge and
energy. If the task of the capacitor is to transfer charge
around an electrical circuit, the work required to do this
is inversely proportional to the capacitance C. This is
reflected in assigning to a capacitor an equivalent elec-
trical resistance known as its reactance Xc, where Xc =
1/(𝜔C). If the function is to store energy, then this task
also increaseswithC.We can think of this energy as being
stored in the field between the capacitor’s electrodes.The
energy stored per unit volume is then the energy den-
sity u. For a parallel plate capacitor with plate area A and
separation d, the volume containing the field (neglecting
fringing at the electrode edges) is Ad. The energy density
is thus:

u =
1
2 (CV

2)
Ad

=
1
2 (A𝜀o𝜀r∕d)V 2

Ad

= 1
2
𝜀o𝜀r

V 2

d2
= 1

2
𝜀o𝜀rE2

which gives the same result as Equation (4.33) for the
energy density of any electric field.

4.4.2 Energy of a Dielectric Particle in a Field

Wewill now perform the imaginary procedure described
by Stratton [3, p. 112] of inserting an uncharged and non-
conducting dielectric particle into a dielectric medium in
which an electric field Em has already been established.
The system of external charges that produce this field are
kept constant during this procedure.The particle has rel-
ative permittivity 𝜀p, whilst the medium is assumed to
be isotropic and linear so that its relative permittivity 𝜀m
is either constant or varies as a scalar function of posi-
tion. The objective is to evaluate the potential energy of
the dielectric particle as a function of its location in the
field.
Based on Equation (4.32) and with the displacement

vector given by Dm = 𝜀o𝜀mEm, the initial energy Um of
the system (i.e., the total work done in establishing the
field Em) is given by the following integral, evaluated
over all space:

Um = 1
2 ∫

v

Em ⋅ Dm dv

As shown in a similar exercise performed in Chapter
6 (see Box 6.1), the resulting polarization of the particle
produces a (dipole) field that modifies the original field.
We designate this modified field at any point as E, so that
the difference Ep = (E − Em) is the field resulting from
the particle polarization.The energyU2 of the field in this
new state is given by:

U2 =
1
2 ∫Vp+Vm

E ⋅ Ddv

where Vp and Vm are the volumes occupied by the parti-
cle and themediumoutside the particle, respectively.The
change in energyU = (U2 −Um) is equal to the energy of
the particle in the external field Em and is given by:

U = 1
2 ∫Vp+Vm

(E ⋅ D − Em ⋅ Dm) dv (4.36)

This also represents the work performed in the action of
inserting the particle into the field Em. Equation (4.36)
can be written in the form:

U = 1
2 ∫Vp+Vm

E ⋅ (D − Dm)dv

+ 1
2 ∫Vp+Vm

(E − Em) ⋅ Dm dv (4.37)

The particle carries no net charge and the original sys-
tem of charges producing Em remains unchanged, so the
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first of the integrals in Equation (4.37) is zero, to give:

U = 1
2 ∫Vp+Vm

(E − Em) ⋅ Dm dv

= 1
2 ∫Vp

(E − Em) ⋅ Dm dv + 1
2 ∫Vm

(E − Em) ⋅ Dm dv

Using a theorem of vector fields that states that the
intergral over all space of the scalar product of an irrota-
tional vector and a solenoid vector is zero (which applies
here because ∇ × Em = 0 and ∇⋅(D − Dm) = 0), Stratton
[3, p. 113] shows that this expression can be reduced to
one in terms of an integral, not over all space, but over its
own volume alone:

U = 1
2 ∫Vp

(E ⋅ Dm − Em ⋅ D)dv

Inserting the identities Dm = 𝜀o𝜀mEm and D = 𝜀o𝜀pE
into this equation we obtain the final result:

U = 1
2 ∫Vp

(𝜀m − 𝜀p)E ⋅ Em dv (4.38)

This result is particularly important for our subject
of dielectrophoresis. It shows that, for the case where
𝜀p > 𝜀m, we can expect the introduction of the particle
into the medium to result in a negative value of its elec-
trostatic energy. Work will be required on the particle to
withdraw it from the medium. Furthermore, this energy
is further reduced if the field Em increases. The particle
will attempt to minimize its energy further by moving up
a field gradient to a maximum value of this gradient.This
describes the action of positive dielectrophoresis, where
a particle is directed towards an electrode edge. On the
other hand, if the particle’s permittivity is less than that
of the medium, its energy will be positive. It will move
down a field gradient to search for a gradient minimum,
well away from an electrode edge. Work will be required
to insert the particle into themedium.This describes neg-
ative dielectrophoresis.
If, during the course of a dielectrophoresis experiment,

a small change 𝛿𝜀 should occur in its permittivity, then
𝛿𝜀E ⋅ Em will differ from 𝛿𝜀E2m by an infinitesimal amount
and Equation (4.38) takes on the form:

𝛿U = 1
2 ∫

𝛿𝜀E2m dv (4.39)

This result shows that a small change of the permittivity
of the particle relative to that of the suspending medium
can be monitored as a change in the dielectrophoretic
force.
Finally, looking ahead to concepts that are described in

Chapters 6 and 10, the time-averaged dielectrophoretic

force acting on a spherical particle of radius R is given
from Equation (10.25) as:

⟨FDEP⟩ = v
2
Re

[
𝛼∗]∇E2 (4.40)

where v = (4𝜋R3)/3 is the particle’s volume and Re[𝛼∗] is
the real part of its polarizability, given from Box 6.1 as:

𝛼 = 3𝜀o𝜀m
(

𝜀p − 𝜀m

𝜀p + 2𝜀m

)
(per unit volume)

The term in brackets is known as the Clausius–
Mossotti factor, described in Chapter 6. If no, or
negligible, energy losses occur, associated with charge
conduction or dielectric dispersions in the particle
or surrounding medium, we can consider the dielec-
trophoretic force to be a conservative force. In this case
we can evoke the work-energy theorem described in
Box 4.1 and equate the work done in moving a polarized
particle from one point to another as being equal to the
negative of the change of the particle’s potential energy.
From Equation (4.40) we can therefore give the time-
averaged potential energy of the polarized particle as:

⟨U⟩ = −1
2
𝛼E2 (per unit volume) (4.41)

This result is in agreement with the form of Equation
(4.38). For the case where 𝜀p > 𝜀m we can expect the
introduction of an unpolarized particle into a medium
(in which a field E has been established) to result in a
negative value of its electrostatic energy. Work will be
required on the particle to withdraw it from the medium
and the field. The potential energy of the particle is
reduced further if the field E is increased. If confronted
with a field gradient, the particle will attempt to mini-
mize its energy further by moving up the gradient to a
larger value of E. It will undergo positive dielectrophore-
sis. The opposite effect, negative dielectrophoresis, will
occur if the particle’s permittivity is less than that of the
surrounding medium. If there are conduction or dielec-
tric losses in the particle ormedium, although the change
in potential energy will not be given exactly by Equa-
tion (4.41) the conditions for either positive or negative
dielectrophoresis remain unchanged.

. Summary

This chapter has dealt with concepts of importance to
dielectrophoresis, namely the work done and the poten-
tial energy associated with interactions between charged
particles and electric fields. A charged particle exposed
to an electric field experiences an electrostatic force that
can perform work on the particle, which relates directly
to a change of the particle’s electric potential energy.
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IfWab is the work done by the field inmoving a charged
particle from location a to location b, the change in
potential energy ΔU is given by the relationship Wab =
−ΔU.Thus, if positive work is done by the field, the poten-
tial energy of the particle decreases. A field does positive
work on a positively charged particle when it moves in
the direction of the field and so in this case the particle’s
potential energy U decreases. All systems try to attain
an equilibrium state by minimizing its potential energy.
Positively charged particles therefore have a natural ten-
dency tomove in the direction of an applied electric field.
In order tomove a positively charged particle in the direc-
tion against that of the field, work has to be done on the
particle against the electrostatic force tending to force it
in the opposite direction. This is equivalent to the field
doing negative work on the particle and so the particle’s
potential energy increases. On the other hand, the field
will perform positiveworkwhen anegatively charged par-
ticle moves against the field and its potential energy will
decrease. Negatively charged particles have a natural ten-
dency tomove against an electric field’s direction in order
tominimize their potential energies. Moving a negatively
charged particle in the field direction will increase its
potential energy.
An important property of an electrostatic force is that

it is a conservative force. Thus, the change in potential
energy in moving a charged particle from location a to
location bwill not depend on the path taken. Moving the
particle from location a to b and back again to location a
will involve no net expenditure of work by the field.There
will be no change in the particle’s potential energy, no
matter what paths are taken in the outward and return
journeys.
Another important concept is potential, defined as the

potential energy per unit particle charge.The potential of
a charged particle depends on its position in an electric
field. We are unable to measure the absolute magnitude
of a potential, but instead define its value with respect
to a reference potential. A conceptual reference zero cor-
responds to setting a test unit charge at rest (i.e., zero
kinetic energy) at an infinite distance away from the influ-
ence of any field created by any other charge (i.e., zero
potential energy). We can therefore define the poten-
tial V at any location in a field as equal to the negative
of the work done by the field in moving a body of unit
charge from infinity to that location. We can also define
the potential difference (Va −Vb) between location a and
location b as equal to the work done by an electric field
in moving a body of unit charge from a to b in this field.
Contours that join potentials of the same value are

known as equipotential contours, or equipotential sur-
faces if drawn in three-dimensional space. Equipoten-
tial surfaces and electric field lines are always mutually
orthogonal. Electrical potential, defined as the potential

energy per unit charge, has units of N.m/C. In the SI sys-
tem of units this unit of electrical potential is named the
volt. In Chapter 2 the concept of an electrical field was
described in terms of the force per unit charge that the
field exerts on a test unit charge.The unit of electric field
can thus also be expressed as one volt per metre.
These various concepts have been brought together in

the form of the work-energy theorem to derive expres-
sions for the energy stored in an electric field. The sim-
ple example of a parallel-plate capacitanceC charged to a
potential differenceV between its plates gives this energy
as:

U = Q2

2C
= 1

2
CV 2

This in turn leads to the following expression for the
energy density stored in the field in the capacitor’s dielec-
tric:

u = 1
2
𝜀o𝜀rE2

This relationship also describes the energy density of any
electric field generated by electrodes of any geometry.
The most important result of relevance to dielec-

trophoresis is the derivation of the energy of a dielec-
tric particle as a function of its position in a uniform or
nonuniform electric field established in another dielec-
tric medium, namely:

U = 1
2 ∫Vp

(𝜀m−𝜀p)E ⋅ Emdv

For the situation where the particle’s permittivity (𝜀p)
is larger than that (𝜀m) of the suspending medium, the
particle has a negative electrostatic energy. The particle
will experience a positive dielectrophoretic force, tending
to drive it towards an electrode where the local field will
be at its maximum and where the particle will attain its
lowest potential energy. Conversely, if the particle’s per-
mittivity is less than that of the medium, its energy will
be positive and it will strive to find a local field minimum
under the action of negative dielectrophoresis.This result
summarizes the energetics of how a mixture of particles
of different dielectric properties (for example subpopu-
lations of cells) can be physically separated and isolated
under the influence of a nonuniform electric field and
that small changes in the dielectric properties of a cell
(e.g., a change of cell membrane capacitance or viability)
may also bemonitored by its dielectrophoretic behaviour.
Based on concepts to be described in Chapters 6 and

10, the time-averaged potential energy per unit volume
of a polarized particle can be given as:

⟨U⟩ = −1
2
𝛼E2 (per unit volume)
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where 𝛼 is the effective polarizability of the parti-
cle, determined by the magnitude and polarity of the
Clausius–Mossotti factor to be described in Chapter 6.
Finally, it is important to note that our interpreta-

tion of the work-energy theorem applies to systems in
which there are no energy losses. A dramatic exam-
ple given here is the description of Richard Feynman’s
‘swinging ball of death’.The effect would not have been so

dramatic if, instead of air, he had demonstrated his
swinging ball in a highly viscous fluid. Frictional losses
would have limited the ball’s motion. Likewise for dielec-
trophoresis, the basic theory of which is often pre-
sented as if the dielectrophoretic force is a conservative
force, where electrical conduction and dielectric relax-
ation losses can be ignored. This is discussed further in
Chapter 10.
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Potential Gradient, Field and Field Gradient; Image Charges and Boundaries

. Introduction

The phenomenon of dielectrophoresis can be broken
down to two actions. The first one involves subjecting a
particle to an electric field generated by applying poten-
tial differences (voltages) to a set of electrodes. This field
induces a nonuniform distribution of charge on the par-
ticle’s surface, in the form of an electric dipole moment,
of magnitude proportional to the local field. The sec-
ond action arises from how this induced dipole moment
interacts with the field. If the field is uniform (i.e., it has
zero gradient) the particle could attempt to minimize its
potential energy by aligning its induced dipole with the
field, rather like a compass needle aligning itself along the
Earth’s magnetic field. The particle might exhibit rota-
tional motion, but will exhibit no lateral motion. Lateral
motion (dielectrophoresis) of the particle can only occur
where there is a spatial gradient of the field and the par-
ticle can move so as to minimize its potential energy.The
dielectrophoretic force acting on the particle is thus pro-
portional to the product of the local field (which lends to
it the properties of a dipole) and the local field gradient
(which causes the particle to move).
The purpose of this chapter is to provide some basic

insights into the relationship between the electric field
and the potential gradient at any point in space, as
obtained by solving Laplace’s equation, which was
derived in Chapter 3. This leads to the description
of distributions of charges in terms of their effective
dipole moment (and higher order moments) and thus
to the concept of a polarized particle exhibiting the
properties of an induced dipole moment. The charges
that give rise to this induced moment are formed at the
boundary surface between a particle and its surrounding
dielectric medium. For most biological applications of
dielectrophoresis the surroundingmedium is an aqueous
electrolyte. The conditions that apply to the behaviour of
D-field and E-field lines of force at the boundary surface
between two dielectrics are also described, together with
the concept of an electric field gradient.

. Potential Gradient and Electrical Field

In the form of Equation (4.20) in Chapter 4 we have the
following direct relationship between an electrical poten-
tial difference and the associated electrical field:

(Va − Vb) =
b

∫

a

E.ds (5.1)

As demonstrated in Examples 4.7 and 4.8 of Chapter
4 this relationship can be used to find the potential
difference (Va − Vb) between a location a and the
reference level at b if we know the field E at these two
locations. This involves the mathematical process of
integrating the function E.ds. The fundamental theorem
of calculus states that differentiation is the reverse pro-
cess of integration. By performing the reverse procedure
of differentiation it should therefore in principle be
possible to derive E if we know the values of the potential
V at each location. The quantity (Va − Vb) can be found
by summing the infinitesimal change of potential dV
accompanying each infinitesimal change in location ds
from the reference position b to the point of interest at
a. This is expressed mathematically as:

(Va − Vb) =
a

∫

b

dV

This calculation can also be performed as a reverse path
taken frompositiona to b, denoted by reversing the limits
on the integral sign:

(Va − Vb) = −

b

∫

a

dV

From this relationship and Equation (5.1) we have the fol-
lowing equality:

−

b

∫

a

dV =

b

∫

a

E.ds
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Box . Differential Calculus and Gradient of a Scalar Field

Differential calculus concerns the study of the rates of
change (gradients) of quantities expressed as mathemati-
cal functions. The differential df (x)

dx
of a function of x (e.g., f(x)

= x2 + 4x + 3) is obtained by evaluating by how much the
function changes for a very small increment of x:

df (x)
dx

= lim
𝛿x→0

f (x + 𝛿x) − f (x)
𝛿x

This procedure determines the slope or gradient of the
function for each value of x. As an example we derive df (x)

dx
for f(x) = x2 + 4x + 3) as follows:

df (x)
dx

= lim
𝛿x→0

[(x2 + 2x𝛿x + 𝛿x2) + 4(x + 𝛿x) + 3] − (x2 + 4x + 3)
𝛿x

= lim
𝛿x→0

[2x𝛿x + 𝛿x2 + 4𝛿x]
𝛿x

= lim
𝛿x→0

[2x + 4 + 𝛿x]

In the limit, as the increment 𝛿x tends to zero, df (x)
dx

=
2x + 4.

The change in the x-direction of a scalar field f(x, y, z) for
an increment 𝛿 is given by:

lim
𝛿→0

f (x + 𝛿, y, z) − f (x, y, z)
𝛿

ı̂ =
𝜕f (x, y, z)

𝜕x
ı̂

where ı̂ is the unit vector along the x-direction. Similar
expressions hold for incremental changes in the y- and z-
directions, so that the overall spatial change or gradient of
the scalar field at any point is given by:

ı̂ 𝜕f
𝜕x

+ ĵ 𝜕f
𝜕y

+ k̂ 𝜕f
𝜕z

= ∇f

We may require the gradient along a specific direction,
as for example in the direction of a unit vector u = aı̂ + bĵ
at a specific location x0, y0. Vector u will be a hypotenuse
of unit length and so a2 + b2 = 1. The directional derivative
Duf(x0, y0) is then defined as:

Duf (x0, y0) = lim
𝛿→0

f (x0 + 𝛿a, y0 + 𝛿b) − f (x0, y0)
𝛿

The directional derivative along a unit vector u can also
be written as (∇f)⋅u.

For these two integrals to be equal, the integrands must
also be equal, so that:

−dV = E.ds (5.2)

In this equation the potential V is a scalar quantity.
Plots such as those shown in Figure 4.5 are sometimes
referred to as plots of the scalar potential field. An anal-
ogy is a plot of the temperature field for a room, obtained
as contour lines that connect points of equal tempera-
ture. Values for potential and temperature have magni-
tudes, but not direction – they do not ‘point’ anywhere.
A potential field (V) and temperature (T) field are thus
examples of a scalar field (and are written as italics). On
the other hand, the symbols E and ds are written in upper
case fonts to indicate that they are vector quantities, pos-
sessing the qualities of magnitude as well as direction.
Using the vector notation given in Box 3.1, we can write
Equation (5.2) as:

−dV = (ı̂Ex + ĵEy + k̂ Ez) ⋅ (ı̂dx + ĵdy + k̂dz) (5.3)

where ı̂, ĵ and k̂ are unit vectors along the x-, y- and z-
axes, respectively. Because ı̂, ĵ and k̂ are all perpendicular
to each other, we have the following results for their dot
products:

ı̂ ⋅ ı̂ = ĵ ⋅ ĵ = k̂ ⋅ k̂ = 1 × 1 × cos 0◦ = 1

ı̂ ⋅ ĵ = ı̂ ⋅ k̂ = ĵ ⋅ k̂ = 1 × 1 × cos 90◦ = 0

Equation (5.3) can thus be simplified to the form:

−dV = Ex dx + Ey dy + Ez dz

The x-, y- and z-components of the vector E can be
written in terms of the partial derivatives of V as:

Ex = −𝜕V
𝜕x

, Ey = −𝜕V
𝜕y

, Ez = −𝜕V
𝜕z

(5.4)

where, for example, 𝜕V
𝜕x is termed the partial derivative of

the potential for the variable x, obtained whilst keeping
the values of variables y and z fixed as constants. In vec-
tor notation the field E can thus be given in terms of the
partial derivatives in all three coordinate directions as:

E = −
(
ı̂𝜕V
𝜕x

+ ĵ𝜕V
𝜕y

+ k̂ 𝜕V
𝜕z

)
(5.5)

This equation states that the resultant electric field vec-
tor is given as the negative vector additions of the gra-
dients of the potentials along the x-axis, the y-axis and
the z-axis. Expressed in this form highlights the fact that
E is a vector. Thus, the gradient of a scalar function or
field using vector notation is obtained by applying the
grad or del vector operator denoted by the symbol∇. For
example, the gradient of V, verbalized as either grad(V)
or del(V), is given by:

∇V =
(
ı̂ 𝜕

𝜕x
+ ĵ 𝜕

𝜕y
+ k̂ 𝜕

𝜕z

)
V (5.6)

This concept is described more fully in Box 5.1.
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Equation (5.5) can thus be written more succinctly as:

E = −∇V (5.7)

The negative algebraic sign conforms to the convention
that directs the vector E outward from a positive charge.
For the case of a radial electric field, such as that shown
in Figures 4.3 and 4.6, then:

Er = −
𝜕Vr
𝜕r

(5.8)

An example of a radial field is one produced outside of
a charged metal sphere, where from Equation (4.23) we
have the potential at any radial distance r given by:

Vr =
1

4𝜋𝜀o𝜀r

Q
r

From Equation (5.8), the magnitude of the radial elec-
tric field is derived as follows:

Er = −
𝜕Vr
𝜕r

= − 𝜕

𝜕r

(
1

4𝜋𝜀o𝜀r

Q
r

)
= 1

4𝜋𝜀o𝜀r

Q
r2

This result agrees with that given by Equation (3.38).
To express the fact that this is a vector field acting along
a radial line directed from the centre of the metal sphere
we employ the radial unit vector r̂:

E = r̂Er
1

4𝜋𝜀o𝜀r

Q
r2
r̂ (5.9)

Figure 5.1 shows the electric field vectors, in a two-
dimensional plane through the centre of a positively
charged metal sphere, diminishing with radial distance
from the sphere.

x

y

+

Figure . The vector field created by a positively charged metal
sphere situated at the centre of an xy-plane. The base of each
arrow is located at a point of interest (e.g., x0, y0). An arrow points
in the direction of greatest decrease of the potential and its length
is proportional to the magnitude of the potential gradient (i.e., the
electric field) at that point. The field decreases with radial distance
r as 1/r2.

Equations (5.6) and (5.9) enforce an important fact,
namely that the gradient of V is a vector – it has both
magnitude and direction. The minus sign in Equation
(5.7) indicates that, at any point in space, the electric field
vector E points towards where the potential decreases
the most rapidly. Along an equipotential surface grad(V)
is zero. A field vector is thus always orthogonal to an
equipotential contour or equipotential surface.

Example 5.1 Field outside a Charged Metal Rod
Determine the components of the electrical field outside
a long charged metal rod, far away from the ends of the
rod.

Solution 5.1 The potential at distances r outside a
charged metal rod of radius R carrying a linear charge
density 𝜆 is given by Equation (4.29) derived in Solu-
tion 4.8:

V (r) = 𝜆

2𝜋𝜀o𝜀r
loge

R
r

The potential and hence the field have radial symmetry
about the long axis of the rod and so the field has no
x-, y- or z-component and only a radial component. The
magnitude of this field is given by:

Er = −
𝜕Vr
𝜕r

= − 𝜕

𝜕r

(
𝜆

2𝜋𝜀o𝜀r
loge

R
r

)
= − 𝜕

𝜕r

(
𝜆

2𝜋𝜀o𝜀r
[loge R − loge r

)
𝜕

𝜕r

(
loge R

)
= 0 (becauseR is a constant) and 𝜕

𝜕r

(
loge r

)
=

1
r , so that:

Er =
𝜆

2𝜋𝜀o𝜀rr

Example 5.2 A Plot of a Vector Field
An electric field is given by the following function:

E(x, y) = xu − yv

where u and v are unit vectors along the y- and x-
directions, respectively. Draw a graphical representation
of the vector field, to include locations such as (2,−1), for
example.

Solution 5.2 The field is a function of only the x- and
y-coordinates and can be plotted as a two-dimensional
graph. Evaluation of the field for (x, y) = (2, −1) gives:

E(2, 1) = 2u + 1v

The magnitude of the field at this point is given by E =√
(22 + 12) =

√
5 = 2.24 and is oriented with the x-axis

at an angle given by 𝜃 = tan−1(2/1) = 63.4◦. This vector
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Figure . The vector field plot for the electric field E(x, y) = xu −
yv, where u and v are unit vectors along the y- and x-axes,
respectively.

is plotted as an arrow in Figure 5.2, together with some
other vectors at other locations. We can refer to this plot
as showing either a field of vectors or a vector field.

Example 5.3 A Plot of the Gradient of a Potential
Field
An electrical potential is given by the following equation:

V (x, y) = x2 + y2 + 0.5xyz

Derive a plot showing the gradient field for this poten-
tial function, together with several equipotential con-
tours, for the case where z = 0. .

Solution 5.3 In the xy-plane, for z = 0, the equipoten-
tial contours are defined by:

V (x, y) = x2 + y2 = k

Each contour is described by an equation for a circle, cen-
tred at the origin, of radius equal to

√
k.The equipotential

contours for 20 V, 40 V, 60 V, 80 V and 100 V are drawn
in Figure 5.3. The components of the gradient vectors at
any coordinate (x, y) are given by:

∇V (x, y) =
(
ı̂ 𝜕

𝜕x
+ ĵ 𝜕

𝜕y

)
(x2 + y2) = 2xı̂ + 2yĵ (5.10)

The gradient vectors are shown superimposed on
the equipotential contours in Figure 5.3. The distance
between the contours decreases as the magnitudes of
consecutive equipotentials increase and this leads to an
increase in the magnitude of the gradient vectors with
increasing distance from the origin of the plot. The gra-
dient vectors point in the direction of the greatest rate of

x

y

10

10

–10

–10

–5

5

5

100V

40V

–5

Figure . The equipotential contours (circles) and gradient
vectors (arrows) are shown for the potential function V(x, y) = x2 +
y2. The 40 V and 100 V equipotentials are labelled. The gradient
vectors represent the magnitude of the electric field for a
coordinate located at the base of an arrow. The arrow length is
proportional to the magnitude of the electric field vector, the
components of which are determined using Equation (5.10). The
arrows point in the direction of the greatest decrease in potential
at that point.

decrease of the potential values and are directed orthog-
onal to the equipotential contours.
Each gradient vector shown in Figure 5.3 represents the

magnitude and direction of the electric field at that loca-
tion, as given by Equation (5.7) and was calculated man-
ually using Equation (5.10).This is a tedious exercise, but
a useful way to check the validity of plots obtained using
mathematical software tools such as MATLAB® (Math-
Works), Maple® (Maplesoft) or Mathematica® (Wol-
fram), for example. Relevant examples of the application
of MATLAB® andMaple® are given in Box 5.2

. Applying Laplace’s Equation

The examples we have considered so far for determining
electrostatic potentials and fields have involved known
distributions of point charges (e.g., uniform charge dis-
tributions on spheres, large area flat plates and long
wires) or electrode geometries having analytical solu-
tions for their electric fields (e.g., parallel plate or con-
centric spherical electrodes, coaxial electrodes). But how
do we calculate the potentials and fields produced by
unknown charge distributions or arbitrary-shaped elec-
trodes? The answer to such questions is that we are
required to find a solution to the appropriate form of
either Poisson’s or Laplace’s equation – bearing in mind
that these equations are only valid for electrostatic or
quasi-electrostatic situations where time-varying mag-
netic fields do not play a role.The field is then fully deter-
mined by the relationship E = −∇V.
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Box . Gradient Field Plots using MATLAB® and Maple® Software

The following is a MATLAB program to give a contour plot
of a vector field:

% Calculate the gradient in the xy-plane of

the potential function V(x, y) = x2 + y2

v = -6:1:6;

[x,y] = meshgrid(v);

z = x.ˆ2 y.ˆ2 ;

[px, py] = gradient(z, 2, 2,);

% Plot equipotential contours and vector

arrows (quivers) together on same plot

contour(v,v,z)

holdon

quiver(v,v,px,py)

holdoff

y-axis

Contour
plot

Surface plot

y

x

Figure .

The resulting plot, with scaling, of the gradient field for the
function V(x, y) = x2 + y2 is shown in Figure 5.4 (left-hand
side). Although the vectors do not have the correct lengths,
they do have the correct relative lengths compared to the
other vectors in the gradient field.

The following command in Maple:

plot3d(xˆ2+yˆ2, x=-1..1, y=-1..1);

produces the 3D plot of the surface of the vector field
shown on the right hand side of Figure 5.4. The 2D contour
plot is added to show how the surface plot corresponds
with the 2D gradient field plot on the left:

Poisson’s equation was introduced in Chapter 3 and
given as:

∇2V =
(

𝜕

𝜕x2
+ 𝜕

𝜕y2
+ 𝜕

𝜕z2

)
V = − 𝜌

𝜀o

For regions of space without a net charge density 𝜌 this
becomes Laplace’s equation (see Box 3.2):

∇2V =
(

𝜕

𝜕x2
+ 𝜕

𝜕y2
+ 𝜕

𝜕z2

)
V = 0

For many applications of dielectrophoresis we are con-
cernedwith solving Laplace’s equation in regions of space
where the potential V results from charge distributions
on metal electrodes some distance away from our region
of interest.

5.3.1 Laplace’s Equation in One Dimension

It is instructive to consider the trivial case of where the
potential V depends on only a single variable. For exam-
ple, this variable could be the dimension x. In this case
we write Laplace’s equation as:

𝜕2V
𝜕x2

= 0

An analytical solution for this is readily obtained in the
form

V (x) = ax + b

Values for a and b are obtained from knowledge of the
imposed boundary conditions. For example, if for x = 1
and 10 we are given V(x) = 3 V and 21 V, respectively,
then for 10 > x > 1 the unique solution has a = 2 V,
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Figure . A flat metal plate is bent to form
an electrode on the front face and top face of
a long rectangular tube. Away from the open
ends the electric potential at any point P
inside the tube varies along the y- and
z-directions, but can be considered to be
independent of distance along its length (the
x-direction). To find the potential at P we
construct around it a Gaussian surface in the
form of a small cube of side 2𝛿h.

b = 1 V. The general solution takes the form of a flat
sloping surface. This simple example demonstrates some
important properties, namely:
� Practical problems involving Laplace’s equation are
boundary value problems in a particular volume or
region T having a well defined boundary surface S (see
Box 3.2).

� At any point x the potential V(x) is the average of the
two potentials at equidistant points ±𝛿 on either side
of x within the region of interest:

V (x) = 1
2 [V (x − 𝛿) + V (x + 𝛿)]

� As a consequence of this last property there are no
local maxima or minima of V(x) within the region of
interest.

5.3.2 Laplace’s Equation in Two and Three Dimensions

For the 2D situationwhere the potentialV is independent
of x, but varies with y and z, we are required to solve a
partial differential equation of the form:

𝜕2V
𝜕y2

+ 𝜕2V
𝜕z2

= 0

For the more general 3D case:

𝜕2V
𝜕x2

+ 𝜕2V
𝜕y2

+ 𝜕2V
𝜕z2

= 0

These equations have far more complicated solutions
than that of a sloping flat surface obtained for the one-
dimensional situation. However, the three main proper-
ties listed for the one-dimensional situation also apply. In
two dimensions, at any point (x, y), the potential V(x, y)
is the average of the potentials on equidistant points on
a circle drawn around that point. Mathematically this is
expressed as the summation of all the incremental poten-
tial values around the circle, divided by the circumference
of that circle:

V (x, y) = 1
2𝜋r ∮C

V dl

In three dimensions the potential V(r) is the average of
the potentials on equidistant points around a sphere S of

radius r. Mathematically this is expressed as the summa-
tion of all the potentials per unit elemental area around
the surface of the sphere, divided by the surface area of
that sphere:

V (r) = 1
4𝜋r2 ∮S

V dA

As an example of these properties, consider the
arrangement shown in Figure 5.5, where a metal plate is
bent to form the front and top faces of a long rectangu-
lar tube.The plate is charged to a known potential, as, for
example, by connecting it to a terminal of a battery, with
respect to a conducting surface that forms the back and
bottom faces of the tube. We construct around point P a
small cubic Gaussian surface, as described in section 3.3
of Chapter 3 and depicted in Figure 5.5.
A short section only of the rectangular tube is shown

in Figure 5.5. By choosing locations Pwithin the tube, far
away from its ends, we simplify our analysis to that of a
two-dimensional rather than a three-dimensional prob-
lem. This is sufficient to demonstrate the general princi-
ple to be outlined. The charged electrode plate generates
a potential whose magnitude inside our chosen section
of the tube depends only on the y- and z-coordinates in a
plane that is perpendicular to the x-axis. For fixed values
of coordinates y and z the potential V does not depend
on location along the x-axis. In other words, the partial
differential 𝜕V/𝜕x is equal to zero. From Equation (5.4)
the x-component of the field is given by Ex = −𝜕V/𝜕x
and so Ex is zero. We need only consider the y- and z-
components of the field.
The cubic Gaussian surface drawn in Figure 5.5, cen-

tred on location P, is assumed to contain no charge. The
total electric flux through this cubic surface is therefore
zero (refer to section 3.3 of Chapter 3). Furthermore,
because Ex is zero there is no flux through the two faces
of the cubic Gaussian surface that are parallel to the yz-
plane. If we make the length 2𝛿h of each edge of the cube
small enough, we can to a good approximation assume
that the fluxes through the other four faces of the cube
are equal to the product of the area (2𝛿h)2 and normal
component of the field to that surface. An analysis of this,
based on application of Gauss’s Law, is given in Box 5.3.
The result given by Equation (5.11) can be summarized by
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Box . The Potential at any Point in Space is the Average of the Potentials that Surround It

The cubic Gaussian surface drawn in Figure 5.4 contains no
charge and because the x-component of the field is zero,
the total flux ΦT through the surface is given by:

ΦT = Ey(x, y + 𝜕h, z)(2𝜕h)2 + [−Ey(x, y − 𝜕h, z)(2𝜕h)2]

+Ez(x, y, z + 𝜕h)(2𝜕h)2 + [−Ez(x, y, z − 𝜕h)(2𝜕h)2 = 0
(5.11)

Using the identities given in Equation (5.4) we can
express the field components as:

Ey(x, y + 𝜕h, z) = −𝜕V(y + 𝜕h, z)∕𝜕y = −[V(y + 𝜕h, z) − V(y, z)]∕𝜕h

Ey(x, y − 𝜕h, z) = −𝜕V(y − 𝜕h, z)∕𝜕y = −[V(y, z) − V(y − 𝜕h, z)]∕𝜕h

Ez(x, y, z + 𝜕h) = −𝜕V(y, z + 𝜕h)∕𝜕y = −[V(y, z + 𝜕h) − V(y, z)]∕𝜕h

Ez(x, y, z − 𝜕h) = −𝜕V(y, z − 𝜕h)∕𝜕y = −[V(y, z) − V(y, z − 𝜕h)]∕𝜕h

On substituting these identities into Equation (5.11) and
solving for V(y, z) we obtain (after dividing throughout by
4𝜕h) the result:

V(y, z) = [V(y + 𝜕h, z) + V(y − 𝜕h, z) + V(y, z + 𝜕h)

+V(y, z − 𝜕h)]∕4 (5.12)

Therefore, the potential at a point within a small volume
of space that contains no charge is equal to the average
of the potentials that surround this point. In the limit as
the characteristic dimension 𝜕h of this volume becomes
infinitesimally small, this result is exact.

the statement: in a sufficiently small volume of space that
contains no charge, the potential at the centre of this vol-
ume is equal to the average of the surrounding potentials.
A simple example of how to apply this result is to con-

sider the case of two parallel plate electrodes and to con-
struct in the space between them a rectangular array of
square elemental cells. The location of each cell is identi-
fied using an alphanumerical code as shown in Figure 5.6.
The points of intersection (nodes) of each horizontal and
vertical line in the array form a rectangular grid of points.
The potential value at each node in relation to the four
nodes around it is given by Equation (5.12) in Box 5.3.The
potentials of the nodes in the two electrodes are specified

7
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5

4

3

2

1

GFEDCBA

V1 V28

fx = $B$8

fx = $G$8

fx = value for V1 fx = value for V2

fx = (D4 + F4 + E3 + E5)/4

fx = (E7 + G7 + 2 * F6)/4

Figure . A finite-element simulation, using the Microsoft Office
Excel spreadsheet, to calculate the potentials generated between
two large area parallel electrodes of potentials V1 and V2.
Electrode potentials of any chosen values can be inserted into the
formula bar by entering them into cells B8 and G8. The function fx
is entered for each cell in the form of Equation (5.12) given in Box
5.3. The function entered for rows 1 and 7 treats the electrodes as
being of large area to produce a uniform electric field.

and so these can be used as known values in a set of
simultaneous equations of the formof Equation (5.12) for
nodes nearest to the electrodes. An iterative method is
then used by repeatedly calculating values for the poten-
tials at all the nodes using the complete set of simultane-
ous equations until all the solutions converge to a single
value for each node.This procedure is known as the finite
difference method and various programming languages
are available to perform it. However, most spreadsheets
can automatically handle the iterative solutions of simul-
taneous equations for grids containing a modest number
of nodes. An example of a simulation using Microsoft
Office Excel is shown in Figure 5.7 for the simple case
of two parallel plate electrodes having potentials of 7 V
and 3 V. The grid of points is assumed to be located in
the central section of the space between the electrodes,
well away from fringing electric fields at the electrode
ends. The potential down any vertical row of cells (e.g.,
B1–B10) is therefore assumed to be an equipotential,
to give the expected uniform field between the parallel
electrodes.The functions entered for the cells along rows
1 and 10 were thereforemodified to be of the form shown
for cell F7 in Figure 5.6. For all other cells (those in rows
2–9) functions of the form shown for cell 4E in Figure 5.6
were used.
The distribution of potentials produced in the yz-plane

of the interior of the rectangular tube shown in Figure
5.5 is presented in Figure 5.8. The metal plate has been
assigned a potential of +12 V and the other two sides of
the tube have been grounded at zero volts. The poten-
tials decrease steadily, from values approaching 12 V at
the corner of the bent metal sheet, to zero volts at the
corner formed by the other two sides of the tube. These
other two sides of the tube are assumed to have conduct-
ing surfaces and to be grounded at earth potential.
Three of the squaremeshes (cells) close to the top left of

those shown in Figure 5.8 are highlighted in Figure 5.9. By
taking the differences in the potential values of adjacent
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A B C D E F G H I J K L M

1 7 6.67 6.33 6.00 5.67 5.33 5.00 4.67 4.33 4.00 3.67 3.33 3

2 7 6.67 6.33 6.00 5.67 5.33 5.00 4.67 4.33 4.00 3.67 3.33 3

3 7 6.67 6.33 6.00 5.67 5.33 5.00 4.67 4.33 4.00 3.67 3.33 3

4 7 6.67 6.33 6.00 5.67 5.33 5.00 4.67 4.33 4.00 3.67 3.33 3

5 7 6.67 6.33 6.00 5.67 5.33 5.00 4.67 4.33 4.00 3.67 3.33 3

6 7 6.67 6.33 6.00 5.67 5.33 5.00 4.67 4.33 4.00 3.67 3.33 3

7 7 6.67 6.33 6.00 5.67 5.33 5.00 4.67 4.33 4.00 3.67 3.33 3

8 7 6.67 6.33 6.00 5.67 5.33 5.00 4.67 4.33 4.00 3.67 3.33 3

9 7 6.67 6.33 6.00 5.67 5.33 5.00 4.67 4.33 4.00 3.67 3.33 3

10 6.67 6.33 6.00 5.67 5.33 5.00 4.67 4.33 4.00 3.67 3.33

Figure . An example of a finite difference simulation performed using the spreadsheet scheme shown in Figure 5.6. Potential values of
7 V and 3 V are entered into the shaded columns representing two parallel plate electrodes. The electrodes are assumed to extend way
beyond the ‘solution space’ shown here between them.

cells, the following values forΔVz andΔVy are obtained:

ΔVz = (4.58 − 6.05) = −1.47 V; ΔVy
= (3.65 − 6.05) = −2.40 V

The sides Δz and Δy of each square mesh depend on
the size of the rectangular tube shown in Figure 5.8 and
modelled by the results shown in Figure 5.8. If we take

the inside dimensions (z, x, y) of the tube to be 1.1 cm ×
1.0 cm, thenΔz=Δy= 0.1 cm.We also assume that these
values forΔz andΔy are small enough for the approxima-
tions to be made that

ΔVz
Δz

= 𝜕V
𝜕z

;
ΔVy

Δy
= 𝜕V

𝜕y

12 6.01 3.65 2.54 1.92 1.53 1.24 1.01 0.80 0.60 0.40 0.20 0

12 8.40 6.05 4.58 3.62 2.95 2.43 1.99 1.59 1.20 0.81 0.41 0

12 9.54 7.57 6.11 5.04 4.21 3.53 2.93 2.37 1.80 1.22 0.62 0

12 10.18 8.58 7.27 6.20 5.32 4.56 3.85 3.15 2.42 1.65 0.84 0

12 10.60 9.30 8.17 7.19 6.32 5.53 4.75 3.95 3.08 2.13 1.09 0

12 10.91 9.87 8.92 8.05 7.25 6.47 5.68 4.81 3.83 2.70 1.40 0

12 11.16 10.35 9.58 8.85 8.15 7.44 6.68 5.80 4.73 3.42 1.82 0

12 11.38 10.78 10.20 9.63 9.07 8.47 7.79 6.96 5.89 4.43 2.46 0

12 11.59 11.19 10.80 10.41 10.01 9.57 9.05 8.38 7.42 5.95 3.60 0
12 11.80 11.60 11.40 11.20 10.99 10.76 10.47 10.08 9.46 8.35 5.99 0

12 12 12 12 12 12 12 12 12 12 12

0 0 0 0 0 0 0 0 0 0 0

Figure . The solved potential values are shown for a regular distribution of nodes across the yz-plane within the tube shown in Figure
5.5. The metal plate has a potential of 12 V and the other two conducting surfaces of the tube are grounded at zero volts. The finite
difference calculations were performed using Microsoft Office Excel, using the spreadsheet format and functions shown in Figure 5.6.

6.05 4.58

3.65

ΔVz = 1.47 V

ΔVy = 2.40 V

Ez = 1.47 kV/m

Ey = 2.4 kV/m

= 2.81 kV/m

) 2122 /
E = (E zy E+

θ

1.47

2.40
= 58.5°= tan–1θ

y

z

(a) (b) (c)

Figure . (a) Three cells are highlighted
from near the top left of the spreadsheet
of potential values shown in Figure 5.8. (b)
Values of the corresponding potential
differences ΔVz and ΔVy. (c) Values
derived for the local field components Ey
and Ez (assuming each cell is a square of
side 0.1 cm) and the magnitude and
orientation 𝜃 of the resultant field vector E.
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1

6

y
z

Figure . The equipotential contours (dotted lines) at 1 V
intervals, corresponding to the distribution of potentials shown in
the yz-plane in Figure 5.8. The resultant electric field vectors for
each cell, calculated according to the procedures illustrated in
Figure 5.9, are also shown. The largest field vectors occur at the
top left and bottom right corners where the grounded surfaces
and the 12 V biased metal plate are closest together.

From Equation (5.4) the y- and z-components of the
local field vector E can then be approximated as:

Ey = −
ΔVy

Δy
; Ez = −

ΔVz
Δz

These are the relationships used to give the values for
Ey and Ez shown in Figure 5.9(c). The vector addition of
Ey and Ez gives the resultant field vector E:

E =
√

E2y + E2z

This field vector is oriented at angle 𝜃 given by:

𝜃 = tan−1
Ez
Ey

A map of the local field vectors, represented as arrows
of lengths proportional to their magnitudes and directed
at 𝜃 degrees to the y-axis, is shown in Figure 5.10. The
bases of the arrows are located at the centre of each cell.
The field vectors are superimposed onto the equipoten-
tial contours across the yz-plane. In close proximity to
the sides of the tube, the equipotentials are nearly parallel
to these surfaces. The smallest separations between the
equipotential contours (and hence the largest field vec-
tors) occur at the corners where the grounded conduct-
ing sides of the tubemeet (but do not touch) the two sides
formed by the chargedmetal plate.The field vectors cross
equipotential contours at right angles.
Modelling electric potentials and fields using the

finite difference method has an advantage in that the
computational programs are simple to formulate [1] or

are readily available as commercial software packages. A
major disadvantage is that only regularly spaced nodes
and well defined meshes and geometrical elements (e.g.,
squares, rectangles, cubes) can be used and these cannot
readily be adjusted to accommodate regions that contain
both fairly uniform and highly nonuniform fields. For
this reason another method, known as the finite element
method, has for some time been widely adopted. This
is well described in text books [2, 3], including one that
can be downloaded for free from the Internet [4]. In the
finite element method the elements can be of general
shapes, such as irregular triangles or tetrahedrons.
Automated meshing routines give appropriately small
element sizes where the field is highly nonuniform,
such as at sharp electrode edges or at the ends of pin
electrodes and larger elements where the electric field
is relatively uniform. A widely used commercial finite
element software package is COMSOL Multiphysics,
which can be interfaced to extensive toolboxes provided
byMATLAB. An example of an application of COMSOL
Multiphysics is shown in Figure 5.11. An excellent
summary of computer applications in electromechanics,
of relevance to dielectrophoresis, is given by Hughes [5]

(a)

(b)

A B

Figure . (a) An example (using COMSOL Multiphysics) where an
automated meshing routine in the finite element method has
reduced the sizes of the triangular elements in the region near the
end of a pin electrode tip where the electric field is expected to be
the largest. (b) A greyscale map of the resulting electrode field.
The field is highest in the area shaded white at the electrode tip
(A) and steadily decreases with distance towards point B.
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Box . Solving Laplace’s Equation by Separation of Variables

Consider the two dimensional form of Laplace’s equation

𝜕2V
𝜕x2

+ 𝜕2V
𝜕y2

= 0

We assume that V is a product of two functions X(x) and Y(y)
that depend only on x and y, respectively. Thus, 𝜕2V/𝜕x2 =
Yd2V/dx2 and 𝜕2V/𝜕y2 = Xd2V/dy2. Substituting these equal-
ities into the Laplace equation and dividing throughout by
XY, we obtain a standard differential equation (i.e., one that
does not contain partial differentials):

1
X

d2X
dx2

+ 1
Y

d2Y
dy2

= 0

For this equation to hold requires the two terms to be
proportional to constants K1 and K2, with K1 + K2 = 0. Choos-
ing K1 = −K2 = k2, we have two separate linear differential
equations:

d2X
dx2

= k2X and d2Y
dy2

= −k2Y

These have solutions of the form [7, p. 589]:

X(x) = Aekx + Be−kx and Y(y) = C sin ky + D cos ky

The potential V thus takes the form:

V(x, y) = X(x)Y(y) =
(
Aekx + Be−kx) (C sin ky + D cos ky

)
A fit can be made with the prescribed values of the solu-

tion V or some of its derivatives on the boundary surface S
or curve C by choosing any superposition of Vk with appro-
priate values for k. If the boundary condition involves V
being prescribed on a surface the problem is called a Dirich-
let problem and the surface a Dirichlet surface. If the bound-
ary condition is given in terms of the derivative 𝜕V/𝜕n of V
normal to the surface S, the problem is called a Neumann
problem. The resulting problem is called a mixed problem if
V is prescribed on one part of S and 𝜕V/𝜕n on the other part
of S.

The method of separation of variables is not restricted to
Cartesian coordinates as given here – it can also be applied
for the cases of the spherical and cylindrical coordinate
schemes described in Box 3.2.

and is also treated in the book by Morgan and Green
[6]. The underlying numerical methods are described in
various advanced mathematical texts, including that by
Kreyszig [7, Ch. 19, pp. 942–988].

5.3.3 Solving Laplace’s Equation by Separation of
Variables

A general method for solving partial differential equa-
tions of the form of the Laplace equation is themethod of
separating variables – also known as the product method
[7, Ch. 11, pp. 582–649]. The key step is to assume that
the solution for the potential V is the product of func-
tions, with each function depending on one variable only.
An outline of this is described in Box 5.4.

Example 5.4 Solving Laplace’s Equation in Spheri-
cal Coordinates
Derive a general solution of Laplace’s equation that can
be used to solve the electrostatic potential V(r, 𝜃, 𝜙) in a
situation where there is spherical symmetry. Restrict the
analysis to cases where the prescribed boundary condi-
tion of the potential maintained on a sphere S of radius R
is independent of the spherical coordinate 𝜃.

Solution 5.4 We have two boundary conditions. The
first one represents the fact that the potential on the sur-
face of a sphere, cantered at r= 0 and of radius R, is main-
tained at a potential whose value is independent of the

spherical coordinate 𝜃. We can write this boundary con-
dition as:

V (R, 𝜃,𝜙) = f (𝜙) (r = R) (5.13)

The second boundary condition recognizes the fact that
at an infinite distance away from the sphere the potential
will be zero. This can be written as:

Limr→∞V (r,𝜙) = 0 (5.14)

From Box 3.2 the Laplace equation to be solved forV(r,
𝜙) is:

𝜕

𝜕r

(
r2 𝜕V

𝜕r

)
+ 1

sin𝜙

𝜕

𝜕𝜙

(
sin𝜙

𝜕V
𝜕𝜙

)
= 0 (5.15)

We assume a solution of the form:

V (r,𝜙) = R(r)Φ(𝜙)

Employing themethod of separation of variables, we sub-
stitute the equalities 𝜕V/𝜕r = Φ dV/dr and 𝜕V/𝜕𝜙 = R
dV/d𝜙 into Equation (5.15), then divide throughout by
RΦ to obtain:

1
R

d
dr

(
r2 dR

dr

)
+ 1

Φ sin𝜙

d
d𝜙

(
sin𝜙

dΦ
d𝜙

)
= 0

This gives the two ordinary differential equations [7, p.
638]:

d
dr

(
r2 dR

dr

)
= n(n + 1)R (5.16)

1
sin𝜙

d
d𝜙

(
sin𝜙

dΦ
d𝜙

)
= −n(n + 1)Φ (5.17)
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Box . Legendre Polynomials Pn(x)

Named after the French mathematician Adrien-Marie Leg-
endre (1752–1833), the Legendre polynomials are employed
in the method of power series to solve equations (known as
Legendre’s equations) that cannot be solved by other meth-
ods. The Legendre polynomials are of order n, denoted by
Pn(x), given as [7, p 208]:

Pn (x) =
M∑

m=0

(−1)m
(2n − 2m)!

2nm! (n − m)! (n − 2m)!
xn−2m

= (2n)!
2n(n!)2

xn − (2n − 2)!
2n1!(n − 1)!(n − 2)!

xn−2

+ (2n − 2)!
2n2!(n − 1)!(n − 2)!

xn−3 etc. [n = 0, 1, 2…]

where M= n/2 or (n− 1)/2, whichever is an integer. Simplifi-
cation in evaluation of these polynomials is achieved using
Rodrigues’ formula [7, p 209]:

Pn (x) = 1
2nn!

dn

dxn

[(
x2 − 1

)n
]

1.0

0.5

1.00.5−1.0

–1.0

−0.5

−0.5

0

Pn(x)

x

P0

P1

P2

1.0

0.5

1.00.5−1.0

–1.0

–0.5

–0.5

x

P3

P4 P5

Pn(x)

Thus: P0(x) = 1, P1(x) = x, P2(x) = 1
2

(3x2 − 1), P3(x) =
1
2

(5x3 − 3x)

P4(x) = 1
8

(35x4 − 30x2 + 3), P5(x) = 1
8

(
63x5 − 70x3 + 15x

)
etc.

Graphs of these polynomials are given below. They are
normalized such that Pn(1) = 1 and are solutions of the
Laplace equation where the imposed boundary conditions
require regularity of the solutions at the boundaries. This
condition is satisfied [7, p. 237] by the so-called orthogonal-
ity of the polynomials, such that:

1

∫

−1

Pm(x)Pn(x)dx = 0 (m ≠ n)

where n is so chosen [7, p. 639–640] to obtain the follow-
ing two sequences of solutions V(r, 𝜙) = R(r) Φ(𝜙) of the
Laplace Equation (5.15):

Vn(r,𝜙) = AnrnPn(cos𝜙) n = 0, 1, 2... (5.18a)

V ∗
n (r,𝜙) =

Bn
rn+1

Pn(cos𝜙) n = 0, 1, 2... (5.18b)

where Pn(cos 𝜙) are the Legendre polynomials in cos 𝜙

(see Box 5.5). The absolute value of the coefficients Pn
is never greater than unity and so the expanded series
converges.

Example 5.5 Hemispherical Electrodes
Two hemispherical, hollow, metal electrodes of radius R
are arranged as shown in Figure 5.12. The hemispheres
are held in position and separated by a thin electrically

insulating gasket. Find the potential inside and outside
the hemispheres for the case where the upper one is
maintained at a potential of 10 V and the lower one is
grounded at zero volts.

Solution 5.5 We have the following boundary condi-
tions for the potential function f(𝜙):

f (𝜙) = 10 (top hemisphere, r = R, 0 ≤ 𝜙 ≤ 𝜋)
(5.19a)

f (𝜙) = 0 (bottom hemisphere, r = R,−𝜋 ≤ 𝜙 ≤ 0)
(5.19b)

Limr→∞f (𝜙) = 0 (outside of the hemispheres)
(5.19c)
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0

zx

y

r

ϕ

 0 V

10 V

Figure . The hollow hemispherical electrode geometry
analysed in Example 5.5.

Inside the Hemispheres
We know from Chapter 3 (e.g., see Table 3.3) that the
electric field inside a charged hollowor solidmetal sphere
is zero.We can expect the same for the fields in the upper
and lower internal regions of the hemispheres shown in
Figure 5.12, so that the potentials throughout them will
to a very good approximation be constant. It follows that
the solution given by Equation (5.18a) is suitable. The
coefficients Bn in Equation (5.18b) must be zero for all
n – otherwise the potential would head off to infinity at
r = 0. A solution of the Laplace Equation (5.15) can thus
be obtained from the series:

V (r,𝜙) =
∞∑
n=0

AnrnPn(cos𝜙) (5.20)

For Equation (5.20) to satisfy the conditions given by
Equations (5.19 a and b) then

V (R,𝜙) =
∞∑
n=0

AnRnPn(cos𝜙) = f (𝜙) n = 0, 1, 2…

(5.21)

This series corresponds to the so-called Fourier–
Legendre series of f(𝜙) [7, p 242]. The coefficients AnRn
are given by

AnRn = 2n + 1
2

1

∫

−1

f (w)Pn(w)dw. (5.22)

in which we can set w = cos 𝜙. The limits of integration
−1 and 1 for the integral in Equation (5.22) correspond
to 𝜙 = ±𝜋 and 𝜙 = 0, respectively. We thus have the rela-
tionships:

dw = − sin𝜙d𝜙 (5.23a)
1

∫

−1

f (w) =
0

∫

𝜋

f (𝜙) = −

𝜋

∫

0

f (𝜙) (5.23b)

FromEquations (5.21–5.23) and employing the expres-
sion for the Legendre polynomial Pn given in Box 5.5, we
obtain:

An = 2n + 1
2Rn f (𝜙)

𝜋

∫

0

Pn(cos𝜙) sin𝜙d𝜙 n = 0, 1, 2…

= (2n + 1)
2Rn f (𝜙)

M∑
m=0

(−1)m (2n − 2m)!
2nm!(n −m)!(n − 2m)!

1

∫

−1

wn−2mdw

where M = n/2 or (n − 1)/2, whichever is an integer. In
this series

1

∫

−1

wn−2mdw = 2
(n − 2m + 1)

so that

An = (2n + 1)
Rn2n

f (𝜙)
M∑

m=0
(−1)m (2n − 2m)!

m!(n −m)! (n − 2m + 1)!
(5.24)

Taking note that (−1)0 = 1 and 0! = 1, we obtain the
following values for An:

n = 0: A0 = f (𝜙) 0!
0!0!1!

= f (𝜙)

n = 1: A1 =
3f (𝜙)
2R

2!
0!1!2!

= 3
2R

f (𝜙)

n = 2: A2 =
5f (𝜙)
4R2

[ 4!
0!2!3!

− 2!
1!1!1!

]
= 0

n = 3: A3 =
7f (𝜙)
8R3

[ 6!
0!3!4!

− 4!
1!2!2!

]
= −

7f (𝜙)
8R3

n = 4: A4 =
9f (𝜙)
16R4

[ 8!
0!4!5!

− 6!
1!3!3!

+ 4!
2!2!1!

]
= 0

n = 5: A5 =
11f (𝜙)
32R5

[ 10!
0!5!6!

− 8!
1!4!4!

+ 6!
2!3!2!

]
=

11f (𝜙)
16R5

From Equation (5.20) the potentials within the hemi-
spheres are thus given by:

V (r,𝜙) =
∞∑
n=0

AnrnPn(cos𝜙)

= f (𝜙)
[
P0 (cos𝜙) + 3r

2R
P1 (cos𝜙)

− 7r3
8R3 P3 (cos𝜙) + 11r5

16R5P5 (cos𝜙) − ⋅ ⋅ ⋅
]

For the top hemisphere, (r < R, 0 ≤ 𝜙 ≤ 𝜋) f(𝜙) = 10 V
and, using the values given in Box 5.5 for the Legendre
polynomials:

V (r,𝜙) = 10 + 15 r
R
cos𝜙 − 35r3

8R3
[
5 cos3 𝜙 − 3 cos𝜑

]
+ 55r5
64R5

[
63 cos5 𝜙 − 70 cos3 𝜑 + 15 cos𝜙

]
− ⋅ ⋅ ⋅

(5.25)
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For 𝜙 approaching 𝜋/2 (i.e., in the upper internal
regions of the top hemisphere) the potential does not
deviate much from the applied value of 10 V. Values of
the potential in other regions of the top hemisphere can
be obtained to the required accuracy by computing par-
tial sums of the series given in Equation (5.25).
For the bottom hemisphere (r < R, 𝜋/2 ≤ 𝜙 ≤ 0) f(𝜙) =

0 V and the potential is everywhere zero.

Outside the Hemispheres
The solution given by Equation (5.18b) for r > R satisfies
the boundary condition given by Equation (5.19c):

V ∗
n (r,𝜙) =

Bn
rn+1

Pn(cos𝜙) n = 0, 1, 2…

The coefficients Bn are given by:

Bn = 2n + 1
2

Rn+1f (𝜙)
𝜋

∫

0

Pn(cos𝜙) sin𝜙d𝜙

Proceeding as for Equation (5.22) we obtain the poten-
tial outside the hemispheres as

V (r,𝜙) =
∞∑
n=0

BnrnPn(cos𝜙)

= f (𝜙)
[
R
r
P0 (cos𝜙) + 3R2

2r2
P1 (cos𝜙) − 7R4

8r4
P3 (cos𝜙)

+11R6

16r6
P5 (cos𝜙) − ⋅ ⋅ ⋅

]
=

f (𝜙)R
r

+
3f (𝜙)R2

2r2 (cos𝜙)

−
7f (𝜙)R4

16r4
[
5 cos3 𝜙 − 3 cos𝜙

]
+ ⋅ ⋅ ⋅ (5.26)

At large distances (r ≫ R) from the electrodes, Equa-
tion (5.26) approximates as:

V (r,𝜙) ≈
f (𝜙)R
r

which corresponds to the electrodes being treated as a
point charge (see Equation (4.23) and Example 4.5)

5.3.4 Multipole Expansion of a Potential

A general scheme for deriving the potential due to a dis-
tribution of point charges is shown in Figure 5.13. A vol-
umetric element d3r′ of charge density 𝜌(r′) is located at
a distance r′ along the z-axis of a polar coordinate sys-
tem.The potential V(r) of this charge is to be determined
from an observation point P located at a distance r from
the origin of the coordinate system.The length of the vec-
tor between P and 𝜌(r′) is given by |r − r′|.

z

x y

P

r

| r – r' | 

r′

0

(r′)ρ

θ

Figure . A region of charge 𝜌(r′) is located on the z-axis,
distance r′ from the origin 0 of a polar coordinate system. The
potential V(r) is to be determined from the observation point P
located at distance r from the origin. The length of the vector
between P and the charge is given by |r − r′|.

Following the form of Equation (4.18) we can write for
the potential V(r):

V (r, 𝜃) = 1
4𝜋𝜀0𝜀r ∫

𝜌(r′)|r − r′|d3r′ (5.27)

Referring to Figure 5.13, from the cosine rule for the
sides of a triangle:

||r − r′|| = √
r2 + r′2 − 2rr′ cos 𝜃

= r

√(
1 + r′2

r2
−2 r

′

r
cos 𝜃

)
and

1|r − r′| = 1
r

1√(
1 + r′2

r2 −2 r′
r cos 𝜃

)
The function r′∕r inside the square root of this equa-

tion is a generating function of the Legendre polynomials
[7, pp. 209–210] so that:

1|r − r′| = 1
r

∞∑
n=0

Pn(cos 𝜃)
(
r′
r

)n (
r > r′

)
(5.28)

The coefficients of r′∕r are thus the Legendre polyno-
mials in cos 𝜃 (see Box 5.5). Equation (5.27) becomes:

V (r, 𝜃) = 1
4𝜋𝜀0𝜀r

∞∑
n=0

1
rn+1 ∫

𝜌(r′)Pn(cos 𝜃)r′nd3r′

(5.29)

5.3.4.1 n = 0 Term (Monopole Term)
From Box 5.5 we have Pn(cos 𝜃) = 1, so that for n = 0

V (r, 𝜃) = 1
4𝜋𝜀0𝜀r

1
r ∫

𝜌(r′)d3r′
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This is equivalent to result given by Equation (4.19). The
integral ∫ 𝜌(r′)d3r′ is the net total charge q of the volu-
metric charge distribution and so

V (r, 𝜃) =
q

4𝜋𝜀0𝜀r

1
r

(5.30)

This describes the coulomb potential of a point charge
q located at the origin, where r = 0. We say that a point
charge at the origin represents a singularity because this
implies an infinite charge density and potential.The n= 0
term is called themonopole term.
If instead of the charge being concentrated within

a small volume element, it is distributed continuously
along a length l of the z-axiswith a density 𝜌(z), the poten-
tial at a sufficiently great distance from the origin can be
expressed as:

V (r, 𝜃) =
∞∑
n=0

Vn = 1
4𝜋𝜀0𝜀r

∞∑
n=0

1
rn+1

l

∫

0

𝜌(z)zndz

∫

Pn(cos 𝜃) (r > l)

The first term of the expansion of this series (given by
P0 = 1) is:

V0 =
1

4𝜋𝜀0𝜀r

1
r

l

∫

0

𝜌(z)dz =
q

4𝜋𝜀0𝜀r

1
r

(5.31)

where q is now the total charge along the line.

5.3.4.2 n = 1 Term (Dipole Term)
Thenet charge q in Equation (5.31) can have either a pos-
itive or negative value.The net charge could also be zero,
so that:

q =

l

∫

0

𝜌(z)dz = 0

The n = 0 term is thus zero, so that the dominant term in
Equation (5.29) for r ≫ l is:

V1 =
1

4𝜋𝜀0𝜀r

P1(cos 𝜃)
r2

l

∫

0

𝜌(z)zdz =
p

4𝜋𝜀0𝜀r

cos 𝜃

r2

The quantity

p =

l

∫

0

𝜌(z)zdz

is the dipole moment of the charge distribution located at
points z along the z-axis. In general we can write

Vn = 1
4𝜋𝜀0𝜀r

p(n)
Pn(cos 𝜃)
rn+1

(5.32)

and define

p(n) =
l

∫

0

𝜌(z)zndz (5.33)

as an axialmultipole ofnth order.Themoment p of a point
charge q is thus p = q, whilst that for a dipole is p = qd,
where d is the distance between the dipole’s constituent
charges +q and −q.
Based on Equations (5.30–5.33) we can make the fol-

lowing two statements:

At sufficiently large distances relative to the radius
of a sphere that encompasses an arbitrary distribu-
tion of charge, the potential of these chargesmay be
represented approximately by the coulomb poten-
tial of a point charge located at the origin.
The potential of an arbitrary distribution of

charge along a line is identical, outside a sphere
whose diameter coincides with the line, with the
potential of multipoles located at the origin.

For n= 1 the corresponding term in the potential series
given by Equation (5.32) is

V1 =
p

4𝜋𝜀0𝜀r

cos 𝜃

r2

In Box 5.6 it is shown that a dipole potential V1 is pro-
duced by locating point charges +q and −q along a sec-
tion of the z-axis.

Example 5.6 Dipole Moment of an Assembly of
Point Charges
Five point charges are located as follows: charge 3q at
(1.5dı̂, 0, 0); 3q at (0, −2dĵ, 0); q at (0, 2dĵ, 0); −q at (dı̂,
0, 0) and −4q at (0, −dĵ, 0), where ı̂ and ĵ are the unit vec-
tors along the x- and y-axes, respectively. Calculate the
moment of this charge distribution.

Solution 5.6 For an assembly of n point charges, the
moment p is given by

p =
n∑
i=1

qiri = qd(4.5r̂ − 6ĵ + 2ĵ − 1ı̂ + 4ĵ) = 3.5qd r̂

The five point charges thus result in a dipole moment
of magnitude 3.5 qd directed along the x-axis. An exam-
ple of relevance to the dielectric properties of protein
molecules is the surface distribution of charges for the
cytochrome-c molecule shown in Figure 8.17(b). These
charges contribute to the permanent dipole moment of
this protein.
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Box . Dipole Moment

The potential of a linear charge distribution can only be
represented by a dipole if the net charge is zero and if the
point of observation P is a great distance away relative to
the length of the charged line. The simplest arrangement is
to locate a point charge +q at a position l on the z-axis and
an equal but opposite charge −q at the origin, as depicted
in the figure below. According to Equations (4.18) and (5.32)
the potential at a distant location r is

V =
q

4𝜋𝜀0𝜀r

(
1
r1
− 1

r

)
=

ql
4𝜋𝜀0𝜀r

cos 𝜃

r2
+ higher order terms

The factor ql is the dipole moment p(1) of this charge con-
figuration. We now perform the mental exercise of reduc-
ing the distance l to zero but at the same time increase q so
that ql remains constant. In the limit as l→ 0 a double-point
singularity is generated with a potential given everywhere
(except at the origin) by:

V =
p

4𝜋𝜀0𝜀r

cos 𝜃

r2
= −

p
4𝜋𝜀0𝜀r

𝜕

𝜕z

( 1
r

)
The field of this dipole is cylindrically symmetrical about

the z-axis, as depicted in Figure 5.14. In any meridian plane
the radial and transverse components, Er and E𝜃 , of the field
strength are given by:

Er = −𝜕𝜙

𝜕r
= 1

2𝜋𝜀0𝜀r

p cos 𝜃

r3

E𝜃 = − 1
r
𝜕𝜙

𝜕𝜃
= 1

4𝜋𝜀0𝜀r

p sin 𝜃

r3

p
Er

E

E

θ

θ

Figure . Electrical field lines in a meridian plane through the
axis of a point dipole of moment p. The field E is cylindrically
symmetrical about the axis of the dipole and at any point is the
vector sum of the radial and transverse components, Er and E𝜃 ,
respectively.

Although we have created a point dipole moment, it is in
fact a vector p directed, for our particular case here, along
the z-axis.

z

x y

P

r

r1

l

+q

–q

p

θ

From Chapter 4 the potential energy U of a system con-
sisting of a positive charge q at a location a in an external
field of potential V(a) is given by

U = qV (a)

An easy way to determine the potential of a dipole in an
external field is to sum the potential energies of its two
point charges. Consider a dipole composed of a point
charge+q located at a, separated distance l from a charge
−q located at b. The potential energy of the total system
is

U = qV (a) − qV (a)

To create a point dipole we bring the two charges closer
and closer together. As l tends to zero and at the same
time the net charges q tend to infinity, so that themoment
ql remains fixed, then

U = qdV = ql.∇V = −p⋅E = −pE cos 𝜃 (5.34)

where 𝜃 is the angle made by the dipole and the external
field E.
From the concepts described in Chapter 4 the force F

exerted on the dipole by the external field is equal to the

negative gradient of the potential energyU for a fixed ori-
entation 𝜃 of the dipole, so that

F = ∇(p⋅E)𝜃constant (5.35)

In a uniform field the net force on the dipole is zero.
However, at a fixed location in the field a change in ori-
entation 𝜃 will lead to a change of the dipole’s potential
energy. A torque T will be exerted on the dipole so as to
minimize this potential energy and this is given by

T = −𝜕U
𝜕𝜃

= −pE sin 𝜃 (5.36)

In vector notation, the vector product of two vectors A
and B is called the cross product, denoted by A × B. This
vector product produces a vector with a direction per-
pendicular to both A and B and of magnitude equal to
AB sin 𝜃. Equation (5.36) is therefore expressed vectori-
ally as

T = p × E (5.37)

5.3.4.3 The Quadrupole and Octupole
Aquadrupole is constructed by locating a negative dipole
moment ql0 = −p(1) at the origin. A second moment
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+q

+q –q

–q

(a)

+q–q

+q

+q

–q

+q

–q

–q

(b)

Figure . Schematic representations of (a) a
quadrupole and (b) an octupole.

of equal magnitude but opposite polarity +p(1) is then
constructed and displaced from the first moment by a
small distance l1. If the axes of both dipoles and the
displacement l1 are directed along the z-axis, this is
known as an axial quadrupole moment and is defined as
the product

p(2) = 2
(
p(1)l1

)
= 2(ql0l1)

The point quadrupole is generated by letting l0 → 0, l1
→ 0, q→∞ whilst maintaining (ql0l1) constant. The con-
tribution V2 to an overall potential from the quadrupole
term is

V2 =
1

4𝜋𝜀0𝜀r
p(2)

P2(cos 𝜃)
r2+1

= 1
8𝜋𝜀0𝜀r

1
r3

(
3 cos2 𝜃 − 1

)
A quadrupole can more generally be generated by dis-

placing the second dipole moment from the first one in
an arbitrary direction. This is depicted in Figure 5.15.
Whereas the dipole moment is a vector, the moment of a
quadrupole is a tensor of second rank.
Multipoles of higher order are constructed by placing a

multipole of order n − 1 and of negative moment −p(n−1)
at the origin and then placing in an arbitrary direction
near it an equal positive multipole +p(n−1). This is shown
for an octupole (n = 3) in Figure 5.15. We can now add a
third statement (theorem) to the two already given, based
on Equations (5.30–5.33): ‘The potential generated out-
side an uncharged sphere, by an arbitrary distribution of
charges within it, is identical with the potential of a sys-
tem of multipoles located at its centre.’
In Chapter 10 we will make use of this theorem to

refine the equation for the dielectrophoretic force acting
on a polarizable particle subjected to an inhomogeneous
field. Stratton’s classic text, Electromagnetic Theory [8,
pp. 172–183] can be recommended to those readers
wishing to find a more detailed description than that
given here of the concept of multipoles. Jones [9] in his
book Electromechanics of Particles also gives an excellent
treatment of how the forces and torques experienced by
particles subjected to electric and / or magnetic fields
can be understood in terms of multipole theory.

Example 5.7 A Macroscopic (Classic) Dipole
Moment
Amacroscopic dipole (rather than a point dipole) such as
that shown in Figure 4.5 consists of two equal and oppo-
site charges separated a finite distance apart. Figure 5.16
shows a dipole located on the z-axis, with charge +q at
z = d/2 and −q at z = −d/2. Derive a general expression
for the potential of this dipole at a distance r from the
origin.

Solution 5.7 In Figure 5.16 we define r+ and r− to be
the vector distances, respectively, from charge q+ and q−
to the observation point P. The potential V(r, 𝜃) at point
P due to charges q+ and q− is

V (r, 𝜃) =
q

4𝜋𝜀0𝜀r

( 1
r+

− 1
r−

)
(5.38)

From the cosine rule for the sides of a triangle and from
the procedure that gave Equation (5.28):

r+ =
√

r2 + d2
4

− 2r d
2
cos 𝜃

so that

1
r+

= 1
r

∞∑
n=0

Pn(cos 𝜃)
(

d
2r

)n

We also have

r− =
√

r2 + d2
4

− 2r d
2
cos(𝜋 − 𝜃)

z
P

r

r+

d/2

+q

–q

d/2

r–
0

θ

Figure . Figure for Example 5.7.
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so that

1
r−

= 1
r

∞∑
n=0

Pn(cos𝜋 − 𝜃)
(

d
2r

)n

Using the values for Pn given in Box 5.5 and noting
that cos(𝜋−𝜃) = −cos 𝜃, then working through Equation
(5.38) we find that the terms with even values for n can-
cel, leaving only terms with odd values for n in the series
expansion, so that:

V (r, 𝜃) =
q

4𝜋𝜀0𝜀r

[
d
r2

cos 𝜃 + d3

8r4
(
5 cos3 𝜃 − 3 cos 𝜃

)]
+

q
4𝜋𝜀0𝜀r

[
d5

128r6
(
63 cos5 𝜃 − 70 cos3 𝜃 + 15 cos 𝜃

)
+ higher terms

]
(5.39)

Unless the distance r from the dipole is much greater
than the size d of the dipole, the potential V(r, 𝜃) of a
macroscopic dipole consists of contributions fromhigher
order multipoles. For the case where r ≫ d, then

V (r, 𝜃) =
qd

4𝜋𝜀0𝜀r

cos 𝜃

r2
=

p
4𝜋𝜀0𝜀r

cos 𝜃

r2

so that, to a good approximation, the potential and field
of a macroscopic dipole are the same as those described
for a ‘mathematical’ dipole in Figure 5.14 and Box 5.6.

Example 5.8 Dipole Moment of a Cell with Induced
Surface Charge
A spherical cell of radius R, located at the origin of a rect-
angular system of coordinates, has an induced surface
charge density 𝜎 given by 𝜎 = kcos𝜃, where k is a con-
stant and 𝜃 is the spherical coordinate shown in Box 3.2.
Find the dipole moment component of the potential at
distances far away from the cell.

Solution 5.8 With reference to the spherical coor-
dinate system shown in Box 3.2, an interesting conse-
quence follows from the fact that the surface charge den-
sity depends only on angle 𝜃. The components of the
dipole moment along the x- and y-directions are both
zero, because the same magnitude of the surface charge
will exist at locations (x, y, z) and (−x,−y, z). Components
of the dipole lie only along the z-axis.
From section 5.3.4.2 the dipole component in the

potential at a location r ≫ R is:

V1 =
p

4𝜋𝜀0𝜀r

cos 𝜃

r2
(5.40)

The component of the vector from the origin to a point
on the cell’s surface with charge density 𝜎 is Rcos𝜃. The
dipole moment p is thus given by the iterative integral

p = k
2𝜋

∫

0

𝜋

∫

0

(cos 𝜃)(R cos 𝜃)(R2 sin 𝜃)d𝜃d𝜙

Noting that

∫

sinn 𝜃 cosm 𝜃d𝜃 = sinn+1 𝜃 cosm−1 𝜃

n +m
+ m − 1

n +m

∫

sinn𝜃 cosm−2 𝜃d𝜃

then

p = 4
3
k𝜋R3

From Equation (5.40) the dipole component of the
potential is thus:

V1 =
kR3

3𝜀0𝜀rr2
cos 𝜃

Example 5.9 Electric Field of a ‘Pure’ Dipole
Derive an expression for the electric field of a pure dipole.

Solution 5.9 A pure dipole arises from a system of
charges where only the dipole term in the multipole
expansion is not zero. From section 5.3.4.2 the potential
of a pure dipole ofmoment p, expressed in spherical coor-
dinates, is:

V =
p

4𝜋𝜀0𝜀r

cos 𝜃

r2

The electric field of this pure dipole is obtained by find-
ing the negative gradient of its potential. Expressed in
spherical coordinates (see Box 3.2) and denoting r̂, �̂�, �̂�
as unit vectors, we obtain:

E = −∇V = −𝜕V
𝜕r

r̂ − 1
r
𝜕V
𝜕𝜃

�̂� − 1
r sin 𝜃

𝜕V
𝜕𝜙

�̂�

=
p

4𝜋𝜀0𝜀r

1
r3

[
2 cos 𝜃r̂ + sin 𝜃�̂�

]
(5.41)

Conversion of the unit vectors is made through the fol-
lowing standard formulae:

r̂ = sin 𝜃 cos𝜙x̂ + sin 𝜃 sin𝜙ŷ + cos 𝜃ẑ

�̂� = cos 𝜃 cos𝜙x̂ + cos 𝜃 sin𝜙ŷ − sin 𝜃ẑ
If we set 𝜙 = 0, then

E =
p

4𝜋𝜀0𝜀r

1
r3

[2 cos 𝜃 (sin 𝜃x̂ + cos 𝜃ẑ) + sin 𝜃 (cos 𝜃x̂ − sin 𝜃ẑ)]

=
p

4𝜋𝜀0𝜀r

1
r3

[
3 sin 𝜃 cos 𝜃x̂ +

(
3 cos2 𝜃 − 1

)
ẑ
]

(5.42)

Referring to Figure 5.16 shown in Example 5.7, the
dipole moment p has its centre at the origin and points
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along the z-axis. 𝜃 is the angle between p and the unit
vector r̂ in the radial direction along r and the unit vector
�̂� makes an angle of (𝜃 +𝜋/2) with p. We can therefore
also express Equation (5.41) in a coordinate-free form by
noting that

p ⋅ r̂ = p cos 𝜃 and p ⋅ �̂� = p cos(𝜃 + 𝜋∕2) = −p sin 𝜃

The dipole moment p is given by the vector sum of its
radial and angular components:

p = (p ⋅ r̂)r̂ + (p ⋅ �̂�)�̂� = pcos𝜃r̂ − psin𝜃�̂� (5.43)

Inserting Equation (5.43) for p into Equation (5.41) we
obtain

E = 1
4𝜋𝜀0𝜀r

1
r3
[2 ⋅ r̂(p ⋅ r̂)r̂ − p + (p ⋅ r̂)r̂]

= 1
4𝜋𝜀0𝜀r

1
r3
[3(p ⋅ r̂)r̂ − p] (5.44)

. Method of Image Charges

The method of image charges, also known as the method
of images or themethod of mirror charges, is a useful tool
for solving problems in electrostatics. Basically, imagi-
nary point electric charges are introduced within a con-
ductor to replace a distribution of charges along the con-
ductor’s surface. This procedure can greatly simplify the
task, for example, of calculating the force that a distribu-
tion of charges on a conductor exerts on other charges.
The validity of this method depends on two so-called
uniqueness theorems. The First Uniqueness Theorem
states:
� In a specified volume T bounded by a surface S,
the Laplace equation has a unique solution when the
potential V is given on the boundary S.

If we do not know the potential at the boundary, but
can specify the charge distributions on various conduct-
ing surfaces, we can use the Second Uniqueness Theo-
rem:
� The electric field within a volume T is uniquely
specified by the total net charge on each conductor
surrounding this volume and by the charge density
within T.

A simple example of the application of the First
Uniqueness Theorem is given in Figure 5.17. A station-
ary point charge +Q is shown located a short distance
d above the surface of a grounded metal plate. Because
the metal plate is grounded, this represents a boundary
where V is zero. The potential also drops to zero as we
approach an infinite distance above the metal surface. In
terms of the First Uniqueness theorem we have a defined

++ +

+

+
+

-

-

-

-

-
E

V +++
+

Figure . The field lines from a point charge meet an electrically
conducting surface, such as a metal, at right angles. This arises
because there can be no component of the electrical field parallel
to the conductor’s surface. The induced (negative) charges on the
conductor form an equipotential surface.

volume T above the surface of the metal with specified
(zero) potentials at the boundaries of this volume.We can
therefore uniquely determine the potential at every point
within this volume.We need find only one physical situa-
tion that replicates these boundary conditions to be sure
that this represents the unique solution. We can deduce
what this solution is by simple logic. We know that an
electric field cannot be sustained along the surface of the
metal and so the distribution of induced negative charges
at the metal boundary will form an equipotential surface.
As shown in Figure 5.18, this equipotential surface can
be generated by replacing the metal plate with a point
charge −Q located at a distance d inside the space pre-
viously occupied by the metal. We are in effect treating

+Q –Q

Metal

Figure . The equipotential surface of the metal surface shown
in Figure 5.17 can be replaced with an imaginary point charge −Q
located inside it. The imaginary charge and the external charge are
equidistant from the conductor’s surface. The imaginary charge
produces the same field outside the metal as that shown in Figure
5.17. Calculation of the force on the real charge +Q from the
induced distributed charge on the metal’s surface is now
simplified to that of using Coulomb’s Law for two point charges of
equal but opposite polarity.
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V = 0

Metal
interior

d

d
+q

–q

–q

+q

θ

θ

p

pim

z

x

Metal
surface

Figure . A ‘real’ dipole moment p is shown located distance d
above the surface of a grounded metal plane and makes an angle
𝜃 with the perpendicular axis to this plane. The image dipole pim
makes an angle 2𝜃 with the real dipole and its magnitude is the
same as p.

the metal surface as a mirror. The image charge that is
produced generates the same field outside the conductor
as that shown in Figure 5.17. Calculation of the attractive
force F acting on the real charge +Q from the distributed
negative charges it induces on the metal surface is now
simplified to the application of Coulomb’s Law for two
point charges, of opposite polarity, separated by the dis-
tance 2d. The result is:

F = − 1
4𝜋𝜀o

Q2

4d2

This attractive force is directed normal to the metal
surface.
An extension of this example is to consider the case of

a dipole of moment p situated a distance d above the sur-
face plane of a metal at an angle 𝜃 with the perpendicular
axis to this plane. This is illustrated in Figure 5.19. We
take the coordinates of this dipole as (0, d, 0). The mirror
image dipole pim is located at (0, −d, 0) and has the same
magnitude as the real dipolemoment.The angle between
the dipole and its image is 2𝜃, so that the dipole’s image
has the same z-component but opposite components in
the x- and y-directions. A dipole moment with Carte-
sian components (psin𝜃 cos𝜃, psin𝜃 sin𝜃, pcos𝜃 ) thus has
an image moment of components (−psin𝜃 cos𝜃, −psin𝜃

sin𝜃, pcos𝜃 ).
Equation (5.35) gives the force acting on a pure dipole

in an electric field as

F = (p⋅∇)E

The real dipole experiences the field E produced by its
image dipole. From Equation (5.44), with a spherical

coordinate system centred on the image dipole, this field
is

E = 1
4𝜋𝜀0𝜀r

1
r3
[3(p⋅r̂)r̂ − p]

We set 𝜙 = 0 and substitute for the unit vectors to
obtain

E =
pim

4𝜋𝜀0𝜀r

1
r3
[2 cos 𝜃 (sin 𝜃x̂ + cos 𝜃ẑ)

+ sin 𝜃 (cos 𝜃x̂ − sin 𝜃ẑ)

=
pim

4𝜋𝜀0𝜀r

1
r3

[
3 sin 𝜃 cos 𝜃x̂ +

(
3 cos2 𝜃 − 1

)
ẑ
]

Working through the calculation of (p⋅∇)E we obtain
the following result for the force acting on the real dipole
by the field of its mirror image:

F = − 1
4𝜋𝜀o𝜀r

3p2

16d4
(
1 + cos2 𝜃

)
(5.45)

A dipole approaching the surface of a metallic plane
therefore experiences an attractive force towards the
metal. However, this force falls of as (1/d)4 and so for
modest distances fromametal surface the attractive force
acting on a particle as a result of its image dipolemoment
is likely to be less than that arising from its surface charge,
the force of which falls off as (1/d)2. This is an important
consideration for dielectrophoresismanipulations of bio-
logical cells, which typically possess a net negative sur-
face charge much larger than the induced charges of its
induced dipole moment.
A dipole also experiences a torque T in the plane per-

pendicular to themetal surface given by Equation (5.37):

T = p × E

= 1
4𝜋𝜀0𝜀r

1
(2d)3

[3p cos 𝜃p × r̂ − p × pim

=
p2

4𝜋𝜀0𝜀r

1
(2d)3

(3 cos 𝜃 sin 𝜃 − sin 2𝜃) x̂

=
p2

4𝜋𝜀o𝜀r

1
8d3

(1
2
sin 2𝜃

)
x̂ (5.46)

The surface charge on a biological cell is uniformly dis-
tributed on the membrane surface and does not give rise
to a dipolemoment.The field of the image charge will not
therefore produce a torque on the cell, but the image of
its induced dipole moment will do so.

5.4.1 Polarized Particle near an Electrode or Insulator
Surface

In a dielectrophoresis experiment particles are sus-
pended in a fluid and subjected to an electric field. This
field is created using electrodes that are often embed-
ded into one or more insulating substrates that form the
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Figure . To satisfy the boundary conditions at the surface of
an insulator the field of the image charge within the insulator
must oppose that of the true external charge. The real charge
experiences a repulsive coulombic force from the imaginary
image charge.

chamber walls containing the suspended particles. The
electric boundary conditions to be described in section
5.6 of this chapter must be satisfied at both the metal
(or conducting) and insulator surfaces of the chamber
walls. The important boundary conditions of relevance
to image charges are:

� At the surface of an ideal conductor there can be no
component of the field parallel to its surface. Such a
wall must act as an equipotential surface. This condi-
tion is satisfied for the charge images shown in Figures
5.18 and 5.19.

� A wall composed of an insulator will not represent an
equipotential surface – there will be a component of
the field parallel to its surface. However, the normal
component of the field at the surface of an insulator is
continuous. The charge images shown in Figures 5.18
and 5.19 do not satisfy this situation.

In Chapter 6 it is shown that a particle polarized by an
imposed electric field assumes the form of electric dipole
moment. For a spherical particle the field produced by
this dipole takes the form of Equation (5.42), which gives
field components parallel (x-direction) and normal (z-
direction) to the wall surface shown in Figure 5.19. As a

polarized particle approaches the surface of either a con-
ducting or insulating surface, the total field (ET) at posi-
tion r is given by:

ET (r) = Eo + Edp + Eimag

where Eo is the applied local field, Edp is the dipole field of
the polarized particle and Eimag is the field produced by
the image charges. If the polarized particle is approach-
ing a conducting surface, the boundary condition at the
surface (z = 0) is given by:

ET (z = 0) ⋅ t̂ = 0

where t̂ is the unit vector in a direction tangential (in
this case also parallel) to the conducting surface.We have
already deduced that the form of the image dipole shown
in Figure 5.19 satisfies this boundary condition. If the
polarized particle approaches an insulating surface, the
boundary condition at the surface is given by:

ET (z = 0) ⋅ n̂ = Eoz
This condition is satisfied when the field produced by

the image dipole exactly opposes the field of the ‘real’
dipole. A simple demonstration of this is shown in Fig-
ure 5.20 for the case of a positive point charge located
near the surface of an insulator.
The corresponding situation for a dipole approaching

an insulator is shown in Figure 5.21, from which it is
evident that a coulombic repulsion force exists between
the true dipole and its image dipole. On the other hand,
an attractive force exists between a dipole and its image
when approaching a conducting surface.

. Electric Field Gradient

The electric field map shown in Figure 5.10 is confined
to a two-dimensional plane. The map does not change
along the x-axis normal to the yz-plane. In Figure 5.10
the surface of the electric field map is shown in a region
where the field reaches its maximum value at the junc-
tion between the metal sheet biased at 12 V and the
grounded surface of the tube. Paths can be identified in

Figure . The directional sense of the image
dipole for a polarized particle approaching a metal
surface is opposite to that created when it
approaches an insulating surface. The positive
dielectrophoretic (DEP) force that causes a polarized
particle to be directed towards an electrode is
enhanced by the attractive coulombic force with its
image. On the other hand, the effect of a negative
DEP force that repels a polarized particle from an
electrode towards an insulating surface is reduced
by a repulsive force with its image dipole.
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Box . The Gradient of an Electric Field is a  ×  Tensor

An electric field vector such as E(x, y, z)= 3ı̂+ 4ĵ+ 2k̂ (where
ı̂, ĵ and k̂ are unit vectors along the x-, y- and z-directions,
respectively) can be represented by the following 3 × 1 (col-
umn) matrix:

E =
⎡⎢⎢⎢⎣

3

4

2

⎤⎥⎥⎥⎦
Multiplying a 1 × 3 (line) matrix with a 3 × 1 (column) matrix
gives a result that is equivalent to a vector dot product. For
example:

[
x1 x2 x3

] ⎡⎢⎢⎢⎣
y1

y2

y3

⎤⎥⎥⎥⎦ = x1y1 + x2y2 + x3y3 = x⋅y

Let G = ∇E be the gradient of the field E. The components
of dE are:

dEx =
𝜕Ex

𝜕x
dx +

𝜕Ex

𝜕y
dy +

𝜕Ex

𝜕z
dz

dEy =
𝜕Ey

𝜕x
dx +

𝜕Ey

𝜕y
dy +

𝜕Ey

𝜕z
dz

dEz =
𝜕Ez

𝜕x
dx +

𝜕Ez

𝜕y
dy +

𝜕Ez

𝜕z
dz

This can be represented as the following matrix product:

⎡⎢⎢⎢⎣
dEx

dEy

dEz

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜕Ex

𝜕x
𝜕Ex

𝜕y
𝜕Ex

𝜕z
𝜕Ey

𝜕x

𝜕Ey

𝜕y

𝜕Ey

𝜕z
𝜕Ez

𝜕x
𝜕Ez

𝜕y
𝜕Ez

𝜕z

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
dx

dy

dz

⎤⎥⎥⎥⎦ = G ⋅

⎡⎢⎢⎢⎣
dx

dy

dz

⎤⎥⎥⎥⎦ (5.47)

The gradient G of a vector electric field can thus be rep-
resented as a 3 × 3 tensor. A tensor is a matrix, but not all
matrices are tensors. The three components of any vector
can be multiplied by any 3 × 3 matrix. In order to classify as
a 3 × 3 tensor, the three numbers that result from this multi-
plication must represent (as they do in the above equation)
the components of a vector.

the yz-plane along which the electric field gradient is
zero – the field remains constant in value. No work is
required to move an electrically charged particle along
such a path and its potential energy would remain con-
stant. However, the natural tendency for a charged parti-
cle in an electric field is to move so as to reduce its poten-
tial energy. A positively charged particle will move up the
E-field surface and choose the steepest field gradient pos-
sible at each point of its route.The lengths and directions
of the arrows shown in Figure 5.22 denote the magni-
tude and direction, respectively, of the local field gradi-
ent vector. From the mathematical description given in
Box 5.7, the components dEy and dEz of the field gradi-
ent in the yz-plane are given in terms of the partial deriva-
tives of the field along the direction of the y-axis and the
z-axis:

dEy =
𝜕Ey
𝜕y

dy; dEz =
𝜕Ez
𝜕z

dz

As shown in the inset of Figure 5.22, the field gradient
∇E (grad E) is equal to the vector sumof dEy and dEz.This
result gives the direction of the steepest field gradient at
that particular location x, y. For example, if the field is
constant in the z-direction, then dEz = 0 and the steepest
gradient lies normal to this direction – namely along the
y-direction on the E-field surface. For the case where the
incremental changes of the local field are equal in the y-
and z-directions,∇E is directed at 45◦ to the y- and z-axes
when projected onto the E-field surface.

A positively charged particle will follow a path that at
each point represents the steepest field gradient. Con-
versely, a negatively charged particle will seek to mini-
mize its electrical potential energy by following a path of
steepest gradients down the E-field surface. As shown in
Figure 5.22 the overall path taken may involve changes in
the y- and z-directions. An analogy is that of a rock rolling
down a mountain slope, following a path that at any

P

E

y

z

dEy

dEz

ΔE

Figure . A plot of the E-field surface at one corner of the map
shown in Figure 5.10 where the field reaches a maximum. The
length and direction of an arrow denotes the magnitude and
direction, respectively, of the local field gradient ∇E. These values
are obtained by the vector addition of the field increments in the
y- and z-directions. A positively charged particle at location P will
move along a path that at each point follows the steepest field
gradient.
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xy

z

P

Figure . A point P is shown on a three-dimensional E-field
surface created at the open end of a coaxial electrode. The
direction of greatest rate of change of the electric field is given by
the sum of the three partial derivatives, in the x, y and z directions,
of the mathematical function describing the shape of the surface.
As described in Box 5.7 the resultant gradient vector takes the
form of a 3 × 3 tensor.

point leads to the greatest rate of decrease of its poten-
tial energy in the Earth’s gravitational field. In summary,
the electric field gradient has magnitude and direction –
it is a vector as denoted by each arrow in Figure 5.22.
The concept of an electric field gradient, when we are

confined to a two-dimensional surface, is not too diffi-
cult to visualize. However, the usual practical situation
in dielectrophoresis involves the spatial manipulation of
particles in electric fields that vary in three-dimensional
space. An example is the semispherical field generated at
the open end of a coaxial electrode system, as depicted
in Figure 5.23. Visualization of a local field gradient in
such a three-dimensional field surface can in fact bemore
difficult than the mathematics involved in deriving it!
FromEquations (5.5) and (5.6) the electric field is a vector
quantity given by:

E(x, y, z) =
(
ı̂ 𝜕

𝜕x
+ ĵ 𝜕

𝜕y
+ k̂ 𝜕

𝜕z

)
V

In Box 5.7 the gradient of this field is shown to be rep-
resented by a 3 × 3 tensor. It is a vector equal to the vec-
tor sum of dEx, dEy and dEz for each coordinate direction
and ‘points’ along the direction of greatest field gradient
at that point. A charged particle on this E-field surface

will ‘sense’ the direction of this greatest field gradient and
will move along it so as to reduce its potential energy.

. Electrical Conditions at Dielectric
Boundaries

The boundary surface S between two dielectrics (1) and
(2) of relative permittivity 𝜀r1 and 𝜀r2, respectively, is
shown in Figure 5.24. The two dielectrics are not per-
fect insulators and have electrical conductivities of 𝜎c1
and 𝜎c2, respectively. We will imagine that a very thin
transition region exists at the boundary, within which the
permittivity and conductivity change rapidly but continu-
ously.Thepotential functions𝜙1 and𝜙2 are thus continu-
ous across the boundary, together with their first deriva-
tives with respect to distance (i.e., fields E1 and E2 are
continuous). The electric force flux (D = 𝜀E) and current
density (J = 𝜎cE) normal to S are thus also continuous
functions across the boundary.
For the Gaussian cylinder drawn across the boundary

in Figure 5.24(b) no flux passes through the sides parallel
to the normal vector n, but only through its two circular
ends of area A. Taking the positive direction of the nor-
mal vector to be from dielectric (1) to dielectric (2), on
applying Gauss’s Law in the form of equation (3.32) the
change of the normal component of the flux D across the
boundary is given by:

∫S
D ⋅ n dA = (Dn2 − Dn1) ⋅ n

=
(
𝜀o𝜀2En2 − 𝜀o𝜀1En1

)
= 𝜎free (5.48)

At the boundary surface there is thus an abrupt change
in the normal component of D. The magnitude of this
change is equal to the surface charge density at the sur-
face boundary. This charge will have migrated to the
boundary surface through one or both dielectrics, or have
been introduced (e.g., injected) by some other means. If
the boundary surface is uncharged, the normal compo-
nent of D does not change across the boundary, so that
Dn2 = Dn1 to give:

𝜀2En2 = 𝜀1En1 (5.49)

σDielectric 
1

Dielectric 
2S

n

Dn2

S

Dn1 σ Jn2

S

Jn1

σ

(a) (b) (c)

1ϕ

2ϕ

1ϕ

2ϕ

1ϕ

2ϕ

Figure . (a) A boundary surface S with charge
density 𝜎 is shown between two dielectrics of
relative permittivity 𝜀r1, 𝜀r2 and conductivity 𝜎c1,
𝜎c2, respectively. The potential functions 𝜙1 and
𝜙2 are continuous across the boundary. The
vector n is drawn normal to S. (b) Flux (D = 𝜀E)
normal to S, through the two ends of a
cylindrical Gaussian surface, is continuous across
the boundary. (c) The current density (J = 𝜎cE)
normal to S is continuous across the boundary.
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If one or both of the dielectrics exhibit an electrical
conductivity 𝜎c, the current density (Jn = 𝜎cEn) is equal
to the flow of free charge to or across the boundary sur-
face S. The change in the normal component of the net
current density normal to the surface is given by:

(Jn2 − Jn1) ⋅ n =
(
𝜎c2En2 − 𝜎c1En1

)
= −

𝜕𝜎free

𝜕t
(5.50)

The time t is a common factor for D and J, related to
the angular frequency𝜔 of the voltage signal v(t)=Vo(sin
𝜔t) applied to the dielectrics. The sine wave is a periodic
waveform derived from a radius vector r rotating around
the origin. In the notation of complex algebra a rotating
radius vector is given as

r(t) = roei𝜔t = ro (cos𝜔t + i sin𝜔t) (5.51)

where i signifies
√
−1. The time derivative of an expo-

nential function gives the same exponential function (i.e.,
𝜕(ei𝜔t)∕𝜕t = i𝜔ei𝜔t) and so 𝜕/𝜕t can be replaced with i𝜔.
From Equations (5.48) and (5.50) we have the two equa-
tions:

𝜀2En2 − 𝜀1En1 = 𝜎free

𝜎c2En2 − 𝜎c1En1 = −i𝜔𝜎free

The requirement for zero charge buildup at the surface
boundary can be written as:[

𝜀2 𝜀1

𝜎c2 𝜎c1

][
En2
−En1

]
= 0

which is satisfied by|||||
𝜀2 𝜀1

𝜎c2 𝜎c1

||||| = 0,

or

(𝜀2𝜎1 − 𝜀1𝜎2) = 0 (5.52)

The conditions at S for the tangential components of
the fields E1 and E2 are found by replacing the Gaussian
cylinder with a rectangular path as shown in Figure 5.25.

ε1,σ1

S

n

t

Δs

Δl
ε2,σ2

Figure . The conditions at S for the tangential components of
the fields E1 and E2 are found by replacing the Gaussian cylinder
with a rectangular path as shown in this figure.
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Figure . The boundary conditions (continuity of the normal
component of D and of the tangential component of E) at the
surface S between to perfect dielectrics results in the law of
refraction for the D- and E-lines of force: tan𝜃1/tan𝜃2 = 𝜀r1/𝜀r2.

Thesides of this rectangle are of lengthΔs and are located
either side of the boundary surface S.The ends of the rect-
angle that traverse S are each of length Δl.
For one complete circuit of the rectangular path shown

in Figure 5.25 there is zero potential difference and so
from Equation (5.1) we have

∮

Eds = 0

To a good approximation this integral can be approxi-
mated as

(E1 ⋅ t1 + E2 ⋅ t2)Δs + (E1 ⋅ n1 + E2 ⋅ n2)Δl = 0

where t1,t2 and n1, n2 are the unit tangential and nor-
mal vectors, respectively. In the limit as Δs and Δl tend
to zero, E1⋅t1 and E2⋅t2 become tangents to S, so that:

(Et1 − Et2) ⋅ t = 0 (5.53)

Thus, the tangential component of a field E at the sur-
face boundary is continuous. It follows that the tangential
component of current density J is also continuous.
The continuity of the normal component of D and the

tangential component of E at a boundary surface gives
rise to a particular law of refraction for ideal dielectrics.
As shown in Figure 5.26, let 𝜃1 and 𝜃2 be the angles
between the D-field and E-field force ‘lines’ and the nor-
mal vector n to the boundary surface S. The boundary
conditions given by Equations (5.48) and (5.53) can thus
be written as:||D1|| cos 𝜃1 = ||D2|| cos 𝜃2 (5.54a)

and ||E1|| cos 𝜃1 = ||E2|| cos 𝜃2 (5.54b)

But

D = 𝜀o𝜀rE
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Figure . (a) A long, thin dielectric rod with its axis parallel to an
external electric field. (b) A large, flat dielectric plate with its major
faces perpendicular to an external electric field.

and so from Equations (5.54)
tan 𝜃1
tan 𝜃2

=
𝜀1
𝜀2

Thus, theD- andE-field lines are deflected further from
the normal to the surface if they cross from one dielectric
to another for which the permittivity is greater.
The boundary conditions given by Equations (5.49) and

(5.53) are applied in Figure 5.27 to the cases of a long thin
dielectric rod and a large flat dielectric plate. From Equa-
tion (5.53), which states that the tangential component
of the externa field Em is continuous across the interface
between the rod and the external medium, then the field
Ep inside the rod is given by:

Ep =
𝜀m
𝜀p

Em (5.55)

The field inside the rod is thus equal to the external field
Em. In Chapter 7, with Equations (7.32) and (7.33) the
concept of a depolarizing factor A is described. In gen-
eral, the field inside any particle is of the form:

Ep = Em − Edp (5.56)

where Edp is the depolarizing field arising from the polar-
ization charges on the particle, given in terms of the
induced polarization P by:

Edp = AP
𝜀o

(5.57)

From Equations (5.55–5.57) it is clear that for the case
of a long thin rod A = 0. From Equation (5.49), which
states that the normal component of the externa displace-
ment D is continuous across the faces of the flat dielectric
plate, the internal field is given by:

Ep =
𝜀m
𝜀p

Em (5.58)

The field inside the plate is thus reduced by the factor
𝜀p/𝜀m relative to the external field Em. In this case, for

the flat plate A = 1. As discussed further in Chapter 7,
the particle geometries of a long thin rod and a large flat
plate give the extreme values for A, since the values of A
for all other particle shapes lie between 0 and 1. For the
important case of a spherical particle, A= 1/3.

. Summary

The electric potential at a point within a small volume
of space that contains no charge is equal to the average
of the potentials that surround this point. In the limit
as the characteristic dimensions of this volume become
infinitesimally small, this is an exact statement and forms
the basis formodelling electric potentials and fields using
the finite difference and finite element methods.
The gradient of a scalar function or field using vector

notation is obtained by applying the grad or del vector
operator denoted by the symbol ∇. Thus, the gradient of
a potential V is given by:

∇V =
(
ı̂ 𝜕

𝜕x
+ ĵ 𝜕

𝜕y
+ k̂ 𝜕

𝜕z

)
V

where ı̂, ĵ and k̂ are unit vectors along the x-, y- and z-axes,
respectively.
In vector notation an electric field E is defined as:

E = −
(
ı̂𝜕V
𝜕x

+ ĵ𝜕V
𝜕y

+ k̂ 𝜕V
𝜕z

)
= −∇V

If the field E is uniform, then everywhere ∇E = 0.
Because the dielectrophoretic force acting on a particle
is proportional to ∇E, we have the practical requirement
that the field is nonuniform. If the nonuniform field is
confined to a two-dimensional plane, the field gradient
at any point (x, y) is given by a 2 × 2 tensor of the form:

∇E =

⎡⎢⎢⎢⎢⎣
𝜕Ex
𝜕x

𝜕Ex
𝜕y

𝜕Ey
𝜕x

𝜕Ey
𝜕y

⎤⎥⎥⎥⎥⎦
For the more general case of a nonuniform field in

three-dimensional space, the field gradient at any point
(x, y, z) is given by a 3 × 3 tensor:

∇E =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜕Ex
𝜕x

𝜕Ex
𝜕y

𝜕Ex
𝜕z

𝜕Ey
𝜕x

𝜕Ey
𝜕y

𝜕Ey
𝜕z

𝜕Ez
𝜕x

𝜕Ez
𝜕y

𝜕Ez
𝜕z

⎤⎥⎥⎥⎥⎥⎥⎥⎦
The field gradient∇E at any point on an E-field surface

has magnitude and direction, with the direction being



5 Potential Gradient, Field and Field Gradient 

that of the steepest field gradient at that point. A charged
particle, or a particle experiencing dielectrophoresis, will
minimize its electrical potential energy by moving along
(or against) the direction of ∇E.
In practical dielectrophoresis experiments, the parti-

cles being manipulated can often approach the surface
of a metal electrode. The particle will have assumed
the properties of a dipole moment and also carry a net
charge. These two attributes induce charges at the sur-
face of the electrode, to exert a small but sometimes not
negligible attractive coulombic force on the particle. A
useful technique to aid calculation of this attractive force
is to apply the method known variously as themethod of
image charges, or the method of mirror charges. The cal-
culation is simplified by treating the metal surface as a
mirror, so that imaginary charges inside the metal mir-
ror the spatial locations of the real external charges (but
reversing the electrical polarity of each real charge). The
unspecified distribution of induced charges at the metal
surface is replaced by a system of point charges of known
polarity and location.
Finally, the following conditions apply at the boundary

surface S between two dielectrics:

1. The potential functions 𝜙 are continuous everywhere
in the dielectrics, including at the boundary between

them. Thus, at the boundary surface S in Figure 5.24
we have

𝜙1 = 𝜙2

2. The normal component of the displacement flux den-
sity (D = 𝜀E) is continuous across the boundary sur-
face, so that

𝜀2En2 − 𝜀1En1 = 𝜀2
𝜕𝜙2
𝜕r

− 𝜀1
𝜕𝜙1
𝜕r

= 𝜎free

3. The normal component of the current density (J= 𝜎E)
is continuous across the boundary surface, so that

𝜎c2
𝜕𝜙2
𝜕r

− 𝜎c1
𝜕𝜙1
𝜕r

= −i𝜔𝜎free

where 𝜔 is the radian frequency of the applied voltage
signal.

4. The tangential component of a field E and a current
density J is continuous at a surface boundary.

The application of these dielectric boundary conditions
can be used to define a depolarization factor, which quan-
tifies by how much the field inside a polarized particle is
reduced relative to the external polarizing field as a result
of the induced polarization charges on the particle’s
surface.
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The Clausius–Mossotti Factor

‘Wohl dem, der seiner Väter gern gedenkt’
(‘Blessings on him who gladly remembers his
forefathers’)

J. W. V. Goethe

. Introduction

Scientific papers dealing with the dielectric or dielec-
trophoretic properties of bioparticles often refer to the
Clausius–Mossotti (CM) factor to describe their polariz-
abilities. For the case of a spherical particle of permittiv-
ity 𝜀p, suspended in amedium of permittivity 𝜀m, theCM
factor is given as:

CM =
𝜀p − 𝜀m

𝜀p + 2𝜀m
or CM =

𝜀∗p − 𝜀∗m

𝜀∗p + 2𝜀∗m
(6.1)

Box . Polarization of a Dielectric Sphere Suspended in a Medium

A uniform field Eo, directed along the positive x-axis, is
established in a homogeneous, ideal dielectric, medium
of relative permittivity 𝜀m. An uncharged, ideal dielec-
tric, sphere of radius R and relative permittivity 𝜀p is then
inserted into this medium. The field produced by the polar-
ized sphere will be symmetrical around the x-axis. Thus,
using polar coordinates with the centre of the sphere at the
origin and 𝜃 the angle between r and the x-axis, the Laplace
equation simplifies to:

∇2𝜙 = 𝜕2𝜙

𝜕r2
+ x

r
𝜕𝜙

𝜕r
+ 1

r2

𝜕2𝜙

𝜕𝜃2
+ 1

r2
cos 𝜃

sin 𝜃

𝜕𝜙

𝜕𝜃
= 0

For r ≫ R the field is not altered by polarization of the
sphere, so that E∞ = Eo and 𝜙∞ = −Eor cos 𝜃. The potential
is finite everywhere within the sphere (r < R). The boundary
conditions described in Chapter 5 will also apply, so that for
r = R:

𝜙i = 𝜙o and 𝜀p
𝜕𝜙i

𝜕r
= 𝜀m

𝜕𝜙o

𝜕r
.

Solutions of the Laplace equation are called spheri-
cal harmonics and employ Legendre functions [2, Ch. IX,

pp. 194–231]. Ignoring higher order terms of cos 𝜃 the solu-
tions have the form:

𝜙o =
( A

r2
− Br

)
Eo cos 𝜃; 𝜙i =

( C
r2

− Dr
)

Eo (6.2)

where 𝜙o is the potential outside the sphere. For the inter-
nal potential 𝜙i we assume 𝜃 = 0◦, so that cos 𝜃 = 1. The con-
stants have the following values:

A =
𝜀p − 𝜀m

𝜀p + 2𝜀m
R3; B = 1; C = 0; D =

3𝜀m

𝜀p + 2𝜀m

Inserting these values into Equation (6.2) the following
solutions are obtained

𝜙o =
(

𝜀p − 𝜀m

𝜀p + 2𝜀m

R3

r3
− 1

)
Eor cos 𝜃; 𝜙i = −

3𝜀m

𝜀p + 2𝜀m
rEo

The field inside the sphere is given by Ei = −∇𝜙i =
3𝜀m

𝜀p+2𝜀m
Eo.

From Equation (3.51) the polarization P of the sphere is

P = (𝜀p − 𝜀m)𝜀oEi = 3𝜀0𝜀m

(
𝜀p − 𝜀m

𝜀p + 2𝜀m

)
Eo (6.3)

The version given on the left corresponds to the case of
an ideal dielectric sphere suspended in an ideal dielectric
medium. By ideal we mean that neither the particle nor
medium exhibit ohmic conduction of mobile charges.
Such conduction gives rise to energy loss (I2R) in the
form of heat.The other version, involving asterisk super-
scripts, is known as the ‘complex’ CM factor and takes
into account the conduction and dielectric energy losses
of the suspended particle and the surrounding medium.
This particular aspect is described in section 6.4 of this
chapter.
The form of what we shall term the macroscopic CM

factor can be derived by employing Laplace’s equation
with the boundary conditions described in section 5.6.
The method described in Box 6.1 follows the proce-
dure described in classical textbooks of electricity and
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magnetism [e.g., 1]. The exercise is to evaluate the
induced polarization of a spherical particle when it is
inserted into a polarized dielectric medium. The polar-
ization P of the sphere, which, from Chapter 3, is inter-
preted as an induced dipole moment per unit volume,
is obtained by evaluating the field generated within the
sphere. The result, given in Equation (6.3), is:

P = 3𝜀0𝜀m
(

𝜀p − 𝜀m

𝜀p + 2𝜀m

)
Eo

where Eo is the initial uniform field within themedium of
relative permittivity 𝜀m before the uncharged dielectric
sphere of relative permittivity 𝜀p is embedded in it. The
induced dipole moment p of a dielectric sphere of radius
R is given by multiplying P by the sphere’s volume:

p = 4
3
𝜋R3P = 4𝜋𝜀o𝜀mR3

(
𝜀p − 𝜀m

𝜀p + 2𝜀m

)
Eo (6.4)

Evaluation of the polarization P in Equation (6.3) of
Box 6.1 was achieved using the relationship:

P = (𝜀p − 𝜀m) 𝜀oEi

which links the macroscopic phenomenon to processes
at the molecular level. We can avoid making this associ-
ation by noting that the derivation in Box 6.1 of the con-
stantA in Equation (6.2) provides the following result for
the component of the potential outside the sphere that is
specifically associated with its polarization:

𝜙o =
A
r2

cos 𝜃 =
(

𝜀p − 𝜀m

𝜀p + 2𝜀m

)
R3

r2
Eo cos 𝜃

This component adds to the original potential 𝜙 =
−Eor cos 𝜃, which was initially established within the
dielectric medium. Comparing 𝜙o to the potential of a
macroscopic dipole, given by Equation (5.39), namely:

V (r, 𝜃) =
p

4𝜋𝜀o𝜀m

cos 𝜃

r2

we have the following equality

p
4𝜋𝜀o𝜀m

=
(

𝜀p − 𝜀m

𝜀p + 2𝜀m

)
R3Eo

This confirms that, from the perspective of the sur-
rounding medium, the polarized sphere has assumed the
properties of a macroscopic dipole of magnitude equal to
that given by Equation (6.4). Furthermore, we can make

an important observation that the constant A obtained
for the solution of Laplace’s equation described inBox 6.1
provides a value for the effective macroscopic moment p
given by

p = 4𝜋𝜀o𝜀mA

From this we can appreciate why the Clausius–
Mossotti factor given by Equation (6.1) is so impor-
tant in dielectrophoresis. It determines the magnitude
and polarity of the induced dipole moment of the sus-
pended particle and so dictates its behaviour in a nonuni-
form electric field. It is difficult to measure the dielec-
trophoretic (DEP) force acting on a particle directly, but a
useful reference for determining relative DEP responses
is a metallic conducting sphere suspended in air, so that
𝜀p ≫ 𝜀m. This gives the maximum positive value of 1.0
for the CM factor in Equation (6.4). As another reference
particle we can use an air bubble suspended in water, for
which 𝜀p =∼1.0 and 𝜀m =∼80. In this case theCM factor
has a value of−0.49, which is close to themaximumnega-
tive value it can attain, namely−0.5. For positive values of
CM the induced dipole moment p is directed in the same
direction as the field E and the particle experiences a
DEP force that directs it towards high field regions at elec-
trode edges. Fornegative values ofCM the induced dipole
moment p is directed in the opposite direction to the field
and the particle experiences a DEP force that directs it
away from high field regions. For the case where 𝜀p = 𝜀m
the CM factor in Equation (6.4) is zero. The particle is
not polarized and, because the volume that it displaces
has the same dielectric properties as the fluid medium,
its presence does not perturb the external field Eo. The
practical applications of observing this zero polarization
situation include being able to determine the dielectric
properties of the particle (the dielectric properties of the
suspending medium are known and can be controlled);
monitoring subtle changes of the dielectric properties of
the particle (resulting from apoptosis or cell differenti-
ation, for example); separating particles in a mixture for
which the condition 𝜀∗p = 𝜀∗m for each particle type occurs
at a different frequency of the applied field.
In a paper published in 2013 in a reputable peer-

reviewed journal, it is stated:

The Clausius–Mossotti relation is named after
the Italian physicist Ottaviano-Fabrizio Mossotti,
whose 1850 book analyzed the relationship
between the dielectric constants of two different
media, and the German physicist Rudolf Clausius,
who gave the formula explicitly in his 1879 book in
the background not of dielectric constants but of
indices of refraction.
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Apart from correctly identifying the relevant scientists,
this statement (which mirrors others like it in the litera-
ture) completely misrepresents their work! But does this
matter? On the more important issue the authors of this
paper are correct in stating that: ‘In physics, this rela-
tion connects the relative permittivity of a dielectric to
the polarizability of the atoms or molecules constitut-
ing the dielectric.’ Thus, this refers to a molecular rather
than macroscopic form of the CM relation, implying an
understanding at the microscopic level of the relation-
ship 𝜀r = D/𝜀oE given by Equation (3.12). For both the
macroscopic and molecular forms of the CM relation,
evaluations are required of the local field experienced by
a test charge or polar molecule in a dielectric medium. A
review of the work that has been directed to achieve this
can assist in interpreting the dielectrophoretic response
of a cell compared to that of a polar bioparticle, for
example.
According to the advice of James Clerk Maxwell: ‘It is

of great advantage to the student of any subject to read
the originalmemoirs on that subject, for science is always
most completely assimilated when it is in its nascent
state’ [2, preface]. Because the CM factor is so central to
the understanding and application of dielectrophoresis
it is important that we understand the physical princi-
ples on which it is based. To approach such understand-
ing we can follow Maxwell’s advice and so what follows
is a revue of the historic development of the theories
that led to the derivation of what we will refer to as the
Clausius–Mossotti–Lorentz relation. Apart from learn-
ing some important dielectric principles, readers of this
chaptermay also decide for themselves whetherMossotti
wrote a book that ‘analyzed the relationship between the
dielectric constants of two differentmedia’ and that Clau-
sius ‘gave the formula explicitly in his 1879 book in the
background not of dielectric constants but of indices of
refraction.’ :)

. Development of the
Clausius–Mossotti–Lorentz Relation

6.2.1 Siméon Denis Poisson and George Green

The early mathematical concepts that were applied to the
theory of dielectrics largely originate from the work on
magnetism by Poisson [3]. He adopted Coulomb’s con-
cept that two types of magnetic fluid, positive and neg-
ative, could arise from the decomposition of a neutral
fluid.These magnetic fluids are not able to pass from one
element to the next in a magnetic body, but are confined
in their movements to their own individual element. If
we suppose that an amount m of positive magnetic fluid

is located at a point (x, y, z), then the magnetic intensity,
defined as the force exerted on a unit magnetic pole, will
diminish as the reciprocal distance from that point. The
magnetic intensity (i.e., force) acting on a unit magnetic
pole at (x′, y′, z′) will thus have components:

−m 𝜕

𝜕x′
(1
r

)
, −m 𝜕

𝜕y′
(1
r

)
, −m 𝜕

𝜕z′
(1
r

)
,

where r =
⌊(
x′ − x

)2 + (
y′ − y

)2 + (
z′ − x

)2⌋1∕2
If equal quantities of the two magnetic fluids are dis-

placed from each other within a magnetic element, the
components of the magnetic intensity at (x′, y′, z′) will
be the negative derivatives with respect to x′, y′, z′ of the
function

X 𝜕

𝜕x

(1
r

)
+ Y 𝜕

𝜕y

(1
r

)
+ Z 𝜕

𝜕z

(1
r

)
where the vector [XYZ] is the magnetic moment of the
element. If it were possible, this moment could be deter-
mined from the torque required to maintain the element
at a fixed angle of orientation to the direction of the exter-
nal magnetic force acting on it. To determine the mag-
netic intensity produced by the whole magnetic body,
Poisson performed (by parts) the following triple integra-
tion:

V =
∭

(
X 𝜕

𝜕x
+ Y 𝜕

𝜕y
+ Z 𝜕

𝜕z

)(1
r

)
dx dy dz

to obtain the result

V =
∬

1
r (

I.dS) −
∭

1
r
divI dx dy dz (6.5)

where I is the moment per unit volume of the body, more
generally called themagnetization.This result by Poisson
shows that the magnetic intensity produced in the exter-
nal space of amagnetic body is the same as would be pro-
duced if the body were covered with a layer of magnetic
surface-charge density (I.dS) per element dS, together
with a counter distribution of density divI throughout its
internal volume. Poisson also considered the magnetic
intensity F at a point in a small cavity excavated within
a magnetic body. For a small spherical cavity he obtained
the result

F = gradV + 4𝜋
3

I (6.6)

where I is the magnetization in the body at the location
of the cavity. In what became known as Poisson’s Law of
Induced Magnetism, he also considered the magnetism
induced in magnetizable metals such as soft iron when
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subjected to the magnetic field of an approaching per-
manent magnetic. Such metals were assumed to contain
a large number of small spherical elements, with each
sphere behaving as a perfect conductor of magnetic fluid
so that its internal magnetic intensity is zero. In order to
counteract the magnetic intensity F each sphere acquires
a magnetic moment. We will see that these magnetic
concepts were taken over into the theory of dielectric
polarization. In particular, evaluation of the local field
intensity acting on amolecule within a dielectricmedium
is central to the formulation of the Clausius–Mossotti
factor.
Noting the arbitrary nature of the algebraic sign used

in Equation (2.2) to define the relationship between the
electric potential and field, the parameter V in Equations
(6.5) and (6.6) takes the same form as Equation (4.19) and
represents the sum of all the magnetic or electric charges
in a field divided by their respective distances from a
given point. This parameter was for the first time given
the name potential by an enigmatic part-time mathe-
matician, George Green, in his essay of 1828 [4]. Green
(1793–1841), a miller’s son, attended just one year of
schooling in Nottingham, England, spanning the ages of
8 and 9. Yet he mastered the ‘Continental’ form of cal-
culus devised by Leibnitz (rather than Newton’s form)
and generalized the theories of Laplace and Poisson at a
time when they were not even taught at Cambridge! As
posed by Grattan-Guinness [5], not least of the myster-
ies surrounding Green is how he knew about Poisson’s
paper published in Paris at the end of 1826 with sufficient
time to study it before his Essay appeared in April 1828!
The Essay was largely printed at his own expense, with
the help of 52 supporting subscribers (most of whom
would not have understood any of it) and so it vanished
from sight [5]. His status in life as a full-timemiller rather
than mathematician was dramatically illustrated during
the Reform Bill riots (1829), a year after his Essay was
published. Green defended his mill with a musket whilst
a daughter handed him the ammunition. On his visit to
England in June 1930, Albert Einstein asked to visit the
mill – which is now a museum known as Green’s Wind-
mill in the district of Sneinton, Nottingham.
On p. 16 of his Essay, Green states:

Before proceeding to make known some relations
which exist between the density of the electric fluid
at the surfaces of bodies, and the corresponding
values of the potential functions within and with-
out those surfaces, the electric fluid being confined
to them alone, we shall in the first place, lay down a
general theoremwhich will afterwards be very use-
ful to us. This theorem may be thus enunciated:
Let U and V be two continuous functions of the

rectangular co-ordinates x, y, z, whose differential

coefficients do not become infinite at any point
within a solid body of any form whatever; then will

∫

dx dy dzU𝛿V +
∫

d𝜎U
(
dV
dw

)
=
∫

dx dy dz V𝛿U+
∫

d𝜎 V
(
dU
dw

)
the triple integrals extending over the whole inte-
rior of the body, and those relative to d𝜎, over its
surface, of which d𝜎 represents an element: dw
being an infinitely small line perpendicular to the
surface, and measured from this surface towards
the interior of the body.

This general theorem in fact is his now celebrated for-
mula, called Green’s Theorem, making the connection
between surface and volume integrals. Whereas Poisson
considered Equation (6.5) to bemainly a simplifying exer-
cise, Green realized that his own theorem was of impor-
tance in relating properties inside bodies to properties on
their surfaces and vice versa. Green’sTheorem has found
applications well beyond its initial intended importance
in magnetism and electricity. For example, in quantum
field theory Feynman’s diagrams are essentially Green’s
mathematics in graphic form.
Being mindful of Maxwell’s advice that: ‘It is of great

advantage to the student of any subject to read the orig-
inal memoirs on that subject’ [5, preface], rather than
paraphrasing the relevant content of Green’s Essay [4],
which influenced the work of Clausius some 50 years
later, it would therefore seem appropriate to reproduce
it verbatim.The following are articles 4 and 5 (pp. 19–22)
of the Essay:

4. We will now proceed to determine some rela-
tions existing between the density of the electric
fluid at the surface of a body, and the potential func-
tions thence arising, within and without this sur-
face. For this, let 𝜌 d𝜎 be the quantity of electricity
on an element d𝜎 of the surface, and V, the value of
the potential function for any point p within it, of
which the coordinates are x, y, z.Then, if V′ be the
value of this function for any other point p′ exterior
to this surface, we shall have

V =
∫

𝜌d𝜎√[
(𝜉 − x)2 + (𝜂 − y)2 + (𝜍 − z)2

]
𝜉, 𝜂, 𝜁 being the coordinates of d𝜎, and

V ′ =
∫

𝜌d𝜎√[
(𝜉 − x′)2 + (𝜂 − y′)2 + (𝜍 − z′)2

]
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the integrals relative tod𝜎 extending over thewhole
surface of the body.
It might appear at first view, that to obtain the

value of V′V from that of V, we should merely have
to change x, y, z, into x′, y′, z′: but, this is by no
means the case; for, the form of the potential func-
tion changes suddenly, in passing from the space
within to that without the surface. Of this, we may
give a very simple example, by supposing the sur-
face to be a sphere whose radius is a and centre at
the origin of the coordinates; then, if the density 𝜌

be constant, we shall have

v = 4𝜋𝜌a and V ′ =
∫

4𝜋a2𝜌√
x′2 + y′2 + z′2

which are essentially distinct functions.
With respect to the functions V and V′ the gen-

eral case, it is clear that each of them will satisfy
Laplace’s equation, and consequently

0 = 𝛿V and 0 = 𝛿′V ′

moreover, neither of themwill have singular values;
for any point of the spaces to which they respec-
tively belong, and at the surface itself, we shall have

V̄ = V̄ ′

the horizontal lines over the quantities indicating
that they belong to the surface. At an infinite dis-
tance from this surface, we shall likewise have

V ′ = 0

5. To convince ourselves, that there does exist such
a function as we have supposed U to be; conceive
the surface to be a perfect conductor put in com-
munication with the earth, and a unit of positive
electricity to be concentrated in the point p′; then
the total potential function arising from p′ and
from the electricity it will induce upon the sur-
face, will be the required value of U. For, in conse-
quence of the communication established between
the conducting surface and the earth, the total
potential function at this surface must be constant,
and equal to that of the earth itself, i.e. to zero
(seeing that in this state they form but one con-
ducting body). Taking, therefore, this total poten-
tial function for U, we have evidently 0 = Ū , 0 =
𝛿U , and U = 1∕r for those parts infinitely near to
p′.Asmoreover, this function has no other singular
points within the surface, it evidently possesses all
the properties assigned toU in the preceding proof.

Again, since we have evidentlyU′g= 0, for all the
space exterior to the surface, the equation (4) art. 4
gives

0 = 4𝜋(𝜌) + d̄Ū
dw′

where (𝜌) is the density of the electricity induced
on the surface, by the action of a unit of electricity
concentrated in the point p′.Thus, the equation (5)
of this article becomes

V̄ = −
∫

d𝜎(𝜌)V

This equation is remarkable on account of its
simplicity and singularity, seeing that it gives the
value of the potential for any point p′, within the
surface, when V, its value at the surface itself is
known, together with (𝜌) the density that a unit
of electricity concentrated in p′ would induce on
this surface, if it conducted electricity perfectly, and
were put in communication with the earth.

Amongst these important concepts described in these
extracts from his Essay, Green has described the impor-
tant boundary conditions used in Box 6.1, namely that
the potential varies continuously across a boundary sur-
face and that at a great distance from a charged surface its
potential is zero.These concepts were exploited by Clau-
sius in his considerations of how the local forces acting
on a polarizable particle in a dielectric translate to the
macroscopic polarization of a whole dielectric body. Of
particular relevance to this in Green’s Essay is the follow-
ing part of article 9 [4, pp. 34, 35]:

Suppose we have a hollow, and perfectly conduct-
ing shell, bounded by any two closed surfaces, and a
number of electrical bodies are placed, somewithin
and some without it, at will; then, if the inner sur-
face and interior bodies be called the interior sys-
tem; also, the outer surface and exterior bodies the
exterior system; all the electrical phenomena of the
interior system, relative to attractions, repulsions,
and densities, will be the same as would take place
if there were no exterior system, and the inner sur-
face were a perfect conductor, put in communica-
tion with the earth; and all those of the exterior sys-
tem will be the same, as if the interior one did not
exist, and the outer surface were a perfect conduc-
tor, containing a quantity of electricity, equal to the
whole of that originally contained in the shell itself,
and in all the interior bodies.
This is so direct a consequence of what has

been shown in articles 4 and 5, that a formal
demonstration would be quite superfluous, as it is
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easy to see, the only difference which could exist,
relative to the interior system, between the case
where there is an exterior system, and where there
is not one, would be in the addition of a constant
quantity, to the total potential function within the
exterior surface, which constant quantitymust nec-
essarily disappear in the differentials of this func-
tion, and consequently, in the values of the attrac-
tions, repulsions, and densities, which all depend
on these differentials alone. In the exterior system
there is not even this difference, but the total poten-
tial function exterior to the inner surface is pre-
cisely the same, whether we suppose the interior
system to exist or not.

Thus, the work of Green in generalizing the concepts
developed by Poisson and giving to them a more solid
theoretical basis, had by 1828 endowed to the subject of
electrostatics a highly sophisticated status.

6.2.2 Faraday, Mossotti, Clausius, Maxwell, Lorenz and
Lorentz

Amongst Michael Faraday’s many important contribu-
tions to magnetism and electricity were his demonstra-
tions that the effect of a magnetic force on magnetic
materials was analogous to that of an electrostatic force
on a dielectric [6]. In particular, he recognized that
dielectric bodies receive amolecular induction under the
influence of an external charged body, or in other words
that their molecules acquire an electrical polarity. Physi-
cists had previously considered such molecules to be
indifferent to electric induction, their intervention con-
sisting only in the imposing of a passive resistance to the
dispersal of electricity.
The analogies between the effects of magnetic and

electrostatic forces were taken forward by Ottaviano-
FabrizioMossotti. Born in 1791 inNovara, Italy,Mossotti
fled to London in 1823 fearing arrest because of his lib-
eral attitudes andmembership of a secret society.He then
taught astronomy at the University of Buenos Aires from
1827 to 1835 before returning to Italy in 1840 with an
academic position at Pisa University. In 1848, he fought
as captain of the troops of the two Tuscan universities
in the war for independence from Austria and shortly
before his death in 1863 he was elected senator of the
Kingdom of Italy [7]. Despite these activities he set him-
self the goal to translate into an analytical expression the
electrical induction of molecules under the influence of
the local ‘internal field’ acting on them and to then ascer-
tain how this influenced the distribution of the electric-
ity in the dielectric [8]. He acknowledged that the ‘subtle
and abstruse analysis’ (‘una analisi sottile ed astrusa’) he

required for this had already been formulated by Poisson
[3] in his theory of magnetic induction.
From the insights of Faraday and Poisson, Mossotti

was able to suppose that each dielectric molecule con-
tained corpuscles charged vitreously (i.e., positive) and
also corpuscles charged resinously (i.e., negative) [8].
In the absence of an electric field the corpuscles are
arranged so as to neutralize each other, but under the
action of a local ‘internal’ field they are separated so that
the entire molecule takes the form of an ‘electric doublet’
(i.e., dipole). This charge separation is achieved without
their escaping the space of each molecule. As depicted
in Figure 3.25, each molecule is polarized as a whole,
with one side acquiring a positive charge and the oppo-
site side an equal but negative charge. Mossotti may also
have been the first to consider the phenomenon of elec-
trical breakdown at the molecular level. He states that
‘the charge separation is all the greater the greater the
external action and in the dielectric corpuscles it grows to
the point where the electricity, having over-accumulated
in the extremes, overflows in leaps and sparks from one
molecule to the others’ (‘irrompe per salto e con scintilla
dalle une molecole alle altre’) [8, p. 51].
It is of interest (and somewhat amusing) to read

Maxwell’s account of Mossotti’s work:

Thus, when Mossotti observed that certain quanti-
ties relating to electrostatic induction in dielectrics
had been shewn by Faraday to be analogous to cer-
tain quantities relating to magnetic induction in
iron and other bodies, he was enabled to make use
of the mathematical investigation by Poisson rel-
ative to magnetic induction, merely translating it
frommagnetic language into the electric, and from
French into Italian [9].

Does this appear to be less than fulsome praise of
Mossotti’s achievement? Elsewhere [1, Art. 62, p. 70]
Maxwell writes:

He assumes the existence within the dielectric of
small conducting elements, capable of having their
opposite surfaces oppositely electrified by induc-
tion, but not capable of losing or gaining electricity
on the whole, owing to their being insulated from
each other by a non-conducting medium. This
theory of dielectrics is consistent with the laws of
electricity, and may be actually true. If it is true, the
specific inductive capacity of a dielectric may be
greater, but cannot be less, than that of a vacuum.
No instance has yet been found of a dielectric
having an inductive capacity less than that of a vac-
uum, but if such should be discovered, Mossotti’s
physical theory must be abandoned, although his
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formulae would all remain exact, and would only
require us to alter the sign of a coefficient.

The most important accomplishment of James Clerk
Maxwell was to demonstrate that Faraday’s theory of
lines of force, as well as alternative theories that invoked
action at a distance, could be replaced by the concept
of an electromagnetic field. In his famous paper of 1865
[10] describing the propagation of light as an electromag-
netic phenomenon and the theory to calculate its speed
(c2 = 1/(𝜀o𝜇o), Maxwell introduces the concept of dis-
placement current as follows:

In a dielectric under the action of electromotive
force, we may conceive that the electricity in each
molecule is so displaced that one side is rendered
positively and the other negatively electrical, but
that the electricity remains entirely connected
with the molecule. The effect of this action on
the whole dielectric mass is to produce a general
displacement of electricity in a certain direction.
This displacement does not amount to a current,
because when it is has attained to a certain value
it remains constant, but it is the commencement
of a current, and its variations constitute currents
in the positive or the negative direction according

as the displacement is increasing or decreasing. In
the interior of the dielectric there is no indication
of electrification, because the electrification of
the surface of any molecule is neutralized by
the opposite electrification of the surface of the
molecule in contact with it; but the bounding
surface of the dielectric, where the electrification
is not neutralized, we find the phenomena which
indicate positive or negative electrification.

As outlined in Box 6.2 the displacement current con-
ceived by Maxwell has units of current density, but takes
the form of a time-varying electric field rather than a
‘conventional’ current of electric charge. However, as
with ‘conventional’ conduction current, a displacement
current generates an associated magnetic field as given
by Ampère’s Circuital Law. Maxwell added this displace-
ment current to Ampère’s Law in his famous equations
(see Boxes 3.3 and 6.2).
Maxwell defined the displacement flux by the relation-

ship given in Equation (3.12):

D = 𝜀o𝜀rE

where E is the field within the dielectric. As noted
in Chapter 3, because the relative permittivity 𝜀r is a

Box . Displacement Current

The diagram in this box depicts the charging of a parallel-
plate capacitor with current ic.

ic

ic

+
+

++
+

-
- - -

-
E

-q

+q

B

The capacitance C of the capacitor is given by C = A𝜀/d,
where A is the area of the circular plates, d is their distance
apart and 𝜀 (𝜀 = 𝜀o𝜀r) is the permittivity of the dielectric
medium between the plates. The charge q at any instant is
given by q = Cv, where v is the instantaneous potential dif-
ference between the plates. Neglecting field fringing, the
uniform field between the plates is given by E = v/d. We
can derive the following expression for the instantaneous
charge:

q = Cv = A𝜀

d
Ed = 𝜀EA = 𝜀ΦE

where ΦE is the E-field flux through the electrode surface
(see Example 3.7). The charging current at any instant is
equal to dq/dt, so that

ic =
dq
dt

= 𝜀
dΦE

dt
To provide continuity of current between the current

leads and through the dielectric in the capacitor, Maxwell
conceived of the concept of a displacement current iD:

iD = 𝜀
dΦE

dt
,

with a corresponding displacement current density jD

jD =
iD
A

= 𝜀

A
dΦE

dt
= 𝜀

A
AdE
dt

= 𝜀
dE
dt

Maxwell introduced the displacement current into
Ampère’s Circuital Law to give the third of what are uni-
versally referred to as Maxwell’s equations:

∮

B ⋅ dl = 𝜇

(
iC + 𝜀

dΦE

dt

)
where 𝜇 is the magnetic permeability of the medium. The
displacement current can thus be considered as the source
of the magnetic field B created between the capacitor
plates shown in the above diagram.
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Figure . Imaginary exercises to understand the difference
between the electric displacement field D/𝜀o and the (internal)
field E within the dielectric. (a) A unit charge placed inside a
channel drilled through the dielectric at right angles to the
electrodes experiences a force due to the net free charge on the
electrodes, namely the internal field E. (b) A unit charge placed in a
narrow channel parallel to the electrodes experiences a force
(D/𝜀o) due to the combination of the net free charge on the
electrodes (E) and the induced charge (P/𝜀0) on the surface of the
dielectric, namely P/𝜀0. D/𝜀o is thus the field produced by the free
charge density on the electrodes in the absence of the dielectric.

number, D/𝜀o has dimensions of an electric field. It is
important to understand the difference between D/𝜀o
and E and this is achieved by performing the two imag-
inary exercises described in Figure 6.1. With a drill of
infinitely small diameter we make a channel of infinitely
small cross-section through the polarized dielectric at
right angles to the electrode plates. We now place a unit
positive charge into this channel as shown in Figure
6.1 (a).What will be the force exerted on this test charge?
According to the definition of an electric field given by
Equation (2.1) the force acting on this unit charge is the
internal field E, since it experiences only the field of the
net free charge on the plates. For the second imaginary
exercise, shown in Figure 6.1(b), we bore out an infinitely
narrow channel through the dielectric that runs parallel
to the plates. What will be the force exerted on a unit
test charge placed in this channel? Close inspection of
Figure 6.1(b) shows that this force, which we call the
electric displacement D/𝜀o is equal to the field produced
by the sum of the net free charge on the electrodes and
the induced charge on the surface of the dielectric. The
charge induced on the surface of the dielectric is the
polarization P defined in Chapter 3 and from Equation
(3.42) the field produced inside our imaginary empty
channel by this surface charge is P/𝜀0. The general
relationship between D and E, which assumes nothing

about the dependency of the polarization on the field,
is thus:

D∕𝜀o = E + P∕𝜀0 (6.7)

We thus identify the displacement force D/𝜀o as equal
to the field produced by the charge density on the
plates in the absence of the dielectric. With reference to
Figure 3.1 and Equation (3.2) we can make the identity
D/𝜀o = (V0/d)⋅n = E0 (where n is the unit vector normal
to the electrode surface). We have also deduced that the
internal field E= (V1/d )⋅n= E1. In Equation (3.1) we have
defined 𝜀r = E0/E1, so that on inserting our identified
expressions for E0 and E1 we find ourselves in agreement
with the relationship proposed by Maxwell, namely: D =
𝜀o𝜀rE.
Maxwell died in 1879, the same year that Clausius pub-

lished volume two of his book The Mechanical Theory
of Heat, in which he gives a mathematical treatment of
dielectric media [11]. Rudolf Julius Emanuel Clausius,
born in 1822 in Koszalin, Poland, is better known for his
derivation of the SecondLawofThermodynamics and for
introducing the concept of entropy. In 1865 he concluded
that the energy of the universe is constant and that the
entropy of the universe tends to a maximum. He shares
with Mossotti the distinction of being a war hero! In
1870, during the Franco-Prussian War, he was wounded
in battle (having organized an ambulance corps) and was
awarded the Iron Cross.
Like Mossotti, Clausius assumed that within a dielec-

tric there are slightly conducting molecular corpuscles,
which are separated from the others by nonconductive
spaces, so that under the action of a local ‘internal field’
the electricity moves only within the individual corpus-
cles but cannot pass from one to the other. He also intro-
duced the hypothesis that the corpuscles are electrically
polar in advance (‘schon im Voraus electrischpolar sind’)
[11, p. 66]. Clausius poses the question as to whether the
deflection of the polar particles by an external electric
force is limited by an elastic restoring force proportional
to their deflection, or in contrast whether the mutual
cohesive interactions of the polar particles result in a suf-
ficiently large frictional force as to limit their deflection
and then their return to random orientations on removal
of the external force. In his mathematical treatment,
Clausius adopts the fundamental equations derived by
Poisson [3] and their later generalization by Green [4]
and so everywhere in these previous works he translates
‘north and south magnetization fluid’ to be ‘positive and
negative electricity’. For spherically conducting corpus-
cles Clausius derives the following interesting relation-
ship [11, p. 94]:

K =
1 + 2g
1 − g

(6.8)



6 The Clausius–Mossotti Factor 

where K is the specific inductive capacity (i.e., K = 𝜀r)
of the dielectric medium and g is a simplifying factor
relating the induced electric moment of a corpuscle and
the electric intensity produced by the whole dielectric
body. It is implicit that g is a function of the mass density
𝜌 of the dielectric. From simplemanipulation of Equation
(6.8) we can thus derive the relationship:(

𝜀r − 1
𝜀r + 2

)
1
𝜌
= const (6.9)

This is the key result that leads to what became known
as the Clausius–Mossotti relation. Clausius was appar-
ently unaware of the mathematical relationship between
the refractive index and the density of a medium for-
mulated by the Danish mathematician Ludwig Lorenz
and presented by him at meetings of the Royal Dan-
ish Academy of Sciences in Copenhagen in 1869 and
1875 [12]. Also, independently of this the Dutch physi-
cist Hendrik A. Lorentz presented the same result at a
conference in Amsterdam in 1878 [13]. Of the similarity
of their names and conclusions he later made the com-
ment; ‘which is certainly a curious case of coincidence’
[14, p. 145]. Lorentz later shared the 1902 Nobel Prize in
Physics with Pieter Zeeman for the discovery and theo-
retical explanation of the Zeeman effect.The relationship
found by Lorenz and Lorentz (expressed in SI units) is:

n2 − 1
n2 + 2

= N𝛼

3𝜀o
(6.10)

where n is the refractive index and N the number of
molecules per unit volume of a medium, with 𝛼 the mean
polarizability of the molecules. Lorenz and Lorentz pub-
lished their works again in 1880 [15, 16] and so Equation
(6.10) is generally known as the Lorentz–Lorenz formula.
We can equate N to NA𝜌/M, where 𝜌 is the density of
the medium, M is the molecular weight of the atoms or
molecules and NA is the number of atoms or molecules
in a mole of the medium substance – namely Avogadro’s
constant (6.02 × 1023). Substituting for N in Equation
(6.10) we obtain for themolar refraction PM:

PM = n2 − 1
n2 + 2

M
𝜌

=
NA𝛼

3𝜀o
(6.11)

Themolar refraction is found, within limits, to be addi-
tive. We can understand this by noting that the ratioM:𝜌
in Equation (6.11) has units of volume, so that PM and 𝛼

also have units of volume.We can thus treatPM as amolar
volume to provide an approximate measure of the actual
volume (without free space) of the polarizable electronic
clouds of the atoms or molecules in one gram mole, as
distinct from the apparent volume given byM/𝜌. As such
PM should be independent of temperature. Thus, known
values of themolar refraction of various atoms and chem-
ical bonds can be assigned to other molecular structures

Table . Values of the polarizability volume 𝛼 (cm−3) for some
atoms and chemical groups [17].

Atomic
H (in CH2) 1.028 N (tertiary aliphatic amines) 2.744
C (in CH2) 2.591 N (tertiary aromatic amines) 4.243
O (ethers) 1.764 S (sulphides) 7.921
O (acetals) 1.607 S2 (disulphides) 16.054
O (carbonyl) 2.122 Cl 5.844

Group
CH2 4.647 OH (alcohols) 2.546
CH3 5.653 SH (thiols) 8.757
CO (ketones) 4.601 NH2 (primary aliphatic amines) 4.438
COO (esters) 6.200 NH (secondary aliphatic amines) 3.610
COOH 7.226 NH (secondary aromatic amines) 4.678

Note: The values given in this table are in cgs units, and are sometimes
expressed in ångström units (Å3 = 10−24 cm3). In SI units 𝛼 (F.m2) =
𝛼cgs/(4𝜋𝜀o), so that 𝛼 (cm3) ≈ 9 × 1015 × 𝛼 (F.m2).

and their molar refractions predicted to reasonable accu-
racy. Examples of the additivity of polarizability volumes
can be found inTable 6.1 and are based on extensivemea-
surements byVogel [17] of the refractive dispersion of the
sodium D-line emission. The sodium D-line occurs at a
frequency of 5.1× 1014 Hz, which is low enough to ensure
that the polarizability values include both the atomic and
electronic polarizations described in Chapter 7.
In 1865 Maxwell had deduced that the specific induc-

tive capacity (i.e., relative permittivity) is ‘equal to the
square of the index of refraction divided by the coefficient
of magnetic induction’ [10, p. 501]. Therefore, unless a
transparentmaterial possessesmagnetic properties, such
as thin films developed using nanotechnology [18, 19],
we have 𝜀r = n2. Inserting this relationship into Equation
(6.10) we obtain the result:

𝜀r − 1
𝜀r + 2

= N𝛼

3𝜀0
= 𝜌

NA𝛼

3M𝜀0
(6.12)

For any particular material the factor (NA𝛼/M𝜀o) is a
constant and so Equation (6.12) gives the result predicted
by Clausius in the form of Equation (6.9). It also follows
from Equation (6.11) that we can define themolar polar-
ization PM as:

PM =
𝜀r − 1
𝜀r + 2

M
𝜌

=
NA𝛼

3𝜀o
The molar polarization is a purely microscopic quan-

tity related directly to the electrical properties of the
molecules that form the dielectric material. We can also
define the volume polarization Pv as

Pv =
PM𝜌

M =
𝜀r − 1
𝜀r + 2
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Lorentz appears to be the first to draw attention to the
fact that the relation between relative permittivity and
the density 𝜌 of a dielectric, expressed as Equation (6.9),
is ‘a formula corresponding to one that was given long
ago by Clausius and Mossotti’ [14, p. 145]. Lorentz was
certainly the first to attempt an evaluation of the local
electric force acting on a polarizable particle in the bulk
of a polarized dielectric. He performed this exercise as
part of his theory of the propagation of light in a system of
molecules [14, Ch. IV, pp. 133–167]. He adopted the rea-
soning by which Kelvin came to distinguish between the
magnetic force and the magnetic induction – namely by
defining these as forces exerted on a pole of unit strength,
placed inside a small cavity within a magnetized body.
The magnetically polarized parts of the body outside the
cavity turn their poles more or less towards it and thus
produce on its walls a certain distribution of magnetism.
‘Because the formulae for the field produced by a vari-

able electric moment are less simple than those which
determine the action of a constant molecular magnet’
Lorentz recognized that ‘The formulae however much
resemble each other if the point for which the field of a
particle is to be determined, lies at a distance from it that
is small compared with the wave-length. In this case the
field can be approximately considered as an electrostatic
one, such as would exist if the electric moment did not
change in the course of time’ [14, pp. 137–138].
He therefore anticipated that the local electrical force

would be similar to the magnetic case given by Equa-
tion (6.8) and first derived by Poisson [3]. Because he had
introduced electrostatic units ‘of such a kind that we get
rid of the larger part of such factors as 4𝜋 and

√
4𝜋, by

which the formulae were originally encumbered’ [14, p.
2], Lorentz anticipated and in fact found that the local
field would be of the form

El = E +
(1
3
+ s

)
P (6.13)

Prophetically, Lorentz states that the parameter ‘s is a
constant which it will be difficult exactly to determine’
[14, p. 138].
To arrive at this result Lorentz envisaged that the

polarizable particle (e.g., an atom or molecule) is
enclosed within a spherical cavity ‘whose dimensions are
infinitely small in a physical sense, and we conceive for a
moment, all other particles lying within this surface to be
removed.’ As indicated in Figure 6.2, this volume should
thus be microscopically small compared to the distance
between the electrodes, but large enough to contain
a sufficient number of particles so that the dielectric
properties within the cavity are uniform and the same
as the bulk dielectric. Extending the concept developed
by Mossotti and Clausius, Lorentz considered that each
particle contains a single electron, which is displaced
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Figure . To determine the local field El acting on a polarizable
particle in a dielectric we consider the forces acting on a unit
charge at the centre of an imaginary spherical region of radius r.
The volume of this sphere is small compared to the distance
between the electrodes, but large enough to contain a sufficient
number of particles so as to exhibit the bulk permittivity. The
presence and polarization of this imaginary cavity does not affect
the field in the dielectric outside it.

from its position of equilibrium by the local electric
force El acting on it.
The distribution of induced charges on the surface of

the cavity, due to the polarization of the outside portion
of the dielectric body, will exert a force E1 that must be
added to the electric force E generated by the electrodes.
For a spherical cavity of radius a and 𝜃 the angle between
the radius drawn towards an element of charge on its sur-
face and the polarization P, Lorentz gives the force E1 as

E1 =
1

4𝜋a2 ∫
|P| cos2 𝜃d𝜃 = 1

3
P

The derivation of this result is given more fully in Box
6.3 and employs SI units rather than the ad hoc sys-
tem devised by Lorentz. If the particles that have been
removed from the cavity are now restored to their orig-
inal places, their induced electric moments will produce
a third force E2. Lorentz shows, for a system of particles
having a regular cubical arrangement, that E2 = 0. This
proof is reproduced in Box 6.4 and can also be applied
with a certain degree of approximation to isotropic bod-
ies in general, such as glass, fluids and gases (Box 6.5).
However, in general we should write E2 = sP. This term
is included in Equation (6.13).
The induced moment p is directly proportional to the

local force, so that

p = 𝛼El (6.14)

The constant of proportionality 𝛼 is thus the moment
induced by a field of unit intensity and represents the
polarizability per polarizable particle of the dielectric.
For gases, liquids and some solid dielectrics to good
approximation s = 0 in Equation (6.13), so that (in SI
units)

El = E + P
3𝜀0

(6.15)
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Box . Derivation of the Local (Lorentz) Field in a Polarized Dielectric

Figure 6.2 shows an imaginary spherical cavity within a
polarized dielectric medium. The local force EL on a unit
charge at the sphere’s centre has three components:

EL = E + E1 + E2

E is the force due to the free charge density on the elec-
trodes (identified in the main text as equal to D/𝜀0). E1 is
the force arising from the polarization of the dielectric and
for ease of calculation can be divided into two parts. E1a due
to the induced charge density P on the external surface of
the dielectric (given by E1a =−P/𝜀0) and E1b the Coulombic
force due to charges induced on the surface of the small
spherical cavity. As indicated in Figure 6.2(b) this force is
determined by dividing the surface of the cavity into rings
that are parallel with the electrodes. For a ring bounded by
angles 𝜃 and 𝜃 + d𝜃 to the equatorial plane XY, the polariza-
tion perpendicular to the left-hand hemispherical surface is
Psin𝜃 . For a sphere of radius r the total charge Q on the ring
is thus given by:

Q = 2𝜋r cos 𝜃 × rd𝜃 × P sin 𝜃 = 2𝜋r2P sin 𝜃 cos 𝜃.d𝜃

The Coulombic force exerted by this charged elemental
ring on a unit charge at the centre of the sphere is equal
to:

2𝜋r2P sin 𝜃 cos 𝜃.d𝜃. sin 𝜃

4𝜋𝜀0r2
= P sin 𝜃 cos 𝜃.d𝜃. sin 𝜃

2𝜀0

Thus, the total force (E1b/2) from the induced charges on
the left-hand hemisphere is:

E1b

2
= P

2𝜀0 ∫

𝜋∕2

0
sin2 𝜃 cos 𝜃.d𝜃.

= P
2𝜀0 ∫

𝜋∕2

0
sin2 𝜃.d sin 𝜃 = P

6𝜀0

The induced (negative) charges on the right-hand hemi-
spherical surface produce an added force E1b/2 = P/(6𝜀0),
which is directed from left to right, so that E1b = P/(3𝜀0).

For gases and liquids, where the molecules all move
independently of each other, E2 is close to zero. This should
also be the case for solid amorphous dielectrics. Lorentz
also showed that E2 = 0 for crystals of cubic lattice struc-
ture (see Boxes 6.4 and 6.5).

For gases, liquids and some solid dielectrics, the local
field acting on a polarizable particle in a polarized dielec-
tric is thus to good approximation given by:

EL = E + E1a + E1b = D
𝜀o

− P
𝜀o

+ P
3𝜀0

=
(

E + P
𝜀o

)
− P

𝜀o
+ P

3𝜀0
= E + P

3𝜀0

From Equation (3.48) we have P= (𝜀r − 1)𝜀oE. On sub-
stituting for P, we obtain the following expression for the
internal field – known as the Lorentz field:

El =
(

𝜀r + 2
3

)
E (6.16)

For all dielectric media 𝜀r > 1. We therefore conclude
that the local, microscopic, field is always larger than the
macroscopic field applied to the dielectric. This result,
which at first sight appears nonintuitive, arises because
inside our envisaged cavity within the bulk of a dielec-
tric, the polarizable charge within an atom or molecule

Box . Lorentz’s Proof that E, as Cited in Box ., is Zero for a Cubic Lattice

The following is the proof given by Lorentz [14, Note 55, p.
308] that the force E2 (cited in Box 6.3 and the main text) is
zero for the case of the medium within the spherical cavity
of Figure 6.2 having a cubic lattice structure.

In the case of a cubical arrangement all the particles
within the sphere may be said to have equal electric
moments p. Taking the centre of the spherical cavity as
origin of coordinates, we have for the force exerted in the
direction of x by a particle situated at the point (x, y, z), at a
distance r from the centre,

px

4𝜋
⋅

3x2 − r2

r5
,

py

4𝜋
⋅

3xy
r5

,
pz

4𝜋
⋅

3xz
r5

But the sums∑ 3x2 − r2

r5
,
∑ 3xy

r5
,
∑ 3xz

r5

are zero when extended to all the particles within the
sphere. For the second and third sum this is immediately
clear if we take the axes of coordinates parallel to the prin-
cipal direction of the cubical arrangement. Further, for axes
of this direction,∑ 3x2 − r2

r5
=
∑ 3y2 − r2

r5
=
∑ 3z2 − r2

r5

Showing that each of these expressions must be zero,
because their sum is so.
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Box . The Field due to Dipoles within an Isotropic Dielectric Sphere is Zero

The field due to individual polar molecules within the
spherical region shown in Figure 6.2 can be obtained by tak-
ing the average of the fields due to all the dipoles inside the
sphere. From Equation (5.44) the field at a distance r from a
dipole is:

E = 1
4𝜋𝜀0𝜀r

1
r3

[3(p ⋅ r̂)r̂ − p]

The spatial average of the x-component of the field is
given by

⟨Ex⟩ = 1
4𝜋𝜀o𝜀r

∑[
3
(
pxx2 + pyxy + pzxz

)
r5

−
px

r3

]

In an isotropic dielectric the spatial averages of the fields
in the x-, y- and z-components are equal and so

⟨
x2⟩ =

⟨
y2⟩ =

⟨
z2⟩ =

⟨
r2
⟩

3
; ⟨xy⟩ = ⟨yz⟩ = ⟨zx⟩ = 0

The average of the fields due to individual dipoles
inside the sphere is therefore zero. This result will not hold
if there are molecular interactions between the dipoles,
such as results from hydrogen-bonding in water, or for
polymers such as proteins with oriented molecular side
groups.

experiences the applied macroscopic field plus the field
due to the polarization of the dielectric medium around
the cavity. It exactly mirrors the result deduced for
magnetization by Poisson in the form of Equation (6.6)
and taken forward by Mossotti, Clausius and Lorentz for
the case of dielectric polarization.
IfN is the number of polarizable particles per unit vol-

ume, then from equations (6.14) and (6.16), the induced
moment per unit volume (i.e., the polarizability P) is
given by:

P = Np = N𝛼El = N𝛼

(
𝜀r + 2
3

)
E (6.17)

From Equation (3.48)

P =
(
𝜀r − 1

)
𝜀oE

Using this expression to eliminate P/E from Equation
(6.17) we obtain the result given by Equation (6.12),
which we will now refer to as the Clausius–Mossotti–
Lorentz (CML) relation:

𝜀r − 1
𝜀r + 2

= N𝛼

3𝜀0
(6.18)

If we cannot assume s = 0 in Equation (6.13) the CML
relation takes the form

𝜀r − 1[
1 + a

(
𝜀r − 1

)] = N𝛼

𝜀0
(6.19)

where

a = 1
3
+ s (6.20)

with s being a numerical parameter that is a measure of
interactions with neighbouring polarized particles that
might increase the local field in the dielectric.

6.2.3 Peter Debye

By 1910 it was found that gases and liquids could be
assigned to one of two broad classes of dielectric. The
first class, mainly substances having relatively low val-
ues for 𝜀r, were found to have relatively constant val-
ues for their polarizability 𝛼 as a function of frequency
and temperature. The second class possessed higher 𝜀r
values than expected from their refractive index and 𝛼

was found to decreasewith increasing temperature. From
our discussion of Equation (6.11) this temperature effect
was not expected. An explanation was proposed by the
Dutch-American physical chemist Peter J.W.Debye, who
received the Nobel Prize in Chemistry in 1936 partly
for this work. Debye developed further the hypothesis
of Clausius that some molecules possess a permanent
dipole moment. The total polarizability 𝛼T of a molecule
may thus comprise contributions from an induced polar-
ization 𝛼i, resulting from distortion of their electronic
charge distribution, as well as from reorientation of their
permanent dipole moment p under the influence of an
external field [20, 21]. As shown in Chapter 7, where ori-
entation polarization is discussed, the total polarizability
𝛼T of a polar molecule takes the form:

𝛼T = 𝛼i +
p2

3kT
(6.21)

For molecules that possess a permanent dipole
moment and thus a total polarizability given by Equation
(6.21), we can write

𝜀r − 1
𝜀r + 2

= 1
3𝜀o

∑
N
(

𝛼i +
p2

3kT

)
(6.22)

Debye [21, pp. 9–11] derived this equation using the
same derivation of the cavity field described by Lorentz
[14, pp. 138–139]. The factor 𝛼i denotes the electronic
polarizability of the molecule, p its permanent dipole
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moment and N its number density (molecules/ml). The
summation Σ includes all types of molecule existing in
the dielectric sample. The Boltzmann constant k and
absolute temperature T arises, as described in Chapter 7,
from the application of Boltmann statistics to determine
the probability of finding a dipole aligned along the direc-
tion of an applied electric field. When a field is applied
to a medium containing polar molecules, their dipole
moments experience a torque tending to align them with
the field. This orienting tendency is opposed by thermal
agitation. If 𝜃 is the angle between a dipolemoment p and
the field direction, the component of the moment in the
field direction is p cos 𝜃. In Chapter 7 (see Box 7.3) it is
shown that under normal conditions the thermal average
of cos 𝜃 is given by

⟨cos 𝜃⟩ = pE
3kT

(6.23)

If the local electric field EL acts on a single polar
molecule in a polar liquid, then over a period of time
it will assume an average moment m in the direction of
the field given by contributions from an inducedmoment
and an orientation polarization:

m = 𝛼iEL + p ⟨cos 𝜃⟩ (6.24)

where p is the ‘real’ intrinsic dipole moment value for the
molecule.

. Refinements of the
Clausius–Mossotti–Lorentz Relation

Equations (6.18) and (6.22) are the simplest forms of the
Clausius–Mossotti–Lorentz relation but they apply to
two different situations. Equation (6.18) works very well
for solids and nonpolar liquids and solids, where rela-
tive permittivity values are low and the right-hand side of
the equation does not approach a value of 1.0. However,
for polar liquids (e.g., water with 𝜀r ≈ 80 at room tem-
perature) Equation (6.22) offers the possibility that the
number density and polarizability of the molecules can
be such that the right-hand side of the equation can reach
a value of unity. In this case 𝜀r attains a value of infinity,
so that even a small applied field would result in an infi-
nite polarization. Saturation of this polarization would in
fact maintain it at a finite value, but instead the dielec-
tric would become spontaneously polarized to the ferro-
electric state. Viewed another way, according to Equation
(6.22) polar liquids with high 𝜀r values should be close to
a Curie point – a temperature below which the dielectric
exhibits ferroelectric behaviour – and so be very sensi-
tive to a change of pressure, temperature or electric field
strength. Instabilities of this formhave not been observed
for polar liquids.

This problem was addressed by Lars Onsager, a
Norwegian-American physical chemist, winner of the
1968 Nobel Prize in Chemistry and a doctoral student
of Peter Debye. He gives the following amusing account
[22]: ‘how about the dielectrics that Debye had done?
I was too lazy to go to the libraries and sat down and
worked it out and lo and behold it came out quite dif-
ferent!’ . . . ‘And some years later in 1935 it was plainly
high time to publish it.’
In his model, Onsager replaced the cavity used by

Lorentz and Debye with a much smaller one [23]. The
cavity has the same radius as the polar molecule of inter-
est, which has a permanent intrinsic moment (when iso-
lated as in the gas phase) of value po. When located in an
electric field the componentm of its induced and orien-
tation moment in the field direction is given by Equation
(6.24), i.e.

m = 𝛼iEL + po ⟨cos 𝜃⟩
Onsager now considers the effect of introducing a rigid

dipole of momentm and radius R into a cavity of radius
R, located within a dielectric medium of relative permit-
tivity 𝜀m. To simplify the calculations, the moment m
is treated as a point dipole located at the centre of the
molecule. No external field is applied and so the medium
surrounding the cavity is not polarized.
As shown in Box 6.6, the field of this dipole polarizes

the surrounding dielectric and gives rise to a reaction
field Er within the cavity. This in turn enhances both the
permanent and the induced dipole moment components
of m. Thus, although a molecular dipole cannot directly
contribute to its own local field, it can do so indirectly
by inducing polarizations in neighbouring molecules.
However, according to Onsager [23] this reaction field
is always parallel to the moment m and so will exert no
torque and contribute nothing to the dipole orientation
polarization of a polar liquid. Thus, only a part of the
local Lorentz field employed in the derivation of Equation
(6.22) contributes to the orienting torque of the perma-
nent dipoles. As a consequence of including the reaction
field it is implicit in the result obtained by Lorentz [14,
pp. 138–139] and repeated by Debye [21, pp. 9–11], that
the dipole moment can partly orient itself. This is equiv-
alent to a person placing each foot into a bucket and lift-
ing themselves off the floor and is why Equation (6.22)
predicts the possibility of a dielectric ‘catastrophe’ in the
form of a ferroelectric transition.
As outlined in Box 6.6, the local field EL consists of

the cavity field and the reaction field. The cavity field Ec
is that part of the local field that remains unaltered if
the molecule has its dipole moment removed and only
this contribution should be included in the procedure to
derive Equation (6.22).The reaction fieldEr is the compo-
nent of the local field that appears when the permanent
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Box . Onsager’s Modification of the Lorentz Field

Consider a molecular dipole of intrinsic moment p and
radius R. In an electric field the component m of its induced
and orientation moment in the field direction is given by
Equation (6.24). A dipole of moment m is placed in an
empty spherical cavity of radius R, located in an unpolarized
medium of relative permittivity 𝜀m. This dipole is consid-
ered to be a point dipole located at the centre of the cavity.
The potential 𝜙 must everywhere satisfy Laplace’s equation
and the following boundary conditions:

i) 𝜙 (r, 𝜃) − m cos 𝜃

r2

is a continuous function for 0 ≤ r ≤∞.

ii)
(

𝜕𝜙i

𝜕r

)
= 𝜀m

(
𝜕𝜙o

𝜕r

)
at r = R

𝜙i and 𝜙o are the potentials inside and outside the cavity,
respectively.

The following solutions of the form of Equation (6.4) are
obtained:

𝜙o =
(

m∗

𝜀mr2

)
cos 𝜃; 𝜙i =

m cos 𝜃

r2
− Err cos 𝜃

with

m∗ =
3𝜀m

2𝜀m + 1
m, and Er =

2(𝜀m − 1)
2𝜀m + 1

m
R3

m∗ is the effective moment of the material inside the
cavity as viewed from outside it and Er is the reaction
field within the cavity that arises from the polarization
induced in the medium outside the cavity by this moment’s
field.

The moment m is now removed from the cavity and a
uniform field Eo applied. The field Ec inside this empty cav-
ity is given by Ei derived in Box 6.1, with 𝜀p = 1:

Ec =
3 𝜀m

1 + 2𝜀m
Eo

The local (i.e., Lorentz) field EL acting on the dipole inside
the cavity is given by

EL = Er + Ec =
2(𝜀m − 1)
2𝜀m + 1

m
R3

+
3𝜀m

2𝜀m + 1
Eo (6.25)

dipole moment is restored and because its direction is
parallel to the dipole it exerts no torque onm and should
not be included in the determination of the orientation
polarization. The local field acting on the dipole in its
cavity is given by Equation (6.25) in Box 6.6 as

EL =
2(𝜀m − 1)
2𝜀m + 1

m
R3 +

3𝜀m
2𝜀m + 1

Eo

Substituting into Equation (6.24) the value of EL given
by Equation (6.25) we obtain the relationship

m
[
1 −

2(𝜀m − 1)
(2𝜀m + 1)

𝛼i
R3

]
= po ⟨cos 𝜃⟩ + 3𝜀m(

2𝜀m + 1
)𝛼iEo

(6.26)

The polarmolecule is embedded in a spherical cavity of
radius equal to its own radius. From the concept of molar
refraction discussed in association with Equations (6.10)
and (6.11) and the fact that 𝛼i has units of volume, we can
make the following substitution:

𝛼i
R3 = n2 − 1

n2 + 2
(6.27)

EmployingMaxwell’s result that the relative permittiv-
ity is equal to the square of the index of refraction, we

can also identify 𝜀m∞ = n2 as the value of the dielectric’s
relative permittivity at frequencies in the optical range
(∼5 × 1014 Hz). Equation (6.27) then becomes

m

[
3
(
2𝜀m + 𝜀m∞

)(
2𝜀m + 1

) (
𝜀m∞ + 2

)]
= po ⟨cos 𝜃⟩ + 3𝜀m(

2𝜀m + 1
)𝛼iEo (6.28)

which can be written as

m = p ⟨cos 𝜃⟩ + 𝜀m
(
𝜀m∞ + 2

)(
2𝜀m + 𝜀m∞

) 𝛼iEo (6.29)

As shown in Box 6.7 this relationship was used by
Onsager [23] to derive Equation (6.34) that relates the
product of the number density and intrinsic dipole
moment of polar molecules in a polar liquid to its static
(or low frequency) relative permittivity value 𝜀m and the
value 𝜀m∞ determined by measurement at optical fre-
quencies of the refractive index n, where 𝜀m∞ = n2.
Replacing the number density N with NA𝜌/M, where

NA is Avogadro’s constant, 𝜌 the density of the pure
polar liquid and M the molecular weight of the polar
molecules, then from Equation (6.34) Onsager’s theory
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Box . Onsager’s Equation for the Orientation Polarization of a Polar Liquid

The parameter p in Equation (6.29) represents the effective
dipole moment (orientational and induced) inside the cav-
ity and from Equation 6.28) is given by:

p =
(2𝜀m + 1)(𝜀m∞ + 2)

3(2𝜀m + 𝜀m∞)
po (6.30)

where po is the intrinsic, ‘real’, value of the moment. How-
ever, to evaluate the polarization of the polar liquid we
require the dipole moment p∗ as viewed from outside the
cavity. From Equation (6.23) the mean orientation of p∗ is
given by

⟨cos 𝜃⟩ = p∗Eo

3kT
(6.31)

Let N be the number of dipoles per unit volume in the
polar liquid. The polarization P per unit volume is thus P =
Nm, so that from Equations (6.29) and (6.31) we have

P = Nm = N
[

pp∗

3kT
+

𝜀m(𝜀m∞ + 2)
(2𝜀m + 𝜀m∞)

𝛼i

]
Eo (6.32)

If we assume that the volume of the liquid equates
to the sum of the volumes of the polar molecules, then
(4𝜋R3N)/3 = 1. From Equation (6.27) we thus have

𝛼i = R3
(

n2 − 1
n2 + 2

)
= 3

4𝜋N

(
𝜀m∞ − 1
𝜀m∞ + 2

)
Substituting this value for 𝛼i into Equation (6.32) and

employing the relationship given by Equation (3.48) that
P = (𝜀m − 1)𝜀oEo, we obtain:

(𝜀m − 1) = N
pp∗

3𝜀okT
+

3𝜀m(𝜀m∞ − 1)
(2𝜀m + 𝜀m∞)

(6.33)

Onsager [23] shows that p∗ = 3𝜀m

2𝜀m+1
p

so that from Equation (6.30) p∗ = 𝜀m(𝜀m∞+2)
(2𝜀m+𝜀m∞) po

to give from Equation (6.33) the following relationship:
Np2

o

9𝜀okT
=

(𝜀m − 𝜀m∞)(2𝜀m + 𝜀m∞)
𝜀m(𝜀m∞ + 2)2

(6.34)

results in the following relationship for the orientation
polarization of a pure polar liquid:

NAp2o
9𝜀okT

=
(
𝜀m − 𝜀m∞

) (
2𝜀m + 𝜀m∞

)
𝜀m

(
𝜀m∞ + 2

)2 M
𝜌

(6.35)

Onsager’s theory certainly overcomes the problem
of dielectric instability inherent with Debye’s Equation
(6.22), but it not without possible sources of error.
For example, because the cavity is assumed to contain
only one molecule, short range interactions with other
molecules are neglected. Long range interactions, how-
ever, are included within the evaluation of the reaction
field. Wilson [24] also highlighted the neglect of molecu-
lar anisotropy in Onsager’s theory and to accommodate
this he proposed that Equation (6.35) should be modified
to the form where 𝜀m∞ = n′2, with n′ being the refrac-
tive index corresponding to the polarizability along the
axis of the dipole. Kirkwood [25] suggested a modifica-
tion to take account of orientation hindrance arising from
electrostatic interactions and short-range intermolecu-
lar forces. Fröhlich and Sack [26] infer that Onsager’s
model should hold only if the relative permittivity is less
than 9. These authors also fault Debye’s application of
the Lorenz field in that it implies the polarization cannot
follow the rotation of the dipole, whereas Onsager’s the-
ory is faulted because it errs too much the other way –
the reaction field is assumed to follow the dipole ori-
entation and so does not exert any force on the dipole
[26]. Following Onsager’s method to determine the local
field, Fröhlich and Sack surround the selected dipolar

molecule by a cavity of volume 1/N (whereN is the num-
ber of molecules per unit volume) and treat the out-
side as a continuous medium whose dielectric properties
are the same as the macroscopic dielectric properties to
be calculated. As with Onsager’s method, they also split
the local field into two parts: (i) the cavity field, which
is obtained on the assumption that the dipole has been
removed from the cavity; (ii) the reaction field, which
is the change of the field at the position of the dipole
through its action upon the surrounding dipoles. How-
ever, Fröhlich and Sack calculate the cavity field slightly
differently from Onsager. Onsager removes not only the
dipole from the cavity in order to determine the cavity
field, but also the whole molecule.The relative permittiv-
ity of the cavity is thus unity. Fröhlich and Sack remove
the point dipole quality of the molecule but leave the rest
of the molecule behind, so that the relative permittiv-
ity of the cavity assumes a value given by the refractive
index – namely 𝜀m∞.The cavity field given in Box 6.6 thus
becomes

Ec =
3𝜀m

2𝜀m + 𝜀m∞
Eo

The treatment of the reaction field Er by Fröhlich and
Sack [26] also differs from that of Onsager, who assumes
that the reaction field attains the value corresponding to
the situation where the dipole remains in a given direc-
tion for a time that is long compared to its orientation
relaxation time 𝜏 . Instead, Fröhlich and Sack describe
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their cavity field EFSr by its dynamic properties (i.e., by
its time-dependent differential equation) as

𝜏
dEr
dt

= −Er + EFSr ⋅ u

where u is the unit vector in the direction of the dipole
and the field reaches its equilibrium value as an exponen-
tial function of the form∼e−t/𝜏 . Unless the dipole remains
infinitely long in the same direction, then EFSr > |Er|. For
a spherical cavity, Fröhlich and Sack obtain the following
expression for the reaction field:

EFSr =
2(𝜀m − 𝜀m∞)

𝜀m∞(2𝜀m + 𝜀m∞)
m
R3

which can be compared to that obtained (see Box 6.6) by
Onsager:

Er =
2(𝜀m − 1)
2𝜀m + 1

m
R3

The final expression obtained by Fröhlich and Sack [26]
for the static relative permittivity is

𝜀m = 𝜀m∞ +
3𝜀m(

2𝜀m + 𝜀m∞
) p2

R3kT

×

[
1 + 1

3

(
𝜀m − 𝜀m∞

)2
𝜀m𝜀m∞

]
This gives values for 𝜀m roughly half-way between those
obtained using Debye’s and Onsager’s models. Because
only one molecule occupies the cavity, short range inter-
actions have been neglected.
Other proposed modifications to Onsager’s model

include that by Abbott and Bolton [27] who assumed that
the polar molecule can be represented as a prolate ellip-
soid and evaluated the reaction field of a point dipole
lying on the axis of a cavity of this form. Buckingham [28],
however, found this approach to be inconsistent for three
reasons: (i) the totalmoment of a particularmolecule was
assumed to be parallel to the permanent moment.This is
not so because the induced moment contributes to the
mean moment in the direction of the field by a similar
order of magnitude to that from the permanent moment;
(ii) the polarizability of the ellipsoid was assumed to be
uniform, whereas its actual value in the direction of the
dipole will not in general be equal to the mean; (iii) the
following relationship

𝜀m − 1 =
4𝜋 ⟨m⟩
VE

where ⟨m⟩ is the mean value of the component of the
moment m of a molecule in the direction of the field E

andV is themolecular volume, is not valid for nonspheri-
cal, ellipsoidal,molecules. It is only correct if themoment
corresponds to that of a point dipole. While the field of
a uniformly polarized sphere satisfies this requirement,
that of a ellipsoid does not. This error becomes apparent
when it is realized that 𝜀m is a macroscopic property of
a substance and is determined by observing the polariza-
tion of a large specimen and not that of a singlemolecule.
Buckingham devises a theory to apply Onsager’s theory
to a molecular model, consisting of an optically isotropic
ellipsoid, to derive the orientation polarization, which
does not contain these three deficiencies [28]. He derives
the following relationship:

𝜀m
𝜀m(2𝜀m + 1)

− n2 − 1
9

×
∑[

1[
𝜀m − (𝜀m − 1)Ai

] [
𝜀m + (n2 − 1)Ai

]]

=
[ 1 + (n2 − 1)Aa

𝜀m + (n2 − 1)Aa

]2 4𝜋p2

9kTV

where 4𝜋ab2
3V = 1;a, b and c are the semiaxes of an ellipsoid

and parameterA is the internal field function (also known
as the depolarization factor) described in the discussion
of interfacial polarization in section 7.5 of Chapter 7.
Buckingham finds that his result yields dipole moment
values, which are in better agreement with experiment
than those calculated by the theory of Abbott and Bolton.
He concludes: ‘Since these authors claim that their equa-
tion is superior to that of Onsager when applied to non-
associating liquids, the theory presented in this paper
should also be an improvement on Onsager’s’ [28].
An obvious application of Buckingham’s equation

would be in the evaluation of the dipole moments of pro-
teins. As discussed in Chapter 8, this approach does not
appear to have been adopted.

. The Complex Clausius–Mossotti
Factor

The complex form of the CM factor, as given in Equation
(6.1), is required when time dependent electric fields are
used. If an alternating voltage source, instead of a con-
stant voltage, is applied to the plate electrodes of Fig-
ure 3.1, the dielectric will still be polarized. However, the
relationships

P(t) = (𝜀r − 1)𝜀oE(t) (6.36)

as the time dependent form of Equation (3.48) and

D(t) = 𝜀o𝜀rE(t) (6.37)
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Figure . Time dependence of polarization P of a dielectric on
application of a constant electric field E. Electronic polarization of
magnitude (𝜀∞ − 1)𝜀oE occurs almost instantaneously, but inertia
of molecular dipoles slows down the polarization as it approaches
the steady-state level of (𝜀s − 1)𝜀oE.

given by Equation (3.12), will need modification to
a more general form. The reason for this is that the
displacement charges associated with the polarization
exhibit inertia. This inertia becomes apparent when
an electric field is suddenly applied to a dielectric. As
illustrated in Figure 6.3 the polarization P takes time to
reach its final value. Under normal conditions the time-
dependent polarization P(t) will be proportional to the
time-dependent field E(t), but the ratio P(t)/E(t) will vary
as a function of the alternating field frequency 𝜔. If the
applied voltage frequency is low, say 1 Hz or lower, the
polarization and displacement given by Equations (6.36)
and (6.37) will faithfully follow the time variation of the
field. If the dielectric comprises permanent molecular
dipoles, this corresponds to their moments reorienting
exactly in phase with the alternating field.The parameter
𝜀r will then accurately equate to the relative permittivity
used so far in this book – referred to as the static relative
permittivity. As the frequency is increased to (say)
1 MHz, the situation may be such that that there is a
significant lag between the response of the dipoles and
the change of the field magnitude and polarity. Finally, as
the frequency is increased to (say) 100 MHz the dipoles
may not be able to respond to the applied field at all. The
effective relative permittivity is then equivalent to the
value 𝜀m∞ in Equation (6.28), which remains constant
in value as the frequency is increased up to the optical
range and before resonance effects occur (see Chap-
ter 7). In Figure 6.3 the timescale involvedwith electronic
polarization appears as an instantaneous response.
Equations (6.36) and (6.37) may still be used and

the polarization curve shown in Figure 6.3 taken into
account, if the relative permittivity 𝜀r is represented as
a complex permittivity (𝜀∗r ), written as

𝜀∗r = 𝜀′ − i𝜀′′ (6.38)

where i =
√
−1, 𝜀′ is the real component (Re) and 𝜀′′ is

the imaginary component (Im). We can understand the
reason for this by considering a sinusoidal voltage wave-
form, which is the most common one used to produce a

time-varying field in a dielectric. It is shown in Chapter
10, Box 10.3 that a sinusoidal field can be mathematically
expressed as

E(t) = Im
[
Eoei𝜔t

]
= Im

[
Eo (cos𝜔t + i sin𝜔t)

]
= Eo sin𝜔t. (6.39)

The factorEo represents the peakmagnitude of the field
and remains constant with time t, whilst 𝜔 is the radian
frequency – also expressed as𝜔/2𝜋 cycles per second and
given in SI derived units of hertz (Hz). If this time-varying
field is applied for a sufficient length of time the polariza-
tion will vary with the same periodicity, but at the onset
of molecular inertia effects it will lag behind the field.We
can represent this as a phase lag 𝜑, such that

D(t) = Do sin (𝜔t − 𝜑)
= Do (sin𝜔t sin𝜑 − cos𝜔t cos𝜑)
= D′ sin𝜔t − D′′ cos𝜔t

with D′ = Do sin𝜑, D′′ = Do cos𝜑. The general forms of
Equations (6.36) and (6.37) become

P(t) =
(
𝜀∗r − 1

)
𝜀oE(t) (6.40)

D(t) = 𝜀o𝜀
∗
rE(t) (6.41)

For example, we can write Equation (6.41) as

D(t) = 𝜀o𝜀
∗
r Im

(
Eoei𝜔t

)
= 𝜀o

(
𝜀′ − i𝜀′′

)
Eo sin𝜔t

= 𝜀o
(
𝜀′2 + 𝜀′′2

)1∕2 Eo sin(𝜔t − 𝜑)

We can define a loss tangent as

tan𝜑 =
Do sin𝜑

Do cos𝜑
= D′′

D′ = 𝜀′′

𝜀′

to give the ratio of the out-of-phase to the in-phase com-
ponents of D and this in turn relates to the ratio of the
energy loss per cycle and the energy stored per cycle. At
a low frequency where there is no appreciable phase lag,
the value of 𝜀′′ is zero and 𝜀′ equates to 𝜀r. The energy
required to establish the electric field during the first half-
cycle of the sine wave is completely recovered during the
next half-cycle. However, if D and E exhibit a phase dif-
ference 𝜀′′ will have a finite value and there is a net loss of
energy related to the heat produced by the displacement
current density 𝜕D/𝜕t. At very high frequencies, where
the molecular dipoles have no time at all to respond to
changes of the field, the parameter 𝜀′′ again has a zero
value, there is no energy loss and 𝜀′ equates to 𝜀r∞. Typ-
ical variations of 𝜀′ and 𝜀′′ as a function of frequency are
shown in Figure 6.4.
Energy loss in a nonideal dielectric occurs from both a

‘conventional’ conduction current jc and a displacement
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Figure . Typical variations of the dielectric parameters 𝜀′ and
𝜀′′ in Equation (6.38) as a function of frequency. The value of 𝜀′ at
low frequencies corresponds to the static relative permittivity 𝜀s
and at high frequencies approaches the value 𝜀∞ derived from
optical refraction measurements.

current 𝜕D/𝜕t, so that from Ohm’s Law (j = 𝜎E) we have
the relationship

jc +
𝜕D
𝜕t

= 𝜎cE+ 𝜀o𝜀r
𝜕Eoei𝜔t

𝜕t
= 𝜎cE+ i𝜔𝜀o𝜀rEoei𝜔t

= (𝜎c + i𝜔𝜀o𝜀r)E

The two forms of energy loss, conduction current and
displacement current, are given by the following relation-
ships, respectively:

W𝜎 = 1
2
𝜎cE2 and W𝜀 = 1

2
𝜔𝜀o𝜀

′′E2 (6.42)

As described by ‘Willy’ Wagner [29], a complex con-
ductivity 𝜎∗ can thus be defined as

𝜎∗ = 𝜎′ + i𝜎′′ = 𝜎c + i𝜔𝜀o𝜀r (6.43)

A finite value for 𝜀′′ can be seen to have the same effect
as a conductivity of 𝜔𝜀o𝜀

′′, so that 𝜀′′ can be equated to
𝜎′∕𝜔𝜀o. From Equation (6.38) the absolute complex per-
mittivity (units of F/m) can thus be expressed as

𝜀∗ = 𝜀o𝜀
∗
r = 𝜀o(𝜀′ − i𝜀′′) = 𝜀o𝜀

′ − i𝜎
′

𝜔
(6.44)

From Equations (6.43) and (6.44) it is apparent that at
low frequencies as𝜔→ 0 then 𝜎∗→ 𝜎c, whilst at high fre-
quencies as𝜔→∞ then 𝜀∗→ 𝜀o𝜀

′. At low frequencies the
dielectric (and hence dielectrophoretic) properties of a
particle and medium are thus dominated by conduction
processes, whilst at high frequencies dielectric polariza-
tion processes are more important. Defining both a com-
plex permittivity and conductivity is thus useful and they

can be expressed in terms of each other through the rela-
tionship

𝜎∗ = i𝜔𝜀o𝜀
∗ (6.45)

The complex form of the Clausius–Mossotti (CM) fac-
tor, given in Equation (6.1) to describe the polarization of
a spherical particle of relative permittivity 𝜀p and conduc-
tivity 𝜎p suspended in a medium of relative permittivity
𝜀m and conductivity 𝜎m, can thus be given as either:

CM =
𝜀∗p − 𝜀∗m

𝜀∗p + 2𝜀∗m
or CM =

𝜎∗
p − 𝜎∗

m

𝜎∗
p + 2𝜎∗

m
(6.46)

The dipole moment value given by Equation (6.4) for
the electrostatic case can now be given for the case of
sinusoidal fields of the form E = Im

[
Eoei𝜔t

]
as either

p = 4𝜋𝜀o𝜀mR3

(
𝜀∗p − 𝜀∗m

𝜀∗p + 2𝜀∗m

)
E (6.47a)

or

p = 4𝜋𝜀o𝜀mR3

(
𝜎∗
p − 𝜎∗

m

𝜎∗
p + 2𝜎∗

m

)
E (6.47b)

TheMATLAB program in Box 6.9 models the complex
CM factor for a spherical particle suspended in an aque-
ous electrolyte. The results produced for the frequency
variations of the real and imaginary components of the
CM factor are given in Figure 6.5.
The MATLAB program presented in Box 6.9 specifies

the particle conductivity as 10 mS/m, whilst the conduc-
tivity of the electrolyte is much lower at 0.1 mS/m. At
low frequencies, as 𝜔→ 0 and 𝜎∗→ 𝜎c, we thus expect
from Equation (6.46) that the real value of the CM factor
will have a positive value, in agreement with the result
shown in Figure 6.5. The particle’s permittivity is spec-
ified to be eight times less than that of the electrolyte
and so based on Equations (6.44) and (6.46) we can pre-
dict, as shown in Figure 6.5, that at high frequencies the
CM factor will have a negative real value. This means
that the effective dipole moment of the spherical parti-
cle will reverse polarity as the field frequency is increased
from 1 kHz to 1 MHz. We interpret the dipole moment
as the distribution of the algebraic sum of the bound and
free charges at the interface between the particle and the
surrounding fluid medium. This interfacial polarization
process is described more fully in Chapter 7. Changes of
this algebraic sum of the charges occurs at a characteris-
tic response (or relaxation) time 𝜏 , which for the general
multipole case is given as [30]

𝜏 =
n𝜀p + (n + 1) 𝜀m
n𝜎p + (n + 1) 𝜎m

(6.48)
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Box . Derivation of the Real and Imaginary Components of CM

The complex Clausius–Mossotti (CM) function is obtained
by substituting into Equation (6.46) the complex permittiv-
ity 𝜀∗ given by Equation (6.44):

CM =
(𝜀p − i𝜎p∕𝜔) − (𝜀m − i𝜎m∕𝜔)

(𝜀p − i𝜎p∕𝜔) + 2(𝜀m − i𝜎m∕𝜔)

=
𝜔(𝜀p − 𝜀m) − i(𝜎p − 𝜎m)

𝜔(𝜀p + 2𝜀m) − i(𝜎p + 2𝜎m)

Multiplying the numerator and denominator by the
complex conjugate of the denominator we obtain:

CM =
𝜔2(𝜀p − 𝜀m)(𝜀p + 2𝜀m) + (𝜎p + 2𝜎m)(𝜎p − 𝜎m)

𝜔2(𝜀p + 2𝜀m)2 + 2(𝜎p + 2𝜎m)2

+i
𝜔(𝜀p − 𝜀m)(𝜎p + 2𝜎m) − (𝜀p + 2𝜀m)(𝜎p − 𝜎m)

𝜔2(𝜀p + 2𝜀m)2 + 2(𝜎p + 2𝜎m)2

On substituting into this expression the characteristic
relaxation (response) time 𝜏 given by Equation (6.49), we
obtain for the real component [30]:

Re[CM] =
[(

𝜔2𝜏2

1 + 𝜔2𝜏2

)(
𝜀p − 𝜀m

𝜀p + 2𝜀m

)
+
( 1

1 + 𝜔2𝜏2

)( 𝜎p − 𝜎m

𝜎p + 2𝜎m

)]
whilst the imaginary component simplifies to the form:

Im[CM] =
3𝜔(𝜀p𝜎m − 𝜀m𝜎p)

𝜔2(𝜀p + 2𝜀m)2 + (𝜎p + 2𝜎m)2

where 𝜀p and 𝜀m are the absolute (rather than relative)
permittivity values. For the case of the dipole approxi-
mation (n = 1) the response time is thus

𝜏 =
𝜀p + 2𝜀m
𝜎p + 2𝜎m

(6.49)

As shown in Box 6.8 the interfacial charging process
can be taken into account in the derivation of the real
component of the CM factor. The method is simply to
substitute either of the expressions for 𝜎∗ and 𝜀∗ given
by Equations (6.43) and (6.44) into Equation (6.46) and
incorporate the expression for the relaxation time given

by Equation (6.49). The expression obtained for the real
component is:

Re[CM] =
[(

𝜔2𝜏2

1 + 𝜔2𝜏2

)(
𝜀p − 𝜀m

𝜀p + 2𝜀m

)
+
(

1
1 + 𝜔2𝜏2

)(
𝜎p − 𝜎m

𝜎p + 2𝜎m

)]
(6.50)

This is the same result, but in a different form, to
the more general one obtained by Molinari and Viviani
[31] and Benguigui and Lin [32] that includes the tran-
sient DEP response. For our purposes the form of
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Figure . Plots of the real (Re) and imaginary
(Im) components of the Clausius–Mossotti factor
as a function of frequency, created using the
MATLAB program in Box 6.9. At low and high
frequencies the imaginary component
approaches a value of zero.
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Equation (6.50) is the more helpful because we can read-
ily deduce from it that as 𝜔→ 0 (i.e., 𝜔𝜏 ≪ 1) we have for
the electrostatic case and at low frequencies:

Re[CM] ≈
𝜎p − 𝜎m

𝜎p + 2𝜎m
(6.51)

For the situation as 𝜔→∞ (𝜔𝜏 ≫ 1) we then have at
high frequencies:

Re[CM] ≈
𝜀p − 𝜀m

𝜀p + 2𝜀m
(6.52)

Figure 6.5 was generated for a spherical particle sus-
pended in an aqueous electrolyte, with the following con-
ductivity and permittivity parameters: 𝜎p = 10 mS/m;
𝜎m = 1 mS/m; 𝜀p = 10𝜀o and 𝜀m = 80𝜀o. Equations (6.51)
and (6.52) predict that at low and high frequencies the
real values for the CM factor should be 0.75 and −0.41,
respectively. The plot shown in Figure 6.5 reproduces
these predictions. An example is given in Figure 6.6 of
where the particle’s conductivity is less than that of the
surrounding medium, but with a permittivity larger than
the medium. From the specified dielectric parameters
(𝜎p = 0.1 mS/m; 𝜎m = 1 mS/m; 𝜀p = 60𝜀o and 𝜀m =
20𝜀o) the predicted low and high frequency Re[CM] val-
ues should be −0.43 and 0.4, respectively. These predic-
tions are mirrored in the curve shown for the real part of
the CM factor in Figure 6.6.
Equations (6.47a and b) inform us that the induced

dipole moment p is a complex quantity having real and
imaginary components. If the reference axis for the real
component Re(p) is, as shown in Figure 6.7, aligned with

Eo

i

Re(p)

Im(p)
φ

p

Figure . The induced dipole moment p consists of a real
component Re(p) along the direction of the applied field Eo, and
an imaginary component Im(p) directed along the imaginary axis
i. The magnitude of the moment p is given by the vector sum of
Re(p) and Im(p). In this diagram p leads the field by the phase
angle 𝜑

the direction of the applied field Eo we can define a phase
angle 𝜑 as tan𝜑 = Im(p)/Re(p).
For the case where p∗ = Re(p) + iIm(p), the moment p

leads the applied field Eo by 𝜃 degrees. The magnitude of
the moment is given by

p =
√

(Re(p)2 + Im(p)2)

The MATLAB program given in Box 2.9 was modified
to calculate and plot themagnitude of themoment and its
phase angle as a function of frequency. Results obtained
using it are shown in Figures 6.8 to 6.11.
Finally, from the analysis of the electrical polariza-

tion of a dielectric ellipsoid, the expression given by
Equation (6.4) for the induced dipole moment p of a
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Figure . Plots of the real and imaginary
components of the Clausius–Mossotti factor as a
function of frequency. The MATLAB program in
Box 6.9 was modified to give values for 𝜎p and 𝜎m
of 0.1 mS/m and 1 mS/m, respectively, together
with values for 𝜀p and 𝜀m of 60𝜀o and 20𝜀o,
respectively. At the low and high frequencies the
real part of the CM factor has values predicted by
Equations (6.50) and (6.51) where the imaginary
component approaches zero.
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Box . MATLAB Program to Plot the Complex Clausius–Mossotti Factor

Lines 10–14 of the following MATLAB program assign per-
mittivity and conductivity values (in SI units) to a spherical
particle and its fluid suspending medium. Lines 16–17 spec-
ify that we wish to generate 120 angular frequency values
(w) between 1 kHz and 1 GHz and to calculate the real and
imaginary values of the complex Clausius–Mosotti factor at
each of these frequency values. These calculations are per-
formed in lines 20–24. The format of the plots and labelling
of the axes and graph is specified in lines 26–29.

1 % CMfactor.m

2

3 % The particle is assigned a

conductivity kc1 and permittivity kp1.

4 % The suspending medium has

conductivity kc2 and permittivity kp2.

5 % ki (i=1,2) complex permittivity of

particle, medium.

6 % pO: permittivity of free space.

7 % All parameters in SI units

(metres, S/m, F/m).

8 % ————————————————————-

9

10 pO=8.854e-12;

11 kc1=10e-3;

12 kp1=10∗pO;

13 kc2=10e-4;

14 kp2=80∗pO;

15

16 f=logspace(3,9,120);

17 zeroline=f-f;

18 w=2∗pi∗f;

19

20 k1=kp1-i∗kc1 ./w;

21 k2=kp2-i∗kc2 ./w;

22 cmf=(k1-k2) ./(k1+2∗k2);

23 rm=real(cmf);

24 im=imag(cmf);

25

26 plot(log10(f),rm,'-', log10(f),

im,'–', log10(f),zeroline,'-');

27 text(6.2,0.3,'Re'), text(5.2,-0.3,'Im')

28 xlabel('Log Frequency (Hz)')

29 ylabel('Clausius-Mossotti Factor')

spherical particle can be generalized to the general case
of an ellipsoidal particle having semiaxes a, b and c:

px =
4𝜋abc

3
𝜀o𝜀m

(
𝜀p − 𝜀m

𝜀m + Ax(𝜀p − 𝜀m)

)
Ex (6.53)

where px is the induced polarization along one of the axes
with the applied field parallel to this axis. The parameter
Ax is the depolarization factor described in Chapter 5,
Equation (5.57). This factor is described more fully in
Chapter 7 and values for Ax for various sizes of oblate
and prolate spheroids are shown in Figure 7.11. For a
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Figure . The magnitude of the induced dipole
moment p as a function of frequency, obtained
using a modified version of the MATLAB program in
Box 6.9, for the same particle and medium
conductivities that produced the CM factor values
given in Figure 6.5.
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Figure . At low frequencies the moment p of
Figure 6.8 is in phase with the applied electric
field. As the frequency is increased the moment
increasingly lags the field and at high
frequencies attains a maximum phase difference
of −180◦.

spherical particle (a = b = c = R), the depolarization
parameter has the same value for all directions of the
field and orientation of the particle, so that Ax = Ay =
Az = 1/3. Substituting this value into Equation (6.53)
leads to the result:

p = 4𝜋𝜀o𝜀mR3
(

𝜀p − 𝜀m

𝜀p + 2𝜀m

)
Eo

in agreement with Equation (6.4). The rod-shaped parti-
cle shown in Figure 5.25 is directed with its long (major)
axis along the field direction and in this case we find that

Ax = 0. A straight DNA molecule, or a virion such as
the Tobacco Mosaic Virus, can be approximated to be a
prolate spheroid with its major axis much larger than its
two other axes (e.g, a ≫ b = c). If the molecule or virion
is aligned with the field, then the depolarizing factor
along its major axis is close to zero, so that Equation
(6.53) simplifies to the form:

px ≈
4𝜋a2b

3
𝜀o𝜀m

(
𝜀p − 𝜀m

𝜀m

)
Ex (6.54)

3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Log frequency (Hz)

In
du

ce
d 

di
po

le
 m

om
en

t 
p 

(C
.m

 x
 1

e2
3)

Figure . Frequency variation of the
magnitude of the induced moment
corresponding to the real and imaginary
components of the Clausius–Mossotti factor
shown in Figure 6.6 (𝜎p = 0.1 mS/m; 𝜎m = 1 mS/m;
𝜀p = 60𝜀o and 𝜀m = 20𝜀o).
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Figure . At low frequencies the moment p of
Figure 6.10 leads the applied electric field by 180◦.
As the frequency is increased this leading phase
angle decreases until at high frequencies the
induced moment is exactly in phase with the
applied field.

However, some care should be taken in adopting Equa-
tion (6.54) for prolate spheroidal particles, because it is
not always the case that it will have itsmajor axis directed
along the field direction. The orientational torque acting
on nonspherical particles will in general vary as a func-
tion of frequency. The orientation that leads to a sta-
ble (i.e., minimum potential energy) situation may not
be with the major axis in alignment with the field direc-
tion, but instead where a minor axis assumes this posi-
tion. In this case the relevant depolarization factor tends
to a value of 1 rather than zero. This is discussed fully by
Stratton [33] and Jones [34].

. Summary

There are two functions in the dielectrics literature
known as the Clausius–Mossotti factor.They take on the
same mathematical form and use the same symbols, but
in fact apply to two quite distinct problems.
The version of principal relevance to dielectrophore-

sis is referred to in this chapter as the macroscopic
Clausius–Mosssotti factor. It arises when dealing with
the polarization of a particle embedded in a medium
whose dielectric properties differ from that of the
particle. A uniform electric field Eo has already been
established in the medium and it is assumed that for
distances r far away from the particle’s centre its polar-
ization field does not alter the imposed uniform field.
This is a standard problem, described with solutions
in the classical electrostatics literature for more than
100 years, which involves solving Laplace’s equation

for specified boundary conditions. An example is given
in Box 6.1 for the case of a spherical particle having a
macroscopic static relative permittivity 𝜀p, suspended in
amedium of relative permittivity 𝜀m.The first order solu-
tion of Laplace’s equation (i.e., ignoring terms containing
cos2𝜃 and higher, where 𝜃 is the angle between the vector
distance r and the field direction) gives the potential as:

𝜙 =
(K1
r2

− K2r
)
Eo cos 𝜃;

whereK1 andK2 are constants.The factor𝜙 = K1
r2 Eo cos 𝜃

describes the field of a dipole and this term appears only
outside the spherical particle, with

K1 =
𝜀p − 𝜀m

𝜀p + 2𝜀m
R3

where R is the radius of the particle. The solution outside
the particle gives K2 = 1 for r ≫ R. Inside the particle
there is no dipole field (i.e., K1 is zero) and

K2 =
3𝜀m

𝜀p + 2𝜀m

The lines of constant electric force and the resultant
fields created inside and outside the particle are plot-
ted out in Figure 6.12. For the case where the effec-
tive polarizability of the particle exceeds that of the sur-
rounding medium, the induced charges result in a dipole
moment collinear with the external field and the exter-
nal field appears to be drawn into the particle. However,
the induced surface charges act in a way to decrease the
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Figure . (a) The dipole moment p
induced in a particle and the lines of
constant electric force produced by
surfaces charges induced on a spherical
particle in a uniform field Eo, for the case
(top) where the particle’s polarizability is
greater or (bottom) less than the
surrounding medium. (b and c) The
resultant field patterns to show how the
external field is distorted into the surface
of a particle that is more polarizable than
the medium, to give an internal field less
than the external field. For a particle less
polarizable than the medium, the
external field is distorted around the
particle and the internal field is greater
than the external field.

internal field of the particle. When the particle polariz-
ability is less than the surrounding medium, the exter-
nal field skirts around the particle and the internal field
is increased.
On the reversal of an electric field to the system of

particle plus external medium, the induced charges do
not instantaneously rearrange themselves to produce a
reversed dipole moment, but respond with a character-
istic relaxation time. This needs to be taken into account
when using alternating electric fields and is accomplished
by defining a complex CM factor that leads to the gener-
alized expression given by Equations (6.47).
The other version of the Clausius–Mossotti factor

that appears in the dielectrics literature is the molecu-
lar CM factor and to distinguish this from the macro-
scopic CM factor we have referred to it in this chapter
as the Clausius–Mossotti–Lorentz relation. This has its
origins in efforts to translate the theories of Poisson and
Green so as to relate the macroscopic polarizability and
relative permittivity of a dielectric body to the local field
that acts directly on the polarizable elements within it.
The approach to this problem is to enclose a single polar-
izable element or a collection of such elements within
an imaginary cavity and to calculate the internal cavity
field.
Lorentz found that the local field El is related to the

externally applied field E by the relationship (see Equa-
tion (6.13)):

El = E +
(1
3
+ s

)
P∕𝜀o

in which s is a constant ‘which it will be difficult exactly
to determine’ [14, p. 138]. The form of the CM factor
given by Equation (6.1) is only obtained by equating s to
zero. Formulation of themolecular CM factor is thus not
an exact procedure. We have discussed it in some detail
in this chapter because it may provide insights into how

to formulate a theory correctly to describe the dielec-
trophoretic behaviour of molecular-sized particles that
possess a permanent dipole moment.
In this chapter we have also introduced the concepts

of complex permittivity (𝜀∗) and complex conductivity
(𝜎∗). The complex permittivity description of a dielec-
tric material is employed to take into account the fact
that it is not a perfect insulator, but exhibits energy losses
associated with an electric field-induced movement of
free charges (e.g., a leakage current) or the relaxation of
permanent dipoles. The term complex is a mathemati-
cal term to indicate that 𝜀r

∗ is a quantity having real and
imaginary components, expressed as

𝜀∗r = 𝜀′ − i𝜀′′

where i=
√
−1 and 𝜀′ is the real component (Re) in phase

with the applied sinusoidal voltage signal.The factor−i𝜀′′
with its minus sign indicates that the imaginary (Im)
component 𝜀′′ lags the voltage signal by a phase angle
of 90◦. 𝜀r

∗ is thus a vector quantity, whereas 𝜀′ and 𝜀′′

are scalar quantities.The absolute values of 𝜀′ and 𝜀′′ are
equal to 𝜀o𝜀

′ and 𝜀o𝜀
′′(Farad m−1), respectively. As given

by Equation (6.42) the parameter 𝜀′′ quantifies the energy
loss per cycle of the AC voltage applied to the dielectric.
If the material is held between two parallel electrodes of
area A and separation d, its capacitance C is given by

C =
A𝜀o𝜀

′

d
(Farad)

If we now wish to introduce a leakage current effect or
some other type of conductivity, we require the admit-
tance Y or complex capacitance C∗ of the material:

Y = C∗ = i𝜔C = i𝜔A
d

𝜀o𝜀
∗
r = i𝜔A

d
𝜀o(𝜀′ − i𝜀′′)

= A
d

𝜀o(𝜔𝜀′′ + i𝜔𝜀′) (Siemens) (6.55)
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Complex conductivity is employed to describe a con-
ductive material that also exhibits the properties of a
capacitor, possibly as a result of the buildup of charge
(interfacial polarization) at sites of heterogeneity in the
material. Complex conductivity is expressed as

𝜎∗ = 𝜎′ + i𝜎′′

where the real component 𝜎′ is proportional to the
energy loss per second (power loss). The corresponding
admittanceY or complex conductanceG∗ of thematerial
is:

Y = G∗ = A
d

𝜎∗ = A
d
(𝜎′ + i𝜎′′) (6.56)

Comparing the real and imaginary components of
equations (6.55) and (6.56) we find the following relation-
ships

𝜎′ = 𝜔𝜀o𝜀
′′ and 𝜎′′ = 𝜔𝜀o𝜀

′

The complex conductivity and complex permittivity
can thus be expressed in terms of each other through the
relationship

𝜎∗ = i𝜔𝜀o𝜀
∗
r

The complex form of the Clausius–Mossotti (CM) fac-
tor, given in Equation (6.1) to describe the polarization of

a spherical particle of relative permittivity 𝜀p and conduc-
tivity 𝜎p suspended in a medium of relative permittivity
𝜀m and conductivity 𝜎m, can thus be given as either:

CM =
𝜀∗p − 𝜀∗m

𝜀∗p + 2𝜀∗m
or CM =

𝜎∗
p − 𝜎∗

m

𝜎∗
p + 2𝜎∗

m

The real and imaginary components of the CM fac-
tor are derived in Box 6.8. The real component Re[CM∗ ]
is the one of direct relevance to dielectrophoresis. As
shown in Chapter 10, electrorotation and travelling wave
dielectrophoresis depend on the imaginary component
Im[CM∗]. In our treatment of complex conductivity for
the analysis of Debye-type relaxations in a material, the
DC conductivity is considered to be negligible. If this
is not the case, Grant [35] has described a method for
including its effect.
Finally, from the expression given by Equation (6.53)

for the polarization of an ellipsoid, the complex CM fac-
tor for an ellipsoidal particle is given by:

CM =

(
𝜀∗p − 𝜀∗m

𝜀∗m + A(𝜀∗p − 𝜀∗m)

)
Ex (6.57)

where the parameter A is the depolarization factor
described in Chapter 5, Equation (5.57).
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Dielectric Polarization

. Introduction

Figure 3.1 gives a simple way to determine the rela-
tive permittivity of a slab of dielectric, by observing
the change in the reading of an electrometer as it is
inserted in the gap between a pair of charged paral-
lel electrodes. From these external observations we can
deduce the permittivity of the dielectric material, but
without more information we have no understanding of
how this relates to polarization processes occurring at the
molecular or submolecular level. Similarly, in a dielec-
trophoresis experiment we typically observe the induced
translational motion of a particle (e.g., cell, bacteria, flu-
orescently labelled virus or RNA molecule) suspended
between electrodes.We assume that the particle has been
polarized by the electric field, but we have no direct way
to relate this to the molecular or structural properties of
the particle – or more importantly to biological parame-
ters such as a cell’s viability or state of differentiation.We
have to advance to such levels of understanding before
dielectrophoresis can reach its full potential as a tool for
the biomedical sciences.
To proceed with this objective it is useful to review the

basic concepts of electrostatics and dielectrics described
in previous chapters. Important facts are highlighted in
Chapter 3, namely that an ideal electrical conductor and
an ideal dielectric behave quite differently when sub-
jected to an electric field. In brief:
� an ideal conductor cannot sustain an internal electro-
static field;

� an ideal dielectric does not conduct electric current
and can support a large internal electrostatic field.

In Figure 3.1 the ratio E0/E1 of the initial field E0
between the plates to the field E1 when the slab is fully
inserted is defined as the relative permittivity 𝜀r of the
material. If the material is an ideal metal, which exhibits
no resistance to current flow, then E1 = 0 and the ratio
E0/E1 has an infinite value. In terms of Equation (3.3)
there is a complete eradication of the original free charge
applied to the electrode plates (i.e., Δ𝜎 = 𝜎). From this

we deduce that ideal conductors possess an infinite rela-
tive permittivity, which is equivalent to stating that ideal
metals are infinitely polarizable.
Dielectric materials possess finite values of permittiv-

ity. The ratio E0/E1 is thus finite and so a dielectric only
partially counteracts an applied external field. Electrons
and positively charged nuclei in the molecular structure
of a dielectric material are therefore exposed to a field
within the dielectric medium. In Chapter 6, we found
that, to a first approximation, the local field acting on
a polarizable element in the dielectric, known as the
Lorentz field, is equal to [(𝜀r+2)/3]E1 and so is larger
than the macroscopic field E1 set up in the dielectric.The
value of 𝜀r is a measure of the extent to which the electric
charge distributions in polarizable elements of the dielec-
tric are displaced or ‘polarized’ by the local field. In this
chapter, we will seek some quantitative understanding of
such polarization at the atomic and molecular level.

. Electrical Polarization at the Atomic
and Molecular Levels

A basic concept of the electronic structure of atoms is
that their electrons occupy what are known as electron
shells. Each shell is composed of one or more subshells,
which represent the different orbital path shapes that
electrons have around the nucleus of their parent atom.
The first, innermost shell, has one subshell called the 1s
shell and can accommodate amaximumof two electrons.
Hydrogen and helium atoms have this electronic struc-
ture, with hydrogen possessing one orbiting electron and
helium two. The second shell has two subshells (2s, 2p),
which can accommodate a maximum of eight electrons,
with two in the 2s shell and six in the 2p shell. The third
shell has three subshells (3s, 3p, 3d) and can accommo-
date amaximumof 18 electrons, with ten in the 3d shell –
and so on through the periodic tables of elements. A
covalent chemical bond between two atoms is formed
by the sharing of unpaired electrons, one from the outer
electron shell of each atom.These shared electrons enter
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an electronic orbital, which is common to both atoms,
acting to reduce the repulsive force between the two
positively charged nuclei. According to this scheme the
hydrogen atom, with one unpaired electron, can form
only one covalent bond, whilst carbon with four elec-
trons in its outermost 2s and 2p subshells can form four
bonds. A simple example of this is the methane molecule
(CH4), where one carbon atom forms covalent bonds to
four hydrogen atoms.
Electrons in the outer shells have higher average ener-

gies than those in the inner shells and their electron
orbitals extend farther from the nucleus.This contributes
to how chemically reactive a particular atommay be in its
interaction with other atoms and it determines the elec-
trical polarizability of a molecular structure of which it
forms a part.

7.2.1 Nonpolar, Polar and Ionic Bonds

In a covalent bond formed between two identical atoms,
such as the C-C bond between two carbon atoms, the
bonding electrons are equally shared between the atoms.
Such a bond is termed nonpolar. For example, molecules
such as Cl2, H2 and F2 are nonpolar. Different atoms
exhibit different tendencies for the sharing of their elec-
trons. This tendency can be quantified in terms of their
electronegativity, using a scale measured from a hypo-
thetical zero to a maximum value of 4.0. The electroneg-
ativity values of some atoms of biological importance are
listed in Table 7.1 and are based on the scale devised
by Linus Pauling [1]. Fluorine, the most electronegative
atom, is assigned an electronegativity value of 3.98.
We note fromTable 7.1 that atoms located at the upper

right of the Periodic Table of Elements are more elec-
tronegative and those to the lower left are least elec-
tronegative. From this we can judge that carbon disul-
phide (CS2) has an almost equal sharing of its electrons
when forming itsC-S covalent bonds.We call such a bond
a nonpolar bond.As a guideline, amaximumdifference of
0.4 ∼ 0.5 in electronegativity values can be used to define

Table . The electronegativity values for some atoms in the
Periodic Table of elements, based on the Pauling electronegativity
scale [1].

I II III IV V VI VII VIII

H
2.10

C
2.55

N
3.04

O
3.44

F
3.98

Na
0.93

Mg
1.31

P
2.19

S
2.58

Cl
3.16

K
0.82

Ca
1.00

the limit for the formation of a nonpolar bond. For a C-Cl
bond there is an electronegativity difference of 0.61 and
thus a significant unequal sharing of electrons between
the C and Cl atoms. Electronic charge on average spends
more time closer to the chlorine atom (giving it a slightly
negative charge 𝛿−) and less time near the carbon atom
(which thus acquires a slightly positive charge 𝛿+). The
C-Cl bond is termed a polar bond. This quality is even
more pronounced in an H-F bond, where the electroneg-
ativity difference is 1.88. The polar bonds in molecules
such as NH3 and H2O result in their possessing a perma-
nent electric dipole moment. Suchmolecules will tend to
align themselves with an externally applied electric field.
However, where the electronegativity difference between
atoms in a bond is greater than around 2.0, we approach
the situation where there is complete transfer of an elec-
tron from the least to themost electronegative atom.This
type of bond is termed ionic. Common salt (NaCl) is a
good example, forming ionic crystals held together by
the coulombic forces between the positively chargedNa+
and negatively charged Cl− atoms. Other examples of an
ionic solid include salts such as KCl, LiF and MgCl2.
When two highly electronegative atoms form a chemi-

cal bond, this bond is usually quite unstable. This occurs
in hydrogen peroxide (H-O-O-H), where the strong
attractions of bonding electrons towards the two strongly
electronegative oxygen atoms make it a highly reactive
molecule.

7.2.2 Polarization by Electronic and Atomic Distortion

When molecules in a gas, liquid or solid are exposed to
an electric field they experience an electrostatic force,
causing their atomic nuclei and electronic orbitals to be
slightly displaced from their normal equilibrium config-
urations. This effect is known as distortion polarization
and involves two distinct contributions, known as elec-
tronic and atomic polarization.

7.2.2.1 Electronic Polarization
The basic process can be described using the idealized
atomic model shown in Figure 7.1. An atom of atomic
number Z is represented as a spherical cloud of electrons
of radius R and total charge −Ze surrounding a nucleus
of charge +Ze. The atomic radius of the hydrogen atom
(Z = 1) is given by the most probable radius of orbit of its
single electron.This is known as the Bohr radius and has
a value of 5.3× 10−11 m.The negative electronic charge is
confined to a volume 4/3(𝜋R3) and has a volume charge
density 𝜌e given by:

𝜌e =
3Ze
4𝜋R3 (7.1)

An electric field E acting on an atom will tend to pull
the nucleus and the electron cloud apart.This is opposed
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Figure . (a): An idealized atomic structure is shown of a nucleus
of point charge +Ze surrounded by a spherical ‘cloud’ of orbiting
electrons of total electronic charge −Ze and radius R. (b): In an
electrical field E the opposing electrostatic forces acting on the
nucleus and electron ‘cloud’ is balanced by their force of
attraction. This results in a stable separation d between the
nucleus and the centre of the spherical ‘cloud’ of electronic charge.
The inner circle of radius d represents a Gaussian surface enclosing
that fraction of negative charge involved in the attractive force
with the positive nucleus.

by the electrostatic force of attraction between the point
positive charge of the nucleus and the diffuse negative
charge in the spherical electron cloud. The equilibrium
separation distance d shown in Figure 7.1(a) corresponds
to the situation where the force pulling the nucleus and
electron cloud apart balances the force of their electri-
cal attraction. However, only a fraction of the negative
charge density is involved in establishing this equilib-
rium. We can understand this by drawing a spherical
Gaussian surface of radius d around the nucleus, as
shown in Figure 7.1. Outside this Gaussian surface the
diffuse electron cloud can be considered as a series of
concentric charged spheres, each one acting as a Fara-
day cage with zero internal field (see sections 3.3.2.2 and
3.3.2.5 of Chapter 3).The force of attraction with the pos-
itive nucleus, which lies just within the Gaussian surface,
thus involves only the negative charge density 𝜌edwithin a
sphere of radius d.This fraction of the charge is given by:

𝜌ed = Ze
[ 3
4𝜋d3

]/ [ 3
4𝜋R3

]
= Zed3

R3
(7.2)

The coulombic force of attraction, given by Equa-
tion (3.5), between the nucleus (positive charge Ze) and
the charge given by Equation (7.2) is:

Fattraction = 1
4𝜋𝜀o

Ze(Zed3∕R3)
d2

= (Ze)2

4𝜋𝜀oR3 d = kd

(7.3)

The factor k on the right-hand side of this equation gives
the proportionality between the restoring force and the
displacement from equilibrium and acts rather like the
force constant of an ideal mechanical spring that obeys
Hooke’s Law. When the restoring force is directly pro-
portional to the displacement from equilibrium the sys-
tem exhibits a resonant oscillation called simple har-
monic motion. A body or system that undergoes simple
harmonic motion is called a harmonic oscillator. The

characteristic frequency of resonance of the electronic
polarization effect we have described here is above
1014 Hz and lies within the ultraviolet (UV) frequency
band.
The force acting to stretch the distance between the

nucleus and the negative electronic cloud of charge is:

Fstretch = ZeE (7.4)

The equilibrium separation distance d is obtained by
equating the restoration force of attraction given by
Equation (7.3) and the stretching force given by Equa-
tion (7.4):

d =
4𝜋𝜀oR3

Ze
E (7.5)

The electric moment p induced by this displacement of
the nucleus from the centre of the spherical electronic
cloud is given by:

p = Zed = 4𝜋𝜀oR3E (7.6)

In Chapters 3 and 6, the macroscopic polarization P
of a dielectric material is defined as the average induced
dipole moment per unit volume. If the number density
of atoms of the form shown in Figure 7.1 is N, then P is
given by:

P = Np = 4𝜋𝜀oR3NE (7.7)

The corresponding value of the relative permittivity 𝜀r is
obtained from Equation (3.48):

P = (𝜀r − 1)𝜀oE

to give

𝜀r = 1 + P
𝜀0E

= 1 + 4𝜋R3N (7.8)

Although this treatment is based on a simplistic model
of hydrogen-like atoms that possess spherical electron
‘shells’, several important facts emerge:
� A polarized atom acts like a vibrating spring and
exhibits a characteristic resonant frequency, typically
∼2 × 1014 Hz in the ultraviolet region of the optical
spectrum.

� At field frequencies below this resonance the magni-
tude of electronic polarization 𝛼e is directly propor-
tional to the local field E. We have the relationship:
P = 𝛼eE.

� The magnitude of the electronic polarizability of an
atom increases as the volumeoccupied by the electrons
increases.

7.2.2.2 Atomic Polarization
If the molecule contains polar bonds, so that the atoms
involved carry different effective charges, the nuclei are
displaced with respect to one another in an electric field.
This charge displacement produces an induced electric
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moment superimposed upon that arising from electronic
polarization. This additional contribution to the overall
molecular polarization is called atomic polarization 𝛼a.
The molecule itself need not have a permanent dipole
moment – only polar chemical bonds. These polarized
bonds also behave like vibrating springs and exhibit a
characteristic resonant frequency in the infrared region
of the optical spectrum at ∼2 × 1013 Hz.
The total polarization arising from electronic and

atomic distortions is given by

P = (𝛼e + 𝛼a)E (7.9)

Example 7.1 Polarizability of Solid Hydrogen
At temperatures below 14K hydrogen forms a solid of
density 0.086 g/cm3. Estimate the value of the relative
permittivity of solid hydrogen.

Solution 7.1 For simplicity we will assume that solid
hydrogen takes the form of condensed hydrogen atoms
(rather than condensed H2 molecules). The atomic mass
of a hydrogen atom is 1 amu, so 1 g of solid hydrogen con-
tains Avogadro’s number of atoms (i.e., 6 × 1023). The
value for N in Equation (7.6) is thus calculated to be:

N = (6 × 1023)(8.6 × 10−2)
= 5.16 × 1021 cm−3 = 5.16 × 1027m−3

Using this value forN, together with R= 0.53 nm, from
Equation (7.8) we have:

𝜀r = 1 + P
𝜀0E

= 1 + 4𝜋R3N

= 1 + 4𝜋(5.3 × 10−11)3(5.16 × 1027) = 1.0097

This result implies that the electronic polarizability of
our model hydrogen atom is very small. A more realis-
tic calculation [2] of the electrical polarizability of a clas-
sical hydrogen atom in its quantum-mechanical ground
state energy leads to a value that is larger by a factor of
21/4 than the result obtained using Equation (7.6). This
gives a relative permittivity value 𝜀r = 1.05, compared to
a value of 1.00 for vacuum.This still represents a very low
polarizability.

Aswe advance fromelement to element through the peri-
odic table, with each increase by 1 of the atomic num-
ber an electron is added to the electronic shell to neu-
tralize the charge of an added proton.This extra electron
occupies the same volume in the outermost orbital shell,
but because the nuclear charge increases the electron is
heldmore tightly by electrostatic attraction into a smaller
effective atomic radius. We therefore expect the elec-
tronic polarizability to decrease from left to right along a
row of the periodic table of elements. A noble gas occu-
pies the end of each row (VIII) with its outermost elec-
tron shell completely occupied. The addition of another

proton and electron (increasing the atomic number by 1)
gives the first member (an alkali metal such as sodium or
potassium) of the next row of elements. This added elec-
tron goes into an unoccupied outer shell, which repre-
sents a stepwise increase in atomic radius. In the periodic
table of elements we can therefore expect the polarizabil-
ity to increase down a column of elements. An example
of this occurs in column IV of the table, where crystals of
carbon (diamond) with Z= 6, silicon (Z= 14) and germa-
nium (Z = 32) have relative permittivity values at room
temperature of 5.5, 12 and 16, respectively. These per-
mittivity values arise solely from electronic polarization.
Themuch larger polarizability values of this set of atoms,
compared to hydrogen, arise primarily from the fact that
their electron shells consist of a combination of spherical
‘s’ and dumb-bell shaped ‘p’ orbitals (sp-hybrids) and not
a simple spherical orbital as depicted in Figure 7.1.

7.2.3 Ionic Polarization

The lattice structure of a common ionic crystal, namely
sodium chloride (NaCl), is shown in Figure 7.2. Sodium
is situated at the left-hand side of the periodic table of ele-
ments and chlorine on the right. From Table 7.1 we see
that sodium and chlorine atoms exhibit an electronega-
tivity difference of 2.23, with chlorine as the more elec-
tronegative. Sodium chloride thus forms what is termed
an ionic crystal. Each sodium atom carries a net positive
charge and every chlorine atom a net negative charge and
the electrostatic interactions between them are strong
and contribute significantly to its crystal lattice struc-
ture.We canuse the concept of electrical potential energy
described in Chapter 4 and Equation (4.10) to derive the
electrostatic energy of an ionic crystal and this is outlined
in Box 7.1.

Figure . Schematic of the cubic lattice structure of the NaCl
crystal.
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Box . Electrostatic Potential Energy of an Ionic Crystal

The potential energy of a single Na+ or Cl− ion in the lattice
structure shown in Figures 7.2 and 7.3 can be obtained using
Equation (4.10). Each ion experiences an attractive force to
ions of opposite charge and repulsion from ions of the same
charge. We will focus attention on one of the Na+ ions (we
could equally well choose a Cl− ion) and let r be the short-
est distance between a Na+ and Cl− ion. The nearest neigh-
bours of a Na+ ion in the lattice are 6 Cl− ions at a distance
of

√
r, 12 Na+ ions at a distance of

√
(2r), 8 Cl− ions at

√
(3r),

6 Na+ ions at
√

(4r), 24 Cl− ions at
√

(5r) and so forth. From
Equation (4.10) the electrostatic energy due to one ion is:

U = 1
4𝜋𝜀0𝜀r

∑
i<j

qiqj

rij
=

q2

4𝜋𝜀0𝜀r

1
r

×

[
6√

1
− 12√

2
+ 8√

3
− 6√

4
+ 24√

5
⋯

]

The series within the square brackets converges to the
value 1.7476 and is the Madelung Constant M for the rock salt
type of crystal lattice, of which the sodium chloride crystal is
a member. The value of M depends on the crystal structure.
For example, for the fluorite (e.g., CaF2 structure) M= 2.5194
and for the corundum (e.g., Al2O3) structure M = 4.1719.

The number of ions in 1 mole of an ionic crystal is mwNA,
where mw is its molecular weight and NA is the Avogadro
constant. The general formula for the total molar electro-
static energy of an ionic crystal is:

U = mwNA
z−z+q2

4𝜋𝜀0𝜀r

M
𝜂

Where z− and z+ are the number of charges on the anion
and cation, respectively (z− = z+ = 1 for NaCl; z− = 3, z+ =
2 for Al2O3) and rl is the shortest cation-anion distance for
the lattice type.

The contributions to the electronic polarization of an
ionic crystal are not shared equally between the cations
and anions. For example, in a NaCl crystal the chlorine
atoms, having gained an increased electronic charge den-
sity, contribute more to the crystal’s electronic polariz-
ability than the sodium atoms that have lost a fraction of
their overall electronic charge. However, an ionic crys-
tal exposed to a static electric field can exhibit an addi-
tional polarization effect of magnitude that significantly
exceeds its intrinsic electronic polarizability.
In the lattice structure of crystalline NaCl the dipole

moment (depicted by arrows in Figure 7.3) of any pair of
Na+ andCl− ions is completely cancelled by a neighbour-
ing dipole. The polarization per unit volume due to the
ionic nature of the crystal is zero. However, as shown in
an exaggerated manner in Figure 7.3, an applied electric
field exerts an electrostatic force (F = qiE) on each ion,
pulling the Na+ and Cl− ions in opposite directions.This
distorts the crystal lattice and results in noncancellation
of adjacent dipole moments. The net dipole moment is
directed along the field direction and enhances the polar-
izability per unit volume of the crystal above that due to
its electronic polarizability.The force acting to restore the
lattice structure takes a similar form as Equation (7.3),
with the spring constant k related to the compressibility
of the lattice and the electrostatic forces between theNa+
and Cl− ions.
Yamashita [3] employed a quantum mechanical

method to derive theoretical estimates of the polariz-
ability of the LiF ionic crystal. He examined the cases
for a frequency of an applied electric field that is low
enough for an electrostatically induced lattice distortion
to keep pace with the changing field and also for a

frequency so high that no significant lattice distortion
is possible. He obtained a high frequency relative per-
mittivity value of 2.33, which can be considered to result
from polarization of the electronic charge distributions
around the ions. This value is not too far from the exper-
imental one of 1.92. Based on estimated values for the
Madelung constant described in Box 7.1, together with
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Figure . (a) In the lattice structure of crystalline NaCl the dipole
moment (arrow) of any pair of Na+ and Cl− ions is exactly
counterbalanced by a neighbouring dipole moment. The dipole
moment and hence polarization per unit volume of the crystal is
zero. (b) On application of an electric field E the induced
displacements of the ions leads to noncancellation of adjacent
dipole moments and produces a net dipole moment per unit
volume.



 Dielectrophoresis

the compressibility of the LiF lattice structure, a relative
permittivity value of 9.3 was obtained for the static and
low frequency situation.The fourfold increase of permit-
tivity results from an electrostatic-induced distortion of
the crystal lattice of the form depicted in Figure 7.3.

7.2.4 Polarization arising from Dipole Moment
Orientation

The field-induced dipole moments shown in Figure 7.3
for an ionic solid do not respond independently to an
applied field. A net dipolemoment per unit volume of the
ionic crystal is induced as a result of a small electrostatic-
induced distortion of the lattice structure. The induced
dipoles disappear when the field is removed – they are
not a permanent intrinsic feature of the crystal’s struc-
ture and cannot be randomly distributed or oriented.
However, some molecules possess an atomic structure

that results in their having a permanent, dipole moment
that can respond independently to an applied electric
field. An example is fluorobenzene, shown in Figure 7.4,
whose structure has the basic form of a benzene ring
with a fluorine atom replacing one of the six hydrogen
atoms. A benzene molecule consists of six polar C-H
bonds, with each carbon atom on average carrying a net
negative charge donated by its bonded hydrogen atom.
The symmetrical arrangement of the six C-H bonds
results in the benzene ring having on average no net
dipole moment. The centre of the positive charges is
at the same point as the centre of the negative charges
and the polarizability of the molecule arises solely from
field-induced distortions of its electron shells. As shown
in Figure 7.4(b) the replacement of a hydrogen atom
with fluorine gives to the fluorobenzene molecule an
asymmetrical molecular electrostatic surface [4] and
thus properties of a permanent dipole moment.The cen-
tres of the positive charges and negative charges are not
coincident. Benzene is a nonpolarmolecule whereas flu-
orobenzene is a polar molecule. On applying an electric

E
(a) (c)

-

(b)

Figure . (a) Fluorobenzene molecules form a liquid consisting
of independent permanent dipoles of overall random orientation.
(b) The dipole moment results from the asymmetric electrostatic
profile of the molecule [4]. (c) The dipoles tend to align with an
applied electric field E and relax back to random orientations
when the field is removed.

field each fluorobenzene molecule experiences a torque,
given by Equation (5.37) that tends to align the electric
moment along the field direction. This effect is depicted
in Figure 7.3(c). Above 229K fluorobenzene is in its
liquid state and each dipole moment is relatively free to
rotate, leading to a relative permittivity value of around
5.5 at room temperature. In its solid state form rotational
motions of the dipoles are hindered and the relative
permittivity is reduced to a value near 2.5, similar to
that for liquid benzene, which has no dipole moment. A
universally important molecule with a permanent dipole
moment is water. From Table 7.1 we see that there is an
electronegativity difference of 1.34 between a hydrogen
and oxygen atom, with oxygen being the more elec-
tronegative. The polarity of the two O-H bonds and the
influence of the lone-pair electrons on the oxygen atom
[7] give the water molecule a permanent dipole moment
pHOH (see Figure 7.5).The value of this dipole moment is
evaluated by adding vectorially the two OH-bond
moments, so that

p2HOH = p2OH + p2OH + 2pOHpOH cos 𝜃

in which 𝜃 = 104.5◦. From the charge distributions given
in Figure 7.5 the bond moment pOH = 5.05 × 10−30 C m
(1.515 D), to give pHOH = 6.19 × 10−30 C m (1.855 D).
The dipole moment value given in Figure 7.5 for water

is cited in both SI (C m) and debye (D) units. The

0.1
0.12

0.1

0.1

0.1
0.1

0.1

0.1

0.2

0.3

0.2

–0.66e

+0.33e+0.33e

95.7 pm

H-O-H bond 
angle 104.5°

p = 6.19 × 10–30 C m
(1.86 debye units)

Figure . The electron density contour map (electrons / bohr3)
for the water molecule, as derived by Bader and Jones [5]. Also
shown are the H-O-H bond angle, net atomic charges and dipole
moment p values given by Martin and Zipse [6].
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Box . The SI and Debye Units of Electric Dipole Moment

The literature on the electrical and dielectric properties of
materials contains a bewildering range of units. For exam-
ple, Maxwell [22, p. 499] cites the resistance of various
metals in B.A. units, which are assumed equal to 0.98677
Earth quadrants! This refers to the length of mercury col-
umn as the resistance standard established in 1862 by
the British Association for the Advancement of Science,
with 1 m being one ten-millionth of the distance along the
meridian through Paris from the North Pole to the Equa-
tor. The system of units based on length (millimetre), mass
(milligram) and time (second) proposed by Gauss in 1832,
was modified to the cgs (centimetre, gram, second) system
in 1874 by a B.A. committee that included Maxwell, William
Thomson and a Mr Stoney (who placed on record ‘that the
centimetre was recommended as the unit of length against
my earnest remonstrance’)∗. Mr Stoney’s preference for
the metre came to pass in the 1940s with the mks system
(metre, kilogram, second). In 1960, this was replaced by
the Système International d′Unités (SI), founded on seven
mutually independent base units and quantities. The rec-
ommended SI measure of a dipole moment is the coulomb
metre.

Coulomb’s Law (Equation 3.4) differs in its cgs and SI
form:

F =
q1q2

r2
dyne (cgs); F = 1

4𝜋𝜀o

q1q2

r2
newton (SI)

The cgs-esu unit is based on the statcoulomb (statC) and
franklin (Fr) as the unit for electrical charge. By definition,
two charges of 1 statC placed 1 cm apart in vacuum repel
each other with a force of 1 dyne (10−5 N). In the SI sys-
tem the coulomb is the quantity of electricity carried in 1 s
by a current of 1 A. The ampère is defined in terms of the
force developed between two parallel conductors placed
1 m apart in vacuum. A current of 1 A in each conductor
creates a force of 2 × 10−7 newton per metre length. The
following, dimensionally correct, equivalence between the
statcoulomb and the coulomb is evaluated using Maxwell’s
equation c2 = 1/(𝜇o𝜀o), where c is the speed of light in vacuo
(∼2.998 × 108 m s−1) and 𝜇o is the magnetic permeability of
free space defined to be 4𝜋 × 10−7 H m−1:

(1∕
√

4𝜋𝜀o) C is equivalent to (10−1c) statC

A charge of 1 C is thus equivalent to ∼2.998 × 109 statC,
or conversely, 1 statC is equivalent to ∼3.336 × 10−10 C. This
enables the following conversion to be made:

1 debye unit = 10−18 statC cm ≈ 3.336 × 10−30Cm

∗Report of the 43rd Meeting of the British Associa-
tion for the Advancement of Science, 1873, p. 222. (Con-
tributed by the Natural History Museum Library, London,
http://biodiversitylibrary.org/page/29853091, accessed 9
December 2016.)

procedure to convert between them is outlined in
Box 7.2. The debye unit was usefully defined to be of the
same order as the product of an electronic charge (4.8 ×
10−10 esu) and internuclear distances (∼10−8 cm) within
a molecule. Quoting the permanent dipole moment of
haemoglobin as 480 D gives a good and immediate sense
of how much larger the product of size and charge dis-
tribution for this protein molecule is compared to that
of a water dipole (1.86 D). Citing these two values in
SI units (1.6 × 10−27 C m and 6.2 × 10−30 C m, respec-
tively) is somewhat tedious to write down and decipher.
A yocto, with a value of 10−24, is the smallest SI prefix
that can be used in the SI system and a term such as
microyoctocoulomb-metre to denote 10−30 C m is not
permitted. Classical texts on dielectrics, such as those
by Debye (1929) and Fröhlich (1958) cite dipole moment
values in esu units (readily converted into debye units by
removing the 10−18 multiplier) and many papers are still
published where the debye unit is preferred over the SI
unit. The debye unit will be adopted in this chapter, with
conversions to SI units where considered useful.
The debye unit was introduced to honour the Dutch-

American physical chemist Peter J. W. Debye and this
was most likely inspired by his attendance at the 60th
General Discussion of the Faraday Society, held atOxford

University in April 1934, on the subject of The Determi-
nation and Interpretation of Dipole Moments. Samuel
Sugden (1892–1950), Professor of Physical Chemistry
at Birkbeck College, London, attended this symposium,
along with a strong international representation of the
key figures in the subject for discussion. Sugden’s paper
[8], received on 28 February 1934, for printing and
distribution to the registered attendees, was the only one
that referred to the debye unit as a measure of dipole
moment. Fred Fairbrother cites dipole moment values
in units of 10−18 esu in his presented paper (received 20
March 1934) [9], but on 6 August 1934, he submitted a
paper to Nature in which he gives dipole moments in
units of Debye [10]. A report of the symposium, with
the author’s signature given as S. S. [11], converts all
of the presented dipole moment values from esu into
debye units and a footnote indicates that 1D = 10−18 esu
cgs. There is no doubt that Sugden authored this report
and later that year he published a paper on the dipole
moments of vapours using debye units [12]. The use of
the debye unit became widely adopted from that time
onwards.
Debye received the Nobel Prize in Chemistry in 1936,

partly for his pioneering work in introducing the con-
cept of molecular dipole moments for the elucidation

http://biodiversitylibrary.org/page/29853091
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of the dielectric properties of some vapours and liquids
[13, 14]. As described in Chapter 6, evidence had been
gathering that for a first class of gases the molar polar-
ization remained constant with changes in temperature,
but that for a second class the polarization decreased
with increasing temperature. This appeared to be par-
ticularly evident for gases and liquids exhibiting large
polarizabilities. In the theory of paramagnetism it was
customary to assume the paramagnetic effect was due
to the pre-existence of molecules that carry a perma-
nent magnetic moment and can be oriented by a mag-
netic field in the same way as a small magnet. Although
a molecule may not carry a net charge, Debye saw no

reason why the centre of its positive charges should not
be coincident with the centre of its negative charges.
If this occurs, the molecule has a permanent electric
moment and can exhibit polarization not only by elec-
tronic distortion, but also by field-induced orientation.
Temperature-induced motions of the molecules will dis-
turb the extent of orientation created by the field and this
would account for the second class of gases and liquids
where the polarization decreased with increasing tem-
perature.
Debye developed an understanding of the effect of tem-

perature on polarization by orientation similar to that
described in Box 7.3, where the thermal average of the

Box . Orientational Polarization and the Langevin Function

In the absence of an electric field, the moments of a collec-
tion of dipoles will on average be distributed with the same
probability over all directions in space. With an applied
field, the potential energy of a dipole moment is given by
Equation (5.34) as:

U = −p ⋅ E = −pEcos𝜃

where 𝜃 is the angle between the moment p and the field
vector E. From Boltzmann–Maxwell statistics the probabil-
ity of finding a dipole oriented in an element of solid angle
dΩ (steradians) is proportional to exp(−U/kT), where k is
the Boltzmann constant (1.3805 × 10−23 J/K) and T is the
absolute temperature. As shown in Figure 7.6, a moment
pointing in the direction of dΩ has a component pcos𝜃
in the field direction. The thermal average of cos𝜃 is thus
given by:

⟨cos 𝜃⟩ = ∫

exp(−U∕kT)cos 𝜃dΩ

∫

exp(−U∕kT)dΩ

where the integrations are to be taken over all possible
directions. The solid angle dΩ encompasses all moments
lying between 𝜃 and d𝜃, so that dΩ = 2𝜋sin𝜃. d𝜃,
to give

0.5

1.0

0
1 2 3 4 5

L(x)

(pE/kT)

dΩ

E
p

(a)
(b)

θ

Figure . (a): A moment p pointing in the
direction of the solid angle dΩ has a component
pcos𝜃 along the field vector E. (b): A plot of the
Langevin function.

⟨cos 𝜃⟩ = ∫

𝜋

0
2𝜋 sin 𝜃 cos 𝜃 exp(pE cos 𝜃∕kT)d𝜃

∫

𝜋

0
2𝜋 sin 𝜃 exp(pE cos 𝜃∕kT)d𝜃

Let x = pE/kT and y = cos𝜃, then:

⟨cos𝜃⟩ = ∫

1

−1
exp(xy)ydy

∫

1

−1
exp(xy)dy

= d
dx

log
∫

1

−1
exp(xy)dy = coth x − 1

x
= L(x)

The function L(x) is known as the Langevin function
because it resembles the result obtained by Paul Langevin
in 1905 to find the mean magnetic moment of gas
molecules possessing permanent magnetic moments. A
plot of the Langevin function is shown in Figure 6.6. The
function cothx can be expanded as a series

coth x = 1
x
+ x

3
− x3

45
+ 2x5

945
− ⋅ ⋅ ⋅

For most practical situations the factor x (pE/kT) ≪ 1, so
to a good approximation

⟨cos 𝜃⟩ = 1
x
+ x

3
− 1

x
= x

3
=

pE
3kT



7 Dielectric Polarization 

angle 𝜃 between an electric moment and an imposed
electric field is given by the relationship:

⟨cos 𝜃⟩ = pE
3kT

The average moment per molecule in the direction of the
applied field is thus:

⟨p⟩ = p ⟨cos 𝜃⟩ = p2E
3kT

(7.10)

Themagnitude of the mean orientational polarization 𝛼o
is

𝛼o =
p2

3kT
The total polarizability of a gas or liquid whose

molecules possesses a permanent electric moment is
given by the sum of the polarizations due to electronic,
atomic and orientational polarization. The total mean
electric moment per unit volume is thus:

⟨p⟩ = (
𝛼e + 𝛼a +

p2

3kT

)
E (7.11)

Equation (7.11) is referred to as the Debye equation. Its
formulation is based on classical statistics and so assumes
that the molecular system reaches an equilibrium state.
The frequency of the applied field must therefore be
much smaller than the rotational frequency of the
molecule, so that its dipole moment can follow the field
direction without appreciable lag and hence irreversible
energy loss. We must also assume that any interac-
tions between the molecules can be neglected and this
restricts the application of Debye’s equation to gases and
vapours at low pressures. The development of dielectric
theory to take into account quantum theory and in par-
ticular to include quantization of the rotational energy
in accordance with the requirements of wave mechanics,
was initiated in 1926 by Kronig, Manneback, Mensing,
Pauli and van Vleck. The last four chapters of Debye’s
book describe these developments [14, pp. 125–167].

. Dipole Relaxation and Energy Loss

Figure 6.3 shows how the polarization of an unpolar-
ized dielectric composed of freely dipoles increases with
time after an electric field is applied as a step function at
time t= 0. In our timeframe (and hence frequency range)
of interest we can to good approximation assume that
the polarization P is composed of two parts, P1 and P2.
The component P1 arises from the electronic and atomic
charge displacements described in sections 7.2.2.1 and
7.2.2.2 and attains its final constant valueP1 = (𝜀∞−1)𝜀oE
almost instantly on application of the applied field E. P2

builds up at a much slower rate associated with the field-
induced readjustment of the orientations of the molec-
ular dipoles. Debye assumed [14, pp. 87–89] that this
relaxation process approaches a new steady-state distri-
bution of orientations at the exponential rate (1 − e−t/𝜏 )
where 𝜏 is a characteristic response time that does not
vary with time t (but may depend on temperature, for
example). This is equivalent to the polarization lagging
behind E in such a way that it approaches a final value of
(𝜀s−1)𝜀oE at a rate proportional to [(𝜀s−1)𝜀oE − P2], so
that

dP2(t)
dt

= 1
𝜏
[(𝜀s − 1) − P2(t)]𝜀oE

If the field is applied as a step function at t = 0, when
P2 = 0 and P1 instantaneously attains its value of
(𝜀∞−1)𝜀oE, then on integration of this equation

P = P1 + P2 = [(𝜀∞ − 1) + (𝜀s − 1)(1 − e−t∕𝜏 )]𝜀oE

The polarization thus approaches its final steady state
value asymptotically at a rate characterized by a relax-
ation time constant 𝜏 . If the field is suddenly removed,
thermal vibrations cause the dielectric to relax asymp-
totically back to its nonpolarized state (P = 0) with time
constant 𝜏 .
With an applied periodic field E = Eoe−i𝜔t, then

dE/dt=−i𝜔E and dP2/dt=−i𝜔(𝜀(𝜔)− 1)𝜀oE. We obtain
the following result

P = P1 + P2 =

[
(𝜀∞ − 1) +

(
𝜀s − 1

)
1 + i𝜔𝜏

]
𝜀oE

which corresponds to a frequency-dependent
permittivity

𝜀(𝜔) = 𝜀∞ +
(𝜀s − 𝜀∞)
1 + i𝜔𝜏

(7.12)

in which 𝜀∞ is to be interpreted as the relative permittiv-
ity value obtained at high frequencies where the dipoles
are unable to respond to the alternating field. (Electronic
engineers may recognize this transformation from the
time domain to the response in the frequency domain
as the Laplace transformation of the function f(t) = (1 −
e−𝛼t)⋅u(t) into L{f(t)} = 𝛼/[s(s + 𝛼)]). In the time domain,
for our frequency range of interest, 𝜀∞ is the relative per-
mittivity at time t = 0. The change in the value of 𝜀(𝜔)
from a constant value of 𝜀s at low frequencies to a con-
stant value of 𝜀∞ at high frequencies is known as a dielec-
tric dispersion, whosemagnitude is defined asΔ𝜀= (𝜀s −
𝜀∞).The frequency at which 𝜀∞ attains its constant value
is well below the frequencies where the electronic and
atomic distortion resonances occur.
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With reference to Equation (6.38), Equation (7.12) has
real and imaginary components given by

𝜀′(𝜔) = 𝜀∞ +
(𝜀s − 𝜀∞)
1 + 𝜔2𝜏2

(7.13)

𝜀′′(𝜔) =
(𝜀s − 𝜀∞)𝜔𝜏

1 + 𝜔2𝜏2
(7.14)

Figure 6.4 gives plots of these two parameters for the
case where 𝜏 = (2𝜋 × 105 Hz)−1 = 1.6 × 10−6 s. Equa-
tions (7.12–14) refer to Debye-type dielectric relaxations
involving the exponential function e−t/𝜏 , with a single
characteristic relaxation time 𝜏 . The phase difference
between the polarization and the applied field leads to an
absorption of energy and joule heating. The rate of con-
version of electrical energy to heat in the dielectric is rep-
resented by the imaginary component 𝜀′′. The frequency
𝜔pk corresponding to maximum loss is found by differ-
entiating Equation (7.14) with respect to 𝜔 and equating
the result to zero:

d𝜀′′(𝜔)
d𝜔

=
(1 − 𝜔2𝜏2)(𝜀s − 𝜀∞)𝜏

(1 + 𝜔2𝜏2)2
= 0 when 𝜔𝜏 = 1

The frequency of peak energy loss is thus given by
𝜔pk = 1/𝜏 radians per second (or 1/(2𝜋𝜏) Hz). From
Equation (7.14) the corresponding peak value of 𝜀′′ is
given by

𝜀′′pk =
(𝜀s − 𝜀∞)

2
The width of the 𝜀′′ peak across its half-height values

is 1.14 decades of frequency. The value of 𝜀′ where 𝜀′′ is
at its peak value is found by inserting 𝜔𝜏 = 1 into Equa-
tion (7.14):

𝜀′(𝜔𝜏 = 1) =
(𝜀s + 𝜀∞)

2
The real component 𝜀′ represents the relative per-

mittivity parameter 𝜀r given in Equation (3.3). With a
constant (DC) voltage applied to its two parallel plate
electrodes, a capacitor containing a dielectric slab of
relative permittivity 𝜀r will have a capacitance given by
the formula

C =
A𝜀o𝜀r
d

Farad

where A is the surface area of each plate separated
a distance d apart. With a sinusoidal voltage applied
to the plates, the capacitance will exhibit a frequency
dependence given by

C(𝜔) =
[
𝜀∞ +

(𝜀s − 𝜀∞)
1 + 𝜔2𝜏2

] A𝜀o
d

= C∞ +
(Cs − C∞)
1 + 𝜔2𝜏2

(7.15)

This frequency-dependent capacitance can be mod-
elled as an equivalent electrical circuit, as shown in
Box 7.4.
Another important feature of Debye-type dielectric

polarizations can be found by eliminating the factor 𝜔𝜏

from Equations (7.13) to obtain the relationship[ (𝜀′ − 𝜀∞) − (𝜀s − 𝜀∞)
2

]2
+ (𝜀′′)2 =

[ (𝜀s − 𝜀∞)
2

]2
This equation is of the form x2 + y2 = r2, namely, the
equation of a circle of radius r. However, because 𝜀′′ can
only have positive values, a plot of 𝜀′ against 𝜀′′ pro-
duces a semicircle of radius (𝜀s − 𝜀∞)/2 with the centre at
[(𝜀∞ + (𝜀s − 𝜀∞)/2,0). Such a plot is known as a Cole–
Cole plot [15] and an example is given in Figure 7.7.
Deviations from an ideal Debye-type single relaxation

dispersion are likely to occur for macromolecules such as
proteins. Factors contributing to this can arise from com-
binations of cooperative and isolated motions of polar
side groups, for example. This gives rise to a spread of
relaxation times, each one contributing to a Debye-type
dispersion. For a set of closely spaced relaxation times,
the resultant 𝜀′′ loss curve as a function of frequency
will be much broader than the one shown in Figure 7.7.
The width of such 𝜀′′ curves across their half-height val-
ues can exceed two or even three decades of frequency.
If a symmetrical distribution of relaxation times occurs
about a mean relaxation time, then a depressed semicir-
cle is found in the Cole–Cole plot and to describe this
Equation (7.12) can be modified to the form:

𝜀(𝜔) = 𝜀∞ +
(𝜀s − 𝜀∞)

1 + (i𝜔𝜏)1−𝛼

where 𝛼 has values in the range 0 ≤ 𝛼 ≤ 1 [15]. For a
single relaxation time 𝛼 = 0. As the situations tends to
an infinite number of relaxation times, the value of 𝛼
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Figure . The plot of 𝜀′ versus 𝜀′′ for a Debye-type dipole
relaxation process takes the form of a semicircle. This is known as a
Cole–Cole plot [10].
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Box . Electrical Circuit for Modelling a Debye-type Dielectric Dispersion

The following electrical circuit, composed of two capaci-
tors and one resistor, can be used to model the Debye-type
dielectric dispersion given by Equations (7.13) and (7.15). The
values of the capacitors and resistor do not change as a
function of frequency.

C1

C2
R

As a parallel network it is more convenient to analyse it in
terms of admittance rather than impedance. From standard
circuit theory its effective admittance Y is given by:

Y(𝜔) = i𝜔C1 +
i𝜔C2

(1 + i𝜔𝜏)
= i𝜔C(𝜔) with 𝜏 = RC2

C(𝜔) has a real (in-phase) component given by

C′(𝜔) = C1 +
C2

(1 + 𝜔2𝜏2)

For this to be equivalent to the expression given by Equa-
tion (7.16) requires that we specify C1 = C∞ and C2 = Cs −
C∞. Capacitance C1 therefore represents the instantaneous
polarization associated with field-induced electronic dis-
tortions and atomic displacements, with C2 determining
the magnitude of the dielectric dispersion given by Δ𝜀 =
(𝜀s − 𝜀∞). The imaginary, quadrature phase, component is
given by:

C′′(𝜔) =
𝜔𝜏C2

(1 + 𝜔2𝜏2)

At low frequencies (𝜔𝜏 ≪ 1) and high frequencies
(𝜔𝜏 ≫ 1) the value of C′′(𝜔) is zero. The model circuit is thus
purely capacitive so that, after a sufficient length of time
for the steady-state condition to be attained, the (displace-
ment) current in the dielectric leads the applied voltage by
90◦. C(𝜔) has a peak value at 𝜔𝜏 = 1. The frequency where
this peak value occurs is determined by both the resistor R
and capacitor C2 (𝜏 = RC2) but, as shown by Equation (7.14),
the peak value itself is solely determined by the magnitude
of C2.

tends to unity. The value of 𝛼 for water is typically 0.013,
indicating that the water molecule relaxes with almost
a single relaxation time. To describe a nonsymmetrical
distribution of relaxation times, in which the distribu-
tions on the high frequency side of the principal relax-
ation time decreases more rapidly than those on the low
frequency side, another modification can bemade [16] of
the form:

𝜀(𝜔) = 𝜀∞ +
(𝜀s − 𝜀∞)
(1 + i𝜔𝜏)𝛾

where 𝛾 has values in the range 0 < 𝛾 ≤ 1 and results in a
skewed arc-shaped plot of 𝜀′ against 𝜀′′. More generally,
the 𝜀(𝜔) function takes the form

𝜀(𝜔) = 𝜀∞ + (𝜀s − 𝜀∞)
∫

∞

0

G(𝜏)
1 + i𝜔𝜏

d𝜏

where G(𝜏) is the fraction of molecules or other polar-
izable elements at a particular instant associated with a
relaxation time between 𝜏 and (𝜏 + d𝜏).
The mathematical and empirical factors 𝛽 and 𝛾 given

above to describe the spread of relaxation times can be
replaced by one having a more readily understandable

physical meaning by employing mutual transformation
relations known as the Kramers−Krönig relations:

𝜀′(f ) − 𝜀∞ = 2
𝜋 ∫

∞

0

𝜀′′(f )F
F2 − f 2

dF

𝜀′′(f ) = − 2
𝜋 ∫

∞

0

𝜀′(f ) − 𝜀∞
F2 − f 2

dF

In these equations, which give the relationship
between a dielectric dispersion and the energy loss, F is
a dummy variable supplementing the frequency f and
over which either 𝜀′ or 𝜀′′ is integrated to find the other.
Apart from being able to deduce the real component of
a complex permittivity from the imaginary component
(or the reverse of this) these relationships can be used
to relate dielectrophoresis and electrorotation spectra
[17, 18]. If the difference in the permittivities either
side of a dielectric dispersion is Δ𝜀, then from the
Kramers–Krönig relations, we deduce that

Δ𝜀 = 2
𝜋 ∫

∞

−∞
𝜀′′d(ln f )

This is interpreted to mean that the total area under
the dielectric loss curve of 𝜀′′ against log10f should
equal (𝜋Δ𝜀)/(2 × 2.3). Thus, the total area under the
𝜀′′ loss curve is proportional to the total concentration
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Figure . (a): Based on time domain data, a natural
logarithmic plot such as this will reveal the
components of a dispersion arising from two
separate relaxation processes. (b) Frequency domain
data analysed in the forms of Equations (7.16a) and
(7.16b).

N of dipoles in the dielectric material and their dipole
moment p, irrespective of their distribution of relaxation
times (the factor 2.3 arises when the experimental data
is more conveniently plotted against log10f rather than
the natural logarithm). Making use of Onsager’s Equa-
tion (6.35) it can be shown [14] that

∫

∞

−∞
𝜀′′d(ln f ) = 𝜋

2
(𝜀s − 𝜀∞) = 𝜋

54𝜀okT
(𝜀s + 2)2p2N

Thus, as the distribution of relaxation times increases
from that of a single relaxation time, a plot of 𝜀′′

versus log10f becomes broader in extent, but the peak
height (𝜀′′pk) reduces so as tomaintain the total area under
the curve at an unchanging value [19]. We can therefore
define a parameter 𝛼′ that represents the spread of relax-
ation times by the expression

𝛼′ =
𝜋𝜀′′pk

Area of 𝜀′′ curve

where 𝜋𝜀′′pk would equal the area under a single-
relaxation Debye-type loss curve. The value of 𝛼′ falls
from unity and tends to zero as the distribution of relax-
ation times tends to an infinite one.
A deviation from an ideal Debye-type single relaxation

will appear if there are two or more dipole species with
relaxation times that are close enough together for there
to be an overlap of their permittivity dispersion curves
and dielectric loss peaks. An example of this is described
in Chapter 8 for small sugarmolecules dissolved in water.
The dominant contribution is the relaxation of the bulk
watermolecules (𝜏1 = 1.85× 10−11 s), with a smaller con-
tribution consisting of relaxation of the sugar dipoles,
with a relaxation time 𝜏2 = 6.9 × 10−11 s. In the time
domain the apparent relative permittivity 𝜀(t), as a func-
tion of time after application of the voltage signal at time
t= 0, can be represented as a combination of overlapping
exponentials:

𝜀(t) = 𝜀(o) + A1e−t∕𝜏1 + A2e−t∕𝜏2

Taking natural logarithms of this expression we obtain
the relationship

ln [𝜀(t) − 𝜀(o)] = ln(A1) −
t
𝜏1

+ ln(A2) −
t
𝜏2

The values of the coefficients A and relaxation times 𝜏

can thus be evaluated using a loge plot such as that shown
in Figure 7.8(a). In the frequency domain, the real and
imaginary components of the permittivity given by Equa-
tions (7.13) and (7.14) can be given in the form:

𝜀′(𝜔) = 𝜀∞ +
𝛾(𝜀s − 𝜀∞)
1 + 𝜔2𝜏21

+
(1 − 𝛾)(𝜀s − 𝜀∞)

1 + 𝜔2𝜏22
(7.16a)

𝜀′′(𝜔) =
𝛾(𝜀s − 𝜀∞)𝜔𝜏1

1 + 𝜔2𝜏21
+

(1 − 𝛾)(𝜀s − 𝜀∞)𝜔𝜏2

1 + 𝜔2𝜏22
(7.16b)

where 𝛾 is the fractional contribution of the major relax-
ation process having a relaxation time 𝜏1. The minor
relaxation process has a relaxation time 𝜏2. Analysis of
the 𝜀′(𝜔) and 𝜀′′(𝜔) data can then proceed by finding
the best fit of these expressions to that data, as shown in
Figure 7.8(b).

7.3.1 Complex Conductivity

The dielectric loss factor 𝜀′′ is a measure of the energy
dissipated in a dielectric as a result of the field-induced
relaxation of dipole moment orientations. The energy
loss is associated with the in-phase (lossy) component
of the complex conductivity 𝜎∗ of the dielectric and not
its out-of-phase (energy-storing) capacitive component.
For a dielectric exhibiting a Debye-type dispersion, elec-
trically modelled using the circuit shown in Box 7.4, the
complex conductivity is derived from the magnitude of
the admittance by

Y = A
d
(𝜎′ + i𝜎′′)

Noting that Y(𝜔) = i𝜔C(𝜔) and 𝜏 = RC2, the following
expressions can be derived from Box 7.4 for the real and
imaginary components of the complex conductivity:

𝜎∗ = 𝜎′ + i𝜎′′

with

𝜎′ =
(𝜎′

∞ − 𝜎′
s)𝜔

2𝜏2

(1 + 𝜔2𝜏2)
(7.17a)

𝜎′′ = 𝜔C∞ +
(𝜎′

∞ − 𝜎′
s)𝜔𝜏

(1 + 𝜔2𝜏2)
(7.17b)
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According to the equivalent circuit shown in Box 7.4,
at low frequencies where 𝜔𝜏 ≪ 1, the value of 𝜎′

s = 0. At
high frequencies 𝜎′ attains a value 𝜎′

∞ = dR/A, where
d and A are the thickness and cross-sectional area of
the dielectric slab, respectively. This increase of 𝜎′ with
increasing frequency mirrors the fall of 𝜀′ shown in Fig-
ure 6.4.On application of a constant amplitude sinusoidal
voltage Vo(sin 𝜔t) to the dielectric, the electrical power
loss increases from zero at very low frequencies to a final
level of Vo

2/R at frequencies beyond the dielectric dis-
persion. At very high frequencies for the circuit shown
in Box 7.4, the reactance values of the two capacitors are
negligible compared to the resistance R.
From Equations (6.44) and (7.14) the conductivity 𝜎(𝜔)

associated with dipole relaxation can be written as

𝜎(𝜔) =
(𝜀s − 𝜀∞)𝜔2𝜏

1 + 𝜔2𝜏2
= Δ𝜀′𝜔2𝜏

1 + 𝜔2𝜏2

From Equation 7.17a, we can therefore deduce that

Δ𝜀′ = 𝜏Δ𝜎′ (7.18)

This relationship is a manifestation of the Kramers–
Krönig relations discussed earlier in this chapter.
In measurements on biological samples, it is invari-

ably the case that, apart fromdielectric displacement cur-
rents, long-range ionic conduction also contributes to
electrical energy loss. Over the frequency range of rel-
evance to our present discussion this conductivity does
not depend on frequency and can be treated as a DC
conductivity by adding a parallel conductor to the circuit
shown in Box 7.4. This term can be added to the expres-
sion for 𝜎(𝜔) to give

𝜎(𝜔) = 𝜎dc + 𝜎(𝜔) = 𝜎dc +
𝜎∞𝜔2𝜏2

1 + 𝜔2𝜏2
(7.19)

According to Equation (6.44) a DC conductivity con-
tributes to the dielectric loss factor 𝜀′′ according to
the relationship 𝜀′′(𝜔) = 𝜎dc/𝜔. This contribution thus
becomes significant as the frequency is reduced (see, for
example, Figure 7.13).

7.3.2 Physical Models for Dipole Relaxation

Polar molecules in solution may be assumed to be ran-
domly oriented and to change direction continually as a
result of thermal (Brownian) motion. On application of
an electric field there will be a small shift in the direc-
tional distribution of the dipole orientations. Debye has
provided a very simple model to derive an estimate of
the orientational relaxation time of polar molecules in
solution when subjected to a time-varying electric field
[14, pp. 83–85]. In this model the polar molecules are
assumed to be spheres whose rotation is opposed by a

frictional torque 𝜉. The appropriate characteristic relax-
ation time 𝜏 is given by

𝜏 = 𝜉

2kT

According to the relationship derived by Stokes,
namely

𝜉 = −8𝜋R3𝜂Ω

where R is the sphere radius, 𝜂 is the dynamic viscosity of
the surrounding fluid andΩ is the angular velocity of the
sphere. The relaxation time is thus given by

𝜏 = 4𝜋𝜂R3

kT
(7.20)

In the next chapter we will find that this simple model
is useful for interpreting the dielectric properties of
aqueous solutions of amino acids, peptides and proteins.
Considering the fact that the structure of water involves
hydrogen-bond associations, Debye’s model predicts a
surprisingly accurate value for the relaxation time of
water. Using the molecular radius of the water molecule
to be half the interoxygen distance of 1.4 × 10−10 m
and the 293K viscosity value as 10−3 kg/m s, the 293K
experimental value for 𝜏 is calculated as 8.5 × 10−12 s,
in good agreement with the experimental value of
9.3 × 10−12 s [20, p. 47]. Furthermore, the ratio of the
𝜏 values for D2O and H2O is 1.27, which is very close
to the ratio of their viscosities at 1.25. Debye states [14,
p. 85] that we can expect the calculated value of 𝜏 to ‘be
approximately correct even for the rotation of as small
a particle as a molecule’ because the corresponding
calculation for the mobility and diffusion of ions and
molecules dissolved in liquids is accurately predicted
by another equation devised by Stokes, namely Equa-
tion (12.20) and which, as shown in Chapter 12, leads to
the Stokes–Einstein equation for the diffusion coefficient
D = kT/(6𝜋𝜂R).
The relaxation time 𝜏 represents the reciprocal of the

mean rate coefficient of the dielectric relaxation process
and as can be expected to obey anArrhenius temperature
law of the form

𝜏 = Ae(ΔH∕RT) (7.21)

where ΔH is the Arrhenius activation enthalpy per mole
andA is a constant. On differentiation of this relationship
we obtain

d(ln𝜏)
d(1∕T)

= ΔH
R

(7.22)

A plot of ln 𝜏 against 1/T gives a straight line of slope
ΔH/R. The relaxation process can be further developed
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Box . Free Energy Change 𝚫G associated with Molecular Relaxations

A dielectric relaxation involves the reorientation of a
molecule and interactions with neighbouring molecules.
In Chapter 8 the dielectric relaxation of water is described
in terms of the breaking, remaking and reorganization of
hydrogen bonds. Assuming that these processes occur at
constant temperature and pressure, we can use as a mea-
sure of the potential energy released or stored the con-
cept of Gibbs free energy (named after Josiah Willard Gibbs,
an early founder of the science of thermodynamics). Gibbs
demonstrated that free-energy G is given by the relation-
ship:

G = H − TS

where H is the heat energy (also termed enthalpy) of the
molecular system, T is the absolute temperature and S is
termed the entropy and provides a measure of the degree
of disorder of the system. We are interested in the change of
free-energyΔG that results from a molecular relaxation and
contributions to this (at constant temperature and pres-
sure) come from the changes in heat content and entropy:

ΔG = ΔH − TΔS

For the case of water, for example, enthalpy H is released
when hydrogen bonds are formed, or absorbed when they

are broken. ΔH is thus equal to the overall change in bond
energies. We can distinguish between a reaction in which
heat is given off (an exothermic reaction) and one in which
heat is absorbed (an endothermic reaction). In an exother-
mic reaction ΔH is negative and the system contain less
energy than for its original state. In an endothermic reac-
tion (heat absorbed) ΔH is positive and the energy of the
system increases.

By convention, ΔS is positive when entropy and thus
disorder, increases. The Second Law of Thermodynamics
(devised by Clausius) states that the entropy of an isolated
system, which is not in equilibrium, will tend to increase
over time and to approach a maximum value at equilib-
rium. Thus, an overall positive change in entropy of a sys-
tem is indicative of a spontaneous reaction. The evapora-
tion at 100 ◦C of water into a gas (steam) is an example
of this, because the arrangement of the water molecules
becomes more disordered. A negative value for ΔH (heat
given off) and a positive ΔS (increased order) tend to lead
to a spontaneous reaction. An example of this is the forma-
tion of solid water (ice) from liquid water at 0 ◦C. A quanti-
tative example is given in Chapter 8, where it is shown that
the attraction of sodium and chloride ions in water is mainly
driven by entropy and not enthalpy.

in terms of a chemical rate process [21, 22] and Equa-
tion (7.21) becomes

𝜏 = h
kT

e−(ΔS∕R)e(ΔH∕RT) (7.23)

where h is Planck’s constant and ΔS is the molar
entropy of activation for the relaxation process. The
basic thermodynamic concepts involved in this approach
to describing dielectric relaxation are summarized in
Box 7.5.
In solids, the molecular dipoles are not free to rotate as

they would be in a liquid. Fröhlich [23, 24] introduced a
useful physical model of a single type of dipole for which
twoorientations are possible, these being alignments par-
allel and antiparallel to the external electric field. As a
result of the crystalline structure of the dielectric mate-
rial, these two orientations are separated by a potential
energy barrierΔEb as shown in Figure 7.9. On application
of a constant field E the energy of the site corresponding
to an alignment of the dipole along the field is lowered
relative to the site where the dipole is aligned against the
field. The difference in potential heights of the two min-
ima at sites 1 and 2 is qdE, whered is the distance between
the sites.
With no applied electric field the probability P12 of

a dipole making the transition from having its positive
charge located in site 2 is equal to the probability P21 for

it having the reverse orientation. According to statistical
mechanics, we can also write

P12 = e−(V2∕kT)

e−(V2∕kT) + e−(V1∕kT)
;

P21 = e−(V1∕kT)

e−(V1∕kT) + e−(V2∕kT)

p δ-

1 2

ΔEb

No field

1 2
qdE

Field E

d

(a) (b)

δ+

Figure . (a): Two-site potential energy profile for a dipole with
two equilibrium orientations 1 and 2, where transition between
orientations requires surmounting the energy barrier ΔE. With no
field applied the potential energy minima are equal and there is an
equal probability for both orientations of the dipole p. (b): With an
external field applied in the direction shown, there is an increased
probability of finding the dipole oriented along the direction of
the field than against it (i.e., with its positive charge 𝛿+ located in
site 2).
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where these probabilities are normalized by making
P12 + P21 = 1 because the dipole must be oriented in one
of the two situations.On application of the fieldV1−V2 =
qdE and so

P12 − P21 =
e(qdE∕kT) + 1
e(qdE∕kT) − 1

The relaxation time is given by 1/𝜏 = 2P12 and is there-
fore determined by an Arrhenius type function of the
form of Equations (7.20) and (7.21). In many solids we
might expect that in the absence of an external field the
equilibrium positions 1 and 2 of the dipole orientations
are not equal. In this case, applying absolute reaction rate
theory, the molecular relaxation time is given approxi-
mately by

𝜏 = h
kT

e(𝛿Eb∕kT)

where 𝛿E is equal to the smallest energy barrier height. If
there is a distribution of small barrier heights allowing for
continuous fluctuations in molecular arrangements, for
example, the result will be a broader distribution of relax-
ation times [22]. Extensions of the two-site barrier model
have been developed to include both two- and three-
dimensional multisite models giving more than just one
single relaxation time [25, 26].
In Chapter 8 it is shown that a protein molecule can

be considered as a spheroid whose surface is covered
with charged groups and with an interior consisting of a
folded-up string of peptide dipoles and polar side groups
(Figures 8.15 and 8.17). We can imagine that these var-
ious charges and dipole elements populate a large array
of micro potential energy wells, giving rise to a perma-
nent dipole moment M that fluctuates with time. The
value of M, when the protein is suspended in water, will
depend on the reaction field arising from polarization of
the watermolecules. From a consideration of the internal
and external free energies of a system consisting of a large
dielectric sphere of volume V embedded in a continuous
medium, Fröhlich [24, p. 177] derived the following equa-
tion for themean square fluctuation ⟨M2⟩ of themoment
M:

⟨M2⟩ = 3kTV𝜀o(𝜀p − 1)
2𝜀w + 1
2𝜀w + 𝜀p

(7.24)

in which 𝜀p is the relative permittivity of the spheri-
cal particle and 𝜀w is the relative permittivity of the
surrounding medium (which we will assume is water).
It is now possible to compute values for ⟨M2⟩ based
on X-ray diffraction data that provides details of the
three-dimensional structure of a proteinmolecule. Equa-
tion (7.24) can therefore be used to calculate the permit-
tivity of a protein molecule. This is described further in
Chapter 8.

. Interfacial Polarization

The electrical conditions to be satisfied at dielectric
boundaries are described in Chapter 5. At a boundary
surface between two dielectrics, with permittivity and
conductivity values of 𝜀1, 𝜎1 and 𝜀2, 𝜎2, respectively, no
charge is created at their interface if the condition given
by Equation (5.52) is satisfied

(𝜀2𝜎1 − 𝜀1𝜎2) = 0

It follows that a heterogeneous dielectric containing
different constituents for which the condition 𝜀2𝜎1 =
𝜀1𝜎2 is not met, a ‘residual’ free charge will appear
within the dielectric. A quantitative analysis of this effect
requires application of the boundary conditions given in
Chapter 5, namely that the normal components of the
displacement flux density (D = 𝜀E) and the current den-
sity (J = 𝜎E) are continuous:

𝜀2En2 − 𝜀1En1 = 𝜀2
𝜕𝜙2
𝜕r

− 𝜀1
𝜕𝜙1
𝜕r

= 𝜎free

and

𝜎c2
𝜕𝜙2
𝜕r

− 𝜎c1
𝜕𝜙1
𝜕r

= −i𝜔𝜎free

where 𝜔 is the radian frequency of an applied alternat-
ing field. The parameter 𝜎free denotes the concentration
of ‘true’ charges that can only appear at, or be removed
from, the interface by long-range conduction. The term
‘-i’ indicates that this conduction current leads the poten-
tial 𝜙 by a phase angle of 90◦.
Maxwell [27, Part II, pp. 435–458] was the first to pro-

vide a quantitative analysis of the buildup of ‘residual’ free
charges in heterogeneousmedia for the electrostatic case
andWagner [28] extended this for alternating (AC) fields.
The generation of charges at the interfaces between dis-
similar components of a dielectric is known asMaxwell–
Wagner interfacial polarization. Maxwell chose for his
model the case of a composite dielectric consisting of a
number of plane strata, where the electric field acts in a
direction normal to the strata. A simple example of this
is the two-layer capacitor shown in Figure 7.10.
Theheterogeneous capacitor shown in Figure 7.10 con-

sists of two parallel layers of dielectric material of surface
area A and thicknesses d1 and d2 located between two
electrodes. The two-layer system effectively represents
two capacitors connected in series, with their complex
capacitance values given by

C1 =
A𝜀o𝜀

∗
1

d1
=

A𝜀o(𝜀′1 − i𝜎1∕𝜔)
d1

; C2 =
A𝜀o(𝜀′2 − i𝜎2∕𝜔)

d2
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ε1 σ1 d1

d2ε2 σ2

Figure . A two-layer heterogeneous dielectric between two
parallel electrodes.

The total capacitance CT is given by 1
CT

= 1
C1

+ 1
C2
, to

give

CT =
A𝜀o(𝜀′1𝜔 − i𝜎1)(𝜀′2𝜔 − i𝜎2)

d2(𝜀′1𝜔 − i𝜎1) + d1(𝜀′2𝜔 − i𝜎2)

On the assumption that there is an exponential buildup
and decay with time of the interfacial free charge, charac-
terized by a single relaxation time, it is sensible to expect
Maxwell–Wagner interfacial polarization to behave in
a similar manner to a Debye-type dielectric dispersion.
This will be the case even though both dielectric materi-
als in the composite capacitormay not themselves exhibit
dipole moment relaxations. Based on Equation (7.15) we
can thus expect the capacitance to vary with frequency
according to a relationship of the form

CT (𝜔) = C∞ + ΔC
1 + 𝜔2𝜏2MW

(7.25)

where 𝜏MW is the characteristic relaxation time and ΔC
is the difference between the capacitance Cs measured at
a low frequency (the electrostatic case) and the constant
valueC∞ obtained at high frequencies.The total effective
capacitance can also be written in terms of an effective
permittivity as

C∗
T =

A𝜀o𝜀
∗
eff

(d1 + d2)
=

A𝜀o(𝜀′ − i𝜀′′′)
(d1 + d2)

Through tedious (but not complicated) algebra, the fol-
lowing parameters are derived:

𝜀′(𝜔) = 𝜀∞ +
(𝜀s − 𝜀∞)
1 + 𝜔2𝜏2MW

(7.26a)

𝜀′′(𝜔) =
(𝜀s − 𝜀∞)𝜔𝜏MW

1 + 𝜔2𝜏2MW
+

𝜎eff

𝜔
(7.26b)

in which 𝜎eff is the overall effective conductivity of the
two-layer system and

𝜀s =
(d1 + d2)

(
𝜀′1d1𝜎

2
2 + 𝜀′2d2𝜎

2
1
)

(𝜎1d2 + 𝜎2d1)2

𝜀∞ =
(d1 + d2)𝜀′1𝜀

′
2

𝜎1d2 + 𝜎2d1

𝜏MW =
𝜀′1d2 + 𝜀′2d1
𝜎1d2 + 𝜎2d1

(7.27)

𝜎eff =
(d1 + d2)𝜎1𝜎2
𝜎1d2 + 𝜎2d1

The relaxation time constant given by Equation (7.27)
equates to the time required for the interfacial free charge
on the spherical particle to buildup to 1/e of its final value
(i.e., the time to acquire 63.2% of total polarization).
An alternative approach is through an electric circuit

model as described in Box 7.6.
These results are in agreement with those derived by

Van Beek [29–31] and supported by the theoretical and
experimental work of Sillars [32]. From Equations (7.26)
and (7.27) it is clear that if the dielectricmaterialsmaking
up the composite capacitor do not exhibit dielectric dis-
persions (i.e., the conductivity and permittivity parame-
ters do not vary as a function of frequency) theMaxwell–
Wagner relaxation time 𝜏MW will also be independent of
frequency. However, if the materials exhibit dipole relax-
ations in the frequency range of the interfacial polar-
ization, Equation (7.28) assumes the more complicated
frequency-dependent form

𝜏MW =
𝜀′1(𝜔)d2 + 𝜀′2(𝜔)d1
𝜎1(𝜔)d2 + 𝜎2(𝜔)d1

(7.29)

which for a particular composite component i:

𝜀′i(𝜔) = 𝜀i∞ +
(𝜀is − 𝜀i∞)
1 + 𝜔2𝜏2i

𝜎i(𝜔) =
(𝜀is − 𝜀i∞)𝜔2𝜏i

1 + 𝜔2𝜏2i

After deriving the electrostatic case, Maxwell states
[27, p. 457]:

This investigation shews that a dielectric composed
of strata of different kindsmay exhibit the phenom-
ena known as electric absorption and residual dis-
charge, although none of the substances of which
it is made exhibit these phenomena when alone.
An investigation of the cases in which the materi-
als are arranged otherwise than in strata would lead
to similar results, though the calculations would
be more complicated, so that we may conclude



7 Dielectric Polarization 

Box . An Electric Circuit Model of Maxwell–Wagner Polarization

The following is a simple circuit to model the two-layer het-
erogeneous capacitor shown in Figure 7.10. As for the circuit
in Box 7.4, the values of the electrical components do not
change as a function of frequency.

C1

G1 = 1/R1

C2

G2 = 1/R2

Interface

This pair of parallel networks connected in series can
be analysed in terms of an overall effective admittance or
impedance. From the example of Box 7.4 we know that an
effective admittance Y of the form:

Y(𝜔) = Ys +
(Ys − Y∞)

(1 + 𝜔2𝜏2
MW )

= Y′ + iY′′

describes a Debye-type relaxation process. The following
expressions for the real and imaginary admittance compo-
nents are obtained:

Y′ =
(G1G2 −𝜔2C1C2)∕(G1 +G2)−𝜔2(C1 +C2)(C1G2 + C2G1)∕(G1 +G2)2

(1+𝜔2𝜏2
MW )

Y′′ = 𝜔
(C1G2 + C2G1)∕(G1 + G2) − (C1 + C2)(G1G2 − 𝜔2C1C2)∕(G1 + G2)2

(1 + 𝜔2𝜏2
MW )

where

𝜏MW =
(C1 + C2)
(G1 + G2)

(7.28)

At low frequencies (𝜔𝜏MW ≪ 1):

Y′ =
G1G2

(G1 + G2)
, Y′′ = 0.

The current is in phase with the voltage. At high frequen-
cies (𝜔𝜏MW ≫ 1):

Y′ =
(C1C2)(G1 + G2) − (C1 + C2)(C1G2 + C2G1)

(C1 + C2)2
,

Y′′ = 𝜔
(C1C2)

(C1 + C2)

The current leads the voltage by 90◦.

that the phenomena of electric absorption may be
expected in the case of substances composed of
parts of different kinds, even though those individ-
ual parts should be microscopically small.

Wagner [28] repeated Maxwell’s analysis of a compos-
ite capacitor for the case of an applied alternating field,
but also extended his model to that of small conducting
spheres suspended in a dielectric medium. Each sphere
was assumed to have conductivity 𝜎p and relative permit-
tivity 𝜀p, with the surrounding dielectric medium having
dielectric properties 𝜎m and 𝜀m, with 𝜎m = 0. Wagner
derived expressions for 𝜀′ and 𝜀′′ of the same basic forms
as Equations (7.26) and (7.27), with

𝜏MW =
2𝜀′m + 𝜀′p

𝜎p
𝜀o (7.30)

Analyses have also been obtained for spherical, ellip-
soidal and cylindrical particles (𝜎p, 𝜀p) suspended in
a homogeneous medium (𝜎m, 𝜀m). The limiting low-
frequency and high-frequency permittivity and conduc-
tivity values, together with the Maxwell–Wagner relax-
ation time 𝜏MW, are found to depend on a parameter Ai,
known variously as the internal field function or the depo-
larization factor, along the axis of the ellipsoid. For exam-
ple, the general expression for the interfacial charging

relaxation time of spheres and ellipsoids suspended in a
fluid, with the particles occupying a volume fraction v, is
given by

𝜏MW =
𝜀′m + Ai(1 − v)(𝜀′p − 𝜀′m)
𝜎m + Ai(1 − v)(𝜎′

p − 𝜎′
m)

(7.31)

As shown by Maxwell [33, Art. 437, p. 67] for the case
of the magnetization of an ellipsoid and applying this to
electrical polarization, the distortion of the potential in a
uniform field within a dielectric medium produced by an
ellipsoidal particle with semiaxes a, b, c, depends on the
parameters

Aa = abc
2 ∫

∞

0

ds√
(s + a2)3(s + b2)(s + c2)

Ab =
abc
2 ∫

∞

0

ds√
(s + a2)(s + b2)3(s + c2)

Ac =
abc
2 ∫

∞

0

ds√
(s + a2)(s + b2)(s + c2)3

For arbitrary values of the axes Aa + Ab + Ac = 1, so
that for spherical particles (a = b = c) we have Aa = Ab =
Ac = 1/3.
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We can understand the physical significance of the
parameter Ai by noting that the field inside a particle will
be of the form

Ei = E − Ep (7.32)

where E is the field in the external medium and Ep is the
field arising from the polarization P due to buildup of
residual charge on the particle’s surface. This polariza-
tion field is given by

Ep = AP∕𝜀o (7.33)

For the special case of a sphere, a = b and Aa = 1/3.
Inserting this value into Equation (7.31) for the case of
a dilute suspension of noninteracting spheres (i.e., v ≈ 0)
and for 𝜎2 = 0, we obtain the result derived byWagner for
𝜏MW as given in Equation (7.30). Within the dielectrics
community the concept of Maxwell–Wagner interfacial
polarization is often employed to understand the dielec-
tric properties of materials, such as polymeric insulators,
in which lossy particulate materials are assumed to be
present as unwanted impurities. This corresponds, with
reference Figure 6.12, to the external field being distorted
into the particle surface such that the internal field is less
than the external field. In this case the polarization P is
positive and the parameter Ai acts as a depolarizing fac-
tor. For the case of the imagined spherical cavity shown in
Figure 6.2, we have the situation where the surrounding
medium ismore polarizable than the particle.The charge
distributions induced on the cavity surface are such that
P is a negative quantity. From Equations (7.32) and (7.33)
the field within an empty spherical cavity is

Ei = E − Edp = E + AP∕𝜀o = E + (P∕𝜀o)∕3

This is the same result given by Equation (6.15) for the
local field in a cavity.
The depolarizing factor along the a-axis of a prolate

ellipsoid (a > b, where a and b are the principal axes) is
given by

Aa = −1
(a∕b)2 − 1

+
a∕b

[(a∕b)2 − 1]3∕2
loge(a∕b)

+ [(a∕b)2 − 1]1∕2 (7.34)

For oblate ellipsoids (a < b)

Aa = −1
(a∕b)2 − 1

+
a∕b

[(a∕b)2 − 1]3∕2
arc cos(a∕b)

(7.35)

Values for the depolarizing factor, as a function of
the ratio a/b, are plotted in Figure 7.11. These equa-
tions for the depolarizing factor are used to find the
field parameter f1 in the formulation of mixture theories
outlined in Box 8.2 and used to describe the dielectric
properties of protein solutions and cell suspensions, for
example.
Clearcut demonstrations of Maxwell–Wagner polar-

ization in polymeric samples are difficult to find in the
literature. For example, the appearance of a large dielec-
tric dispersion, on forming a nonpolar surface layer
composed of silica microspheres onto a copoloymer, is
shown in Figure 7.12. This was considered [36] to be
an example of Maxwell–Wagner polarization, but such
interpretation is in part complicated by the Cole–Cole
plots shown in Figure 7.12 being obtained at different
temperatures. Large dielectric dispersions observed for
suspensions of spherical colloidal particles were con-
cluded to arise from surface ion conduction effects,
rather than as a result of a Maxwell–Wagner polar-
ization [37]. This is discussed in more detail in the
next chapter in connection with interpretations of the
dielectric properties of biological particles and materi-
als. A direct way of demonstrating the buildup of resid-
ual free charge in polymers containing nonpolar inclu-
sions, fillers, air-inclusions and micro-cracks is by their
thermally stimulated discharge. An example of this is
given by van Turnhout in a technique where depolar-
ization currents are measured in an arrangement with
or without an air gap between an electrode and a met-
allized polymer film [38]. This allowed a distinction to
be made of dipolar depolarization andMaxwell–Wagner
polarization in a wide range of polymers. Investigations
of Maxwell–Wagner polarization remains an impor-
tant aspect of the development of thin film capacitors
[39].

Axial ratio: a/b, a/c
1 65432 10

0
7 8 9

1.0

0.2

0.8

0.6

0.4

0.20.

0.3

0.4

0.5

0

0.33 Sphere

Prolate 
spheroids

Ab

Ac

Ab, Ac

Aa

Aa

Figure . The depolarization factors Aa, Ab and Ac, for
ellipsoids of revolution about the a-axis. These plots are
derived from the tables given by Ross and Sack [34] and
O’Konski [35].



7 Dielectric Polarization 

4.54.03.53.02.52.0

0.4

0.3

0.2

0.1

0

80 Hz

2.5 kHz

30 kHz

100 Hz

500 Hz

(a)

(b)

40

0.05

0
2.4 2.5 2.6 2.7

°C

142.5°C

ε″

ε″

ε′

ε′

Figure . Cole–Cole plots of 𝜀′

versus 𝜀′′ for (a)
polystyrene-poly(methyl)
methacrylate copolymer and (b) the
copolymer with a surface layer
composed of micron-sized silica
particles (Aerosil®). The pure
copolymer exhibited a small (Δ𝜀′ ≈
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7.4.1 Electrode Polarization

Interfacial polarization described by the Maxwell–
Wagner effect results from free charges accumulating at
the boundaries of different materials in a heterogeneous
dielectric. For all dielectrics in general, charges can also
accumulate at the electrodes.This modifies the field con-
tours in the dielectric near the electrodes and results in
a measured increase of the dielectric’s effective capaci-
tance.This effect is known as electrode polarization. To a
first approximation electrode polarization can be repre-
sented as an impedance Ze in series with the admittance
Y(𝜔) of the circuit shown in Box 7.6. Ze is usually domi-
nated by a capacitive reactance 1/i𝜔Ce, so that at very low
frequencies an applied voltage can appear mainly across
the electrode-sample interface and not across the dielec-
tric sample itself. In general Ze will have both a resis-
tive and capacitive character andwill exhibit a frequency-
dependence of the form:

Ze(𝜔) =
A

(i𝜔)m
= A

𝜔m

[
cos

(
𝜋

2
m
)
− i sin

(
𝜋

2
m
)]

whereA andm are constants.This relationship is another
manifestation of the Kramers–Krönig relations. In fact,
from dielectric measurements on biological samples,
the value for m typically varies from ∼0.3 to 0.5 as the
frequency increases from 20Hz to 200 kHz [40–42].
A value for m = 0.5 (i.e., a phase angle of 45◦) was
derived by Warburg in his treatment of electrode polar-
ization effects observed in electrochemical reactions
at electrodes [43, 44]. In this case the diffusion of ions
to and away from an electrode is a major controlling
factor – hence the assumed value for m of 0.5. In dielec-
tric measurements of the kinetics of albumin-ligand
binding reactions induced by pulsed electric fields,
Scheider found that lateral charge transfer along the

irregular surface of the electrode was responsible for
the fractional power frequency dependence of electrode
polarization [45]. This emphasizes the significance of
electrode surface roughness. This is evident from the
fact that the capacitive reactance, 1/i𝜔Ce, dominates the
electrode impedance. Roughening the surface of an elec-
trode increases the surface area of the electrode and thus
also the effective capacitance capacitive reactance Ce.
This reduces the electrode’s reactive impedance (Xc =
1/i𝜔Ce). A commonpracticalmethod to reduce electrode
impedance effects is to increase the surface area of a plat-
inum electrode by depositing a layer of platinum black
on it. This method was first adopted for electrochemical
studies by Warburg [43] and validated for dielectric
studies on biological materials by Schwan [46]. Another
practical method is to attempt to evaluate the magnitude
and frequency-dependence of the electrode polarization
for a particular electrode arrangement in a measurement
chamber used, for example, to contain cell suspensions.
This is accomplished by filling the chamber with a
known concentration (and hence conductivity) of the
electrolyte or buffer and measuring its impedance (real
and imaginary components) as a function of frequency.
Ishai et al. [47] have reviewed the fundamental prop-

erties of electrode polarization with relevance to high
conductivity samples and its implications for both dielec-
tric and impedance spectroscopy.The use of fractal elec-
trodes to bypass the effects of electrode polarization is
also described, together with a physical explanation as to
the limitations of such an approach. An overview of the
electrochemical and physical phenomena that influence
the magnitude of electrode polarization, its implications
to dielectric spectroscopy and the various approaches of
either apparatus-based compensation or analytical post-
processing to correct for its effects, has recently been pre-
sented by Feldman et al. [48].
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. Summary

In this chapter the basic processes involved in the polar-
ization of an ideal dielectric have been described. By
ideal we mean that the dielectric behaves as an electrical
insulator and it is assumed that the material is homoge-
neous in structure and has isotropic physical properties.
The dielectric may or may not contain polar molecules
that possess permanent electric dipole moments capa-
ble of rotating freely and independently of one another.
If the dielectric is nonpolar its electrical polarization
results only from field-induced distortions of electron
‘clouds’ around atoms, together with displacements of
atoms linked by polar chemical bonds. The time taken
to reach the steady-state value of polarization is typically
less than 10−12 s. The dielectric will exhibit a relatively
low value of relative permittivity, which remains constant
at its electrostatic value up to electrical frequencies of
∼1012 Hz.
For a dielectric whose structure consists of polar

molecules, the polarization process in response to the
sudden application of an electric field follows a time
course shown schematically in Figure 6.3 and reproduced
in Figure 7.13(a). It is assumed that the dielectric was
devoid of any polarization at the time of the field’s appli-
cation. Following the almost instantaneous electronic
and atomic polarization events, the dielectric’s polariza-
tion asymptotically approaches a final steady-state value.
If the dielectric’s structure consists of a single type of
polar molecule having a single rotational time constant,
the time course of the polarization is characterized by an
exponential function with a constant relaxation time 𝜏 .
At this time the polarization P has attained (1 − 1/e) =
63.2% of its final value (𝜀s−1)𝜀oE. Strictly speaking, the
polarization never reaches this final value, but after a time

equal to 10𝜏 is within 0.005% of it. The polarization pro-
cess is reversible. On removal of the field, thermal agita-
tions cause the polarization to relax asymptotically back
to zero at a rate characterized by the same time con-
stant 𝜏 . For applied fields of low alternating frequency the
dipoles are able to keep in step with the changes in mag-
nitude and direction of the field. The dielectric exhibits
a relative permittivity equal or close to its electrostatic
value 𝜀′s. The phase difference between the alternating
field and the displacement current arising from the dipole
reorientations is zero or very small.The energy loss, char-
acterized by its dielectric loss parameter 𝜀′′, is zero or
very small. The maximum dielectric loss occurs at a fre-
quency 𝜔 where 𝜔𝜏 = 1. With increasing frequency the
dipoles are less able to respond to the field and the dielec-
tric’s relative permittivity approaches its high-frequency
limit 𝜀′∞. This change of permittivity with frequency is
known as a dielectric dispersion, withmagnitude defined
as Δ𝜀 = (𝜀s − 𝜀∞). Because at the very high frequencies
the dipoles are unable to respond to the applied field’s
periodicity, there is no displacement current and the loss
parameter 𝜀′′ falls back to zero. A typical frequency plot
of 𝜀′(𝜔) for a polar dielectric is shown in Figure 7.13(b).
According to Equation (7.13) this is describedmathemat-
ically as:

𝜀′(𝜔) = 𝜀∞ +
(𝜀s − 𝜀∞)
1 + 𝜔2𝜏2

This relationship can also be written in terms of the
dispersion’s characteristic frequency, corresponding to
where the loss parameter 𝜀′′ attains its peak value at
fc = 1/(2𝜋𝜏):

𝜀′(𝜔) = 𝜀∞ +
(𝜀s − 𝜀∞)
1 + f 2∕f 2c

(7.36)
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Figure . (a) The polarization of a polar dielectric as a
function of time. (b) The corresponding variations of 𝜀′ and
𝜀′′ as a function of frequency, resulting (in time order) from
electronic distortion, atomic displacement and relaxation of
dipole orientation. There is an additional contribution to 𝜀′′ at
low frequencies if the dielectric exhibits electrical
conductivity.



7 Dielectric Polarization 

As described in section 7.2.2, the electronic and atomic
polarizations occur as resonant phenomena and exhibit
distinctly different 𝜀′(𝜔) profiles to that of a relaxing
dipole. The energy losses are shown as 𝜀′′(𝜔) peaks. Also
shown in Figure 7.13(b) is the energy loss associated with
a dielectric exhibiting electrical conductivity.
Two other forms of polarization have also been

described – namely Maxwell–Wagner interfacial polar-
ization and electrode polarization. Interfacial polariza-
tion is the buildup of free charge at the interface between
differentmaterials in a heterogeneous dielectric, or at the
surfaces of dispersed impurity particles.Themain reason
for including this phenomenon in this chapter is that it
is an important factor to consider when analysing mea-
surements performed on suspensions of cells or other

bioparticles. This is described in detail in the next chap-
ter. Electrode polarization (also referred to as electrode
impedance) results from the buildup of free charge at the
interface between a conducting dielectric and an elec-
trode. This takes the form of an electrical double layer
similar to that developed in a capacitor and has an asso-
ciated capacitive reactance. It can be a dominant effect at
frequencies below ∼10 kHz when performing dielectric
or dielectrophoretic measurements on samples that are
dissolved or suspended in aqueous electrolytes of high
conductivity. If the electrode impedance is large, a sig-
nificant proportion of the applied field will appear across
the electrode-sample interface and not across the sample
itself. This can result, for example, in a dielectrophoretic
response being weaker than expected.
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Dielectric Properties of Water, Electrolytes, Sugars, Amino Acids, Proteins and
Nucleic Acids

. Introduction

The scientific literature describing investigations and
biomedical applications related to the electrical and
dielectric properties of biological materials is vast (e.g.
[1–9]). In this chapter, focus is directed on aspects of the
subject of direct relevance to dielectrophoresis experi-
ments. Such experiments aremost often performedusing
aqueous suspensions of the particles under investiga-
tion. The dielectrophoretic force acting on the particle
depends on the Clausius–Mossotti factor, which, from
Chapter 6, is defined in terms of the dielectric properties
of the particle as well as the suspending medium. After
first reviewing the dielectric properties of pure water,
the effects of adding salts, sugars, pH buffers, amino
acids and proteins to water are described in this chap-
ter. Combinations of such chemicals are added to the
suspending medium to maintain the cell in a physio-
logically viable state. Knowledge of the extent to which
these chemicals alter the dielectric properties of pure
water provides the means to monitor or control the mag-
nitude (positive or negative) of the Clausius–Mossotti
factor. The experiment could also be directed towards
manipulating proteins or DNA particles, for example, so
the frequency-dependent polarizations of these particles
are also described. The dielectric properties of cells are
described in Chapter 9.

. Water

The dielectric properties of pure water at 298K (25 ◦C)
are summarized in Figure 8.1 as the variations of 𝜀′

and 𝜀′′ with frequency and the corresponding Cole–
Cole plot (see Figure 7.7). This data is based on a com-
prehensive and critical analysis of the published exper-
imental data available in 1995, for the frequency range
0–1000GHz and temperature range 0–100 ◦C [10]. The

principal dielectric dispersion, characterized at 25 ◦C by
a 𝜀′′ loss peak at 18GHz, is interpreted as a Debye-type
molecular dipole relaxation. The Cole–Cole plot shown
in Figure 8.1 is a slightly depressed semicircle described
by the modified Cole–Cole equation (7.12)

𝜀(𝜔) = 𝜀∞ +
(𝜀s − 𝜀∞)

1 + (i𝜔𝜏)1−𝛼
(8.1)

The parameter 𝛼 has a value of 0.013, corresponding
to a near ideal Debye-type dielectric dispersion charac-
terized by a single relaxation time. (Recall from section
7.3 that 𝛼 = 0 corresponds to a single relaxation time,
with 𝛼 tending to unity for an infinite number of relax-
ation times.) At 25 ◦C, from the Cole–Cole plot shown
in Figure 8.1, 𝜏 = 1/(2𝜋 × 18.56GHz) = 8.58 × 10−12 s
for pure water. At high frequencies, the main dielectric
dispersion for water merges into two more dispersions
and two atomic resonances. For example, at 25 ◦C relax-
ations occur at 167.8GHz and 1.94THz, with resonances
at 4.03THz and 14.48THz [11]. This makes it difficult to
determine an accurate value for the permittivity param-
eter 𝜀∞, which is approached asymptotically at high fre-
quencies. A value that has been commonly adopted in the
literature is 𝜀∞ = 1.77, based on the refractive index for
water of n∞ = 1.33 and the relationship 𝜀∞ = n∞2 [12].
From infrared spectra obtained for water and D2O, Zels-
mann [13] concluded that the most consistent interpre-
tations of the data were obtained by assigning the refrac-
tive index n∞ = 1.45, which gives 𝜀∞ = 2.1. In any case,
𝜀∞ should be considered as no more than a ‘fudge factor’
used to obtain the best fit of the low-frequency dielectric
data to a Cole–Cole semicircle plot [14]. A good exam-
ple of this is the data fitting performed by Hasted [3],
who derived 𝜀∞ = 4.23 ± 0.16 and 𝜏 = 9.3 × 10−12 s
at 20 ◦C (with corresponding values of 4.20 ± 0.16 and
7.2 × 10−12 s, respectively, at 30 ◦C). These value for 𝜀∞
can be considered to be too high as a parameter to define
the high-frequency ‘end point’ of the dielectric dispersion
for water at 25 ◦C.

Dielectrophoresis: Theory, Methodology and Biological Applications, First Edition. Ronald Pethig.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
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(Derived from Ellison et al. [10, 11].)

The static relative permittivity value of pure water can
be calculated using the function

𝜀s(T) = A.e−bT (8.2)

with A = 87.85306, b = 0.00456992 [10]. The static per-
mittivity values calculated using this formula for the
temperature range 0–100 ◦C are presented in Table 8.1,
together with the values and error estimates published
in 1981 by the Commission on Physico-Chemical Mea-
surements and Standards of the International Union of
Pure and Applied Chemistry (IUPAC). The significant
differences in these two sets of values between 80 ◦C and
100 ◦C reflect the experimental difficulties involved in
measuring the permittivity at these temperatures (prin-
cipally due to dissolved gases forming air bubbles) and
the paucity of experimental data. The interpolations of
Ellison et al. to derive Equation (8.3) take into account
the totality of experimental data reported in the scien-
tific literature [10]. The magnitude of the dielectric dis-
persion for water at 25 ◦C can be determined as Δ𝜀′ =
𝜀′s–𝜀′∞ = (78.37 − 2.1) = 76.17 relative permittivity units.

Table . Values of the static permittivity of pure water and
absolute error estimates between 0 ◦C and 100 ◦C, as published by
the International Union of Pure and Applied Chemistry (IUPAC) in
1981, together with values calculated using Equation (8.3).

◦C 𝜺s IUPAC 𝜺s Equation (.) []

0
10
20
25
30
40
50
60
70
80
90

100

87.87 ± 0.07
83.91 ± 0.07
80.16 ± 0.05
78.36 ± 0.05
76.57 ± 0.05
73.16 ± 0.04
69.90 ± 0.04
66.79 ± 0.04
63.82 ± 0.05
61.03 ± 0.05
58.32 ± 0.05
55.72 ± 0.06

87.85 ± 0.03
83.93 ± 0.03
80.18 ± 0.03
78.37 ± 0.03
76.60 ± 0.03
73.18 ± 0.03
69.91 ± 0.03
66.78 ± 0.03
63.80 ± 0.03
60.95 ± 0.03
58.23 ± 0.03
55.63 ± 0.03

From Equations (7.13) and (7.14) we can determine the
following dielectric parameters at 25 ◦C:

𝜀′′pk =
(𝜀s − 𝜀∞)

2
= 38.09

𝜀′(𝜔𝜏 = 1) =
(𝜀s + 𝜀∞)

2
= 40.27

The dielectric properties of water, alongwith its unique
physico-chemical properties, are directly related to its
molecular electron density distribution shown in Figure
7.5. According to the charge distribution given in this fig-
ure, each water molecule is endowed with a permanent
dipole moment of 1.855 debye units (6.2 × 10−30 C m).
The effective positive charge of the hydrogen atoms also
allows them to interact with the lone pair electrons of the
oxygen atom of a neighbouring water molecule to form
a hydrogen bond. An example where a water dimer is
formed in this way is shown in Figure 8.2. The linear H-
O⋅⋅⋅⋅H formation gives the most stable form of H-bond
(the dotted line), with a bond energy of 5.58 kcal/mol
(23.3 kJ/mol) [15,16] compared to theH-O covalent bond
energy of 492 kJ/mol [17]. H-bonds are thus relatively
weak and can be perturbed by thermal fluctuations of
the water structure. They are made and broken very
rapidly, with the lifetime of each H-bond being about
10−12 s.With the lone-pair electron orbitals of the oxygen
each able to form a H-bond with a neighbouring water
molecule and the two hydrogen atoms able to act as pro-
ton donors, a single water molecule has the potential to
form four H-bonds and thus an extended 3-D network
with other water molecules. According to its molecu-
lar size, liquid water should have its melting and boil-
ing points 100K lower than they are. Its heat of vapor-
ization, heat of fusion and surface tension is higher than
that of the comparable hydrides H2S and NH3, or even
than those of most other common liquids.These physical
properties arise directly from the strong forces of attrac-
tion created by the H-bonds between the molecules in
water. Without them, water on earth would exist as a gas
rather than as a liquid.The formation of the H-bond net-
work is facilitated by cooperativity, through which the
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H-bond

(a) (b)

Figure . (a) The hydrogen bonding of two water
molecules. (b) The tetrahedral hydrogen-bonding structure
of the most common crystalline form of ice [20].

strength of a H-bond between two water molecules is
enhanced by the formation of a second H-bond between
one of them and a third water molecule [18, 19]. In liq-
uid water there is a near 60% probability for a four-
fold H-bonding, with a considerable content of three-
fold and fivefold H-bonded water molecules, to give a
somewhat random network [19]. In its most common
solid-state form, namely the ice structure Ih, with a den-
sity (0.9167 g cm−3) at 0 ◦C significantly lower than that
(0.9998 g cm−3) of liquid water, there is almost a perfect
tetrahedral structure with 80% of the water molecules
having fourfold H-bonding [20]. This tetrahedral struc-
ture is shown in Figure 8.2.
The H-bonds in water are made and broken about 1012

times a second. The transient nature of how the cova-
lent bonds and H-bonds may exchange places from one
instant to the next can be depicted as shown below:

O

H

H
HH

O

O

H

H
H

H

O

+

-

There is thus a finite (but small) probability of finding
three hydrogen atoms associated with one oxygen atom
to form a hydronium ion (H3O+), leaving another oxy-
gen atom with only one hydrogen to form a hydroxyl
ion (OH−). The positively charged hydrogen atoms of
the hydronium ion attract the electronegative, oxygen,
ends of the surrounding water molecules to form a sta-
ble hydrated hydronium ion, as shown in Figure 8.3.
The dissociation (ionization) of water can therefore be

written as:

2H2O ↔ H3O+ +OH−

for which the equilibrium constant is given by:

Keq =
[H3O+] [OH−]

[2H2O]
= [H+] [OH−]

[H2O]
(8.3)

where the brackets denote concentrations in moles per
litre. To derive the final right-hand expression of this
equation, we have divided the numerator and denom-
inator by [H2O]. The concentration of water remains
virtually unaltered by its partial dissociation, since (at
25 ◦C) a litre of pure water contains only 1.0 × 10−7 M
of H3O+ and an equal number of OH− ions, whereas
the concentration of water in a litre (1000 g) of pure
water is 1000 g/L divided by the gram molecular weight
(18 g/mol) – namely 55.5M. Thus, the concentration of
water is virtually a constant and it makes no real sense to
include it in Equation (8.3) as if it were a variable. Equa-
tion (8.3) can thus be simplified by multiplying through
by [H2O]:

55.5 Keq = [H+][OH−] (8.4)

The constant Keq can be combined with the concentra-
tion of water (55.5M) to give a constant Kw termed the
ion product of water. From Equation (8.4) at 25 ◦C, this is
given by:

Kw = [H+][OH−] = 10−14

If [H+] for some reason increases, as when an acid sub-
stance is dissolved in water, [OH−] will decrease so as to
keep the product [H+] [OH−] = 10−14. This reaction is
the basis for the pH scale, measured as a concentration of
H+ (actuallyH3O+). As described in Box 2.1, the termpH

O

H

H
HH

O

O

H

HH

H

O

+

H

Figure . A hydronium ion in aqueous solution, surrounded by
three H-bonded water molecules.
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can be thought of as a shorthand term for the negative log
of hydrogen ion concentration. At 25 ◦C for pure water the
concentration of hydrogen ions is 10−7 mol, which leads
us to a value of 7.0 for the pH.

Example 8.1 Onsager’s Equation and the Dielectric
Dispersion for Water
The following relationship, given in Box 6.7, was derived
byOnsager to describe the dielectric dispersion exhibited
by polar liquids:

Np2o
9𝜀o kT

=
(𝜀m − 𝜀m∞)(2𝜀m + 𝜀m∞)

𝜀m(𝜀m∞ + 2)2
(Equation 6.34)

Themagnitude of the dispersion is given byΔ𝜀= (𝜀m −
𝜀m∞) ≡ (𝜀s − 𝜀∞). How accurate is this formula in deter-
mining the value of Δ𝜀 for liquid water at 25 ◦C?

Solution 8.1 From Equation (8.3) and Table 8.1, for
pure water at 25 ◦C, 𝜀s = 78.37. For the commonly
adopted value 𝜀∞ = 1.77 [2], the right-hand side (RHS)
of Equation (6.34) is:

(𝜀s − 𝜀∞)(2𝜀s + 𝜀∞)
𝜀s(𝜀∞ + 2)2

= 10.9 (RHS : 6.34)

The number densityN of water molecules is given by:

N =
NA 𝜌

M
=

(6.02 × 1023) (1 gm.cm−3)
18 gm

= 3.34 × 1022 cm−3 = 3.34 × 1028 m−3

According to the charge distribution given in Figure
7.5, each water molecule has a dipole moment of 6.2 ×
10−30 C m (1.855 debye units). The left-hand side (LHS)
of Equation (6.34) thus equates to:

N p2o
9𝜀o kT

= (3.34 × 1028 m−3) (6.2 × 10−30 Cm)2

9 (8.854 × 10−12 Fm−1) (1.38 × 10−23 JK−1) (298K)
= 3.92 (LHS : 6.34)

We thus find a mismatch between the theoretical pre-
diction given by the left-hand side of Onsager’s equa-
tion (6.34) and the numerical value of the right-hand
side obtained using experimentally determined permit-
tivity values. In fact, using the commonly accepted value
𝜀∞ = 1.77, the solution of Equation (6.34) leads to the
value 𝜀s = 31 at 25 ◦C (instead of 𝜀s ≈ 78).

The inadequacy found in Solution 8.1 of Onsager’s equa-
tion in predicting the static permittivity of liquid water
was recognized by Kirkwood [21, 22]. In Solution 8.1 no

account is given of the effect of the H-bonds in liquid
water. The value 1.855 debye units assigned to the dipole
moment po in Equation (6.34) corresponds to an iso-
lated water molecule in water’s vapour phase. For a water
molecule in liquid water, the value of po is enhanced due
to induction by the dipole fields of neighbouring water
molecules. This effect is taken into account in Onsager’s
equation (6.34). However, the formation of a tetrahedral
coordination of H-bonds to its neighbours means that a
field-induced reorientation of a water dipole has to be
coordinated with rearrangement of its neighbours. To
consider this, Kirkwood introduced an orientation corre-
lation factor g, so that Onsager’s equation (6.34) is mod-
ified to the form [21,22]:

NA g p2o
9𝜀o kT

=
(𝜀m − 𝜀m∞)(2𝜀m + 𝜀m∞)

𝜀m(𝜀m∞ + 2)2
M
𝜌

(8.5)

The value g = 1 corresponds to no correlation in orien-
tation of a dipole with its neighbours. A situation where
there are cooperative orientations of the moments cor-
responds to g values larger than unity. For a perfect and
rigid tetrahedral coordination of the H-bonds in water,
about which free rotations are permitted but no bond
bending, the orientation correlation parameter is given
as

g = 1 + z cos2 𝜃

2

where 𝜃 is the H-O-H bond angle in the water molecule
and z is the coordination number (z = 4 for a perfect
tetrahedron) [20, 21]. Based on coordination numbers
and intermolecular distances available for water from
published x-ray scattering data, Oster and Kirkwood [22]
calculated values of g for the temperature range 0 to
83 ◦C.They also used Equation (8.5) to calculate the static
relative permittivity values, assuming an optical refrac-
tive indexn= 1.33 (i.e., 𝜀∞ = 1.77). At 25 ◦C there is a very
close agreement between experiment and theory, with
experimental and calculated values for g of 2.68 and 2.67,
respectively (corresponding to experimental and calcu-
lated valued for 𝜀s of 78.5 and 78.2, respectively). The
difference between experiment and theory widens with
increasing temperature. At 83 ◦C the experimental and
calculated values for g are 2.49 and 2.82, respectively (cor-
responding to experimental and calculated valued for 𝜀s
of 59.9 and 67.5, respectively). The experimental value of
g thus decrease with increasing temperature, whereas the
theoretical value increases.This is considered to reflect a
partial destruction of the tetrahedralwater structurewith
increasing temperature, along with a more pronounced
bending of the H-bonds [22]. It should however be noted
that the value deduced for g, based on Equation (8.5)
and using experimentally determined values of 𝜀s, are
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quite sensitive to the value assumed for 𝜀∞. For exam-
ple, adopting 𝜀∞ = 2.1 [12] gives g = 2.35, whereas with
𝜀∞ = 4.23 [3] gives g = 1.0.
As briefly discussed in Chapter 7, in the form of Equa-

tion (7.23), it is possible to describe a dielectric relaxation
process as being analogous to a chemical rate process.
The temperature variation of the relaxation time 𝜏 is then
approximately exponential, according to the equation:

𝜏 = h
kT

e−(ΔS∕R) e(ΔH∕RT)

where ΔS and ΔH are the molar entropy and enthalpy,
respectively, of activation for the relaxation process and
h is Planck’s constant. If ΔS and ΔH are not depen-
dent on temperature a graph of loge(kT𝜏/h) against 1/T
should be a straight line of positive slope, from which
ΔH can be calculated. A straight line does result between
0 and 50 ◦C, yielding a value for the activation enthalpy
ΔH = 17.5 kJ/mol [11]. This is 25% less than the H-bond
energy of 23.3 kJ/mol [15, 16]. Based on computer sim-
ulations, this could be associated with the formation of
a ‘defect’ in the water structure due to the formation of
a bifurcated H-bond that gives a molecule five coordi-
nated nearest neighbours, equivalent to it possessing five
H-bonds [23]. The bifurcated H-bond lowers the poten-
tial energy barrier for reorientation of the five-fold
H-bonded water and weakens the previously existing
H-bonds [24]. Thus, although it is experimentally well
established that the dielectric relaxation of liquid water
is approximately described by a single relaxation time
of ∼9 ps at room temperature, corresponding to a near
single exponential polarization decay of the Debye type
described inChapter 7, we should not consider this relax-
ation as a simple field-induced reorientation of a single
water dipole moment. Instead we should consider the
relaxation as resulting from the dynamics of the H-bond
network and structure of water. An understanding of this
remains elusive, as is amusingly (and aptly) summarized
by the following statement [25]: the literature on water
structure and dynamics is vast as an ocean, with frequent
whirlpools of contradictions and disputes.
Good starting points for interested readers to ‘dip their

toes’ into this important subject are the excellent reviews
by Ohmine and Tanaka [26] and later by Agmon [25].

8.2.1 Electrical Mobility of Protons

To complete the description of the dielectric properties
of pure water, we should consider its electrical conduc-
tivity. Although the dissociation of water is sometimes
written as H2O ↔ H+ + OH− to emphasize the pro-
duction of protons, we have seen that the electrostatic
binding energy of the proton is so large that it has no
independent existence in condensed phases such as

Table . The electrical mobility of ions at 25 ◦C in dilute aqueous
solution [27].

Cation
Mobility

(− m/V.s) Anion
Mobility

(− m/V.s)

H+, H3O+ 36.2 OH− 20.6
K+ 7.6 Cl− 7.9
Na+ 5.2 F− 5.7

water. A proton is generally considered to be present
as hydronium, H3O+, which gives it an equivalent size
between that of an hydrated sodium and a hydrated
potassium ion. From Equation (2.6) the electrical mobil-
ity of an ion is defined as 𝜇e = v/E, where v is the terminal
speed acquired under the influence of an electric field
E. To a good approximation we can assume that the
terminal speed is reached when the accelerating force
(Fa = qE) is balanced by the Stokes viscous drag force.
This viscous force is directly proportional to the size of
the ion and so the electrical mobility of a proton should
be of the same magnitude as that of a Na+ or K+ ion.
Table 8.2 gives the electrical mobility values for various

ions in water, from which it is evident that the apparent
rate of migration of the H3O+ ion in an electrical field is
significantly greater than that exhibited by Na+ and K+

ions.
How can we account for the anomalously high proton

mobility?The accepted viewpoint is that a transport pro-
cess, known as the Grotthuss mechanism, is responsi-
ble. This mechanism is named after Theodor Grotthuss
(1806), who suggested that electrical conduction through
water resulted from the oxygen atoms simultaneously
receiving and transferring a single hydrogen atom [28].
This proposal was consistent with the concept at that
time of a water molecule having the chemical formula
OH instead of H2O and that an understanding of ions in
solution (let alone H-bonds) was at a very primitive level.
Nevertheless, his description that throughout the con-
duction process ‘only the water molecules located at the
tip of the conducting wires will be decomposed, whereas
all those located at intermediate positions will exchange
their composing principles reciprocally and alternatively,
without changing their nature’ proved to be remarkably
insightful. The modern version of the Grotthuss mech-
anism, is depicted in the sequence of events below. The
first step involves the injection and binding of a proton
into an H-bond network:

H
+

H

HO

H

HO

H

HO
H +

H

HO

H

HO

H

HO
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Subsequent steps involve the localized rearrangement
of protons and H-bonds, followed by the release of a pro-
ton from the H-bond network:

H

H

OH

H

O
H

+

H

HO H

H

OH

H

O
H +

H

HO H
+

The final step is reorganization of the protons to
re-establish the H-bonded water structure that existed
before the injection of a proton.

H

HO

H

HO

H

HOH

H

OH

H

O
H

H

O

It is with this process in mind that one of the
author’s mentors (Albert Szent-Gyorgyi) once remarked
that ‘water was the only molecule he knew that could
turn around with turning around!’ A partial analogy for
the Grotthuss mechanism is the operation of a bucket
brigade in damping down a fire, where the buckets move
but the people do not. Proton conduction does not
involve the diffusion of either the hydronium ions or the
protons themselves! A better analogy is electronic con-
duction along a copper wire. As an electron is injected
into the cathodic end of a wire, another electron is simul-
taneously ejected from the end at the anode. This mode
of proton transport is of relevance to bioenergetic pro-
cesses that involve proton diffusion in protein complexes
and the pumping of protons across cell membranes [29].

Example 8.2 Electrical Conductivity of PureWater
Derive a value for the conductivity of pure water at 25 ◦C.

Solution 8.2 The conductivity of pure water results
solely from the electrical mobility of the H3O+ and OH−

ions produced in the dissociation of water and can be cal-
culated from the formula

𝜎e = q
(
[H3O+]𝜇+ + [OH−]𝜇−) S∕m

where [H3O+], [OH−] and μ+, μ− are the concentrations
and mobility of the hydronium and OH− ions, respec-
tively. At 25 ◦C, [H3O+] = [OH−] = 10−7 M, which is
equivalent to a number concentration of (6.03 × 1023 ×
10−7) ions per litre, or 6.03 × 1019 m−3. Adopting the
mobility values given in Table 8.2:

𝜎𝜀 = 1.6 × 10−19(6.03 × 1019[36.2 × 10−8] + 6.03
×1019[20.6 × 10−8]) = 5.48 μS∕m

This result ismore commonly expressed in the recipro-
cal terms of electrical resistivity as 18MΩ cm. Deionized

(DI) water has a conductivity of∼10μS/m (∼10MΩ cm).
Completely degassed pure water, which is then brought
into equilibriumwith the atmosphere, contains dissolved
carbon dioxide and exhibits a conductivity of ∼75μS/m.
Normal drinking water ‘from the tap’ has a conductivity
in the range 50∼80mS/m due mainly to the presence of
sodium, calcium, chlorine and phosphate ions. The con-
ductivity of the aqueous component of a cell’s cytoplasm
is ∼1.4 S/m [30].

. Electrolyte Solutions

An electrolyte is defined as a substance that contains
atoms or molecules that acquire a negative or positive
charge (by gaining or losing electrons) to form ions when
dissolved in a suitable solvent. We say that the substance
ionizes. The most common solvent is water; ionizable
substances include soluble salts, acids and bases. Cal-
cium, chloride, phosphate, potassium and sodium are
examples of physiologically relevant electrolytes. Poly-
electrolytes are formed by the dissolution in water of
macromolecules, such as polynucleic acids (e.g., DNA)
and polypeptides (e.g., proteins), that contain charged
functional chemical groups.
Typical steady-state external and internal concentra-

tions of ions for a mammalian cell are given in Table
8.3. This information is helpful when performing dielec-
trophoresis experiments on cells. It is important tomain-
tain the cells in a ‘comfortable’ physiological state and
thismeans suspending them in an appropriate electrolyte
solution. Of the ions listed in Table 8.3, potassium and
chloride ions are actively conducted the most readily
across a cell membrane and they distribute themselves
not too far from what is termed a Donnan equilibrium.
As described in Figure 8.4, this corresponds to the con-
centration product [K+]in⋅[Cl−]in inside the cell being
approximately equal to the product [K+]out⋅[Cl−]out
in the extracellular solution. This distribution of ions
across the membrane is shown in Figure 8.4. The most
concentrated free inorganic ion in the cytoplasm is K+,
which is typically 10∼30 times as concentrated in the
cytosol as in the extracellular fluid. The internal con-
centrations of free Na+ and Cl− are typically ten times
or so less than their external concentrations. These

Table . Mammalian muscle cells typically have the following
extracellular and internal (cytosol) concentrations of elemental
ions and macromolecular anions (A−).

Extracellular ion concentration
(mM)

Cytosol ion concentration
(mM)

Na+ : 120; K+: 2.5; Ca2+: 2.0;
Cl−: 120

Na+: 10; K+: 140; Ca2+: <10−6;
Cl−: 3∼4; A−: 140
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[K+][Cl–]: ~300
[Na+][Cl–]: ~104

[Ca2+][Cl–]: ~240

[K+][Cl ]: ~490
[Na+][Cl–]: ~35

[Ca2+][Cl ]: ~10–6

ExternalInternal

[K+]in [Cl-]in [K+]out [Cl-]out

Cell

+

+ 4

+ –

+

–
[K+]in [Cl–]in ≈ [K+]out [Cl–]out

Figure . The ionic content (mM) of biological
tissues is such that the potassium and chloride
ions are the most concentrated and most
permeable through the cytoplasm membrane.
They distribute themselves close to that for an
ideal Donnan equilibrium, which corresponds to
the concentration product [K+]in⋅[Cl−]in inside
the cell being close to the extracellular product
[K+]out⋅[Cl−]out.

asymmetric distributions of ions gives rise to a poten-
tial difference across the membrane, ranging from
50∼90mV, with the extracellular medium being taken as
the zero reference and the cytoplasm having the nega-
tive potential. Maintenance of this potential and the ion
concentration gradients requires active transport of ions
across the membrane. An important factor in this pro-
cess is the Na+-K+ pump, which transports Na+ ions out
of a cell and K+ into a cell, against their electrochemi-
cal gradients. These pumps use up free energy, derived
from glucose. (The chemical bond energy released by the
oxidation of glucose in the cytoplasm of cells is trans-
formed to a high energy phosphate bond in ATP. This
stored energy is then used by the cell to perform vari-
ous metabolic functions.) In order to maintain a cell in
a ‘comfortable’ physiological state during an experiment
it is therefore important to supply it with glucose as a
chemical source of free energy.
Another important way to keep a cell ‘comfortable’

is to suspend it in a solution, which helps to minimize
osmotic stress. Osmosis is the term given for the diffu-
sion of water down its concentration (activity) gradient
through a porousmaterial such as amembrane.The cyto-
plasm of a typical cell is roughly equivalent to a 145mM
KCl solution. If we suspend a cell in a 100mM KCl solu-
tion, water will flow down its activity gradient and into
the cytoplasm, causing the cell to swell and possibly also
to burst. We say that the cell is suspended in a hypotonic
solution. Conversely, suspending the cell in a hypertonic
solution of 200mM KCl will cause it to shrivel, because
water will flow from the cytoplasm and across the mem-
brane to the outside. If a cell is suspended in a 145mM
KCl solution, it should neither shrink nor swell. We say
that the solution is an isotonic one. These concepts only
work if the KCl does not flowdown its own concentration
gradient so as to bring into equilibrium the internal and
external KCL concentrations. What prevents this hap-
pening? Small molecules, such as oxygen, carbon dioxide
and water are able to pass freely across the membrane,
but the passage of larger molecules such as amino acids
and sugars is carefully regulated. KCl is a small molecule
too, but, importantly, in aqueous solution it dissociates
into K+ and Cl− ions. As explained in Box 8.1, ions do
not passively diffuse through a cell membrane to any sig-
nificant extent. They are confronted by a huge potential

energy barrier to do so and can only cross the membrane
by active transport through an ion channel or pump, such
as the Na+-K+ pump.
To understand the concept of an isotonic solution, we

should think in terms of the osmolarity – also known
as the osmotic concentration – of a solution. The osmo-
larity of a solution is a count of the number of parti-
cles dissolved in it, expressed as osmoles per litre. A
145mM KCl molecule dissociates into two equal num-
bers of K+ and Cl− ions, so that the cytosol of a cell typ-
ically has an osmolarity of 290mOsm/L. An osmolarity
difference across the membrane equates to an activity
gradient of water across it, assuming that all the osmotic
solute is completely impermeant. Urea (CH4N2O) is a
small molecule (molecular mass 60 g/mol) that does not
dissociate in water – when dissolved it remains as a sin-
gle molecule. Thus, a 290mM solution of urea has the
same osmolarity as an ideal 145mM solution of KCl.
However, suspending a cell in a 290mM solution of urea
would destroy the cell. It would rapidly swell and burst,
because the small urea molecules are freely permeable
through the cell membrane. With the passage of urea
down its concentration gradient into the cytoplasm, the
activity of the extracellular water increases. Water will
now flow down its own activity gradient into the cyto-
plasm. If they can freely diffuse through the cytoplasm
membrane, adding small, uncharged, molecules to a cell
suspending medium does nothing to control the tonicity
of the solution. What happens if we add glucose (molec-
ular mass 180 g/mol) to the solution? Glucose dissolves
readily in water, without dissociating or ionizing and,
most importantly does not diffuse readily through a cell
membrane. A solution composed of 10mM glucose and
140mM KCl thus has an osmotic concentration equiv-
alent to 145mM KCl. A cell suspended in this solution
would not only have a chemical energy source, it would
also neither swell nor shrink. In practice, we may wish
to lower the electrical conductivity and alter the pH of
the suspending medium, by adding HCl and changing
the relative concentrations of KCl and glucose, for exam-
ple. It is therefore of value to have an appreciation of
how dissolved salts and sugars influence the dielectric
properties of water and, in particular, how this may alter
the value of the parameter 𝜀s

∗ in the Clausius–Mossotti
factor.
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Box . Cell Membranes Present an Impermeable Barrier to Passive Ion Flow

The figure in this box depicts the energy barrier to be over-
come in moving a charged particle from water into a lipid
membrane.

Potential E
nergy 

Distance

Membrane

H2O

Energy 
Barrier

H2O

0

ΔU

Based on the Work-Energy Theorem (see Box 4.1) the
height ΔU of this barrier is the difference in the work
required to assemble the charge in these two environ-
ments. From Equation (4.10), the potential energy change as
an increment of charge 𝛿q is brought to a sphere of radius
r and of charge q is given by:

𝜕U =
q𝜕q

4𝜋𝜀o𝜀r

1
r

Thus, the total work required to proceed from zero
charge to a final charge Q is:

U = 1
4𝜋𝜀o𝜀r r

Q

∫

0

q𝜕q = Q2

8𝜋𝜀o𝜀r r

The value to be used for r is the ionic radius, which for
Na+ is 0.095 nm. Let 𝜀r = 2.35 for the membrane interior, an
estimate based on values of 2.31 and 2.42 for stearic acid and
palmitic acid, respectively (CRC Handbook of Chemistry and
Physics, 2001). For water, assume 𝜀r = 80, so that:

ΔU = U(𝜀r=2.35) − U(𝜀r=80) = (5.2 × 10−19 J)

−(1.5 × 10−20 J) ≈ 5 × 10−19 J

This represents an energy barrier equivalent to 122 kT
at 298 K (25 ◦C), nearly 100 times larger than the thermo-
dynamic energy (3 kT/2) available to an ion in equilibrium
with its environment at temperature T. We have ignored
entropy changes associated with the ordering of water
dipoles around a solvated ion. Accounting for this, by taking
𝜀r = 35, only slightly reduces the value of ΔU to 4.9 × 10−19 J
(118 kT at 298 K). For our purposes, therefore, we can assume
that a cell membrane (represented as a lipid bilayer in the
figure above) presents an impermeable barrier to passive
ion flow.

Example 8.3 Composition of an Electrolyte for a
Dielectrophoresis Experiment
An investigation of the dielectrophoretic characteristics
of amammalian cell culture requires that the cells are sus-
pended at 20 ◦C in an isotonic KCl solution (equivalent
to 290mOsm/L) that contains 2mMglucose and 0.5mM
CaCl2. An aqueous 0.5mMCaCl2 solution has a conduc-
tivity of 9mS/m. The electrical conductivity of the com-
plete aqueous cell suspendingmedium should be close to
60mS/m.

1. What concentration of mannitol should be added to
an initial solution, composed of 2mMglucose, 0.5mM
CaCl2 plus KCl, to give an isotonic solution of conduc-
tivity close to 60mS/m.

2. Would it be a good idea to use urea instead of manni-
tol?

Solution 8.3

1. Mannitol and glucose are not electrically charged in
solution and so will not contribute to the total con-
ductivity. We therefore require enough KCl to raise
the conductivity from 9mS/m (provided by 0.5mM

CaCl2) to 60mS/m. An aqueous 4.2mM KCl solution
has a conductivity of ∼51mS/m (see Figure 8.5).

The total osmotic concentration of the initial sugar
plus salt solution is the sum of:
◦ 4.2mMKCl = 8.4mOsm/L (dissociates into K+ and
Cl−)

◦ 0.5mM CaCl2 = 1.5mM Osm/L (dissociates into
Ca+ and two Cl− ions)

◦ 2mM glucose= 2mOsm/L (glucose does not disso-
ciate)
This gives a total of 11.9mOsm/L.
We require a total osmotic concentration of

290mOsm to be isotonic – and so need to add 290−
11.9= 278.1mMofmannitol (like glucose,mannitol
does not dissociate).

2. It would not be a good idea to use urea instead
of mannitol. Urea is freely permeable through cell
membranes and so cannot be used to control the
tonicity of a cell suspension fluid. For example, a
cell placed in 280mM urea would rapidly swell as
urea, followed by water, enter the cell down their
activity gradients. Mannitol is not freely permeable
through a cell membrane and can be used to control
tonicity.
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Figure . The conductivity at 20 ◦C of aqueous NaCl
and KCl solutions is shown as a function of the dissolved
salt concentration. For concentrations less than ∼70 mM
there is a linear relationship between conductivity and
concentration. (Derived from the CRC Handbook of
Chemistry and Physics, 87 edn, CRC Press, Boca Raton, FL,
2006–2007.)

In Example 8.3 mannitol is used to create osmotic
equilibrium for a suspension of cells. Too much
mannitol results in hypertonicity and the cells shrink as
water flows from out of them down the water activity
gradient. This effect is used in osmotherapy to reduce
cerebral oedema by removing excess water from the
intercellular and extracellular spaces in the brain. The
normal osmotic concentration of blood plasma is around
280–290mOsm/L. A hypertonic solution ofmannitol (or
a saline solution) can be injected into the carotid artery
so as to increase the plasma osmotic concentration
to around 300–320mOsm/L. Water flows out of the
brain into the blood stream in an attempt to maintain
an osmotic equilibrium, decreasing the intracranial
pressure. This same procedure can be used to weaken
the blood-brain barrier formed by so-called tight junc-
tions between the endothelial cells on the arterial wall.
Diffusion of molecules in the blood cannot diffuse down
their concentration gradient through this barrier – this
can only be achieved by active transport of a selective
group of molecules. However, by increasing the osmotic
concentration of the blood the endothelial cells shrink
and the tight junctions are stretched open. Drugs admin-
istered to the blood stream can then diffuse freely into
the brain. In veterinary medicine a hypertonic solution is
used to treat acute glaucoma. Serving the same function
as the blood-brain barrier, there is a blood-ocular barrier.
By lowering the water content of the vitreous humour,
the intraocular pressure can be lowered.

8.3.1 Ions in Water

In an ionic crystal such as NaCl we can estimate, from
the Van derWaals radii values given in Table 8.4, that the

closest separation distance between a Na+ and Cl− ion is
0.4 nm. The potential energy U of attraction of this ion
pair can be calculated using Equation (4.10):

U = 1
4𝜋𝜀o𝜀r

QNa+QCl−

r(Na−Cl)

The relative permittivity of a sodium chloride crys-
tal has a value 𝜀r = ∼6. With this value inserted into
the above equation, the potential energy of attraction of
the Na+-Cl− ion pair is calculated to be ∼9.6 × 10−20 J
(i.e., 23 kT at room temperature). When a NaCl crystal is
placed in water and water molecules diffuse into its bulk
structure, the value of 𝜀r will increase and the energy of
attraction will decrease. In the limit, as the value of 𝜀r
tends to ∼80, the energy of ion attraction approaches a
value of 4 × 10−21 J (1.8 kT), which is only a little more
than the energy of 3 kT/2 associated with thermal fluc-
tuations.This energy of attraction is insufficient to result
in stabilization of the ion pair and is the physical reason
why salt crystals dissolve and dissociate in water.

Table . Atoms have a characteristic size known as their Van der
Waals radius. The values given below were determined from the
mechanical properties of gases and X-ray determination of atomic
spacing between unbonded atoms in crystals (derived from [31]).

Atom
Radius
(nm) Atom

Radius
(nm)

Hydrogen
Carbon
Chlorine
Nitrogen
Magnesium

0.12
0.17
0.17
0.16
0.17

Oxygen
Phosphorus
Potassium
Sodium
Sulfur

0.15
0.18
0.28
0.23
0.18
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To understand this dissociation process more clearly
we can find the relative contributions of the enthalpy and
entropy changes by recognizing that the energy of attrac-
tion U is equivalent to the Gibbs free-energy of the sys-
tem of the ions and their surrounding medium. From the
Second Law of Thermodynamics, contributions to the
free energy of the system (including a system of charges)
in thermal equilibriumwith its surroundings, at constant
temperature and pressure, will come from its enthalpy
H and entropy S according to the equation given in
Box 7.4:

U = H − TS (8.6)

If the enthalpy is relatively insensitive to changes of
temperature, the entropy term can be approximated as
S = −𝜕U/𝜕T, which from equation (4.10) gives:

S = − 𝜕

𝜕T

(QNa+ QCl−

4𝜋𝜀o𝜀r

1
r(Na−Cl)

)
=

QNa+ QCl−

4𝜋𝜀o𝜀
2
s r(Na−Cl)

𝜕𝜀r
𝜕T

= U 1
𝜀s

𝜕𝜀s
𝜕T

(8.7)

From Table 8.1 it is evident that Equation (8.2) pro-
vides an accurate value for 𝜀s over a wide temperature
range and so, in the above equation, we can replace the
differential with 𝜕𝜀s/𝜕T = −b.𝜀s(T). From Equation (8.7),
with b = 0.0046, this gives S = −4.6 × 10−3U. The value
of TS in Equation (8.6) at 298K is thus −1.37U, which is
larger than the total free energy U. This implies that the
attraction of sodium and chloride ions is mainly driven
by entropy and not enthalpy. Work has been expanded
on the system of ions and water so as to create a more
ordered system. The ions themselves are only weakly
associated and so this increase in order must be asso-
ciated with how the water molecules interact with the
ions. This interaction involves the torques induced on
the water molecules by the interactions of their dipole
moments with the electric fields around the charged
ions. This restricts the rotational mobility of the water
molecules and creates a hydration ‘shell’ of orientedwater
molecules around an ion, as schematically depicted in
Figure 8.6. The reduction of orientation mobility and
dipole alignments creates the increase of order respon-
sible for the negative value we have deduced for ST in
Equation (8.7). It also results in a reduction of the local
value of 𝜀s.
A positively charged ion orientates a neighbouring

water molecule such that the negative component of its
dipole is directed towards the ion. This will serve to
screen the ion’s positive charge and to reduce its coulomb
potential. Water molecules will orientate in the opposite
sense around a negatively charged ion and so also act to
screen this charge. This screening is also enhanced by

+ –

Figure . The electrostatic interactions between (left) a cation
and (right) an anion with surrounding water molecule dipoles
results in a ‘structured hydration shell’ and reduced rotational
freedom of neighbouring water molecules. This represents a
significant reduction of entropy of each ion-water system.

the tendency on average of neighbouring ions to over-
come thermal vibrations and to be attracted to a coun-
tercharged ion. So, although the interaction between
counter ions is sufficiently weak for their salt to disso-
ciate and dissolve in water, the balance between electro-
static forces and thermal agitation is such that on average
ions with the same charge will tend to avoid each other
and those of opposite charge to spend more time near
each other. This weak association of counter ions will
increase as their average separation distance decreases
(i.e., as the salt concentration increases). The electrolyte
therefore behaves as if it were not 100% dissociated and
this is reflected in the value of its activity coefficient. For
example, from Table 8.5 we can deduce that a 100mM
solution of KCl will exhibit an osmolarity of 180, rather
than the value of 200mOsm if it were to act as an ideal
ionic solution. This effect is responsible for the devia-
tion from a linear relationship of the conductivity and salt
concentration shown in Figure 8.5.
The influence of dissolved ions on the dielectric prop-

erties of water can thus be considered to result from
the combination of a volumetric effect in replacing polar
water molecules by nonpolar ionic particles, together
with the reduced orientationmobility of water molecules
in the hydration shells around the ions. The relative per-
mittivity of an ionic aqueous solution is thus expected
to fall with increasing concentration of a dissolved salt.

Table . Activity coefficient (defined as the ratio of the activity
divided by the molal concentration) values as a function of
concentration at 25 ◦C for some common compounds that
dissociate into ions in aqueous solution. (Derived from the CRC
Handbook of Chemistry and Physics, 87 edn, 2006–2007.)

Substance . M . M . M . M  M

KCl 0.901 0.816 0.768 0.649 0.604
NaCl 0.903 0.822 0.779 0.681 0.657
MgCl2 0.734 0.590 0.535 0.485 0.577
CaCl2 0.727 0.577 0.528 0.444 0.495
HCl 0.905 0.832 0.797 0.759 0.811
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Figure . The value of the static relative permittivity 𝜀s of water
falls with increasing concentration of dissolved NaCl (based on
Hasted et al. [32]).

This is shown schematically in Figure 8.7 for the case of
an aqueous solution of sodium chloride. It can be seen
from this figure that the static relative permittivity of a
NaCl solution falls from a value∼79 to less than 50 as the
concentration of dissolvedNaCl is increased from zero to
5M. However, for most dielectrophoretic measurements
on suspended cells we are only interested in aqueous salt
solutions of concentrations less than ∼150mM. As indi-
cated in Figure 8.7 and found experimentally by Hasted
et al. [32], for salt concentrations less than 0.5M a linear
relationship exists between the static relative permittivity
𝜀s and concentration of the form:

𝜀s = 𝜀w + 2𝛿c (8.8)

where 𝜀w is the static relative permittivity value for pure
water, c is the salt concentration in moles per litre. The
factor 𝛿 quantifies the extent to which the salt modifies
the permittivity value and is given by:

𝛿 = 𝛿+ + 𝛿−

2
(8.9)

with 𝛿+ and 𝛿− being the contributions arising from
the cation and anion, respectively. Values of 𝛿 for some
salts in aqueous solution are given in Table 8.6. We can
see that 𝛿 has negative values, indicating that the addi-
tion of a salt to water lowers its permittivity. This means

Table . Values of the dielectric augmentation factor 𝛿 in
Equation (8.7) for some salts in water at 22 ◦C [32]. The negative
values indicate that 𝛿 acts as a decrement.

Salt �̄� (±)

KCl −5
NaCl −5.5
LiCl −7
HCl −10
NaOH −10.5
MgCl2 −15

Table . Values of 𝛿+ and 𝛿− in Equation (8.8) for ions in water at
22 ◦C [32].

Cation 𝜹+ (±) Anion 𝜹− (±)

Na+ −8 Cl− −3
K+ −8 F− −5
Li+ −11 I− −7
H+, H3O+ −17 SO4

2− −7
Mg2+ −24 OH− −13

that the volume occupied by the ion and its surrounding
hydration has a lower polarizability than the volume of
bulk water it has displaced. In this situation the factor 𝛿

is termed as the dielectric decrement. Water molecules
attracted to a negative ion are less rotationally hindered
than those attracted to a positive ion and so the reduction
of the permittivity is much larger for cations than anions.
The decrement values given in Table 8.7 are based on the
assumption that the value for 𝛿 for NaCl can be appor-
tioned as 𝛿+ =−8 and 𝛿− =−3 [32]. A review of the status
of our understanding up to 2001 of the physico-chemical
factors that influence the dielectric decrements exhibited
by aqueous electrolyte solutions has been given by Buch-
ner and Barthel [33].This is an ongoing research activity,
with unsettled problems remaining to be solved.

Example 8.4 Relative Permittivity of KCl Solution
Derive an estimate of the room temperature relative per-
mittivity of an aqueous 150mM KCl solution.

Solution 8.4 FromTables 8.1 and 8.6 we obtain the val-
ues 𝛿 = −5 and 𝜀w = 80.2, respectively. The value of 𝜀s is
calculated from Equation (8.8):

𝜀s = 𝜀w + 2𝛿c = 80.2 + 2 (−5 × 0.15) = 80.2 − 1.5
= 78.7

As well as the effect of lowering the relative permittivity
of the aqueous solvent, dissolved ions generally decrease
the orientation relaxation time.The exception to this rule
is the hydronium ion or proton, where the relaxation time
increases. To a first approximation, this may be consid-
ered to result from the disruption by the solvated ions of
the normal hydrogen-bond structure of pure water. For
concentrations of dissolved ions less than 1molar, this
effect can be expressed in terms of a relaxation frequency
increment 𝛿f:

f = fw + c𝛿f

where 𝛿f is the sum of the increments per mole resulting
from the cation and anion, respectively. For Na+, K+ and
Mg2+ the cationic increment is 0.44 (± 0.2) GHz; for Cl−
the anionic increment is 0.44 (± 0.2) GHz [34]. For H3O+
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(H+) instead of an increment of the relaxation frequency
there is a decrement of −0.34 (± 0.2) GHz. It is doubtful
that these small differences from the relaxation frequency
of ∼18GHz exhibited by pure water will ever be of any
practical relevance in dielectrophoresis experiments.

8.3.2 Aqueous Sugar Solutions

Sugars are carbohydrates, formed only of carbon, hydro-
gen and oxygen, with many of the simple kinds hav-
ing the chemical formula CnH2nOn where n has val-
ues between 3 and 7. Exceptions to this formula include
sucrose (C6H12O11), mannitol (C6H14O6) and deoxyri-
bose (C5H10O4). Sugar molecules are polar; they pos-
sess permanent dipole moments but do not ionize and
so have neutral charge. They dissolve readily in water,
not only because they are polar, but also because they
can form H-bonds of the type OH⋅⋅⋅⋅H with surround-
ingwatermolecules.The ‘simple’ sugars aremonosaccha-
rides, examples being glucose (C6H12O6) – also known
as dextrose – and fructose (C6H12O6). Glucose and fruc-
tose have the same chemical formula, but glucose takes
the form of a six-membered ring and fructose a five-
membered ring.Thesemolecules remain intactwhendis-
solved in water and for 99.9% of the time also remain
in their ring form. Mannitol has a linear structure. In
their ring form monosaccharides can form glycoside
bonds with other monosaccharides to create a disac-
charide (such as sucrose, maltose and lactose). Raffi-
nose is a trisaccharide formed by the glycoside bond-
ing of galactose, glucose and fructose. Multiple glyco-
side bonding produces polysaccharides, such as starch
and cellulose. When digested, saccharides are acted on
by sucrase enzymes and broken down to their compo-
nents. For example, sucrose breaks down to glucose and
fructose.
The dielectric properties of aqueous solutions of galac-

tose, glucose, mannose and ribose were studied over the
frequency range 100 kHz to 10GHz by a research group
at the British-Dutch company, Unilever [34]. Dielec-
tric dispersions were observed above 100MHz, which
when analysed (using the methods described in Figure
7.8) revealed three overlapping relaxation processes. For
example, a 2.8M glucose solution exhibited a broad dis-
persion, with the dielectric loss peaking at ∼6GHz. The
dominant component of this dispersion exhibited a relax-
ation time of 1.85 × 10−11 s (corresponding to a loss peak
at 8.6GHz) andwas considered to be the relaxation of the
bulk water dipoles. A smaller contribution to the over-
all dispersion exhibited a relaxation time of 6.9 × 10−11 s
(a loss peak at 2.3GHz) and this was assigned to rota-
tional relaxation of the glucose molecules. A much weak
dispersion, with a relaxation time of 27 ± 7 × 10−11 s
(a loss peak at ∼0.59GHz), was assigned to relaxations

of the water of hydration around the glucose molecules.
Theoretical modelling of the dielectric properties of
dilute aqueous solutions of glucose and maltose reveal
essentially the same phenomena, with the interesting
finding that the dispersion associated with the hydration
increases with the size of the sugar molecule and hence
number of hydroxyl groups available to hydrogen bond
to bulk water molecules [35]. From this work we can
conclude that the dielectric properties of sugar solutions
should be considered in terms of a three-component sys-
tem, namely, bulk water molecules exhibiting their nor-
mal relaxation process, the bound hydration around each
sugar molecule exhibiting a much slower relaxation pro-
cess, plus the relaxing polar sugar molecules.
Dipole moment values of various sugar molecules and

their influence on the dielectric properties of water were
also evaluated by the research group at Unilever. This
data was detailed in a company report andmade available
to Hasted for his book [3]. These results are presented in
Table 8.8, together with those obtained by Saito et al. [36]
and Arnold et al. [37]. The decrements were evaluated
using a modified form of Equation (8.8):

𝜀s = 𝜀w + 𝛿c (8.10)

Defining the change in permittivity as Δ𝜀 = 𝜀w − 𝜀s,
then 𝛿 =Δ𝜀/c. Hasted [3] andArnold et al. [37]measured
the sugar concentrations inmoles per litre, whereas Saito

Table . Values for 𝛿 in Equation (8.9), based on molar
concentrations of the sugar and dipole moments for aqueous
sugar solutions at 25 ◦C.

Molecule 𝜹

Moment
Debye
units Reference

Arabinose – 4.3 [3, p. 197]
Fructose −1.2a [36]
Galactose −3.28 5.3 [3, pp. 196–197]
Glucose −4.27

−4.1a
4.7 [3, pp. 196–197]

[36]
Mannose −4.25 4.8 [3, pp. 196–197]
Mannitol −2.48

−2.63
– [3, p. 196]

[37]
Myoinositol – 5.0 [3, p. 197]
Raffinose −8.62 – [37]
Ribose −2.72

−3.1a
5.1 [3, pp. 196–197]

[36]
Sorbitol −2.75

−2.51
– [3, p. 196]

[37]
Sucrose −7.69

−7.5a
– [37]

[36]

Note: aConverted from data based on concentrations cited as molar
fractions. The conversion procedure is described in Example 8.6.
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et al. [36] employed molar fractions. The molar fraction
(𝜒 i) is defined as the amount (ni) of a constituent, given
inmoles, divided by the total amount (ntot) of all the con-
stituents of a solution. This is expressed by the relation-
ship:

𝜒i =
ni
ntot

(8.11)

Example 8.5 Preparing a 0.02 Molar Fraction of
Glucose inWater
10 g of glucose (mol. wt.= 180 g/mol) is to be dissolved in
water to obtain a 0.02 molar fraction of glucose in solu-
tion. What volume of pure water (mol. wt. = 18 g/mol)
should be used to dissolve the glucose?

Solution 8.5 50 g of anhydrous glucose is equivalent
to an amount of 50/180 = 0.278mol. Equation (8.11)
can be rearranged to give the required amount of water
(nw) in terms of the given quantities 𝜒 i (0.02) and ni
(0.278mol):

𝜒i =
ni
ntot

=
ni

ni + nw
, so that nw =

ni (1 − 𝜒i)
𝜒i

(8.12)

The required amount of water is given as:

nw = 0.278 (1 − 0.02)
0.02

= 13.62 mol

Now, 13.62mol of water weighs 13.62 × 18 = 245.2 g.
On the assumption of a density value of 1 g/mL for pure
water, we require that the 50 g of anhydrous glucose be
dissolved in 245.2mLof purewater to obtain a 0.02molar
fraction of glucose in solution.

Example 8.6 ConvertingDielectricData fromMolar
Fractions to Molar Concentrations
The following datawas obtained by Saito et al. [36] for the
low frequency relative permittivity of pure water and var-
ious sugar solutions.The corresponding dielectric decre-
ments given in Table 8.8 have been converted to be con-
sistentwith themolar concentration basis used byHasted
[3] and Arnold et al. [37]. Check the accuracy of these
conversions.

Substance Molar fraction 𝜺r 𝚫𝜺

Pure water – 78.4 –
Fructose 0.05 74.7 −3.7
Glucose 0.01 76.1 −2.3
Ribose 0.015 75.8 −2.6
Sucrose 0.01 74.2 −4.2

Solution 8.6 The values of the dielectric decrements
given in Table 8.8 are given by

𝛿 = Δ𝜀

c
where c is the sugar concentration in moles per litre.
To convert the data of Saito et al., to be consistent with
this definition of the dielectric decrement, the amount
nw in Equation (8.11) should be equivalent to 1 litre of
pure water, namely 1000 gs of water, corresponding to
1000/18= 55.6mol.On this basis, we can obtain the value
for 𝛿 asΔ𝜀/ni. To obtainniwe rearrange Equation (8.12):

ni =
nw𝜒i

(1 − 𝜒i)
=

55.6𝜒i
(1−𝜒i)

(8.13)

For the case of fructose, we obtain ni = 2.93 and the
value for 𝛿 as−3.7/2.93=−1.2.This result is entered into
the table below, together with those obtained for glucose,
ribose and sucrose.There is close agreement between the
converted decrement values obtained for each of these
three sugars and the other results given in Table 8.8

Sugar 𝝌 i (mol frac.) ni (Eqn .) 𝚫𝜺 𝜹 (𝚫𝜺/ni)

Fructose 0.05 2.93 −3.7 −1.2
Glucose 0.01 0.56 −2.3 −4.1
Ribose 0.015 0.85 −2.6 −3.1
Sucrose 0.01 0.56 −4.2 −7.5

The linear relationship given by Equation (8.10) holds
up to solute concentrations of no more than around
0.5moles per litre. Arnold et al. [37] have explored the
nonlinearity at higher sugar concentrations and analysed
their results in terms of the following relationship:

𝜀s = 𝜀w + 𝛿1 c + 𝛿2 c2 (8.14)

The values for 𝛿1 obtained for mannitol, sorbitol and
sucrose are given in Table 8.8. The values for 𝛿2 for these
three sugars are +0.13, −0.14 and −0.19, respectively.
Apart from their relevance to the dielectric properties
of cell suspending media, practical applications of such
data include the development of dielectric sensors for
determining the sugar content of foodstuffs and to detect
water adulteration of honey, for example [38].

. Amino Acids and Proteins in Solution

8.4.1 Amino Acids and Polypeptides

The term amino acid could in principle be used to
refer to any compound that contains amino (−NH2) and
acidic groups.The term is however normally restricted to
𝛼-amino acids that contain an ionizable carboxyl group
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Figure . The chemical structure of an 𝛼-amino acid.

(−COOH) and can be isolated from natural sources.
More than 100 have been isolated, but only 20 are
commonly obtained when proteins are subjected to the
hydrolytic action of boiling acid. The basic chemical
structure of an 𝛼-amino acid (apart from proline) is
shown in Figure 8.8. Proline possesses an imino group
(-NH-) instead of an amino group.
The central carbon atom, called the alpha-carbon (C𝛼),

is bonded to an amino (or for the case of proline an imino)
group, a carboxyl group and a hydrogen atom. A variable
chemical group R termed the side chain is also bonded
to the C𝛼 carbon. This side chain gives an amino acid its
special characteristic. Glycine has the simplest side chain,
namely a single hydrogen atom. This lends to glycine,
with its two hydrogen atoms about the C𝛼 carbon atom,
the property of symmetry. The remaining amino acids
do not possess such symmetry. They are chiral(from the
Greek𝜒𝜀𝜄𝜌meaning hand) and so have twomirror-image
(sterioisomeric) structures, designated as the right- (dex-
tro) and left-handed (levo) form – the D and L forms,
for short. Only the L forms of amino acids are found in
protein molecules, but D-amino acids form part of bac-
terial cell walls and occur in some antibiotics. In accor-
dance with the description of acids and bases given in
Chapter 2 (Box 2.1) the acidic carboxyl group is ionized
as –COO− and the basic groups are ionized as –NH3

+

(or =NH2
+ for the case of proline). The predominant

forms of an amino acid across the pH range are shown
in Figure 8.9. The doubly charged form, termed a dipolar
ion or zwitterion, is predominant at neutral pH.
The chemical structures of the 20 common amino acids

are given in Tables 8.9–8.11 and are classified according
towhether their side chain is hydrophilic or hydrophobic.

Five of the side chains in the 20 common amino acids
are ionizable and their pK values are given in Table 8.11.
The main factors to consider when determining whether
a side chain is hydrophobic or hydrophilic are:
� carbon and nonpolar groups do not readily hydrogen
bond to water and are thus hydrophobic;

� oxygen and nitrogen can hydrogen bond to water and
are thus hydrophilic;

� ionizable groups (e.g., –COO−, –NH3
+ or=NH2

+) are
hydrophilic;

� polar groups are hydrophilic.

The zwitterionic nature of amino acids has the conse-
quence that their solvation by water is accompanied by
a large negative change in volume, resulting from the
strong electrostatic interaction between the polar water
molecules and the two charged groups. Similarly, since
the zwitterion represents a large dipole, neutral solu-
tions of amino acids (which may have a negligible dc and
low frequency conductivity) exhibit a high relative per-
mittivity and absorb infrared radiation at 1580 cm−1, an
absorption band (in wavenumbers) characteristic of the
carboxylate ion andnot at 1720 cm−1 aswould be the case
for an uncharged −COOH group. The simplest 𝛼-amino
acid is glycine, in which the side group R is hydrogen.The
distanced between the centres of the positive ammonium
group and the negative carboxyl group should be about
0.32 nm, so that the effective dipole moment should have
a value given by

p = qd = (1.6 × 10−19) (3.2 × 10−10)
= 5.1 × 10−29 Cm = 15.3 debye units

This value of the dipole moment compares reasonably
with that of 20 debye units obtained byWyman [39] from
dielectric measurements on glycine solutions. Dunning
and Shutt [40] showed further that the permittivity of
glycine solutions is constant from pH 4.5 to pH 7.5 but
falls sharply on either side of these pH values. The inter-
pretation of this is that at the extremes of pH glycine
possesses a single net charge only, so that the dipolar,
zwitterionic, form disappears in strongly acidic or alka-
line solutions.
The dipole moment per unit volume of a zwitterionic

𝛼-amino acid is larger than that of water, so that we can
expect an amino acid solution to exhibit a greater static

R

CαH

NH3
+

COO H

R

Cα

NH2

COO–

R

CαH

NH3
+

COO– ↔↔

Low pH ~ pH 7 High pH

Figure . The ionic forms of an 𝛼-amino acid at various pH
values. At neutral pH, amino acids exist predominately in the
zwitterion (doubly ionized) form and exhibit a large dipole
moment.
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Table . Amino acids with hydrophobic (nonpolar) side chains R.

Amino acid Side-chain structure R Amino acid Side-chain structure R

Alanine
(Ala)

CH3
Isoleucine
(Ile) C-CH2-CH3

H

CH3

Leucine
(Leu) CH2-CH

CH3

CH3

Methionine
(Met)

CH2-CH2-S-CH3

Phenylalanine
(Phe)

CH2
Proline
(Pro)

Cα

N
H2

C
H2

C C
H2 H2

Tryptophan
(Trp)

N
H

C
H

CC
H2

Valine
(Val) CH

CH3

CH3

and low-frequency permittivity than water. This is illus-
trated for glycine in Figure 8.10. At room temperature,
the characteristic frequency of the dielectric dispersion
due to the rotation of glycine is 3.3GHz [4], so that the
dispersion overlaps with that for water shown in Fig-
ure 8.1, with a relaxation frequency ∼18GHz. The sim-
ple relaxation model given by Equation (7.20) predicts a
relaxation frequency of ∼12.6GHz for glycine in water.
The difference between the predicted and actual value
indicates that there are significant electrostatic interac-
tions between the amino acid and the water molecules.

Qualitatively, it is not surprising the experimental finding
gives a slower rotation of glycine than that calculated on
the basis that only frictional forces, expected for a solid
sphere rotating in a fluid and no molecular interactions
occur between the solute and the solvent. Quantitatively,
no straightforward theoretical treatment of the dielectric
behaviour of an amino acid solution has been formulated.
For practical purposes, however, it is possible to express
the dielectric behaviour of amino acids in aqueous solu-
tion in the form

𝜀s = 𝜀w + 𝛿c (8.15)

Table . Amino acids with hydrophilic (uncharged, polar) side chains R.

Amino acid Side-chain structure R Amino acid Side-chain structure R

Asparagine
(Asn) CH2-C

O

NH2

Cysteine
(Cys)
Glycine (Gly)

CH2-SH
H

Glutamine
(Gln) CH2- CH2-C

O

NH2

Serine
(Ser)

CH2OH

Threonine
(Thr) C-CH3

H

OH

Tyrosine
(Tyr)

CH2 OH
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Table . Amino acids with hydrophilic (charged) side chains R.

Amino acid Side-chain structure R Amino acid Side-chain structure R

Positively charged
(pH > pK)

Negatively charged
(pH < pK)

Arginine
(Arg)
pK∼12

(CH2)3-NH-C

NH2
+

NH2

Arginine
(Arg)
pK∼7

CH2 COO-

Histidine
(His)
pK∼6.5

C
H

N
H

CC
H2

NH+

C
H

Glutamic acid
(Glu)
pK∼4.7

CH2 CH2 COO-

Lysine
(Lys)
pK∼10.5

(CH2)4 NH3
+

where 𝜀s and 𝜀w are the permittivities of the solution
and pure water, respectively and c is the concentration
(mol/L) of the amino acid. For aqueous solutions of 𝛼-
amino acids at 25 ◦C, 𝛿 has a value of some 26–28 permit-
tivity units per mole for frequencies approaching 1GHz
and concentrations up to 2.5M. Recalling from Example
8.6 that pure water has a molarity of 55.6, it is perhaps
not surprising that the measured permittivity of amino
acid solutions varies more or less linearly with the con-
centration of solute (i.e., that 𝛿 is constant), even for what
are, from a biological standpoint, rather high concentra-
tions of amino acid.These values of 𝛿 give dipolemoment
values for amino acid molecules that are some ten times
that of an ordinary polar molecule [40,41].This property
led Kirkwood to remark that a dipolar ion is in a sense a
superpolar molecule, surrounded by an intense electro-
static field [42].

The fact that amino acid solutions exhibit a dielec-
tric increment at low frequencies indicates that the vol-
ume occupied by the relaxing molecule and its bound
hydration exhibits a larger polarizability than the vol-
ume of bulk water it has displaced. For electrical frequen-
cies higher than those at which the polar amino acid can
respond by changing its orientation, we should expect
to find a dielectric decrement. The volume occupied by
the amino acid and its hydration has a smaller polariz-
ability than an equivalent volume of normal bulk water.
This effect is demonstrated by the dielectric properties of
𝜀-aminocaproic acid (also known as 6-aminohexanoic
acid) observed by Shepherd and Grant [43] and summa-
rized in Figure 8.11.
FromFigure 8.11 it is clear that the dielectric increment

exhibited by 𝜀-aminocaproic acid significantly exceeds
the 𝛿 values of 26–28 permittivity units per mole found

100

50

0
1 GHz 10 GHz 100 GHz

Log frequency

ε′

ε′

ε″

ε″

Glycine

H2O

Figure . The dielectric dispersion exhibited by
a 1 M aqueous solution of glycine at 20 ◦C. The
low-frequency permittivity exceeds that of pure
water (see Figure 8.1) and the 𝜀′′ loss peak at
3.3 GHz for glycine overlaps that at 18 GHz for the
bulk water. (Based on [4], Figure 5.7.)
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(a) (b)Figure . (a) A 3 M aqueous solution of
𝜀-aminocaproic acid (chemical structure shown)
exhibits a dielectric increment at low frequencies,
but a dielectric decrement above 1 GHz. (b) The
corresponding loss peaks for 𝜀-aminocaproic acid
(chemical formula shown) and the bulk water.
(Based on measurements by Shepherd and Grant
[43] at pH 7.6 and 20 ◦C).

for 𝛼-amino acids. This fact was first described by
Wyman [44] in his dielectric experiments on various
classes of amino acids. He demonstrated that not only
the 𝛼-amino acids form a class having nearly similar
dielectric increment values, but so also do the 𝛽- and 𝛾-
amino acids, for example. There is a regular increase of
the increment 𝛿 with the number n of chemical bonds
between the amino and carboxyl groups (n = 2 for 𝛼-
amino acids, 3 for 𝛽-amino acids and so on). This is
demonstrated in Figure 8.12(a), where the average val-
ues of 𝛿 for the classes of amino acids, as obtained by
Wyman [44], are plotted against n, the number of chem-
ical bonds between the amino and carboxyl groups. This
demonstrates that 𝛿 increases linearly with n by a fac-
tor of about 14 for each additional chemical bond length.
This behaviour is understandable in terms of these amino
acids existing in aqueous solution predominantly in the
form of dipolar ions. With increasing number of bonds
(i.e., distance) between the charged amino and carboxyl
end groups, the molecular dipole moment and hence
dielectric increment 𝛿 increases inmagnitude.The amino
acid polypeptides can also be expected to form a homolo-
gous series and this is demonstrated in Figure 8.12(b) for
the first seven peptides of glycine, where the values for 𝛿

increases linearly with the number of constituent chem-
ical bonds n between the terminal NH3

+ and COO−

groups.
A pH buffer commonly used to maintain physiologi-

cal pH in cell culture is known as HEPES and can be

added to cell suspending mediums for dielectrophoresis
experiments. It is a sulfonic acid (C8H18N2O4S), which
when dissolved in water becomes a zwitterion, with
a measured dielectric increment value of 90 [45].
Another commonly used sulfonic acid buffer is MOPS
(C7H15NO4S), with a dielectric increment of 40 [45].
Concentrations of these buffers above 20mM are not
usually recommended for mammalian cell suspensions.
According to Equation (8.14) we can therefore expect an
increase of the permittivity to be nomore than 1.8 and 0.8
permittivity units, respectively, when using HEPES and
MOPS, respectively.

8.4.2 Proteins

A covalent chemical bond, known as a peptide bond, can
be formed between two amino acids to form a dipeptide,
involving the amino group of one amino acid and the car-
boxyl group of the other. As shown in Figure 8.13(a) a
peptide bond leads to the release of a molecule of water
in a so-called condensation reaction. Each amino acid is
reduced in chemical structure to an amino acid residue.
The carboxyl (C=O) and nitrogen atom forming the pep-
tide bond between the two amino acid residues exhibit a
resonating, partial double-bond character, as depicted in
Figure 8.13(b).
Because of this resonance bonding, the six atoms of the

peptide group (the two alpha carbons, the carbon, oxygen
and nitrogen plus hydrogen) all lie in the same plane, as

δ
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di- tri-

tetra- penta-

hexa- hepta-

Figure . The variation of the dielectric increment
𝛿 in Equation (8.14) with the number of bonds n
between the terminal charged groups of: (a) the
various classes of amino acids in aqueous solution;
(b) the glycine polypeptides (reproduced from
Figures 3.4 and 3.5 in [5]).
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Figure . (a) The formation of a peptide bond between two
amino acids, accompanied by the release of a water molecule. (b)
The peptide bond has a partial, resonant, double bonding of the
carbon and nitrogen atoms.

shown in Figure 8.14(a). Based on a simple application of
molecular orbital theory, the peptide unit can be calcu-
lated to have a permanent dipole moment of 3.63 debye
units directed from the oxygen to the carbon atom, at an
angle of 46.7◦ to the C-N bond [5, Chapter 2]. This value
was later revised down slightly to 3.5 debye units [46].
Independent rotation of two planar peptide groups about
their connecting alpha carbon is possible. As shown in
Figure 8.14(b) the relative conformation of a pair of pla-
nar peptide groups can be defined by two dihedral angles
𝜑 and 𝜙, where 𝜑 is the angle of rotation about the C𝛼-
C bond and 𝜙 is the angle of rotation about the N-C𝛼

bond. Although angles 𝜑 and 𝜙 can theoretically both
assume all the values from 0 to 360◦, physically realiz-
able conformations are in fact limited by restrictions on
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Figure . (a) The double-bond nature of the peptide bond
results in the peptide group of atoms to lie in the same plane. (b)
The relative orientation of two adjacent planar peptide groups is
determined by the angles of rotation 𝜙 and 𝜑 about the
connecting C𝛼 atom.

Figure . A schematic representation of a polypeptide chain as
a string of connected dipole moments (arrows). Each peptide
moment makes an angle of 46.7◦ to each C-N bond along the
chain.

the allowed van derWaals contact distances between dif-
ferent atoms in the dipeptide, especially for those atoms
that are located in the side chain R.
Three amino acids can covalently bond together to

form a tripeptide and when four do so a tetrapeptide is
produced and so on to form resulting structures known
as oligopeptides. Many amino acid residues bonded
together form a long structure known as a polypeptide
chain. With each peptide unit possessing a permanent
dipole moment, polypeptide chains can be considered
as strings of connected dipole moments, as shown in
Figure 8.15. Proteins consist of one or more polypep-
tide chains. To perform their biological function (e.g.,
as an enzyme or a structural element such as a micro-
filament) proteins fold into one or more specific spatial
conformations dictated by the sequence of residues in
their polypeptide chains and the corresponding permit-
ted values for the rotational angles 𝜙 and 𝜑. Protein sizes
range from a lower limit of around 50 to several thou-
sand amino acid residues. An average protein contains
around 300 residues. Very large aggregates can be formed
from protein subunits, for example many thousand actin
molecules assemble into a microfilament.
A protein’s function is determined by its three-

dimensional structure, which in turn is determined by the
linear sequences of the amino acids in the one or more
polypeptide chains from which it is composed.There are
four distinct categories of a protein’s structure:

� Primary structure: This is defined by the amino acid
sequence of the polypeptide chains. A specific gene in
a cell determines the primary structure of a protein.
Basically, a specific sequence of nucleotides in DNA is
transcribed into mRNA, which is then read by struc-
tures called ribosomes in a process that translates the
mRNA code into a polypeptide chain. The sequence
of a protein is unique to that protein and defines its
structure and function. The primary structure is held
together by the covalent peptide bonds made during
the process of protein biosynthesis or translation by
ribosomes.These peptide bonds provide rigidity to the
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(a) (b)Figure . (a) The 𝛼-helix structure is stabilized by
H-bonds (NH⋅⋅⋅O) parallel to the long axis of the helix.
The axis of the helix is directed at an angle of about
56◦ to the C-N bond of each peptide residue, with
each turn of the helix having a dipole moment of
∼13 D directed parallel to this axis. (b) The 𝛽-sheet
structure is stabilized by H-bonds between adjacent
sections of a polypeptide chain.

protein. The primary structure can also be defined by
the covalent bonding of sulphur atoms between two
cysteine residues in the same or different polypeptide
chains. These bonds are termed disulphide bridges.

� Secondary structure: This refers to the arrangement of
parts of a polypeptide chain into highly regular sub-
structures, the most prominent of which are the alpha
helix and the beta-pleated sheet structures shown in
Figure 8.16. Hydrogen bonds are responsible for stabi-
lizing these two structures. The conformations of the
amino acid residues in the alpha helix correspond to
values for𝜙 of−45◦ −50◦ and𝜑=−60◦ and every turn
of the helix includes 3.6 residues. Each residue partici-
pates in a hydrogen bond, so that every successive helix
turn is held in place to an adjacent helix turn by three
to four hydrogen bonds.With a dipolemoment of∼3.5
debye units per residue, each turn of an 𝛼-helix has a
dipole moment of around 13 debye units [5, Chapter
2]. The residues in a beta-pleated sheet structure have
conformations with 𝜙 = −135◦ and 𝜑 = +135◦ and is
held together by hydrogen bonds. However, because
water-amide hydrogen bonds are generally stronger
than amide-amide hydrogen bonds, these secondary
structures are stable only when the local concentration
of water is sufficiently low, as for example in the fully
folded protein state.

� Tertiary structure: This is the 3D structure of a single
protein molecule, involving the spatial arrangement
of the secondary structures, including the folding of
parts of the polypeptide chain between 𝛼-helices and
𝛽-sheets. As depicted in Figure 8.17(a), it describes
the completely folded and compacted polypeptide
chain. Several polypeptide chains can be combined
into a single protein molecule through ionic interac-
tions (salt bridges) between oppositely charged ionized
side chains, hydrogen bonds, hydrophobic ‘bonding’
interactions, disulphide bridges and intermolecular
van der Waals forces between nonpolar groups. As
a general rule, the hydrophilic (charged and polar)
amino acid residues are located on the outside of a

folded protein, with the hydrophobic residues buried
inside the polypeptide structure. This is known as the
‘oil drop’ model for proteins and is driven by entropy
(water molecules around a nonpolar surface group
would be forced to form a cagelike structure having
lower entropy than normal bulk water). A schematic
of the cytochrome-c protein molecule is shown in Fig-
ure 8.17(b) to show the ionized chemical groups on
the molecule’s surface and the dipole moments asso-
ciated with 𝛼-helices. This schematic is based on the
X-ray crystallographic structure determined by Dick-
erson et al. [47] and shows what the authors term to
be the back view of the molecule showing the two
crevices that lead up to the haem group. From the
locations of the charged acidic and basic groups on a
protein’s surface and using the method described in
Example 5.6, it is possible to determine the permanent
dipole moment associated with these charges [48–
51]. In some proteins, the dipole moments of buried
𝛼-helices can facilitate the long-range transfer of elec-
tronic charges [52, 53].

0.5 nm

(a) (b)

Figure . (a) The folding of a single polypeptide chain, to form
the tertiary structure of a protein molecule, is stabilized by links
between 𝛼-helices and 𝛽-sheets plus noncovalent interactions. (b)
A schematic of the cytochrome-c molecule to show the locations
of the charged side groups at pH7 and the permanent dipole
moments of 𝛼-helices (reproduced from Figure 3.3 in [5]).
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Table . The composition, molecular weight and isoelectric
point (pI) of some proteins.

Number of Molecular

Protein Residues Chains weight pI

Insulin 51 1 5808 5.4
Cytochrome-c 105 1 12 330 ∼10.0
Lysozyme 129 1 13 930 11.2
Myoglobin 153 1 16 890 ∼7.9
Pepsin 337 2 34 620 ∼1.0
Haemoglobin 574 4 64 500 7.1
Serum albumin 609 1 68 500 4.7
RNA polymerase II 4158 12 550 000 ∼7.0

� Quaternary structure:The forming of a complex of sev-
eral protein molecules, or protein subunits, that func-
tion as part of a larger assembly or protein complex is
referred to as a quaternary structure. A protein may
shift between several, reversible, similar structures in
performing its biological function, either as an enzyme
controlling chemical reactions or as a structural ele-
ment.

The numbers of constituent amino acid residues and
polypeptide chains for several proteins are presented in
Table 8.12. The isoelectric points of the proteins are also
included in Table 8.12. Depending on their amino acid
composition, different proteins have differing numbers of
charged polar groups. For example (bovine) serum albu-
min has a net excess of acidic groups and so carries a net
negative charge (equivalent to 19 electrons) at neutral pH
7. The isoelectric point (see Example 2.1) of this protein
occurs at pH 4.7. Horse cytochrome-c, on the other hand,
has an excess of basic groups and an isoelectric point
close to pH 10. At neutral pH cytochrome-c carries a net
positive charge and this is compatible with the distribu-
tion of charges shown on its surface in Figure 8.17(b).
There must, however be a high degree of electrical sym-
metry of these surface charges, because as shown inTable
8.13 the dipole moments of small globular proteins are
typically several hundred debye units. This corresponds
to one and no more than two net electron charges dis-
placed by a protein molecular diameter.

8.4.2.1 Analysis of Dielectric Dispersion
The dielectric properties of aqueous protein solutions
have been studied since the 1930s and this work, up to
1942, was reviewed by Oncley [54]. As shown in Figure
8.18, a typical dispersion is observed in the MHz region
(i.e., with a relaxation time of the order microseconds).
The observed dielectric increment and dipole moment
valuesweremuch larger than those found for amino acids

Table . The dipole moments (± ∼5%) for various proteins
ranked in order of increasing molecular weight.

Molecular Dipole moment
Protein weight (D) Reference

RNAse SA 10 500 440 [59]
Phospholipase 13 000 141 [50]
Cytochrome-c 13 000 235 [50]
Ribonuclease 13 700 350

280
[60]a
[50]

Lysozyme 14 300 122 [50]
Myoglobin 17 000 167

150
[61]
[48]a

Trypsin 23 000 271 [50]
Carboxypeptidase 34 000 637 [50]
Haemoglobin 64 000 495

523
[49]
[61]

Serum albumin 66 000 710 [62]
Concanavaline 102 000 411 [50]

Note: a Dipolemoment value calculated using Equation (8.24). All of the
other dipole moments were calculated using Oncley’s empirical equa-
tion, Equation (8.23).

and peptides and this was understood to reflect the pro-
teins having larger molecular weights. Oncley assumed
that the dispersions resulted from the Debye rotation
model, where there is a competition between the elec-
trical torque and viscous frictional force acting on the
polar proteinmolecules. At low electrical frequencies the
orienting torque acting on both the protein and water
molecules is sufficient to overcome Brownian motions
and frictional forces, so that the protein solution exhibits
a permittivity larger than that for pure water. As the fre-
quency is increased, to where the rate of reversal of the

ε′

100

75

50

25

125

0
109 1010 1011 1012108107

Frequency (Hz)
106105

Protein

Water

Δεo

Δε∞

ΔεT

β

γ

εw

εw∞

εhf

εlf

Figure . Typical dielectric dispersion exhibited by an aqueous
protein solution. The dipole moment is calculated from the value
of the total increment Δ𝜀T, equal to the sum of the increment Δ𝜀o
and decrement Δ𝜀∞. In the literature the dispersions exhibited by
the protein and water are often termed as the 𝛽-dispersion and
𝛾-dispersion, respectively.
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field approaches and then exceeds the fluctuation rate of
the Brownian motions, the permittivity decreases. With
a further increase of the frequency the dispersion of the
solvent water molecules is observed. In the literature
the dispersion exhibited by the polar protein molecule is
often called the 𝛽-dispersion and the term 𝛾-dispersion
is used for the bulk water dispersion. Using the constants
indicated in Figure 8.18, the 𝛽-dispersion obeys a Debye-
type relaxation given by:

𝜀′ = 𝜀hf +
Δ𝜀T

1 + 𝜔2𝜏2p
(8.16)

where 𝜏p is the characteristic relaxation time of the pro-
tein molecule.
Analysis of the relaxation times can provide an indi-

cation of the size and shape of a protein molecule. By
considering proteins to be ellipsoids of revolution, having
semiaxes a, b, b, Oncley [54] assumed that there would
be two characteristic relaxation times: 𝜏a for orientation
involving rotation of the a-axis around the b-axis and
𝜏b for rotation of the b-axis about the a-axis. Using the
results of Perrin’s analysis [55] of the diffusion constants
of ellipsoids in viscous media, Oncley derived these two
relaxation times in terms of the ratio a/b of the semiaxes
of the ellipsoid and the relaxation time 𝜏o of a sphere of
the same volume, with 𝜏a given by:

𝜏o =
4𝜋𝜂 a b2

k T
(8.17)

In his summary of the relaxation times of 19 amino
acids and peptides, Oncley [54] found that the dielec-
tric relaxation times for glycine and 𝛼-alanine were about
10% smaller than that predicted by Equation (8.17),
but with increasing molecular size the relaxation times
became increasingly larger than expected, but by never
more than 50%. Whereas it might be expected that the
amino acids and peptides molecules, being not much
larger than the solvent watermolecules, will not conform
very closely to theDebye rotationalmodel given by Equa-
tion (7.20) this should not be the case for the much larger
protein molecules. Assuming that protein molecules in
solution behave hydrodynamically as rigid ellipsoids of
revolution generated by rotating an ellipse with semiaxes
of length a and b about the a-axis and that the dipole
moment is directed in a fixed direction with respect to
these axes, the characteristic relaxation times are given
from Perrin’s work [55] as:

𝜏i =
4𝜋𝜂ab2

kT
Pi(a∕b) =

3V𝜂

kT
Pi(a∕b) (8.18)

In this equation, the subscript i refers to the relaxation
of either the a- or b-axis about the other, withV being the

effective volume of the protein molecule. The two func-
tions Pi(a/b) depend only on the axial ratio a/b. Depend-
ing on whether ellipses are rotated about their minor
or major axis, the resulting surfaces are either prolate
or oblate. The situation a > b corresponds to a prolate
spheroid (similar to the shape of a rugby ball or Amer-
ican football), whereas a < b corresponds to an oblate
(squashed soccer ball shape) spheroid. As shown in Fig-
ure 8.19, two curves can be drawn of the possible com-
binations of axial ratio and the effective molecular vol-
ume V. These two curves correspond to the assumption
that the measured relaxation time is associated with the
rotation of one of the principal axes, with the molecu-
lar dipole moment pointing along the rotating axis. In
general the dipole moment orientation does not coincide
with the axis direction and a curve lying between the two
shown in Figure 8.19 is the more appropriate, since the
dipole moment will have a component along each axis.
An example of the application of Perrin’s functions

is the analysis of the dielectric data obtained for sperm
whale myoglobin by South and Grant [48]. From mea-
surements of the 𝛽-dispersion for myoglobin solutions
as a function of protein concentration, fluid viscosity and
temperature, a value of 30 ± 3 ns was obtained for the
relaxation time 𝜏p in Equation (8.16) at 20 ◦C. According
to Equation (8.17) this gives an effective molecular
volume of 41 nm3. However, from the X-ray diffraction
analysis of myoglobin by Kendrew et al. [56] it is known
that this protein is an oblate spheroid of molecular
volume around 15 nm3. From Figure 8.19(b) this implies
an axial rati b/a of about 5. However, the X-ray data
indicated an axial ratio of 2, which from Figure 8.19 gives
the effective molecular volume to be around 35 nm3. An
increase in effective volume of ∼20 nm3 is compatible
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Figure . (a) Plots of the Perrin functions of axial ratio (b/a)
against effective molecular volume for ellipsoids with rotations
about either the a- or b-axis [55]. (b) The Perrin plot for whale
myoglobin, which is an oblate spheroidal protein. The dashed
lines indicate the molecular volume and axial ratio determined by
X-ray diffraction [56]. An analysis of the 𝛽-dispersion gives a
volume of 41 nm3 [48].
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with a hydration ‘layer’ of about two water molecules
thickness, which rotates with the myoglobin molecule.
To derive the protein dipole moment from the

observed dielectric increment Δ𝜀T (see Figure 8.18)
Oncley [54, 57] employed the following relationship
(after conversion from esu to SI units):

bNA p2

9000𝜀o k T
= Δ𝜀T

M
cg

(8.19)

where cg is the protein concentration in grams per litre
and b is an empirical parameter taken to be equal to 5.8.
This requires some explanation. We first note that the
parameter N in Equation (6.34) in Box 6.7 is the num-
ber density per unit volume (cm3) of polar molecules in a
pure polar liquid and this is given by N = NA𝜌/M, where
NA is Avogadro’s constant, with 𝜌 the density (g/mL)
of the pure polar liquid and M the molecular weight of
the polar molecules. For Equation (8.19) we require the
equivalent number density of protein molecules per cm3

(NAcg/1000M), with M the molecular weight of the pro-
tein molecule and cg the protein concentration in grams
per litre. The introduction of the empirical parameter
b is based on the examination by Wyman of dielectric
measurements for 141 polar liquids, for which dipole
moments had already been evaluated in their vapour
state or as dilute solutions in nonpolar solvents [58].
Wyman [58] concluded that for these liquids an empir-
ical relationship existed between their values of relative
permittivity and volume polarization Pv of the form:

Pv =
(𝜀m + 1)

A
Expressed as a molar polarization, this relationship

takes the form:

PM =
(𝜀m + 1)

A
M
𝜌

(8.20)

For a large number of the liquids A = ∼8.5, with upper
and lower bounds of 11 and 6.2, respectively. This find-
ing demonstrated conclusively the inadequacy of the
Clausius–Mossotti factor to describe the molar polar-
ization, as given by Equation (6.12). The empirical rela-
tionship of Equation (8.20) can be compared with the
molar polarization derived theoretically by Onsager to
take account of the reaction field created by induced
polarization of the surrounding solvent dipoles:

PM =
(𝜀m − 𝜀m∞)(2𝜀m + 𝜀m∞)

𝜀m(𝜀m∞ + 2)2
M
𝜌

(8.21)

For aqueous protein solutions, 𝜀m ≫ 𝜀m∞ and so from
Equations (8.20) and (8.21) the following approximate
relationship can be made:

𝜀m
A

=
2𝜀m

(𝜀m∞ + 2)2
i.e.,A =

(𝜀m∞ + 2)2

2
(8.22)

The typical value of A = 8.5 found byWyman [58] cor-
responds to 𝜀m∞ = 2.13 (or a refractive index of 1.46).The
upper and lower bounds for A of 11 and 6.2, corresponds
to 𝜀m∞ ranging between 1.63 and 2.69 (i.e., refractive
indices ranging from 1.28 to 1.64).These results compare
favourably with the value 𝜀m∞ = 1.77 (refractive index
of 1.33) employed by Oster and Kirkwood [22] in evalu-
ating the value for the correlation factor g. The factor b
in Oncley’s equation (8.19) thus represents an empirical
way to correct for internal field effects.
As we noted in the derivation of Onsager’s equa-

tion (6.35), the local field is a sum of the Lorentz
cavity field and Onsager’s reaction field. The reaction
field arises from polarization of surrounding solvent
molecules, which in turn polarizes the protein molecule
and increases its dipole moment. Oncley found that the
dielectric behaviour of carboxyhaemoglobin at the lower
frequencies was similar to that of amino acids and pep-
tides. For example, the low frequency dielectric incre-
ment (on a gram per mL basis) for the protein was found
to be 0.33, close to that of 0.30 obtained for glycine.
Oncley chose b = 5.8, as he states ‘until more adequate
theoretical grounds are available’, because this value in
Equation (8.19) resulted in a dipole moment value for
glycine of 15 debye units. This is a value in close agree-
ment with those obtained by methods other than dielec-
tric spectroscopy (e.g., solvent action of neutral salts on
glycine; freezing point measurements; calculation based
on distance between the negative and positive charges).
Oncley’s measurements upon a series of solutions of
crystallized horse carboxyhaemoglobin yielded consis-
tent values of Δ𝜀o = 0.33, Δ𝜀∞ = 0.11 and a critical
frequency of 1.9MHz (i.e., 𝜏 = 8.4 × 10−8 s). Based on
a molecular weight value of 66 700 and application of
the empirical Equation (8.19), this gave a dipole moment
value of 480 debye units for that proteinmolecule.Oncley
went on to establish the dipole moments for various
other proteins: egg albumin (250 D); horse serum albu-
min (380 D); horse serum pseudoglobulin-𝛾 (1100 D);
edestin (1400 D) [54].
Dipole moment values for other proteins in aqueous

solution are presented in Table 8.13. In this Table the
order of the proteins is given according to molecular
weight. There is no obvious correlation between the
dipolemoment value andmolecularweight.This is in line
with the finding of Barlow andThornton who studied the
distributions of charged groups in 32 proteins of known
three-dimensional structure [63]. It was found that these
proteins exhibited a wide variety of charge distributions,
ranging from the highly symmetric to the highly asym-
metric. In the majority of proteins that interact with a
highly charged ligand, the charge distributions were rela-
tively asymmetric and the dipoles acted in the right sense
to aid ligand binding. The major contribution to protein
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dipoles was concluded to be from formally charged
groups. The moments along the polypeptide backbone
are only significant for the alpha- and beta-structures
(see Figure 8.16), where the helix dipoles are aligned and
tend to reduce the overall molecular dipole moment.
From Equation (8.19) Oncley’s empirical equation

gives the dipole moment p as:

p =

(
9000𝜀oMkT

bNA

Δ𝜀T
cg

)1∕2

(8.23)

The calculations of the dipole moment val-
ues given in Table 8.13 were based on this rela-
tionship, with the empirical approximation that
b = 4.5 (rather than 5.8). In some cases measure-
ments of Δ𝜀T are taken as a function of concentration
cg. If this does not produce a linear relationship, the
value of the so-called intrinsic dielectric increment,
Δ𝜀T/cg, extrapolated to zero cg is used in Equation (8.23)
[e.g., 49, 50]. In another form of this relationship (taking
b = 4.5) the dipole moment is calculated using the
formula

p =
(2𝜀oMkT𝛿

NA

)1∕2
(8.24)

where 𝛿 is the specific dielectric decrement, calculated
from the slope of a linear plot of Δ𝜀T versus protein
concentration c measured in kg m−3 (mg/mL). Exam-
ples in Table 8.13 of this approach are the moment
values calculated for myoglobin [48] and ribonucle-
ase [60]. Apart from the empirical approximation that
b = 4.5, Kirkwood’s correlation factor g given in Equa-
tion (8.5) is assigned a value of unity. This is probably
a good assumption, because local polarizations of the
solvent water molecules are likely to cancel each other
when averaged over the protein’s relatively large surface
area.
It should also be remarked that the theory devised

by Buckingham [64] and described in Chapter 6, does
not appear to have been applied to the calculation of
the dipole moments of proteins.TheOnsager–Kirkwood
theory places the polar molecule, in the form of a point
dipole rather than an assembly of charges, into a spher-
ical cavity. A spherical cavity could be quite unsatis-
factory for some of the oblate (or prolate) spheroidal
proteins and the shape factors included in Bucking-
ham’s theory could provide a useful improvement on
what has been applied so far to the calculation of
protein dipole moments. Despite doubts that can be
expressed regarding the accuracy of the moment values
given in the literature, it is encouraging and also quite
remarkable to find that good agreement exists between

Table . Comparisons of the calculated with measured dipole
moments for various proteins. The calculated value is the vectorial
sum of the moment due to fixed charges at the isoelectric point
and the core moment arising from the main polypeptide chain
and side chains [50].

Calculated moment (D) []

Protein Charges Core (𝜽) Sum Measured (D)

Phospholipase 130 34
(104◦)

125 141 [50]

Cytochrome-c 267 49
(138◦)

233 235 [50]

Ribonuclease 295 19 (85◦) 331 350 [59]
Lysozyme 127 61 (92◦) 138 122 [50]
Myoglobin 247 57

(148◦)
199 195 [60]

Trypsin 295 62 (95◦) 296 271 [50]
Carboxypeptidase 473 152 (2◦) 624 637 [50]
Concanavaline 432 22 (79◦) 436 411 [50]

the experimental values and those computed from the
known distributions of charges and bond moments in
the protein structures. This fact is demonstrated in
Table 8.14.
The calculations by Takashima and Asami [50] pre-

sented in Table 8.14 were performed at the isoelectric
pH of each protein, where the effective positive and
negative charges are equal. In addition to the dipole
moment due to these fixed surface charges, the core pro-
tein moments were also calculated by vectorially sum-
ming main-chain and side-chain carbonyl moments.The
peptide residue moments could not be used because X-
ray analyses do not provide the coordinates of H atoms,
making it impossible to find the direction of the NH
bonds.The total computedmoment values given in Table
8.14 were obtained by the vectorial sum of the fixed
charge and core moments, using the calculated angle (𝜃)
between the fixed charge and core dipole moments. The
distance between the negative and positive charge cen-
tres were also computed and these were found to be very
small compared to the diameter of the protein molecule.
This demonstrates that the surface positive and nega-
tive charges are randomly distributed. For lysozyme, for
example, the charge centre separations were found to be
almost zero. It is also interesting to note from Table 8.14
that none of the core moments were found to be zero.
This means, despite the presence of large segments of
random coil configurations in these globular proteins,
that the spatial orientations of the carbonyl bonds in the
main chain and side chainsmaintain a certain level of reg-
ularity.
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Figure . Dielectric dispersions exhibited by: (a) 20 mg/ml
haemoglobin, Δ𝜀T = 7.2 [49], (b) 150 mg/ml myoglobin, Δ𝜀T = 18
[48], (c) 9.9 g/L cytochrome-c, Δ𝜀T = 29.5 [50].

Example 8.7 Calculating the Dipole Moment of a
Protein from its 𝛽-Dispersion
The 𝛽-dispersions for three protein solutions are shown
in Figure 8.20. Calculate the dipole moments of these
proteins using the information provided.

Solution 8.7 Equation (8.24) can be given in the form:

p =
(2𝜀o kT

NA

)1∕2
(M𝛿)1∕2 = A (M𝛿)1∕2 C.m

Using the following values: 𝜀o = 8.854 × 10−23 F m−1,
k = 8.854 × 10−23 J K−1, T = 298K, NA = 6.022 × 1023,
the parameter A = 3.48 × 10−28 C.m−1/2. (The Tables in
Appendices A and Dmay be used to check the veracity of
these stated dimensions.) The information given in Fig-
ure 8.20, together with the grammolecular weights cited
in Table 8.13, are tabulated below. To give the correct
dimensions of dipole moment, the value for the incre-
ment 𝛿 are calculated in units of m3g−1.

Protein M Δ𝜀T 𝛿 (mg−)
(M𝛿)/

(m/)
A(M𝛿)/

(C.m)
Moment
(debye)

Haemoglobin 64 000 7.2 3.59 × 10−4 1.43 1.67 × 10−27 501
Myoglobin 17 000 18.0 1.20 × 10−4 5.03 4.97 × 10−28 149
Cytochrome-c 13 000 29.5 3.02 × 10−4 1.98 6.90 × 10−28 207

There is close agreement obtained above for the dipole
moments of haemoglobin and myoglobin with the val-
ues cited in Table 8.13. However, there is a significant
discrepancy between the value of 207D given above
for cytochrome-c and that (235D) cited by Takashima
and Asami [50]. The reason for this is that the value of
the specific increment depended markedly on the pro-
tein concentration.When themeasured increments were
extrapolated to zero concentration, a value of 0.515 L g−1

(rather than 0.302 used above) was obtained for the
intrinsic decrement [50].

Example 8.8 The Conductivity Increment accompa-
nying the 𝛽-Dispersion for Cytochrome-c
The critical frequency (i.e., relaxation frequency) of the
cytochrome-c dispersion shown in Figure 8.20 is 8MHz.
Calculate the magnitude of the conductivity change Δ𝜎

over the frequency range that defines the 𝛽-dispersion for
this protein.

Solution 8.8 The relationship between the permittivity
increment and conductivity change is given by Equation
(7.18):

Δ𝜀′ = 𝜏Δ𝜎′

To match permittivity units (F m−1) with conductivity
units (S m−1) this relationship takes the form:

Δ𝜎′ = (𝜀oΔ𝜀′)∕𝜏 = (8.854 × 10−12Δ𝜀′)2𝜋fcr
where fcr is the point of inflection of the dispersion curve
(i.e., the critical frequency at 8MHz). Inserting the value
Δ𝜀′ = 29.5 and fcr = 8MHz into this equation gives
Δ𝜎′ = 13.1mS m−1. The reported conductivities of the
cytochrome-c solutions were ∼100mS m−1 [50]. The
conductivity increment related to the 𝛽-dispersion thus
represents a 13% change of the protein solution conduc-
tivity, which is quite significant.

8.4.2.2 Protein Hydration
In one of the earliest reports of the physicochemical
properties of a protein, Sorensen [65] asked ‘Does crys-
tallized egg-albumin contain water?’ Following a detailed
compositional analysis, he found that such samples con-
tain about 0.22 g water per g water-free egg albumin.
In later work, he gives the water content of crystallized
haemoglobin as 0.35 g/g [66]. It is now known that pro-
tein molecules can have from 0.20 to 0.70 g strongly
associated (bound) water per gram of protein. Through
modern x-ray and neutron diffraction studies we have
for some proteins a detailed knowledge of the location
and bonding of much of this water. By using the latest
high-resolution NMR techniques, we can even identify
individual molecules of hydration water and character-
ize their binding sites on the protein molecule. Thus, in
general and as a convenient method of classification, two
kinds of water molecules associated with proteins have
been identified: internal water and peripheral water. The
internal water molecules, which form an integral part of
a protein structure, diminish local charge-charge interac-
tions and reduce destabilizing effects that arise from oth-
erwise unbonded proton donors and acceptors [67]. As a
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rough gauge of the upper limit of internal water, we can
consider the small enzyme pancreatic trypsin inhibitor
(mol wt 6700), which contains four internal waters [67].
As this represents a hydration content of 1.07 wt%, we
can conclude that most of the water ‘bound’ to pro-
teins is associated with the protein surface. Parentheses
have been placed around the word bound because this
hydration content should not be thought of as a solid
shell of water. These waters of hydration have residence
times and exchange with bulk water in time scales typ-
ically ranging from tens of nanoseconds to microsec-
onds, as well as being highly mobile in terms of reori-
entation and translational mobility. In what follows the
terms ‘bound water’ and ‘hydration shell’ will sometimes
be used, merely as a way to distinguish this component of
water from the bulk water in aqueous protein solutions.
In a footnote to his paper, Oncley [57] suggests that

the value of Δ𝜀∞ might be used to calculate the amount
of water associated with the protein molecule. This pro-
tein hydration or ‘bound’ water is commonly defined as
the weight of water carried through the solution by unit
weight of protein in sedimentation, diffusion and elec-
trophoresis experiments. In our case we broaden this
definition to include the amount of water that remains
associated with a protein molecule during electric field
induced rotations. Not all of this hydration should be
considered to be irrotationally bound water – a propor-
tion of it may be capable of hindered reorientations that
contribute to the overall polarizability of a protein solu-
tion.
Oncley’s logic was that the decrement Δ𝜀∞ gives a

measure of the extent to which at high frequencies the
protein molecule and its associated water behaves as a
particle of low permittivity. The volume occupied by the
protein and its associated hydration has a lower polar-
izability than the bulk water it has displaced and so the
permittivity 𝜀hf at high frequencies, leading up to the
𝛾-dispersion, is therefore proportional to the remaining
water. Defining v as the volume of water displaced by one
gram of anhydrous protein, with 𝜀w and 𝜀w∞ defining the
dispersion of normal bulk water as shown in Figure 8.18,
we have the following relationships

(𝜀hf − 𝜀w∞) = (𝜀w − 𝜀w∞)(1 − vc)
Δ𝜀∞∕c = (𝜀w − 𝜀w∞)v

where c is the concentration of the protein in grams per
litre.Thepartial specific volume vsp of the anhydrous pro-
tein can also be defined as:

vsp = v − w∕𝜌w

where w is the gram mass of water bound to the protein
and 𝜌w is the density of the water. Using his measured
value of Δ𝜀∞ = 0.11 per gram of protein, with vp = 0.75,

Oncley obtained the value for w as about 0.6 g of water
per gram of carboxyhaemoglobin [57]. This approach
neglects possible interactions between protein dipoles,
as well as the facts that the protein molecules are not
dispersed in a homogeneous dielectric and have inter-
nal fields that depend on their shapes. These aspects are
treated in various so-calledmixture theories, an excellent
review of which is given by Reynolds and Hough [68].
As correctly conceived by Oncley, at frequencies above
the 𝛽-dispersion the protein with its bound water can
be considered as a spheroidal cavity of low permittiv-
ity suspended in a fluid of high permittivity. Two gen-
eral formulae to describe the dielectric properties ofmix-
tures of this form are formulated in Box 8.2. Equation
(8.25a) is considered [68] appropriate for the case of
small particles dispersed in a continuous medium and
this is relevant to protein solutions. Equation (8.25b) is
more appropriate for the situation where the two com-
ponent volume fractions v1 and v2 are nearly the same
[68]. Equation (8.25a) is simplified when dealing with
dilute protein solutions (volume fraction v1) where inter-
actions between the dipole fields of the proteinmolecules
can be neglected and the permittivity 𝜀2 taken to be 𝜀w,
equivalent to that of bulk water. The internal (depolar-
izing) field factor f1 is obtained using Equations (7.33)
and (7.34) for the case of prolate and oblate spheroids,
respectively.
A version of themixture theory used by Buchanan et al.

[69] for low protein concentrations takes the form

𝜀mx = 𝜀w − 𝛽 vp(𝜀w − 𝜀p)

where vp and 𝜀p represent the volume fraction and per-
mittivity of the protein, respectively and 𝛽 is a parameter
that depends on the axial ratio of the protein spheroid.
This equation was derived directly from one developed
by Fricke [70] to describe the conductivity of mixtures
and incorporates the approximation that 𝜀w ≫ 𝜀p. For an
axial ratio of 1 (a sphere) 𝛽 = 1.5. The following relation-
ship was employed to find the weight of waterw per gram
of protein:

Δ𝜀∞
c

= 𝛽

[
(𝜀w − 𝜀p∞) vsp + (𝜀w − 𝜀w∞)w

100

]
where vsp is the partial specific volume of the anhydrous
protein, c the concentration in gram protein per 100mL
of solution and 𝜀p∞ is the high-frequency permittivity
of the protein (taken as ∼2). The following total hydra-
tion values (g per g protein) were obtained: lysozyme
(0.46); egg albumin (0.32); 𝛽-lactoglobulin (0.32);
methaemoglobin (0.32); bovine serum albumin (0.41).
Of this total hydration, amounts ranging from a third
to half were estimated to be water that is irrotationally
bound to the protein. A drawback of this approach is that
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Box . The Permittivity of Mixtures

A general formula for the permittivity of a molecular mix-
ture can readily be formulated, but as in most things the
difficulties lie in the details. If the mixture consist of two
components of permittivities 𝜀1 and 𝜀2 and occupy volume
fractions v1 and v2 (v1 + v2 = 1), the average electric displace-
ment ⟨D⟩ and average electric field ⟨E⟩ are given by:⟨D⟩ = v1 ⟨D1⟩ + v2 ⟨D2⟩ ; ⟨E⟩ = v1 ⟨E1⟩ + v2 ⟨E2⟩

Assume that the permittivity of the mixture is given by

𝜀mx =
⟨D⟩⟨E⟩ and that for each component

⟨D1⟩ = 𝜀1 ⟨E1⟩ ; ⟨D2⟩ = 𝜀2 ⟨E2⟩
From the above relationships for the average displacement
and field we then have

𝜀mx = 𝜀1 v1 f1 + 𝜀2 v2 f2

where v1 f1 + v2 f2 = 1; f1 =
⟨E1⟩⟨E⟩ and f2 =

⟨E2⟩⟨E⟩

From these relationships, we can derive two equivalent
and general formulae:

𝜀mx = 𝜀2 + (𝜀1 − 𝜀2) v1 f1 (8.25a)

and

(𝜀mx − 𝜀1) v1 f1 + (𝜀mx − 𝜀2) v2 f2 = 0 (8.25b)

The difficulty in the details is finding appropriate values
for f1 and f2, as well accounting for possible interactions
between the components. Equations (8.26a and b) should
theoretically give the same result, but in practice this is not
so because of the different approximations often required
for factors f1 and f2. Unfortunately, it is only possible to
obtain exact values for these factors for the case of paral-
lel slabs, or for very dilute suspensions of particles of ellip-
soidal shape. Otherwise, only approximate values can be
assigned to f1 and f2.

no knowledge is gained of the separate polarizabilities
(i.e., effective permittivities) of the protein molecule
itself and of its bound hydration. The derived hydration
values are critically dependent on the assumed values
for these two parameters [1, pp. 195–197].
The following variation of Fricke’s formula

Δ∞
3𝜀w

=
𝜀w − 𝜀eff

𝜀eff + 2𝜀w
vp (8.26)

was employed by South andGrant [48] to derive the effec-
tive permittivity value 𝜀eff of myoglobin, using the mea-
sured value for Δ𝜀∞/vp of 0.040m3/kg. Based on mea-
surements of the relaxation time and Equation (8.18) the
total volume of the protein molecule and its hydration
coverage was calculated to be 40 nm3, which from Equa-
tion (8.25) results in a value 𝜀eff = 54 for the effective
permittivity of the myoglobin molecule. It may now be
assumed that the proteinmolecule is made up of a sphere
of volume vp and static permittivity 𝜀p surrounded by
a region of hydration of permittivity 𝜀hs to give a total
volume V. The following equation, derived by Schwan
[1, p. 197], relates these various parameters:

𝜀eff − 𝜀sh

𝜀eff + 2𝜀sh
=

vp
V

𝜀p − 𝜀sh

𝜀p + 2𝜀sh
South andGrant assumed that 𝜀p is governed by atomic

and electronic polarization only, so that its value would
be much less than that, 𝜀hs, of the hydration ‘shell’. On
this basis the value 𝜀hs = 103 was predicted, in close
agreement to that found previously for haemoglobin [71].

However, Pitera et al. [72] have computed the static per-
mittivity 𝜀p for four different proteins, simulated under at
least two different conditions of pH, temperature, solva-
tion, or ligand binding. These computations made use of
Equation (7.24) devised by Fröhlich and involved calcu-
lations of dipole moment fluctuations per unit volume as
a function of time up to 5 ns. In agreement with previous
computations [73–76] it was found that the behaviour
of the charged residues is the primary determinant of
the effective permittivity. For example, the relative per-
mittivity for the whole lysozyme molecule was found to
be 25.7, in contrast to values of roughly 2.6 and 1.9 for
the protein without charged groups or just the polypep-
tide backbone on its own, respectively [72]. Furthermore,
only environmental changes that alter the properties of
charged residues exert a significant effect on the permit-
tivity value. In contrast, buried water molecules or lig-
ands have little or no effect on protein dielectric proper-
ties.The permittivity values obtained for the other whole
proteins were: 𝛼-lactalbumin (12.6 at pH 2.0,∼16.2 at pH
8.0; rat fatty acid binding protein (∼40.7); the llama anti-
body heavy-chain variable domain (17.2). Simonson [77]
performed molecular dynamic simulations for the two
small proteins, the SH3 domain in the viral adaptor pro-
tein v-Crk (57 amino acids) and Staphylococcal nuclease
(136 amino acids), obtaining relative permittivity values
of 21.6 and 16.0, respectively. These relative permittivity
values for the whole protein molecule, ranging from 12.6
to 40.7, brings into question the very low value assumed
for anhydrous myoglobin by South and Grant and the
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effective value of 54 found for this molecule with its
accompanying hydration [48]. Relative permittivity val-
ues of ∼100 obtained for the hydration ‘shells’ of myo-
globin and haemoglobin [48, 71] can be taken as an over-
estimate.

8.4.2.3 The 𝜹-Dispersion and Protein Hydration
Small dispersions, collectively known as the 𝛿-dispersion,
have been identified in the frequency range from around
100MHz to 1GHz (i.e., between the 𝛽-dispersion and
the 𝛾-dispersion shown in Figure 8.18). The literature on
this is extensive (e.g., 78–94) and only a broad outline
of it will be presented here, concentrating on the more
recent works and conclusions. We find that this remains
an active research area with unsettled questions.
The first indications of an additional dispersion around

100MHz for protein solutions were observed in Hasted’s
laboratory [69, 78] and later confirmed by Grant and
his colleagues [79, 81, 83–85]. The general consensus
is that the 𝛿-dispersion results from the relaxations of
water molecules in the hydration coverage of a protein,
but the possibility of contributions from other effects
should also be considered. For example, the 𝛿-dispersion
appears to encompass at least two relaxation processes
[84,85, 93] with the possibility that intraprotein motions
are involved [82, 84, 91] as well as a glass transition of
the protein structure [92]. It should also be taken into
account that even in simple solutions, those far less com-
plicated than protein solutions, a great variety of dielec-
tric effects occur [86]. For protein solutions, where dif-
ferent polarization mechanisms overlap, it is particularly
difficult to unambiguously identify the origins of specific
relaxations.
Muira et al. [87] conclude that the 𝛿-dispersion

around 100MHz is caused by orientation of bound water
molecules on the protein surface, supplemented by fluc-
tuations of surface polar side groups. They also suggest
that although the 𝛽-dispersion results from the rotation
of the protein molecule, for proteins of relatively high
molecular weight there is also a contribution from the
migration of counter ions on the protein’s surface. In later
work [88] this group also studied the freezing of globular
protein solutions bymicrowave dielectricmeasurements.
They identified three classes of water, namely: bulk water,
which freezes at −5 ◦C; unfreezable water, which forms a
hydration component of 0.36 g water per gram protein
around the protein molecule; water firmly attached to
the protein surface. The amount of the attached water
remains constant with changes in temperature but its
relaxation ceases below −60 ◦C.
Oleinikova et al. [91], in a paper with the interest-

ing part title ‘What can really be learned from dielectric

spectroscopy of protein solutions?’ found that the dielec-
tric spectrum exhibited by ribonuclease solutions in the
MHz–GHz range could be decomposed into five modes
of Debye type diffusive behaviour. Whereas they give the
standard interpretation of the dominant 𝛽-relaxation and
𝛾-relaxation (protein ‘tumbling’ and bulk water relax-
ation, respectively) they make a significant departure in
terms of the 𝛿-dispersion. Instead of a single or pos-
sibly double mode of relaxation, Oleinikova et al. find
three modes. They attribute the high frequency compo-
nent (𝛿3), having a relaxation time near 40 ps, to hydra-
tion water reorientation. This corresponds to what can
be described as loosely bound water. They also declare
that the existence of tightly bound water, often deduced
from the low frequency part in the nanosecond regime
(𝛿1), is inconsistent with a highly mobile hydration layer
observed by NMR techniques and molecular dynam-
ics simulations. The notion that the 𝛿-relaxation can be
attributed to the exchange of hydration water molecules
with bulk water molecules is also rejected, in favour
of a process involving protein-water crosscorrelations.
A contribution from the displacement or diffusion of
counterions at the charged protein surface was also dis-
counted. Component 𝛿2 near 500MHz is discussed in
terms of intraprotein motions superimposed on protein
tumbling. Finally, Oleinikova et al. [91] found that as the
protein concentration of their solutions increased from
0.5 to 6 wt%, the effective dipole moment of the protein
decreased. This effect was attributed to protein-protein
interactions.
Wolf et al. [93] report a detailed study of two con-

centrations of aqueous lysozyme solutions in the fre-
quency range from 1MHz to 40GHz and for tempera-
tures from 275 to 330K. A well pronounced 𝛿-dispersion
was measured, together with detailed information on its
temperature dependence.The complete broadband spec-
trum could be fitted using a Debye function for the 𝛽-
dispersion around 10MHz, a Cole–Cole function for the
𝛾-relaxation of the bulk water around 20GHz and the 𝛿-
dispersion around 100MHz was well described by a sin-
gle Cole–Cole function.The temperature dependences of
the 𝛽- and 𝛾-relaxations were found to be closely corre-
lated. A significant temperature dependence of the dipole
moment of the protein was attributed to conformational
changes. Very interesting results and conclusions were
obtained frommeasurements of the temperature depen-
dence of the dc conductivity arising from ionic charge
transport. A breakdown of the Debye–Stokes–Einstein
relation was found, indicating that the dc conductivity
was not completely governed by the mobility of the sol-
vent molecules, but instead is closely connected to the
dynamics of the hydration coverage around the protein.
An unexpected and unexplained finding was that the
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ionic charge transport and the 𝛿-relaxation were deter-
mined by identical energy barriers.

8.4.2.4 Other Interpretations of the 𝜷-Dispersion
At the time when Oncley and others were employing
Debye’s concept of a permanent dipole moment that
relaxes according to his rotation model, a strange sce-
nario developed. For Debye himself had appeared to dis-
claim such an interpretation of the 𝛽-dispersion exhib-
ited by protein solutions! In 1928, with Falkenhagen [95],
he proposed an alternative ion atmosphere model. In
this model the protein molecule exists within a cloud of
countercharge ions, so that the dispersion arises from
field-induced displacement of these ions from the cen-
tre of charge of the protein.Thismodel predicted that the
dielectric relaxation time 𝜏 should vary inversely with the
ionic strength of the protein solution. However, in 1972,
South and Grant [48] demonstrated that the dielectric
relaxation time for myoglobin was only weakly depen-
dent on the solution conductivity (i.e., ionic strength). It
was found after electrodialysis of the solution to remove
small ions, leaving only two or three ions per protein
molecule (hardly an ‘ionic atmosphere’), that the dielec-
tric properties of the myoglobinmolecule did not change
to any significant extent [48]. After Oncley’s work in
1942 other models were also proposed to account for
the dielectric dispersions exhibited by proteins. These
included the proton fluctuation model of Kirkwood and
Shumaker [96] where the dispersion arises from the field
induced redistribution of protons between the neutral
and charged basic groups on the protein surface to which

protons can bind; the structured water model proposal
by Jacobson [97] where the hydration around the pro-
tein is responsible for the dispersion and not the protein
molecule itself; the interfacial surface conductivitymodel
proposed by O’Konski [98]; the Maxwell–Wagner inter-
facial polarization model applied to protein solutions
proposed by Schwan [1, pp. 188–189]; the ion mobility
model proposed by Schwarz [99].
Although these variousmodels are notwithout interest

and are of broad relevance to biodielectrics (but seem-
ingly not to the interpretation of the dielectric proper-
ties of proteins), it serves no purpose to describe them
any further here. For those interested in more details, the
paper by South and Grant [48] is highly recommended.
They described each of themodels in detail, a summary of
which is given in Table 8.15. One by one through careful
logic and experimental evidence they convincingly dis-
counted each model and concluded that Debye’s dipole
moment theory and rotationmodel provides the best way
to interpret the 𝛽-relaxation exhibited by protein solu-
tions.

. Nucleic Acids

Nucleic acids are responsible for storing the information
and instructing the cell on the proteins it should syn-
thesize. The two information-storing molecules in cells
are deoxyribonucleic acid (DNA) and ribonucleic acid
(RNA). Proteins are polymers constructed from 20 dif-
ferent monomers (the amino acids) but DNA and RNA

Table . Summary given by South and Grant [48] of the Debye rotating dipole model and alternative mechanisms proposed to
describe the 𝛽-dispersion exhibited by protein solutions.

Mechanism Quantitative theoretical treatments
Increment Δ𝜀T Relaxation time 𝜏

Debye rotation const. x
p2

MT
4𝜋R3𝜂

kT
Ion atmosphere [95] const.

c1∕2
− const. const.

cions × sw
Proton fluctuation [96] const.

∑
i

r2i

2 + [H+]
Ki

+
Ki

[H+]

None available

Structured water [97] None available None available

Maxwell–Wagner [1] 9vp
(𝜀wsp − 𝜀psw)2

(𝜀p + 2𝜀w)(sp + 2sw)2
𝜀p + 2𝜀w
sp + 2sw

Surface conductivity [98] as for Maxwell–Wagner, with sp replaced by sp +
2𝜆
R

Ion mobility [99] 9
4
9vp

vp(
1 + 1

2
vp
)2

R2

2ukT

Note: Key to notation not already used in this chapter: s = 𝜎𝜀−1o (units of reciprocal second) where 𝜎 is the conductivity. Suffices w and p refer to
the solvent (water) and protein, respectively. Characters u and 𝜆 refer to surface ion mobility and surface conductivity, respectively.
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Figure . A nucleotide consists of a ‘base’ linked to a phosphate
group by a five-carbon sugar (pentose) molecule.

consist of just four monomers – called nucleotides. As
shown in Figure 8.21, a nucleotide is composed of a
phosphate group (P) and a ‘base’ linked together by a
five-carbon sugar (pentose) molecule. The bases found
in DNA are adenine, guanine, cytosine and thymine,
conventionally abbreviated as A, G, C and T. In RNA the
thymine base (T) is replaced by uracil (U). In DNA the
pentose sugar molecule is deoxyribose, whereas in RNA
it is ribose.
Nucleic acids consist of chains of nucleotides formed in

a condensation reaction to create a phosphodiester bond,
in which a water molecule is released. This is equivalent
to the creation of a glycosidic bond between sugars or of
a peptide bond between amino acids. Two nucleotides
joined by such a bond forms a dinucleotide. A trinu-
cleotide represents a single strand of DNA containing
three nucleotides and so on, as more phosphodiester
bonds are created. As more nucleotides are added, a long
DNA single strand is produced having a defined chemi-
cal orientation. One end (the so-called 3′ end) of a DNA
strand has a free hydroxyl group (attached to carbon 3
of the sugar), whilst the other end (the 5′ end) has a
phosphate group. This orientation has important impli-
cations regarding the properties of DNA.Thebiologically
native state of DNA is a double helix composed of two
intertwined single strands of DNA. This is depicted in
Figure 8.22.
The two single strands of DNA in the double helix

structure proceed from carbon 5′ to 3′ , but are directed
in opposing directions, as shown in Figures 8.22 and
8.23. The two DNA strands are held together by hydro-
gen bonds linking their bases and only if the two strands
of the helix are antiparallel can the members of each
base pair fit together within the double helix. The two
DNA strands can, in theory, form either a right-handed
or left-handed helix, but the structure of the sugar-
phosphate backbone is such that the right-handed helix is
the more favourable geometry. As first proposed byWat-
son and Crick [100] (with their famous understatement:
‘It has not escaped our notice that the specific pairing we
have postulated immediately suggests a possible copying
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Figure . A schematic of the B-DNA, the most common form of
the DNA double helix, based on Watson and Crick [100]. The two
backbone strands are directed in opposite directions, with the
base pairs stacked with their molecular plane perpendicular to the
helical axis. The B-DNA molecule should not therefore possess a
permanent dipole moment.

mechanism for the genetic material.’) the size, shape and
chemical composition of the bases dictates that base A is
always paired with T, and G is paired with C. As shown
in Figure 8.23 the A-T pair is held together by two hydro-
gen bonds and the G-C pair by three. To break the G-
C pair thus requires more energy (87.9 kJ/mol) than that
required to break the A-T pair (50.6 kJ/mol) [101]. This
difference is reflected in the finer details of how the DNA
polymer is copied. X-ray studies have determined that the
stacked bases are regularly spaced 0.34 nm apart along
the helix and that the length of one complete helix turn is
3.4 nm (to give∼10 pairs of bases per turn).Thehydrogen
bonds between the bases gives the double helix consider-
able stability and rigidity, but also allows the double helix
a good degree of flexibility, enabling long DNA chains
to coil up to form supercoils or condensed structures of
very largemolecular weight.The polypeptide alpha-helix
shown in Figure 8.16 is far less flexible than a DNA chain
because the hydrogen bonds hold together adjacent parts
of the helix. An important feature to note in Figures 8.22
and 8.23 is the negative charge carried by the phosphate
groups when in aqueous solution at neutral pH. These
charges can be mapped on individual molecules of DNA
using Kelvin probe force microscopy [102]. Unlike pro-
teinmolecules, which possess either a net positive or neg-
ative charge at neutral pH depending on their amino acid
content, DNAmolecules have a net negative charge irre-
spective of their nucleotide content. A DNAmolecule in
aqueous solution is thus a polyelectrolyte, carrying a high
negative charge density surrounded by an equally large
cloud of positive counterions. When crystallized out of
solution DNA carries with it these counterions to form a
salt, such as the sodium or potassium salt of DNA. As the
pH is lowered belowpH5 theDNAdouble helix structure
begins to denature as cytosine bases, with a pKa ∼4.6,
become protonated [103, 104].
Whereas the number of amino acid residues in

proteins ranges from below one hundred to several
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Figure . A schematic of a segment of
double-stranded DNA to show the base-pair
complementarity of the adenine (A) -thymine (T) and
guanine (G) –cytosine (C) pairings. An important
electrical feature is the negative charge carried by each
phosphate group.

thousand, DNAmolecules are typically verymuch larger.
For example, the DNA molecule in the single chromo-
some of an E. coli bacterium comprises around five mil-
lion base pairs – a number defining the genome size
of E. coli. If it were to be fully stretched out this DNA
would have a length of ∼1.5mm – some three orders
of magnitude longer than the E. coli bacterium itself!
How does the chromosome package itself inside this bac-
terium? The secret lies in the flexibility of a DNA dou-
ble helix that allows it to coil and fold into a superhelix.
This can be simulated by continuously twisting an elas-
tic band and slowly bringing the ends together, so that
the twisted band first forms small coils that then pro-
ceed to curl into a tight knot. Human cells (apart from
red blood cells, which do not have a nucleus) contain 46
chromosomes, containing a total of 3.2 × 109 base pairs.
If the DNA from all 46 chromosomes of a single human
cell were to be connected and straightened out, its total
length would be ∼2m! Apart from the germ cells (eggs
and sperm) a typical human cell contains two copies of 22
of these chromosomes, numbered from 1 to 22 in order
of diminishing physical size. Females have twoXchromo-
somes and males one X and one Y chromosome to give a
total of 46 chromosomes.TheXchromosome is inherited
from the mother and the Y chromosome from the father.
The 22 chromosomes, plus the X and Y chromosome,
can be distinguished from one another by staining with
dyes that distinguish between DNA that is rich in either

A-T or G-C nucleotide base pairs. Each chromosome
type can be identified by the distinctive patterns of
coloured bands along them and chromosomal abnormal-
ities can be detected.
To assist in the packaging of this DNA into the nucleus

of a human cell it is wrapped around protein molecules,
called histones, to form structural units called nucleo-
somes that are spaced at regular intervals along the main
DNA chain, rather like beads on a string. Arrays of nucle-
osomes form chromatin fibres that are then further pack-
aged into chromosomes. This form of DNA packaging
occurs in cells with a nucleus (i.e., eukaryotic cells) but
not in those lacking a nucleus (prokaryotic cells) such as
bacteria, where typically the total DNA forms a large cir-
cular molecule. A gene corresponds to a stretch of DNA
that contains the sequential information for the produc-
tion of proteins or RNA chains that have functional roles
in the cell. Some stretches of DNAdo not encode for pro-
teins or RNA and, at present, a quite large percentage of
this so-called ‘junk’ DNA has no known biological func-
tion. The entirety of the genes and noncoding sequences
of DNA in a cell is called its genome. Many types of virus
do not possess DNA and instead their genome consists of
the coding information contained in another polynucleic
acid called RNA.
RNA is very similar to DNA but differs in a few

important structural details. RNA nucleotides contain
ribose (DNA contains deoxyribose – a type of ribose that
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lacks one oxygen atom) and has the base uracil rather
than thymine present in DNA. Thus, complimentary A-
U pairing occurs in a RNA molecule, rather than the
A-T pairing found in DNA. Also, whereas DNA takes
the form in a cell of a double-stranded helix, RNA is
single stranded. A RNA chain is thus much more flex-
ible than DNA, able to fold up into a variety of three-
dimensional shapes containing sections of single strand
loops and double helices wherever parallel strands are
able to form complimentary nucleotide base pairs. Some
of the shapes that RNAmolecules can adopt enable them
to performcatalytic functions.Different types of RNAare
central to the synthesis of proteins and are transcribed
from DNA by enzymes called RNA polymerases. These
enzymes bind to the DNA in the nucleus of eukaryotic
cells, separate the two strands of the nuclear DNA and
pair ribonucleotide bases to the template DNA strand
according to the Watson–Crick base pairing shown in
Figure 8.22 (with uracil replacing thymine). Thus, for
example, the action of RNA polymerase is to produce a
strand of RNAwith a nucleotide sequence CUGA (rather
than the sequence CTGA of a DNA strand if DNA poly-
merase had been in action). Many RNA polymerases
can act on a single strand of DNA at the same time
to speed up this transcription process. A type of RNA
called messenger RNA (mRNA) carries coding informa-
tion, obtained from the DNA template, in the form of tri-
nucleotide units called codons that each code for a single
amino acid. There are 43 = 64 different codon combina-
tions possible with a triplet codon of three nucleotides
and all 64 codons are assigned for either amino acids or
start and stop signals during translation of the mRNA
code into a polypeptide sequence. Because there are only
20 common amino acids, there is some redundancy in
the assignment of themRNA triplet codons. For example,
the triplet codons GGU, GGC, CGA, GGG are all used
for the synthesis of glycine, with codons UAA, UGA and
UAG used as instructions to stop the translation (syn-
thesis) process. In performing this process, strands of
mRNA interact in the cytoplasm with protein structures
called ribosomes (in recent years ribosomes have become
important targets in the search for new antibiotics to
fight the emergence of drug resistant bacteria). In eukary-
otic cells the mRNA is formed inside the nucleus and has
to pass through pores in the nuclear membrane to locate
organelles known as ribosomes in the cytoplasm. Ribo-
somes consist of proteins and ribosomal RNA polymers,
which together act as the molecular ‘machine’ to read
mRNA and to translate the information it carries into the
production of amino acid chains that form proteins. Dif-
ferent types of transfer RNA (tRNA) molecules mediate
this process by transferring a specific amino acid to the
growing peptide chain.The different tRNAmolecule can
be attached to only one type of amino acid and each one

contains a three base anticodon that can base pair to the
corresponding codon on the mRNA chain.
The statement ‘DNA makes RNA makes Protein’ sum-

marizes the so-called Central Dogma of Molecular Biol-
ogy, first enunciated by Francis Crick [105] and which
states that the sequential structural information stored
in a protein cannot be transferred to another protein or
to a nucleic acid. Crick used the word ‘dogma’ by way of a
catch phrase without realizing its implied interpretation
– in fact he wished his concept to be considered as an
hypothesis [106]. In living systems there are three major
classes of linear biopolymer, namely DNA, RNA and
proteins, whose monomer sequences encode informa-
tion. There are 9 conceivable direct transfers of informa-
tion possible between these three classes. The transfer of
information is assumed to be an error-free transfer where
the molecular sequence of one biopolymer is used as a
template to construct another biopolymer with a molec-
ular sequence that depends entirely on that template.
Transfers that can occur in all cells, known as general
transfers, are the three cases of DNA→DNA (DNA repli-
cation), DNA→RNA (transcription) and RNA→protein
(translation). Special transfers are ones that do not occur
in most cells but may occur in special circumstances,
such as in virus-infected cells and are the three cases of
RNA→RNA, RNA→DNA and DNA→protein. A known
example of the RNA-DNA transfer takes place in retro-
viruses, where DNA is synthesized using RNA as a tem-
plate. An enzyme known as reverse transcriptase car-
ries out this process.Thehuman immunodeficiency virus
(HIV) is a retrovirus and is the cause of AIDS. After HIV
has bound to a target cell, normally one of the vital blood
cells of the immune system, the RNA content of the virus
and various enzymes including reverse transcriptase and
ribonuclease and protease, are injected into the cell. The
single strand of viral RNA genome is then transcribed
into double strand DNA and integrated into a chromo-
some of the host cell, which can lead to possible repro-
duction of the virus [107].

8.5.1 Dielectric Properties of Nucleic Acids

8.5.1.1 DNA
The earliest reports of the dielectric properties of DNA
are those of Jungner et al. [108–111] performed before
1952 and thus in ignorance of its double helix struc-
ture announced in 1953 [100]. Well defined dispersions
centred at around 2MHz were observed for relatively
dilute solutions (0.01 to 0.1 wt %) of calf thymus and
salmon DNA having relatively low molecular weights of
2∼6 × 105. The magnitudes of these dispersions trans-
lated to very large molar dielectric increments, ranging
from 2.9 × 105 to 2.9 × 108 [110]. This was interpreted as
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aDebye-type relaxation of a large dipolemoment (1750D
to 56 000 D!) directed at right angles to the axis of the
DNA fibre. Each constituent nucleotide was calculated
to have a moment of 0.9D, stacked parallel with each
other and all pointing in the same direction [110]. Ori-
enting effects of surrounding polar molecules, to form
a quasicrystalline structure of the fibre molecules, were
considered capable of overcoming the large repulsive
Coulombic forces that would accompany such a struc-
ture [111]. Had Gunnar Jungner and his colleagues been
aware of the double helix structure of DNA, they would
have realized that in its native formDNA should not have
a permanent dipole moment. With its two intertwined
single strands of DNA running in opposing directions
and the base pairs stacked with their molecular plane
perpendicular to the helical axis, the dipole moments of
paired nucleotides and dipoles in the main strands all
cancel out. In its double helical form the DNA molecule
has a highly regular and ordered internal structure – in
other words it is in a crystalline state. The quasicrys-
talline structure postulated by Jungner et al. can there-
fore be considered as visionary. A significant departure
from the conventional interpretation of the Debye relax-
ation model was also found by Jungner et al., namely
that the derived dipole moment values were directly pro-
portional to the molecular weight of the DNA molecule.
From Equation (8.24), according to the Debye model, the
moment should vary as the square root of the molecular
weight. This anomaly was recognized and discussed, but
with no clear conclusions [110]. The direct relationship
found between the dielectric increment and molecular
weight led to a proposed procedure for monitoring the
enzymatic degradation of DNA [109]. More importantly
it actually provides a clue as to the mechanism of polar-
ization.These various results and conclusions by Jungner
et al. are remarkable considering the fact that they nei-
ther had the benefit of knowing about the helical struc-
ture of DNA nor the techniques available for its purifica-
tion and preservation. Finally, it should be noted that (as
far as this author can find ) Jungner and his colleagues
have to date reported the only dielectric measurement
on the complex (nucleohistone ) formed by DNA wrap-
ping itself around a protein to assist its packaging into
the cell nucleus. The magnitude of the dielectric molar
increment exhibited by nucleohistone prepared from calf
thymus was found to be less than the DNA on its own
[108]. This effect can be interpreted in terms of the pro-
tein shielding some of the negative charge of the DNA
and is a topic worthy of further study.
The existence of a permanent dipole moment directed

at right angles to the long axis of the DNA molecule
was disproved using an ingenious method to measure
the relative permittivity of DNA strands subjected to
the shearing stress of laminar flow [97, 112–114]. With

this method an electric field could be applied either per-
pendicular or parallel to the long helical axis. Accord-
ing to the dipole orientation envisaged by Jungner et al.
[110], when the DNA molecules are oriented by lami-
nar fluid flow their dipoles should be perpendicular to
the flow direction. Applying an electric field perpendic-
ular to the flow should therefore result in the measured
relative permittivity being larger than that obtained in a
stationary fluid where there is random orientation of the
DNA molecules. In fact, it was found that the permit-
tivity value decreased [112, 113]. With the applied field
and fluid flow parallel, the permittivity should decrease
as the fluid velocity is increased. Instead, the permit-
tivity was found to increase (which implies a moment
directed along the DNA axis). Furthermore, the max-
imum decrease or increase in the dielectric constant
amounted only to about 10–15% of the total dielectric
increment. Jacobson [97, 112] interpreted these find-
ing to indicate that the dipole moments producing the
dielectric increment are not strongly fixed to the DNA
molecule. He considered it impossible to interpret the
dielectric results as the result of mechanical orientations
of the complete molecule in accordance with the Debye
rotationmodel. Instead, he thought it more likely that the
dielectric properties ofDNA (aswell as protein) solutions
aremainly due to an ordering effect on surroundingwater
molecules [97]. We have seen that this interpretation for
protein solutions was shown by South and Grant [48] to
be invalid and no evidence has been obtained to confirm
it for DNA solutions.
Takashima [115–118] extended the dielectric investi-

gations of DNA using high molecular weight (2∼3 × 106)
samples and performing measurements in the frequency
range 50Hz–200 kHz. He found a dielectric dispersion
centred at around 100Hz, corresponding to DNA hav-
ing dipole moment values as large as 100 000 debye. This
dispersion thus occurs at a much lower frequency than
that found by Jungner et al. at around 2MHz. Follow-
ing the convention employed to label dielectric disper-
sions according to the order in which they appear on
an increasing frequency scale, the first (low-frequency)
dispersion is termed the 𝛼-dispersion and appears in
the frequency range 10Hz to 10 kHz. The second dis-
persion that occurs from around 10 kHz to a few MHz,
the one discovered by Jungner et al., we can term as
the 𝛽-dispersion. Takashima [115] found that the dipole
moment and dielectric relaxation time associated with
the 𝛼-dispersion were both proportional to the molec-
ular weight of the DNA molecule (agreeing with the
finding of Jungner et al. for the 𝛽-dispersion). He also
concluded that the dipole moment is directed along
the major axis, instead of perpendicular to it. A typi-
cal 𝛼-dispersion, analysed by Takashima [116] for high
molecular weight DNA is shown in Figure 8.24. On heat
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Figure . Dielectric dispersion exhibited by 0.01 wt.%
concentration of salmon sperm DNA in water at neutral pH. The
length of the DNA was determined to be 740 nm by birefringence
measurement. The value for the low-frequency permittivity 𝜀o was
determined from an extrapolation of a Cole–Cole plot (based on
Takashima [116]).

denaturation to single strand, randomcoil, DNA the large
dielectric increment of ∼1600 permittivity units reduced
to a value of about 20 units. Sonication was applied to the
samples to produce DNAwith smallermolecular weights
and lengths, a procedure that led to the finding that the
dielectric increment was proportional to the square of
the average length. Unexpectedly, the relaxation timewas
also found to obey the same relationship. These result
cast doubt on an interpretation of the DNA relaxation as
being a field orienting effect as given by Debye’s rotating
dipolemodel. Takashima [116] cites unpublishedwork to
account for these findings, which applied the counterion
polarization theory proposed by Schwarz [99] to the case
of an electric field directed along the major axes of cylin-
drical molecules. The details of this are given 13 years
later in Takashima’s book [7, pp. 204–209]. Basically, the
counterion polarization theory predicts that the counte-
rions that act to partially screen the negatively charged
phosphate groups will be displaced along the surface of
the DNA molecule under the influence of an applied
electric field. The relaxation time of the resulting dielec-
tric dispersion will depend upon the effective mobility of
the ions along the macromolecule’s ‘surface’ and for rod-
shaped macromolecules will be given by

𝜏 =
𝜋𝜀zL2

2uzq2

where 𝜀z is the effective permittivity of the surrounding
ionic atmosphere of z ions per unit length, u is the (two-
dimensional surface) counterion mobility, q is the charge
on the ions and L is the length of the DNAmolecule.The

expectation that 𝜏 is proportional to L2 was confirmed by
Takashima [117].

Example 8.9 Magnitude of the Conductivity Incre-
ment for DNA Solutions
A distinctive feature of the dispersion shown in Fig-
ure 8.24 is the large value of ∼1600 permittivity units
derived for the dielectric increment Δ𝜀. How does this
translate to the magnitude of the conductivity change
Δ𝜎 that takes place over the frequency range of the
dispersion?

Solution 8.9 Following the procedure in Example 8.8,
we can use the following relationship to determine the
magnitude Δ𝜎′ of the conductivity change:

Δ𝜎′ = (𝜀oΔ𝜀′)∕𝜏 = (8.854 × 10−12Δ𝜀′)2𝜋fcr

The relaxation frequency fcr is approximated equal to
100Hz, so that with Δ𝜀 = 1600 this gives Δ𝜎′ = 0.56 μS
m−1. This is a very small conductivity change compared
to that of the 𝛽-dispersion for cytochrome-c, analysed in
Example 8.8.

To estimate the value of 𝜀s that defines the low-
frequency boundary of the 𝛼-dispersion, Takashima
[115–118] often relied on extrapolation of partial semi-
circularCole–Cole plots to frequencies below50Hz.This
extrapolation was no longer required after the develop-
ment of techniques to perform measurements down to
5Hz [119] and 0.3Hz [119–124]. These techniques were
developed to enable dielectric measurements to be per-
formed on conducting solutions, without errors arising
from electrode polarization effects. An example of this
low-frequency data is shown in Figure 8.25, where the
dramatic dependence on the magnitude and relaxation
time of the 𝛼-dispersion with salt concentration of the
solution is clearly demonstrated.
At a meeting of the Biophysical Society, Stellwagen

et al. [125] presented evidence for the existence of two
dielectric dispersions for DNA: a large one at low fre-
quencies and a smaller one in theMHz region.This work
does not appear to have been subsequently published, but
the existence of dispersions appearing at higher frequen-
cies than the 𝛼-dispersion has been confirmed by oth-
ers.The first confirmation came from the work of van der
Touw andMandel, who found dispersions for lowmolec-
ular weight DNA at around 30 kHz and 160 kHz [126,
127].The low-frequency dispersion (𝛼-dispersion) exhib-
ited by native DNAwas found to be very sensitive to both
the DNA molecular weight and ionic concentration of
the solution, in accordance with Takashima’s earlier find-
ings. On sonication of the native sample to lowermolecu-
lar weight fractions, the 𝛼-dispersion drastically reduced
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reductions of the dielectric increments and relaxation time occur
with increasing salt concentration (based on Hayakawa et al. [121]).

in magnitude and as depicted in Figure (8.26) exhibited
a high-frequency ‘tail’ with evidence of two small dis-
persions at relaxation frequencies around 30 kHz and
160 kHz. These dispersions were relatively insensitive to
changes the salt concentration of the solution [127].With
the passing of time, studies that extended up to frequen-
cies as high as 1GHz revealed further details of disper-
sions hidden in the ‘tail’ of the 𝛼-dispersion. This work is
summarized in Table 8.16.
Mandel considered the dielectric behaviour of DNA

to be qualitatively similar to that exhibited in the same
frequency range by synthetic charged polyelectrolytes
such as polyacrylic acid [127].The thermodynamic prop-
erties of polyelectrolyte solutions can be understood
in terms of the phenomenon of association, where a
certain fraction of the counterions stays in close
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Figure . Relative permittivity of the sodium salt of calf thymus
DNA in aqueous 3 × 10−4 M NaCl solution. (a) Native sample of
molecular weight ∼4 × 106 before sonication. (b) Sonicated sample
of molecular weight 3 × 105 (based on van der Touw and Mandel
[126] and Mandel [127]).

neighbourhood of the macromolecular chain. Being
unable to move independently through the solution,
these strongly associated counterions reduce the effec-
tive charge on the polyion. Mandel described how, for
synthetic linear charged macromolecules, it had become
increasingly obvious that the dielectric increment was
not primarily determined by the average permanent
dipolemoment of themacromolecular chain.Themagni-
tudes of the observed incrementswould lead to extremely
high values of the dipole moment, which cannot be
accounted for by their molecular structure. Furthermore,
the dielectric increments become vanishingly small if the
charge on the macromolecule tends to zero, as can eas-
ily be checked with weak polyelectrolytes for which the
charge can be controlled by addition of either strong
low-molecular base or acid.Therefore, Mandel proposed
that the observed dielectric effects can be attributed to
large, induced, dipole moments originating in the dis-
tribution of strongly associated counterions around the
polyions.The equilibrium distribution of these counteri-
ons along the chain is slightly disturbed by the applica-
tion of an external electric field, giving rise to an induced
dipole moment roughly proportional to the square of the

Table . A summary of the dielectric dispersions observed for DNA solutions that can be considered as contiguous with the
𝛽-dispersion first reported by Jungner et al. [108–111] and confirmed later by van der Touw and Mandel [126, 127]. The dielectric increment
(Δ𝜀) values have been normalized to 1 g/L.

Author reference 𝚫𝜺 f 𝚫𝜺 f 𝚫𝜺 f

[128] 6.0 20 kHz 2.3 549 kHz – –
[129] 0.88 7 MHz 0.64 33 MHz 0.19 200 MHz
[130] 20.3 137 kHz 4.82 2.01 MHz 0.507 11.6 MHz
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average extension of the macromolecule [127]. This con-
clusion mirrors Takashima’s experimental finding that
the dielectric increment was proportional to the square
of the average length of sonicated DNA samples [116].
The field-induced polarization of ionic ‘atmospheres’ can
also occur in normal electrolyte solutions [131]. How-
ever, owing to the small dimensions of simple ions and
the spherical symmetry of the ionic atmosphere, the
resulting dielectric increments are very small [132].
There is broad agreement amongst those working

in the field of biodielectrics that Mandel’s counterion
fluctuation model explains the polarization mechanism
responsible for the 𝛼- dispersion exhibited by DNA solu-
tions. The model may also apply to the 𝛽-dispersion
(referred to as the 𝛿 relaxation in some of the literature,
e.g. [129]). Mandel argued that because the 𝛼-relaxation
is dependent on molecular weight (i.e., proportional to
molecular length) it corresponds to the migration of the
more diffusely bound counterions over distances of the
same order as the entire dimension of theDNAmolecule.
The counterions are envisaged to move freely under the
influence of an external electric field along a subsec-
tion of the DNA structure until they meet a potential
energy barrier. These barriers result from perturbations
in the equipotentials arising from ‘kinks’ in the average
wormlike conformational shape of the DNA molecule
[126,127]. Related experimental evidence to support this
scenario came from the electrophoresis studies of Ross
and Scruggs [133], who established the binding order for
alkali metal ions as Li+ > Na+ > K+ > with respective
relative strengths of 1.5 : 1 : 0.8. The binding order for the
divalent ions studied was found to be Mn++ > Mg++
> Ca++. NMR studies [134, 135] had indicated that a
good proportion of such ions are bound loosely to the
DNA molecule as a whole, rather than to discrete sites
such as the phosphate groups and are in a state of essen-
tially complete hydration and free translational and rota-
tional mobility. Harrington [136] had also provided evi-
dence that short persistence lengths are maintained in
high-molecular-weight DNA in aqueous NaCl solutions
over a large range of ionic concentration. Because the
𝛽-relaxation is relatively independent of the molecular
weight, it is reasonable to suppose that it arises from the
migration of ions of themore strongly associated counte-
rions (condensed ions [137–139]) over shorter distances
bounded by smaller potential energy barriers. Apart from
Mandel’s own experimental and theoretical contribu-
tions to the counterion polarizationmodel [126,127, 140,
141] other major contributors to the general theory are
Manning [137–139], Oosawa [142,143], Imai and Onishi
[144], Minikata [145], Ito et al. [146] and Bordi et al.
[147]. Bordi and Sarti provide a comprehensive review
of the theories developed to describe the dielectric
properties of polyelectrolytes [148]. Significant dielectric

experiments since 1980 that confirm the broad applica-
bility of Mandel’s counterion fluctuation model include
those of Charney and Lee [149], Bonicontro et al. [128],
Saif et al. [129], Bakewell et al. [130], Bone et al. [150,
151], Katsumoto et al. [152] and Tomic et al. [153].
The following is a general overview of the counterion

fluctuation model to describe the dielectric properties of
DNA solutions. In dilute salt solution at low concentra-
tion, the DNA molecule has a rodlike conformation due
to the coulombic repulsion between the regularly spaced
and negatively charged phosphate groups. As the DNA
concentration increases there is a transition from what is
termed the dilute region to the semidilute one.The DNA
molecules become entangled, with a population of coun-
terions binding to it so as to partially neutralize the over-
all charge of the phosphate groups. A subpopulation of
counterions is confined in an electrostatic potential well,
so close to the DNA surface that the Coulombic repul-
sion energy between adjacent phosphate groups becomes
less than the thermal energy kT. This is the counterion
condensation process. Manning [138] introduced a
dimensionless structural parameter 𝜉 given by:

𝜉 =
q2

4𝜋𝜀o𝜀rkTb
(8.27)

where q is the charge on each phosphate group and b is
the average axial charge spacing along the DNA helical
axis. Although not stated as such, the factor 𝜉 is sim-
ply the ratio of the Bjerrum length (𝜆B,) to the parame-
ter b. The Bjerrum length is defined as the separation at
which the electrostatic interaction between two elemen-
tary charges is comparable in magnitude to the thermal
energy kT. The condition for condensation thus corre-
sponds to the situation where 𝜉 = 𝜆B/b ≥ 1. From Figure
8.22, showing the B-form of DNA, there are two phos-
phate charges spaced 0.34 nm apart along the axis, so b=
0.17. For an aqueous solution (𝜀r = 79) at 25 ◦C (298K),
so that from Equation (8.27) 𝜉 = 4.16. The condition for
counterion condensation is satisfied.The fraction f of the
counterions that condense is:

f = 1 − Z−1𝜉−1

Z
(8.28)

where Z is the counterion valency. The fraction of con-
densed counterions in an aqueous Na+ or Mg2+ envi-
ronment are thus 0.76 or 0.44, respectively. Counterion
condensation is defined to be that mode of binding of
counterions where the neutralized charge fraction of the
DNA equals that given by Equation (8.28) over a broad
concentration range [138]. An experimentally verifiable
effect that confirms the existence of condensed ions is
described by Saif et al. [129]. They reported a set of
experiments on 1 g/L concentrations of DNA dialysed
against deionized water and a series of saline solutions.
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After seven days of dialysis against deionized water, dur-
ing which the dialysis solution was changed frequently,
the concentration of free bulk ions in the solution was
found to have a conductivity of 5mS/m (equivalent to
a 0.5mN NaCl concentration). Likewise, after dialysis
against saline solutions of 1.5mN, 5 mN and 15 mN, it
was found in each case that the conductivity of the DNA
solution increased to a value equal to that of the dialysis
solution plus 5 ± 1mS/m. This excess conductivity is a
consequence of the counterion condensation.
In a DNA solution in which all counterions have the

same valency, we can therefore consider three classes
of ions: (i) condensed counterions that neutralize a frac-
tion of the DNA phosphate charge and are spatially
delocalized along the DNA molecule (this fraction is
0.76 for monovalent counterions); (ii) diffuse counteri-
ons that neutralize the remaining fraction (0.24) of the
phosphate group charge and form the outer part of the
electrical double layer shown in Figure 2.4, with a con-
centration that decays exponentially with distance from
the DNA surface; (iii) bulk ions in equilibrium in the
bulk solution and not influenced by the charged DNA
molecules.
On the time scale of the 𝛼-dispersion (milliseconds to

seconds) the DNA molecule as a whole is expected to be
stationary. The relaxation mechanism most likely arises
from fluctuations of the condensed counterions moving
over a distance comparable with the end-to-end length of
the DNAmolecule, or a length Ls (parallel to the external
field) between potential energy barriers caused by sudden
kinks or bends in the wormlike DNA backbone [126]. For
calf thymus DNA the subunit length Ls is calculated to
be 62 nm at 25 ◦C [126, 127]. The polarizability 𝛼 of the
condensed counterion layer along a direction parallel to
the DNA helical axis is

𝛼 =
AZ2q2nL2s

12kT
(8.29)

where n is the number of counterions condensed around
the DNA, given by:

n = (1 − Z−1𝜉−1)
Ls
Zb

(8.30)

The factor A in Equation (8.29) describes the electro-
static stability of the ionic double layer around the DNA,
taking into account repulsion between the charged phos-
phate groups andDebye screening of these charges by the
counterions. This factor is given by [126, 127]:

A = [1 − 2 (Z𝜉 − 1) ln(𝜅b)]−1 (8.31)

where 𝜅 is the inverse of the Debye screening length
described in Chapter 2. From Equation (8.29) the dielec-
tric increment is given by the following expression:

Δ𝜀 = N𝛼

3𝜀o
(8.32)

where the factor 1/3 accounts for the random orienta-
tion of these subunits and N is the number of subunits
of length Ls per m3, calculated to be 3.8 × 1022 g−3 m−3

[129]. Based on measured values for Δ𝜀 there was good
agreement between experimental values and those cal-
culated using Equation (8.32). For example, for a 3.9 g/L
solution of calf thymusDNA the experimental and calcu-
lated values forΔ𝜀were 2.23± 0.22 and 1.9± 0.6, respec-
tively, corresponding to polarizability values of 𝛼exp and
𝛼calc of 6.1 × 10−33 and 5.1 × 10−33 C2 m N−1, respec-
tively [129]. This is close to the value of 3 × 10−33 C2 m
N−1 obtained by Suzuki et al. [154] from studies of field
induced orientation of 𝜆-DNA and plasmidDNA. For the
largest the three dielectric increments observed for plas-
mid DNA by Bakewell et al. [130] the polarizability was
determined to be 8 × 10−30 C2 m N−1.
The origin of the 𝛼-dispersion is now considered to

result from polarization along the DNA helix, but the
case for the 𝛽-dispersion is not so clear. Most of the liter-
ature on the dielectric properties of DNA solutions has
assumed that the 𝛽-dispersion involves polarization of
bound counterions along shorter subunit lengths. How-
ever, there is also good evidence to suggest that for poly-
electrolyte chains in general the polarization is perpen-
dicular to the chains.The free counterions are considered
to move within an electrostatic potential that is modu-
lated by the presence of potential wells associated with
neighbouring polyelectrolyte chains. Under the influence
of an external electric field these counterions can polarize
by free diffusion in three-dimensional space to a scale of
the order of the distance between the chains. This con-
cept has been reviewed by Bordi and Sarti [148]. The
implication that this has for a re-evaluation of the dielec-
tric properties of DNA solutions in the kHz to MHz fre-
quency range has yet to evolve.
Mention should be made of an unfortunate period in

the history of biodielectrics. During the 1980s, much
attention was paid to the perceived biological hazards of
electromagnetic radiation. For example, a sizeable liter-
ature reports nonthermal physiological effects induced
by exposure to various (sometimes quite specific) wave-
lengths of weak electromagnetic radiation, or statistical
evidence for increased suicide rates, cancer and infertil-
ity risks for those living near radio masts or overhead
power lines. Most of these studies were later found to be
either erroneous or irreproducible (in fact mostly both).
Studies of the dielectric properties of DNA solutions did
not escape this fiasco. Resonance absorptions at specific
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microwave frequencies were reported for DNA solutions
[155–159] for which ‘striking’ theoretical support was
obtained [160]. All of this experimental work was found
to be irreproducible by the careful measurements of oth-
ers [161–164].

8.5.1.2 RNA
The number of reported studies of the dielectric prop-
erties of RNA is low. Bonincontro et al. [165] measured
the dielectric properties of isolated ribosomal RNA
(rRNA) to verify the extent to which it contributes
to the dispersion observed at MHz frequencies for
entire E. coli 70S ribosomes. The bacterial ribosome, a
nucleoprotein particle responsible for the decoding of
messenger RNA (mRNA) into protein, sediments as 70S
particles (of size 21 nm) consisting of roughly two-thirds
RNA and one-third protein [166]. The 70S particle is
formed of two subunits, 30S and 50S; 30S is composed
of one RNA molecule and 21 ribosomal proteins, while
70S comprises two RNA and 33 proteins. Magnesium
ions play an important part in the maintenance of the
ribosomal activity, both in vivo and in vitro. Two distinct
dielectric relaxations were observed for the 70S par-
ticle and its two subunits. The 𝛼-dispersion at around
100KHz exhibited a strong dependence on Mg2+ ions,
shifting to lower frequencies in the absence of the ion,
consistent with a larger exposure of the RNAmoity to the
solvent [167]. The 𝛼-dispersion is thus considered to be
associated with fluctuating counterions along the rRNA
chains. The 𝛽-dispersion appears in the MHz range and
is not affected by magnesium ions. At 25 ◦C the isolated
ribosomal proteins exhibit a dispersion at ∼5MHz, with
a dielectric increment Δ𝜀 of 8.1 permittivity units, com-
patible with a Debye-type rotation of an average dipole
moment of 730± 30 debye units.The activation enthalpy
of 4.1 kcal mol−1 for the isolated proteins was less than
half of that (8.7 kcal mol−1) observed for the whole 70S
particle. The isolated ribosomal RNA exhibits a disper-
sion at ∼9MHz at 25 ◦C with a dielectric increment of
∼30 permittivity units. This dispersion was analysed
according to Mandel’s counterion fluctuation model
[126, 127] where counterions can freely move along a
subunit of the RNA, but cannot cross from one subunit
to another unless it surmounts a potential energy barrier
between them. The length of this subunit is closely
related to the frequency of relaxation and the mobility of
the counterions. From an analysis usingMandel’s model,
a subunit length of ∼15 nm was determined [165]. The
fact that this length is considerably smaller than the
subunit length of 62 nm at 25 ◦C for calf thymus DNA
[127] was taken to indicate that rRNA possesses a large
flexibility. Most significantly, the relaxation time for the
RNA dispersion increased slightly with temperature and
so contrary to the case for the proteins did not obey

the Arrhenius Law where the relaxation time increases
with temperature. Mainly on the basis of this finding,
Bonincontro et al. [165] concluded that the 𝛽-dispersion
present in the MHz region in ribosome suspensions can
be attributed to the proteins and not rRNA. However, in
later studies this conclusion was retracted. On removal
of some of the proteins from the 70S particle by treat-
ment with LiCl (known to inhibit ribosome function)
only the 𝛼-dispersion was modified [168]. It was thus
concluded that rRNA and proteins remaining in the
core of the 70S particle are mainly responsible for the
𝛽-dispersion present in the MHz region. An interesting
added finding for the 𝛼-dispersion was the calculation of
86 nm for the average subunit length for polarization of
the condensed counterions. This is surprisingly similar
to the maximum circumference of the ribosome if it is
assumed to be approximately spherical.
The dielectric properties of ribosomal RNA extracted

from the 16S and 23S ribosomal subunits of E. coli have
also been deduced from dielectrophoresis studies over
the frequency range 3 kHz to 50MHz by Giraud et al.
[169]. This is described further in Chapter 11, but in
brief a positive value for the Clausius–Mossotti factor
was found between 3 kHz and 1MHz, followed by reduc-
tion to a negative value as the frequency was increased
above 9MHz. This behaviour has not been observed for
DNA. The low frequency behaviour corresponds to an
induced dipole moment of 3300D and a polarizability
of 7.8 × 10−32 F.m2. The behaviour above 9MHz is con-
sistent with the rRNA molecules exhibiting a negative
polarizability with respect to the surrounding aqueous
medium, equivalent to a net negative dipole moment of
250D, an effective permittivity value of 78.5𝜀o and a rel-
atively small surface conductance of ∼0.1 nS. This sug-
gests that the rRNA samples studied had a fairly open
structure accessible to the surrounding water molecules,
with counterions strongly bound to the charged phos-
phate groups in the rRNA backbone. The finding of a
net negative dipolemoment for the hydrated rRNA could
indicate that the induced dipole at the charged rRNA-
water interface is antiparallel to the rRNA dipole. The
polarization of the hydration layer effectively screens the
rRNA molecule from the external field instead of ampli-
fying it as predicted by Onsager’s model (Equation 6.35).
This effect, which can result in negative dielectrophore-
sis, has been reported for the case of hydrated proteins
by numerical simulations [170].
Finally, protein-RNA interactions play important

roles in biological processes such as gene regulation
and protein synthesis, for example. Although many
structures of various types of protein-RNA complexes
have been determined, the mechanism of protein-RNA
recognition is not clear. Ahmad and Sarai [171] per-
formed a systematic analysis of three bulk electrostatic
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properties of RNA-binding proteins, namely net charge,
dipole moment and quadrupole moment. These were
calculated from low-resolution protein structures with
only main-chain coordinates, in order to estimate how
far these simple properties are able to identify RNA-
binding proteins from control proteins. Their results
indicate that there exists a pattern of electric moments
in RNA-binding proteins, which is different from the
control data as well as within the proteins binding
to various types of RNAs. One type of RNA-binding
proteins can be distinguished from the other on the basis
of these properties with various degrees of accuracy. The
dipole and quadrupolemoments for proteins that bind to
ribosomal RNA stand out by being larger in comparison
with all other classes of protein, suggesting that the
main driving force for the formation and functioning of
ribosomal assembly has strong electrostatic character
revealed not only by their overall charge, but also by
orientations and spherical asymmetry contained in
higher values of the dipole moments.

. Summary

This chapter has described the dielectric properties
of aqueous solutions of particular relevance to dielec-
trophoresis experiments on biological materials. The
dielectric properties of pure water can therefore serve as
our baseline. At 25 ◦C pure water exhibits a static rela-
tive permittivity value close to 𝜀w = 78.4 and remains
at this value as the frequency of an applied electric
field is increased up to 1GHz. The static (DC) and
low-frequency permittivity is temperature sensitive, for
example changing to values of 80.2 and 76.6 at 25 ◦C and
25 ◦C, respectively. Beyond 1GHz pure water exhibits a
dielectric dispersion, with the associated dielectric loss
parameter (𝜀′′) having a peak value at ∼18GHz. This
dispersion (known as the 𝛾-dispersion) closely matches
that expected of a Debye-type orientational relaxation
of the water dipoles, characterized by a single relaxation
time 𝜏 = 8.58 × 10−12 s. The high-frequency tail of the 𝛾-
dispersion merges into the first of two small dispersions.
At 25 ◦C these occur at 167.8GHz and 1.94THz. Atomic
resonances then follow at 4.03THz and 14.48THz. This
makes it difficult to determine an accurate value for
the permittivity parameter 𝜀∞ that bounds the high-
frequency end of the 𝛾-dispersion.The infrared refractive
index (n) for water is 1.33, which based on the relation-
ship 𝜀∞ = n2 gives 𝜀∞ = 2.1.Water in its vapour phase has
an individual molecular dipole moment of 1.855 debye
units (6.2 × 10−30 C m). When the vapour phase con-
denses into the polar liquid, the effective dipole moment
of each water molecule is increased by the induction
effect of its neighbours.This can be taken into account by

employing Onsager’s improvement of the Debye model,
but even so the predicted value for 𝜀s is 31.0 at 25 ◦C
instead of 𝜀s = 78.4.This disparity is understood in terms
of tetrahedral bonding by hydrogen bonds of a water
molecule to its neighbours. A field-induced reorienta-
tion of a water dipole has to be coordinated with rear-
rangements of its neighbours. Kirkwood introduced an
orientation correlation factor g to take this effect into
account.
The highest frequency of relevance to most dielec-

trophoresis measurements is no more than around
50MHz, but some experiments have been reported to
operate up to ∼0.5GHz. This is still below where the 𝛾-
dispersion commences.The absolute value of the permit-
tivity for pure water at 25 ◦C can therefore be assumed to
equal 78.4𝜀o, where 𝜀o is the permittivity of free space
(8.854 × 10−12 farads per metre). However, this value is
decreased if a salt is added to the water. This response to
the presence of solvated ions arises from more than just
the volume effect of replacing polar watermolecules with
nonpolar ionic particles. In particular, the strong electric
field generated by the point charge of each ion has the
effect of orienting the water molecules, hindering their
rotations in response to an applied electrical field. For
salt concentrations less than 0.5M a linear relationship
exists between the static relative permittivity 𝜀s and salt
concentration of the form:

𝜀s = 𝜀w + 2𝛿c, with 𝛿 = (𝛿+ + 𝛿−)∕2

where c is the salt concentration in moles per litre. The
factor 𝛿 quantifies the extent to which the salt modifies
the permittivity value, with 𝛿+ and 𝛿− being the contri-
butions arising from the cation and anion, respectively.
The values for 𝛿 is negative and so represents a dielectric
decrement. The addition of a salt to water lowers its per-
mittivity because the volume occupied by the ion and its
surrounding hydration has a lower polarizability than the
volume of bulk water it has displaced. The mean value 𝛿

is used because water molecules attracted to a negative
ion are less rotationally hindered than those attracted to
a positive ion.
Sugar molecules dissolve readily in water, not only

because they are polar but also because they can form
hydrogen bonds with surrounding water molecules.
Although they are polar and uncharged, the volume
occupied by a sugar molecule and its surrounding hydra-
tion has a lower polarizability than the volume of bulk
water it has displaced. Aqueous sugar solutions thus also
exhibit a dielectric decrement. For example, a 1M glu-
cose solution exhibits a static relative permittivity value
of ∼74.2 at 25 ◦C. This value remains constant up to a
frequency of ∼100MHz where the commencement of
two weak dispersions occurs before the 𝛾-dispersion of
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the bulk water. The dielectric properties of sugar solu-
tions can be understood in terms of a three-component
system: (i) the rotationally hindered bound hydration
around each sugar molecule; (ii) the relaxing polar sugar
molecules; (iii) normal bulk water. For example, glucose
solutions are found to have a small dielectric loss peak
at 2.3GHz (relaxation time 𝜏 ≈ 0.07 ns) assigned to rota-
tional relaxation of the glucose dipoles.The bound water
of hydration around the glucose molecules is considered
responsible for a much weaker dispersion at ∼0.59GHz
(𝜏 ≈ 0.3 ns) with the bulk water exhibiting a slightly mod-
ified 𝛾-dispersion loss peak at 8.6GHz (𝜏 ≈ 0.02 ns).
The zwitterionic nature of amino acids lends to them a

dipole moment per unit volume exceeding that of water.
Amino acid solutions thus exhibit a larger static permit-
tivity value than water. For aqueous solutions of 𝛼-amino
acids at 25 ◦C the dielectric increment per mole has a
value of ∼27 relative permittivity units for frequencies
approaching 1GHz and concentrations up to 2.5M. The
Debye model for dipole relaxation predicts a relaxation
frequency of ∼12.6GHz for glycine in water. However,
the observed characteristic frequency is 3.3GHz. The
difference between the predicted and experimental value
indicates that there are significant electrostatic interac-
tions between the amino acid and the water molecules.
The molar dielectric increments of zwitterion buffers
such as HEPES and MOPS are larger than that of 𝛼-
amino acids, with values of 90 and 40 permittivity units,
respectively. The maximum recommended concentra-
tion of these pH buffers is 20mM for mammalian cell
suspensions, so that their use should increase the permit-
tivity above that of pure water by no more than 1∼2 per-
mittivity units (i.e., 𝜀s increases to ∼80 at 25 ◦C. The net
effect of adding salts and sugars (with a resulting dielec-
tric decrement) and a pH buffer (with a resulting dielec-
tric increment) to an aqueous cell suspending medium,
for example, can in principle be calculated for theoretical
modelling purposes. However, the correction required is
likely to be very small and negligible in comparison with
other approximations used in the modelling.
Protein solutions typically exhibit a dielectric disper-

sion in the MHz region (i.e., relaxation times 𝜏p of the
order microseconds). The consensus is that this dis-
persion results from electric field-induced orientation
relaxations of the protein’s permanent dipole moment.
The observed total dielectric increment Δ𝜀T and corre-
sponding dipole moment values are much larger than
those found for amino acid and peptide solutions, reflect-
ing the fact that proteins have much larger molecu-
lar weights. The total dielectric increment value Δ𝜀T
takes into account the fact that, at the high-frequency
end of the dispersion, the permittivity value (𝜀hf) is less
than that for water because the volume occupied by the
nonrelaxing protein molecule and its water of hydration

has a lower polarizability than the bulk water it displaces.
Following the convention for naming dispersions accord-
ing to their order in the frequency scale, the dispersion
exhibited by a protein solution in the 100 kHz–10MHz
range is called its 𝛽-dispersion. It obeys a frequency (𝜔)
dependent Debye-type relaxation of the form:

𝜀′ = 𝜀hf +
Δ𝜀T

1 + 𝜔2𝜏2p

The protein dipole moment is calculated using the for-
mula

p =
(2𝜀o MkT𝛿

NA

)1∕2

whereM is the protein molecular weight and 𝛿 is the spe-
cific dielectric decrement, calculated from the slope of a
linear plot ofΔ𝜀T versus protein concentration (mg/mL).
Dipole moment values for proteins typically lie in the
range 150∼700 debye units, with no obvious relationship
between the dielectric increment and molecular weight.
The equation used to calculate the dipole moment can be
modified to take into account nonspherical shapes, such
as oblate or prolate spheroids.
Apart from the 𝛾-dispersion due to the bulk water at

GHz frequencies, aqueous solutions of DNA in its native
(double-helix) form exhibit two other dispersions: the 𝛼-
dispersion that extends from sub-hertz frequencies up
to ∼1 kHz; the 𝛽-dispersion lying between ∼10 kHz and
∼50MHz. The 𝛼-dispersion exhibits a very large dielec-
tric increment, which when inserted into the equations
above produce dipole moment values as large as 100 000
debye units! Other characteristic of the 𝛼-dispersion for
DNA are that it is very sensitive to an increase of the con-
centration of salts in the solution (the dielectric incre-
ment decreases and the dispersion shifts to a higher fre-
quency) and that the dielectric increment and relaxation
time is proportional to the square of the effective length
of theDNA.This last result suggests that helical DNAhas
a large longitudinal dipole moment. However, the Debye
dipole rotation model through Equation (7.20) predicts
that the relaxation time should be proportional to the
cube of the effective length of the molecule. An even
more conspicuous observation is that the dipolemoment
decreases drastically on heat or acid denaturation of its
double stranded structure.This result stands out because
the double helix structure of native DNA should not pos-
sess a permanent dipole moment, whereas in its sin-
gle strand form it might do so. In its native form DNA
consists of two intertwined helical strands of DNA run-
ning in opposing directions, with the base pairs stacked
in such a way that their molecular planes are perpen-
dicular to the helical axis. Native DNA does not pos-
sess a permanent dipole moment because the moments
of paired nucleotides and dipoles in the main strands
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should all cancel out.There is broad consensus that the 𝛼-
dispersion exhibited by aqueous solutions of native DNA
can be understood in terms of field-induced fluctuating
migration of the more diffusely bound counterions over
distances of the same order as the entire dimension of the
DNAmolecule.The counterions are attracted to the neg-
atively charged phosphate groups along the DNA chains
and are envisaged to move freely under the influence of
an external electric field along the DNA structure until
theymeet a potential energy barrier.These barriers result
from perturbations in the equipotentials due to ‘kinks’ in
the average ‘wormlike’ conformational shape of the DNA
molecule. The DNA molecule itself is not considered to
possess a permanent dipolemoment.This fluctuating ion
model may also apply to the 𝛽-dispersion, where more
strongly bound and localized counterions are restricted
to shorter sublengths of the DNA. However, there is also
good evidence to suggest that for polyelectrolyte chains
other than DNA the induced polarization is perpendic-
ular to the chains. Mobile counterions are considered
to move within an electrostatic potential that is modu-
lated by the presence of potential wells associated with

neighbouring polyelectrolyte chains. Under the influence
of an external electric field these counterions can polar-
ize by free diffusion in three-dimensional space to a scale
of the order of the distance between the chains. Clarifi-
cation of the origins of the DNA 𝛽-dispersion requires
further experimental exploration and analysis.
Unlike the situation for DNA, few studies of the dielec-

tric properties of RNA have been reported. Complete
assemblies of the E. coli 70S ribosome and its two sub-
units 30S and 50S, exhibit an 𝛼-dispersion at around
100 kHz and a 𝛽-dispersion atMHz frequencies. The 𝛼-
dispersion is considered to be mainly associated with
fluctuating counterions along the rRNA chains, whilst
contributions to the 𝛽-dispersion involve both counte-
rion fluctuations along the RNA and relaxations of the
permanent dipole moments of the core proteins. There
is an indication, from dielectrophoresis experiments,
that the rRNA molecule exhibits a net negative dipole
moment above 9MHz.Thismay result from the polariza-
tion of the hydrated water molecules around the highly
charged rRNA acting to screen, rather than amplify, the
local electric field experienced by the rRNA.
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décomposition de l’eau et des corps qu’elle tient en
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Dielectric Properties of Cells

. Introduction

This chapter focuses on aspects of the dielectric prop-
erties of mammalian and bacteria cells of direct rel-
evance to the prediction and interpretation of their
dielectrophoretic behaviour. For a large number of cases
the frequency range of relevance extends from around
50 kHz to 50MHz, within which range the magnitude
and polarity (positive or negative) of the Clausius–
Mossotti factor is controlled by the Maxwell–Wagner
interfacial polarization effect described in Chapter 7.
For those who specialize in the dielectric properties of
cell suspensions, this polarization is identified as the 𝛽-
dispersion. This dielectric dispersion is controlled by the
passive electrical properties of the plasma membrane
and this is fully described here. Dielectrophoresis exper-
iments that extend down to frequencies below 1 kHz
begin to probe polarization effects related to the elec-
trokinetic behaviour of counter-ions that are attracted
to the net negative charge bound to the plasma mem-
brane of mammalian cells and to the net negative charge
at the surface and within the cell wall of bacteria. This
gives rise at low frequencies to the appearance of the
𝛼-dispersion. The characteristic frequency of this dis-
persion is inversely proportional to the square of the
cell radius and so is likely to have a greater influence
on experiments involving suspensions of bacteria cells
than for mammalian cells. There is an increasing inter-
est in extending dielectrophoresis studies to higher fre-
quencies. This will also be discussed here. However, it is
unlikely that frequencies much above 500MHz will be
explored and so the 𝛾-dispersion due to the relaxation of
water molecules in the aqueous suspending medium will
not be considered, because it will have no influence on
the Clausius–Mossotti factor.

. Cells: A Basic Description

Cells are the structural and functional units of all known
living organisms. Some organisms, such as amoebae,

algae and simple bacteria consist of a single cell but other
organisms such as animals are composed of many cells –
they are multicellular. Humans, for example, comprise
around 1014 cells of typical diameter 10μm and each
of mass around 1 ng. A controlling factor limiting the
size of a cell is the ratio between its outer surface area
and its volume. For a given volume of nucleus, a small
cell has more surface area through which to exchange
nutrients, gases and other chemicals between the exter-
nal and internal cell media than a large cell. There is
also a limit to the biochemical processes that a nucleus
can control in a cytoplasm. Current biomedical applica-
tions of dielectrophoresis are directed towards character-
izing and selectively capturing blood cells or pathogenic
bioparticles such as bacteria, viruses and prions. Brief
descriptions of blood cells and some pathogenic biopar-
ticles are given in Appendix L.
All living cells have a plasma membrane that encloses

their contents and serves as a semiporous barrier to
the outside environment. The membrane acts as a
boundary, holding the cell constituents together and
keeping other substances from entering. However, the
plasma membrane is permeable to specific molecules,
allowing nutrients and other essential elements to enter
the cell and waste materials to leave it. Small molecules,
such as oxygen, carbon dioxide and water, are able
to pass freely across the membrane, but the passage
of larger molecules (e.g., amino acids and sugars) is
carefully regulated. As described in Box 8.1, the basic
lipid structure of an intact cell membrane acts as an
impermeable barrier to charged species such as ions.
According to the accepted model, known as the fluid
mosaic model, the plasma membrane is composed of a
phospholipid bilayer. Individual lipids and proteins can
move freely within the bilayer as if it was a fluid, with the
membrane-bound proteins forming mosaic patterns on
the membrane’s outer and inner surfaces. Many diverse
proteins are embedded within the phospholipid bilayer
of the plasma membrane, while other proteins simply
adhere to its two surfaces. Some have carbohydrates
attached to their external chemical groups and are
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referred to as glycoproteins. The positioning of proteins
on the plasma membrane is related in part to the orga-
nization of the filaments that comprise the cytoskeleton,
which help anchor them in place. The cytoskeleton
forms the framework of a cell. It consists of protein
microfilaments and larger microtubules that support the
cell, to give it its shape and help with the movement of
its internal organelles. The arrangement of proteins also
involves the hydrophobic and hydrophilic regions found
on the surfaces of the proteins. The hydrophobic regions
of the protein associate with the hydrophobic interior
of the plasma membrane, whereas hydrophilic regions
extend past the surface of the membrane into either the
cytosol of the cell or the outer environment. Many of the
transmembrane protein structures form channels and
pumps through which ions can be transported.
We can distinguish between the passive andactive elec-

trical properties of cells. The passive properties are asso-
ciated with the linear conductance and capacitance of
cells (including excitable cells with resting membranes),
whilst the active properties relate to impulse excitation
and propagation of ions in the membranes of excitable
cells (e.g., nerve cells).Themain focus of this chapter will
reflect the fact that the literature on the dielectrophoretic
properties of cells has to date mainly been related with
their passive electric properties. The texts by Cole [1],
Takashima [2] and Hille [3] together provide a compre-
hensive coverage of the active electrical properties of cell
membranes.

. Electrical Properties of Cells

The passive electrical properties of biological tissue were
scientifically explored in the 1770s by Henry Cavendish,
who used his own body to complete the circuit formed
by a Leyden jar connected to various lengths of glass
tubes filled with salt solution! Cavendish found the elec-
tric ‘velocity’ (i.e., current) he experienced was directly
proportional to the degree of electrification (i.e., voltage)
of the Leydon jar and that salt solutions exhibit greater
conducting powers than pure water. Cavendish did not
publish his findings at the time, but relevant extracts from
his notebooks were presented 100 years later in 1879 in a
volume edited by James Clerk Maxwell titledThe Electri-
cal Researches of Hon. Henry Cavendish.The relationship
between voltage, current and resistance had been formal-
ized in 1825whenGeorgOhmpublished the results of his
experiments tomeasure the relationship between applied
voltage and current in various lengths of wire [4]. The
list of early contributors to electrophysiology includes the
Nobel Prize winners Max Planck (the founder of quan-
tum mechanics) and Walther Nernst (formulator of the
Third Law of Thermodynamics). Encompassed in what

is still known as the Nernst–Planck equation, cells were
envisaged to be surrounded by a thin layer of nonaque-
ous electrolyte across which ions move into or out of a
cell down concentration gradients and with an electric
field [5,6]. In 1902, in the absence of any knowledge of the
structure of a cell and with no physicochemical evidence
for the existence of an enveloping membrane, Bernstein
[7] combined all of the relevant information available to
him in the form of his influential membrane hypothesis:
� Cells consist of a conducting electrolyte surrounded by
a thin membrane that is largely impermeable to ions.

� In its resting state, a difference in electrical potential
exists across the membrane.

� On electrical stimulation of an excitable cell, there
is a transient increase of the membrane permeability
towards potassium ions. This results in a significant
reduction in the transmembrane potential difference,
assumed to be theNernst diffusion potential for potas-
sium ions.

It was commonly known that living tissue exhibited
a relatively high DC resistivity, which decreased signifi-
cantly in death and was accompanied by the release of
electrolytes. A key unanswered question was whether
this resulted from the release of electrolyte ions that are
organically bound in live cells, or because viable cells
are surrounded by an electrically insulating barrier that
decomposes on cell death. The answer came from the
first AC electrical impedance measurements on cells,
performed by Rudolf Höber [8–10]. His experiments
have been described in detail elsewhere [11] but in
summary Höber provided the first experimental evi-
dence that cells possess a resistive dielectric membrane
that surrounds a conducting electrolytic interior. He
determined that the conductivities of compacted red
blood cells and frog muscle tissue measured at MHz
frequencies were significantly higher than that measured
at∼150Hz. He deduced that, at low frequencies, the cur-
rent path was around the cells, but at high frequencies,
the current was able to penetrate into the conducting
cell interior. The internal conductivity of a red blood cell
was estimated to be close to that of a 0.2% NaCl solution.
Confirmation that the MHz value represented the inter-
nal conductivity was obtained by using saponin to lyse
the envelope surrounding the interior, finding that the
MHz conduction current remained almost unchanged
whereas the low-frequency conduction increased signif-
icantly. This was taken as evidence that the conducting
interior of a red blood cell is contained within a resistive
dielectric envelope (‘eine dielektrische Hülle’ [8, p. 237].
These discoveries were made using primitive dielectric
measurement techniques. Low-frequency voltages (100∼
200Hz) were generated using a hand-cranked rotating
magnetic disk, whilst MHz voltages were obtained using
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an ignition coil and spark gap coupled via an inductor
primary coil wrapped around a gas lamp tube to a bridge
circuit. This circuit consisted of a glass plate capacitor,
tubes containing reference salt solutions and the blood
sample, a crystal detector and headphones [11].
Apart from representing a major milestone in the

development of cell biology and electrophysiology (i.e.,
first physical evidence for the existence of a resistive cell
membrane) Höber gave the first description of what we
now name as the dielectric 𝛽-dispersion exhibited by cell
suspensions and fresh tissue.The 𝛽-dispersion is basically
a manifestation of a cell’s outer membrane acting as a
high resistance to direct current and low frequency alter-
nating current, as well as possessing a large capacity for
accumulating ions at the membrane surface (i.e., exhibit-
ing Maxwell–Wagner interfacial polarization). The first
studies of this are commonly attributed [e.g., 12] to
much later works, such as those of Fricke and co-workers
[13–15].
After Höber, the next demonstration of the existence

of the 𝛽-dispersion exhibited by cells was that of a banker
and pioneer of radio broadcasting (from air balloons)
in Belgium, namely Maurice Philippson [16, 17]. He
described how the specific impedance of the compacted
red blood cells fell from a high value (3890 Ω cm−3)
at 1 kHz to a low one (200 Ω cm−3) when extrapolated
beyond 3.5MHz to higher frequencies. He achieved
this by measuring the potential across the sample for
a range of frequencies, using a tube voltmeter, at the
same time as the current. Philippson does not appear
to have been aware of Höber’s earlier work. Philippson
devised the equivalent circuit shown in Figure 9.1(a)
to describe the electrical properties of compacted cells
or tissue. It consists of the protoplasm resistance R in

(a) (b) (c)

r
C

R
R

R0
Ri

C

C

L

Figure . Equivalent circuits proposed for: (a) tissues and
compacted red blood cells by Philippson [17]. R and r are attributed
to the cytoplasm and membrane resistance, respectively and C to
the membrane capacitance; (b) red blood cell suspensions
proposed by Fricke and Morse [14], in which R0 is the resistance to
current flow around the cell and Ri is the cytoplasm resistance;
(c) the squid giant axon by Cole and Baker to account for their
discovery of an anomalous (inductive) reactance residing in the
membrane structure [41]. The components R, C and L were
determined to have values of 1 kΩ cm2, 1 μF/cm2 and 0.2 H cm2,
respectively.

series with a parallel combination of the membrane
resistance r and capacitance C. According to this circuit
the DC resistance and impedance at low frequencies is
R + r and tends to the value R at very high frequencies.
From Philippson’s results for compacted red blood cells,
components R and r have estimated values of 200Ωcm−3

and 3690Ωcm−3, respectively. Because Philippson could
measure only the magnitude of the impedance without
any phase angle determination, it was not possible for
him to evaluate the membrane capacitance value C.
The effects that Höber found were repeated by Fricke

and Morse [13, 14], who obtained a cell internal resistiv-
ity of 310 Ω cm and also determined that the erythro-
cyte membrane possessed a capacitance of 8.1mF/m2.
Assuming a value of 3 for the relative permittivity of
the membrane material, the thickness of the erythro-
cyte membrane was estimated to be 3.3 nm. Although
this value turned out to be an underestimate, it was the
very first indication of the exquisite thinness of the cell
membrane.The proposed equivalent circuit to represent
an erythrocyte in suspension is shown in Figure 9.1(b).
Membrane capacitance values close to 8mF/m2 have also
been obtained for neutrophils [18], eosinophils [19],mast
cells [20] and chromaffin cells [21] using the patch-clamp
technique [22]. As indicated in Table 9.1 the resistance
of the cytoplasm membrane is too large to be measured
by conventional dielectric measurements on cell suspen-
sions. The patch-clamp technique does not suffer such a
limitation, so that Takashima et al. [23] were able to con-
firm that the membrane of a human erythrocyte behaves
as a good insulator, with a specific resistance of ∼2 ×
105 Ω cm2. Model cancer cells, such as HeLa and mouse
myeloma, were found to have membrane capacitances of
19mF/m2 and 10mF/m2, respectively, with membrane
specific resistances of around 104Ω cm2 [24].
Cole was the first to demonstrate that dielectric mea-

surements can detect physical changes associated with
change of cell state, by observing an increase in the total
capacitance of sea urchin eggs on their fertilization [25].
He also used schematics such as Figure 2.5 to illustrate
how high-frequency electric flux lines penetrate into the
cell interior through the cell membrane. Average cell
membrane capacitances of 8.6mF/m2 before fertilization
and 33mF/m2 after fertilization were determined [26] to
be associated with changes in the plasma membrane and
not with the appearance of a fertilization membrane as
first presumed [25].These early dielectric measurements
on cells were performed using cell suspensions or cen-
trifuged cell compactions. Cole was the first to report
measurements on single cells (sea urchin eggs) [27] and
by 1941 he was able to tabulate dielectric data for a range
of large single cells (plant, protozoa, marine egg, mus-
cle and nerve) [28]. Some of this data is reproduced in
Table 9.1 and remains of value today. From Table 9.1 it is
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Table . Dielectric properties of cells (derived from Cole [28]) given in units commonly found in the literature, for temperatures
∼20 ◦C. The symbol ‘S’ indicates single cell measurements, otherwise all results refer to those obtained for cell suspensions. The
symbol ∞ indicates a resistance too high to measure accurately.

Cell type
Membrane capacitance

(μF/cm)
Membrane resistance

(𝛀 cm)
Internal resistivity

(𝛀 cm)

Blood
Erythrocyte
chicken
dog
human
rabbit

Leucocyte
rabbit

0.8
0.81
0.8
0.8

1.0

∞
∞
∞
∞

140

140

140

Nerve
Squid
resting
excited

1.1 (S)
1.1 (S)

103 (S)
25 (S)

30 (S)
90 (S)

Marine egg
Arbacia
unfertilized
fertilized

Cumingia
unfertilized
fertilized

1.1 (S)
2.8 (S)

2.7 (S)
2.3 (S)

> 100 (S)
> 100 (S)

∞ (S)
∞ (S)

180 (S)
210 (S)

180 (S)
165 (S)

Plant and Protozoa
Amoeba
proteus

Bacteria
acidophilis

Chlorella
Nitella
resting
excited
protoplasm

Paramecium
Valonia
ventricosa

Yeast

0.95
0.33

0.94 (S)
0.80 (S)

1.0 (S)
0.6

∞
∞

2.5 × 105 (S)
500 (S)

> 104 (S)
∞

815 (S)

460

87 (S)
87 (S)
212 (S)
145 (S}

evident that restingmembranes present a large resistance
to passive ion flow. If we assume a membrane thickness
of ∼7 nm the membrane resistivities range from 106Ωm
and greater to immeasurably large values. Blinks [29] had
also provided early confirmation of Höber’s conclusion
[8] that this membrane resistance value falls dramatically
on death of the cell.
Measurements of the properties of nuclearmembranes

had to await the development of microelectrode impale-
ment techniques (see section 9.3.1).They were limited to
measurements on systems such asmarine eggs or fruit fly
salivary gland cells, whose nuclei measure up to 40μm
in diameter. The nuclear envelope of salivary gland cells
(Drosophila, Chironomids and Sciarids) were found to
have relatively low specific resistances in the range of 1 to
10Ω cm2, with very large capacitances ranging from1000

to 5000mF/m2 [30,31].The plasmamembrane resistance
and capacitance were determined to fall in the ranges 220
to 1200Ω cm2 and 17 to 100mF/m2, respectively, whilst
the resistivities of the cytoplasm and nucleoplasm were
measured to be about 100Ω cm.The interesting proposal
was made that the anomalous resistance and capacitance
values obtained for the nucleus resulted from connec-
tions between the nuclear envelope and the endoplasmic
reticulum [31]. In otherwords, the surface overwhich the
resistance and capacitance were distributed was larger
than that of the outer surface of the nucleus. This can
be quantified by introducing a membrane topography
parameter 𝜙 that represents the ratio of the actual mem-
brane area of the cell or nucleus, to the membrane area
(4𝜋r2) that would form a perfectly smooth and spherical
covering of the cytoplasm or nucleoplasm.Themeasured



9 Dielectric Properties of Cells 

membrane capacitance Cm and resistance Rm thus take
the form:

Cm = 𝜙Co; Rm = (1∕𝜙)Ro (9.1)

where Co and Ro represent the values for a perfectly
smooth membrane, corresponding to 𝜙 having a value of
1.0. In Chapter 11, when detailing the dielectrophoretic
properties of cells, the concept of a membrane topogra-
phy parameter 𝜙 is found to be useful. Based on the cal-
culation [32] that a smooth membrane has a Co value of
6mF/m2, the values of 1000 to 5000mF/m2 obtained [30]
for nuclei correspond to a range of values for 𝜙 of 160
to 830. It is now known that, in all eukaryotic cells, the
nuclear envelope is formed by two concentric, porated,
lipid bilayer membranes, the outer one of which is con-
tiguous with the endoplasmic reticulum. It is reasonable
to consider that such a structure could lead to a large
capacitance value. However, an estimate of 6.2mF/m2

was obtained, from dielectric measurements over the
range 0.1 to 250MHz, for the combined capacitance of
the twomembranes thatmake up the nuclear envelope of
mouse lymphocytes [33].This suggests that the outer and
inner nuclear membranes are electrically connected in
series, in which case the membrane exhibiting the lowest
specific capacitance (the inner one) will dominate their
combined, series, capacitance. The conductance of the
nuclear envelope was also determined to be 15 S/cm2,
representing a relatively low specific resistance of 6.7 ×
10−2Ω cm2 [33]. A low resistance of 6 × 10−2Ω cm2 has
also been reported for the nuclear envelope of mouse
liver cells, taken to indicate that the nuclear envelope is
penetrated by aqueous channels [34]. The electrophysi-
ology of the cell nucleus is an active field of research [35]
and should assist a more thorough understanding of the
dielectric properties of cell nuclei.
Resistivity values ranging from 310 Ω cm for the

cytoplasm of erythrocytes [14] and 100 Ω cm for the
cytoplasm of salivary gland cells [31] can be taken as

representative of a wide range of cells. Measurements
performed at frequencies up to 250MHz on a variety
of erythrocyte types give cytoplasm resistivity values of
170 to 230 Ω cm and internal relative permittivity values
ranging from 50.1 to 55.1 [36]. Measurements at fre-
quencies around 400MHz (which should probe the cell
interior) give relative permittivity values of 35 to 60 for a
variety of tissue [32, 37] and resistivity values between 80
and 160 Ω cm [32]. A ‘pure’ physiological solution (e.g.,
∼150mM NaCl) has a nominal resistivity of 70 Ω cm
and relative permittivity of ∼79. The increased internal
resistivity and reduced permittivity values obtained for
erythrocytes can be attributed in particular to dissolved
haemoglobin molecules. The presence of organelles
and structures such as mitochondria, the endoplasmic
reticulum and the nuclear envelope will contribute to the
internal dielectric properties of other cell types. Sum-
maries of the dielectric properties of the various parts of
a cell, as determined by the experimental contributions
outlined above, are given in Tables 9.2 and 9.3.
In their application of cable theory to understanding

signal transmission along a nerve fibre, Hodgkin and
Rushton [38] assumed that the structure of a nonmedul-
lated nerve fibre consisted of a conducting protoplasm
and a thin surface membrane of high leakage resistance
and large capacitance per unit area. The papers of Höber
[8] and Fricke and Morse [14] were cited as the scientific
sources for this assumption, together with that of Cur-
tis and Cole who had shown that the squid giant axon
possessed similar electrical properties to that of the red
blood cell [39]. Hodgkin and Rushton [38] also referred
to the surprising discovery [40, 41] that the squid axon
exhibited an inductive reactance below 150Hz (see Fig-
ure 9.1(c) for the proposed equivalent circuit). Following
the development of the patch-clamp technique by Cole
[42], an understanding of the implications of this induc-
tive element in themembranes of nerve cells could begin,
leading to the elucidation of nerve pulses in terms of

Table . The dielectric properties of the components of various types of cell as determined by various
experiments (references given in square brackets).

Cell part
Sp. resistance

𝛀 m
Conductivity

S/m
Capacitance

mF/m
Permittivity

𝜺′/𝜺o

Plasma membrane > 1
[23, 24]

< 10−8 a 8–100
[14, 23, 28, 30]

∼5 b

Cytoplasm 0.44–1.25
[13,14, 28, 32]

35–60
[32, 36, 37]

Nuclear envelope 10−4–10−3
[31]

< 10−4 a 103–5 × 103
[31]

Nucleoplasm ∼1.0
[30]

Notes: aCalculated assuming a nominal membrane thickness of 7 nm. bBased on capacitance of ∼6mF/m2

estimated for smooth plasma membrane [32].
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Table . The dielectric properties at 24 ◦C of the components of mouse erythrocytes and lymphocytes (Asami et al. [34]).

Cell type and component Conductivity S/m Capacitance mF/m Permittivity 𝜺′/𝜺o

Erythrocyte
Plasma membrane < 10−5 𝜎cyt 7.2 5.7
Cytoplasm 0.62 59

Lymphocyte
Plasma Membrane < 10−5 𝜎cyt 6.8
Cytoplasm 0.32 60

Nuclear envelopea 6 × 10−3 S/m
(1.5 × 105 S/m2)

6.2 28

Nucleoplasm 1.35 52

Note: aThe double membrane structure of the nuclear envelope is modelled as a single homogeneous shell of thickness 40 nm.

‘reversible alterations in sodium and potassium perme-
ability arising from changes in membrane potential’ [43]
and the award in 1963 of the Nobel Prize to Hodgkin and
Huxley.There were not a few who thought it unfortunate
that Kenneth Cole’s work had been overlooked in giving
this award. In 1967 he received the US National Medal of
Science for his work that led to the sodium theory of nerve
transmission.
The membranes of nonexcitable cells (e.g., blood cells,

cancer cells) do not exhibit a frequency-dependentmem-
brane capacitance, even below 200Hz [e.g., 23]. Nerve
membranes do show such behaviour, associated with
the action of membrane ion channels [e.g., 44]. The
inductive effect described by Cole [40] can be elimi-
nated by blocking the potassiumchannelswith nerve tox-
ins. This reveals that an increase in membrane capac-
itance, from a value of 1.0 to 1.23μF/cm2, occurs in
squid axons during the so-called long action potential
[44]. These active dielectric properties (i.e., inductive
and capacitance changes associated with action poten-
tials) should in principle be amenable to investigation
by dielectrophoresis, but to date no such observations
appear to have been reported.

9.3.1 Single Cell Measurements using Microcapillary
Electrodes

Electrical activity (ECG, EMG, EEG, etc.) in living sys-
tems can be detected by placing electrodes in galvanic
contact with the body or inside its tissue to measure
the fields set up by electric currents flowing through the
extracellular fluids [45]. Since these currents originate
across cell membranes, a more direct and quantitative
approach is to measure electrical events across the mem-
brane of a single cell. This measurement is done by com-
paring the electric potential of one side of the membrane
with that of the other side. An external sensing electrode
is placed in electrical continuity with the outside of the

cell and another is inserted through the membrane and
into the cell’s cytoplasm. The difference between these
two potentials is themembrane potentialVm, given as the
intracellular potential relative to the extracellular poten-
tial. The external potential in the suspending buffer solu-
tion is arbitrarily defined as the reference zero. A sim-
ple electrical stimulating and recording arrangement is
shown in Figure 9.2.
As shown in Figure 9.2 the cell is immersed in a physi-

ological buffer solution containing a reference electrode.
Glass capillary microelectrodes, with tip diameters less
than 0.1micron and filled with an electrolyte such as 3M
KCl, can be inserted into cells with negligible damage to
their membranes. The tip resistance of such microcapil-
lary electrodes can approach values of 20∼50MΩ and so
will not act as an electrical short-circuit across the mem-
brane but can serve as a voltage probe. The first step is
to insert the tip of such a recording electrode through
the membrane of the cell. Before the tip of this micro-
electrode enters the cell, it and the reference electrode
are at the same potential (taken to be reference zero).
When the fine capillary tip penetrates the membrane,
the cytoplasm is in continuity with the electrical con-
nection to a voltage amplifier via a fine column of elec-
trolyte that fills the inside of the capillary electrode (e.g.,

mV
Recording 
electrode

nA

Current pulse

Current 
electrode

Buffer solution

Reference 
electrode

Figure . A basic system is shown for stimulating and recording
the electrical properties of a cell membrane. A signal generator
creates a current pulse into or out of the cell. The difference
between the potential of an external electrode and one located in
the cytosol gives the membrane potential Vm.
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Figure . When a high-resistance glass capillary voltage probe is
inserted into a cell it records a negative potential with respect to
the outside of the cell. This is the resting membrane potential
(Vrest).

a 3M solution of KCl). As the tip of the recording micro-
electrode is advanced, penetration of the plasma mem-
brane is indicated by the sudden appearance of a nega-
tive potential shift of the voltage trace (see Figure 9.3).
The steady negative potential recorded by the electrode
tip in the cytoplasm is the resting membrane potential
Vrm. All cells that have been investigated have a nega-
tive resting potential, which can be as high as −100mV.
The potential sensed by the intracellular electrode does
not change as the tip is advanced further into the cell.
Thus, the entire potential difference between the cell inte-
rior and cell exterior exists across the surface membrane
and in the regions immediately adjacent to the inner and
outer membrane surfaces.
The electrical properties of the cell membrane can be

examined by causing a pulse of current to pass through
the membrane so as to produce a perturbation in the
membrane potential. A second microelectrode, the cur-
rent electrode shown in Figure 9.2 can deliver such a cur-
rent.The current from this electrode, in the formof a cur-
rent pulse generated by applying a step voltage in series
with a high value resistance (>1GΩ), flows across the
membrane in either the inward (buffer to cytoplasm) or
the outward direction depending on the polarity of the
step voltage. If the current pulse draws current to the
outside, so that positive charge is removed from inside
the cell via the current electrode, the potential differ-
ence across the membrane increases (hyperpolarizes).
The intracellular negative potential increases in magni-
tude (e.g., from −60 to −70mV). With hyperpolarization
the membrane usually produces no other response than
this increase of negative potential. If a current pulse is
passed from the electrode into the cell, positive charge
will be added to the inner surface of the cell membrane.
This charge causes the potential difference across the
membrane to decrease and the cell is then said to become
depolarized (e.g., from −60 to −50mV). These two types
of response are shown in Figure 9.4.
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Figure . When a current pulse is applied that removes positive
charge from inside a cell, hyperpolarization of the membrane
occurs. The intracellular negative potential is increased (e.g., from
−60 to −70 mV). A current pulse of opposite polarity will add
positive charge to the inner surface of the cell membrane, causing
depolarization of the membrane (e.g, from −60 to −50 mV).

As the strength of the outward pulse is intensified,
depolarization will increase, as shown in Figure 9.4.
Excitable cells, such as nerve, muscle and many receptor
cells, exhibit a threshold potential atwhich themembrane
will produce a strong active response. This is known
as the action potential shown in Figure 9.5. The action
potential is caused by the activation of membrane chan-
nels permeable to sodium, which themselves are acti-
vated by the reduction in voltage difference between
the two sides of the cell membrane. The opening of the
sodium channels in response to depolarization and the
resulting flow of sodium ions into the cell provide an
example ofmembrane excitation.
We can now appreciate that cell membranes respond

to stimuli with two quite different classes of electrical
behaviour – namely, passive and active behaviour:

9.3.1.1 Passive Electrical Response
This is always producedwhen an electric current is forced
across a biological membrane, because of the electri-
cal capacitance and conductance properties of the mem-
brane. Passive responses occur independently of any
molecular changes that open or close gated ion channels
in the membrane. The resistance (reciprocal of conduc-
tance) of a cellmembrane is associatedwith leakage path-
ways that allow inorganic ions to cross the membrane.
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Figure . Excitable cells, such as nerve, muscle and many
receptor cells, exhibit a threshold depolarization potential at
which the membrane will produce a strong active response. This is
known as the action potential.
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Thecapacitance of amembrane is ameasure of the extent
to which the ion impermeability of the membrane leads
to separation of electrical charges across the membrane.

9.3.1.2 Active Electrical Response
Such responses, known as membrane excitations, are
found in excitable tissue such as nerve, muscle and sen-
sory receptors.They depend on the opening and / or clos-
ing of numerous ion channels (also called membrane
channels) in response to a stimulus. Some ion channels
are gated (i.e., opened and shut) by changes in voltage
across the membrane, while others are opened by the
binding of transmitter or messenger molecules. Other
channels, primarily in sensory receptor cells, are acti-
vated by specific stimulus energies such as light (pho-
toreceptors) or mechanical strain (mechanoreceptors).
When a certain group of channels selectively permeable
to a certain species of ion is opened, a currentmay be car-
ried across themembrane. As in the case of sodium chan-
nels, such a current normally produces a voltage signal
across the membrane. The gating of ion channels is the
immediate cause for nearly all electrical activity in living
tissue.

9.3.1.3 Membrane Resistance
The passive resistance of a membrane is a measure of
its permeability to ions. In saline solutions the resistiv-
ity of pure phospholipids is as high as 1013Ω m. This
can be compared to 298K values that range from 0.6 to
0.8 Ω m for prepared physiological solutions (buffers).
The value for sea water is ∼0.2 Ω m. A 4nm thick lipid
bilayer can be estimated to have a specific resistance of
40 kΩ m2. The significantly lower resistivities of biolog-
ical membranes (typically 0.01∼1Ω m2) therefore can
be assumed to arise from structures other than the lipid
bilayer itself.These structures are protein-bounded aque-
ous pores (aquaporins) and various ion channels embed-
ded in the lipid. The density of different channels typi-
cally range from 50 to 500 per μm2, with conductances
of 1∼100 pS. However, many of these channels may not
be ‘open’ at any given time.

If a step pulse of steady current is applied across the
membrane, the membrane potential shifts by ΔVm from
the resting value. ΔVm depends on the magnitude of the
applied currentΔI and themembrane resistanceR, which
can be determined from Ohm’s Law:

ΔVm = RΔI

Consider the two spherical cells shown in Figure 9.6 –
one small and the other large. The two cells have mem-
branes of the same specific resistance Rm to electric cur-
rent (i.e., the same resistance per unit square area of
membrane). As schematically demonstrated in Figure
9.6, for a given increment of currentΔI inserted into both
cells the large cell will show a smaller increment of volt-
age ΔVm. This arises because the same current will flow
through a larger area of membrane. Because the input
resistance of a cell (i.e., the total resistance encountered
by current flowing into or out of a cell) is a function of
both membrane area A and specific resistance Rm of a
cell, it is useful when comparing membranes of different
cells to correct for the effect of membrane area on the
current density. Thus, the specific membrane resistance
is calculated as:

Rm = RA =
ΔVm
ΔI

A (Ωm2)

9.3.1.4 Membrane Capacitance
Because they are very thin (∼7 nm) and virtually imper-
meable to ions over most of their surface area, cell
membranes can violate the principle of electroneutrality
at the microscopic scale. Negative charges accumulated
at or near one surface of a membrane will interact
electrostatically over the short distance of the mem-
brane thickness, with positive charges on the other
side of the membrane. The ability of the cell membrane
to accumulate and separate electric charge is called
its membrane capacitance. Electronic engineers can
view this situation as a very thin dielectric (the lipid
bilayer) sandwiched between two conductors (elec-
trolytes) representing the basic form of a capacitor.
Cell membranes contain a lipid bilayer of about 3 nm
in thickness (verified by electron microscopy) with

∇

∇ ∇

∇

I

Current 
pulse

generator

Vsmall

Vlarge

I

Figure . Although the membranes of the two
cells shown in this diagram have the same
dielectric properties, the measured input
resistance (ΔVm/ΔI) of the larger cell is lower than
that of the smaller cell. To correct for the
difference in current density the input resistance
of a cell is often quoted as a specific resistance
with units of Ω m2.
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Figure . The equivalent circuit for a cell membrane can be
represented as a parallel combination of the membrane resistance
Rm and capacitance Cm. Time courses are shown for the resistive
current iR, capacitive current iC, membrane potential Vm (across
the membrane resistance and capacitance) on injection of a pulse
of current (Im) through the membrane.

proteins protruding on each side. As discussed in
Box 8.1, a relative permittivity of 𝜀r ≈ 2.4 can be assigned
to this lipid phase of the membrane. The polar side
chains of the proteins are predominantly exposed to the
aqueous medium each side of the membrane and should
contribute to an overall relative permittivity for themem-
brane that is larger than that of the lipids. Assuming a
total thickness of ∼7 nm for the combined protein-lipid
structure of the membrane, together with an estimated
permittivity ∼5𝜀o, the membrane capacitance for a
smooth cell surface can be estimated as Cm ≈ 6.3mF/m2.
The equivalent circuit for a cell membrane to describe

the charging and discharging of the membrane on appli-
cation and then removal of a current pulse is shown
in Figure 9.7. The relationship between potential V and
time during the charging of the membrane capacitance is
given by:

V (t) = Voe−𝜏∕RmCm

where the time to fall to 1/e of its initial value is the
time constant given by 𝜏 =RmCm. Having determined the
membrane specific resistance Rm, the membrane capaci-
tance can be determined frommeasurement of themem-
brane time constant (typically 0.1∼10ms). Experimen-
tal values obtained for Cm are normally larger than the
theoretical value of ∼6.3mF/m2 determined above for
a smooth membrane structure. The experimental value
(typically 10∼30mF/m2) obtained correlates closely with
the extent to which the area of an otherwise smooth
membrane surface is increased as a result of the presence
of membrane folds and proturbances, such as blebs and
microvilli, for example.

Example 9.1 Trans-Membrane Ion Transfer and the
Membrane Potential
Consider a mammalian cell of radius 10μmwith a mem-
brane capacitance of 10mF/m2. How many ions have
to be transferred across the membrane to create a rest-
ing membrane potential of minus 70mV? Express this

number of ions as a percentage of the average potassium
ion concentration (150mM) in the cytoplasm of a mam-
malian cell.

Solution 9.1 The total surface area of the cell is 4𝜋R2

= 4𝜋10−10 m2, to give the total membrane capacitance C
for the cell as:

C = (4𝜋10−10 m2) × (10 × 10−3 F m−2) = 4𝜋10−12 F

In Chapter 2 the capacitanceC of a ‘device’ (in this case
a cell membrane) is defined as the amount of charge Q it
can store at each electrode per unit of voltage V applied
across the electrodes (i.e., C = Q/V). In Figure 3.1, the
electrodes are metal plates and the charges are electrons.
In Figure 9.7, the ionic solutions either side of the mem-
brane serve as the electrodes and the charges are ions.
The membrane acts as the dielectric of the capacitor. To
establish a negative membrane potential (Vmr) requires
either a flow of negative ions across the membrane into
the cell, or positive (potassium) ions in the cytoplasm to
flow out of the cell. To set up a potential of 70mV will
require a displacement of charge Q given by:

Q = VmrC = (70 × 10−3 V) × (4𝜋 × 10−12 F)
= 8.8 × 10−13 C

To obtain the amount of monovalent ions in moles to
be transferred across the membrane we divide this result
by the Faraday constant (the magnitude of charge per
mole of electrons: q/NA = 9.65 × 104 C/mol):

Q(moles) = Q(C)∕(9.65 × 104) = 9.1 × 10−18 mol

We are asked to compare this amount with the con-
tent of potassium ions in the cytoplasm. The concentra-
tion (moles per litre) of potassium ions is 150mM. The
cell volume is (4𝜋R3)/3m3 = (4𝜋 × 10−15)/3m3 = (4𝜋 ×
10−12)/3 L.The potassium concentration [K+] in this cell
volume is thus:

[K+] = (4𝜋 × 10−12)∕3 × 0.15 = 6.3 × 10−13 mol

The quantity of charge to be displaced across themem-
brane compared with [K+] is:

(9.1 × 10−18 mol)∕(6.3 × 10−13 mol) = 1.44 × 10−5

Thus, to charge the membrane to −70mV requires as
little as 1.4 × 10−3% of the cell’s total potassium to be
transferred across themembrane.The rule of electroneu-
trality, that the number of positive chargesmust equal the
negative charges, remains essentially unviolated at the
macroscopic scale within and outside the cell. An imbal-
ance of charges exists only at themicroscopic scale across
the membrane.
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. Modelling the Dielectric Properties of
Cells

Typical results obtained for the dielectric properties
(conductivity and permittivity as a function of frequency)
of an aqueous suspension of cells are shown in Figure
9.8 for the case of human erythrocytes [23]. The large
increase of conductivity, first observed by Höber [8], is
clearly evident and is denoted as the 𝛽-dispersion [12].
This dispersion represents the frequency dependence
of the interfacial polarization at the boundary between
the insulator-like plasma cell membrane and the outside
conducting electrolyte. On application of an external
field to a cell suspension, a transient accumulation of ions
forms at the membrane surfaces. That this occurs can
be verified, as Höber [8] did, by porating the membrane
structure with a detergent. Also evident in Figure 9.8
is the ‘tail’ of a low-frequency dispersion (labelled as
the 𝛼-dispersion) that merges with the 𝛽-dispersion.
Studies of the 𝛼-dispersion are made difficult by elec-
trode impedance effects but the consensus is that this
dispersion arises from counter-ion conduction and
fluctuations near the charged surface groups on the cell
membrane. For frequencies below the 𝛽-dispersion the
electric field does not penetrate the plasma membrane.
Interpreting the 𝛽-dispersion using the concept of
fluctuating counter-ions described in Chapter 8 for
DNA and polyelectrolyte solutions can therefore be
considered of relevance also for the case of suspended
cells. This is discussed in more detail in section 9.5.
We now address the question as to how information

regarding the dielectric properties of the various com-
ponents of a cell can be extracted from characteristics
such as those presented in Figure 9.8. A first approach to
this is shown in Box 9.1, based on a procedure described
by Maxwell for calculating the resistivity of a compound
material consisting of small resistive spheres dispersed in
another type of resistive medium [46].This was extended
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Figure . (a) Conductivity (𝜎′ = 𝜔𝜀′′) of an aqueous solution
containing a 43.8% concentration by volume of human
erythrocytes. (b) Relative permittivity (𝜀′) of the same cell
suspension. The ‘tail’ of the 𝛼-dispersion and the 𝛽-dispersion are
shown (based on Takashima et al. [23]).

later byWagner [47] when he defined the constituents of
such a compound material in terms of the complex con-
ductivities of its components. The term effective permit-
tivity 𝜀eff is used in Box 9.1 to signify that a defined spher-
ical volume of a cell suspension may be replaced concep-
tually with an equal volume of homogeneous smeared-
out bulk properties, such that substitution of one volume
with the other would not alter the electric field in the sur-
rounding medium. In a dielectric measurement of a cell
mixture themeasured permittivity value is 𝜀eff. Equations
that have been formulated to describe the permittivity
or conductivity of cells and other particles dispersed in
a medium are generally known asmixture equations.
To take into account conduction effects, Equation (9.2),

derived in Box 9.1, can also be given in terms of complex
permittivity values:

𝜀∗eff − 𝜀∗m

𝜀∗eff + 2𝜀∗m
= vc

𝜀∗c − 𝜀∗m
𝜀∗c + 2𝜀∗m

(9.3)

On rearranging Equation (9.3) the effective permittivity
of a spherical volume of fluid medium of complex per-
mittivity 𝜀∗m, in which cells of complex permittivity 𝜀∗c are
suspended, is given by:

𝜀∗eff =
2𝜀∗m + 𝜀∗c + 2vc(𝜀∗c − 𝜀∗m)
2𝜀∗m + 𝜀∗c − vc(𝜀∗c − 𝜀∗m)

𝜀∗m (9.4)

Removing a spherical volume of the cell suspen-
sion and replacing it with a sphere of the same vol-
ume and with a homogeneous permittivity 𝜀∗eff will in
no way alter the original field distribution in the sur-
rounding medium. Converting the complex permittiv-
ity terms into complex conductivities using the identity
𝜎∗ = i𝜔𝜀o𝜀

∗given by Equation (6.45) leads to the same
expression for 𝜀∗eff as that derived by Wagner [47]. In an
impedance measurement of a cell suspension the value
of 𝜀∗eff is measured directly, whilst the volume fraction vc
and complex permittivity 𝜀∗m of the fluid medium can be
determined by centrifuging a known volume of the cell
suspension and measuring the volume and impedance
of the supernatant. Equation (9.4) can in principle give
the average permittivity value of the cells in the suspen-
sion.However, this equation is derived on the assumption
that the number of cells per unit volume is so small that
the value of 𝜀∗m obtained for the pure suspending fluid
(without any cells) is the same as that assumed in Box 9.1
(with cells present). We are in fact assuming the rela-
tionship 𝜀∗m ≈ 𝜀∗eff , implying that for a sufficiently large
observation scale a heterogeneous compound material
can be considered as a homogeneous one. Inserting this
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Box . Permittivity of a Dilute Suspension of Cells

An external field E is applied to a fluid medium of permit-
tivity 𝜀m containing a suspension of cells, each of radius Rc
and permittivity 𝜀c. The average distance between cells is
taken to be much less than Rc. Consider a spherical region
of radius Rm within the medium that contains n cells. The
potential at a point outside this sphere will comprise the
summation of the induced dipole fields of the n cells and
a directional component of the applied field. From Box 6.1
the potential at a distance r from the centre of our imagined
spherical volume of suspended cells is of the form:

𝜙1 =
(nA

r2
− Br

)
E cos 𝜃, where A =

𝜀c − 𝜀m

𝜀c + 2𝜀m
R3

c

The volume fraction vc of suspended cells is given by:

vc =
nR3

c

R3
m

so that

𝜙1 =
(

vcR
2
m

𝜀c − 𝜀m

𝜀c + 2𝜀m

1
r2

− Br
)

E cos 𝜃

Replacing our imagined sphere containing n cells with an
equal spherical volume of material of homogeneous per-
mittivity 𝜀eff, the new potential is:

𝜙2 =
(

R3
m

𝜀eff − 𝜀m

𝜀eff + 2𝜀m

1
r2

− Br
)

E cos 𝜃

We now wish our imagined homogeneous sphere of per-
mittivity 𝜀eff to be equivalent in dielectric properties to
the sphere containing n cells (i.e., we want 𝜙2 = 𝜙1). This
requires the following equality:

𝜀eff − 𝜀m

𝜀eff + 2𝜀m
= vc

𝜀c − 𝜀m

𝜀c + 2𝜀m
(9.2)

approximation into the denominator of the left-hand side
of equation (9.3) we obtain the relationship:

𝜀∗eff = 𝜀∗m

(
1 + 3vc

𝜀∗c − 𝜀∗m
𝜀∗c + 2𝜀∗m

)
(9.5)

This equation, generally known as the Maxwell–
Wagner equation, predicts that as the volume concentra-
tion vc of the cells is increased from zero (when 𝜀∗eff =
𝜀∗m) the measured value of the suspension’s permittiv-
ity increases linearly with increasing cell concentration.
This is in fact observed experimentally, so that Equation
(9.5) can be employed for very dilute cell suspensions. In
this respect we should note that the results shown in Fig-
ure 9.8 correspond to a 43.8% volume-based concentra-
tion of cells. This is not a dilute cell suspension. It cor-
responds, for example, to the situation of a suspension
of cells of diameter 10μm having their centres spaced
just 13μm apart. The cells will experience each other’s
induced dipole field that locally distorts the applied uni-
form field. This violates the assumption made in Box 9.1
that the cells are not influenced by such distortions of
the applied field. With a 4% volume concentration the
cells will on average be spaced three cell diameters apart.
In this case the error using Equation (9.5) is probably
‘tolerable’.
Relationships of the form of Equation (7.12) are

obtained on separating the real and imaginary terms in
Equation (9.5):

𝜀′eff = 𝜀′∞ +
(𝜀′s − 𝜀′∞)
1 + i𝜔𝜏

; 𝜎′
eff = 𝜎′

∞ −
(𝜎′

∞ − 𝜎′
s)

1 + i𝜔𝜏
(9.6)
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Figure . A schematic to show how through Equation (9.4) the
effective ‘smeared-out’ complex permittivity 𝜀∗eff of a cell can be
obtained from measurement of the complex permittivity of a
suspension of such cells. Alternatively, Equation (8.32) can be used
to predict the complex permittivity of a compound dielectric
composed of known particles dispersed in a known medium.
Through a repeat procedure used to derive Equation (9.14) the
dielectric properties of a multicomponent model of a cell can be
simplified to that of a homogeneous sphere of effective
permittivity 𝜀∗eff, or vice versa. Thus, through Equations (9.4) and
(9.14) the dielectric properties of the components of a cell can be
deduced from the dielectric properties of a suspension of the cells.

with

𝜏 = 𝜀o
𝜀′c + 2𝜀′m
𝜎′
c + 2𝜎′

m
(9.7)

(𝜀′s − 𝜀′∞) = Δ𝜀′eff = 9 vc
(𝜀′c𝜎

′
m − 𝜀′m𝜎′

m)
2

(𝜀′c + 2𝜀′m)(𝜎′
c + 2𝜎′

m)2
(9.8)

(𝜎′
∞ − 𝜎′

s) = Δ𝜎′
eff = 1

𝜏
Δ𝜀′eff (see Equation 7.18) (9.9)

The approximation that, for a sufficiently large obser-
vation scale, a heterogeneous compound material can be
considered as a homogeneous one is the basis for what is
called the effective medium theory. It has been employed



 Dielectrophoresis

with various degrees of success to formulate theories that
describe the ferroelectric, magnetic, optical and piezo-
electric properties of heterogeneousmaterials. Of partic-
ular interest to us, of course, are those that are directed
towards describing the dielectric properties of mixtures
of high particle concentration [e.g., 48–53].
A particularly successful extension of Equation (9.5)

for highly concentrated suspensions is that formulated
by Hanai [54]. His ingenious procedure involves incre-
menting, step by step, the volume fraction vc so that an
increment Δvc increases the permittivity of the mixture
from 𝜀∗mix to (𝜀

∗
mix + Δ𝜀∗mix). At the same time the permit-

tivity of the medium is assumed to increase from 𝜀∗m to
𝜀∗mix. The volume fraction vc is also replaced by the factor
Δ⌢vc∕(1 −

⌢vc), where
⌢vc is the new volume fraction. Plac-

ing these substitutions into Equation (8.32) and equating
𝜀∗mix to 𝜀∗eff gives the relationship:

Δ𝜀∗mix =
3𝜀∗mixΔ

⌢vc(𝜀∗c − 𝜀∗mix)

(1 − ⌢vc)(2𝜀∗mix + 𝜀∗c )
(9.10)

The act of incrementally increasing the volume fraction
continues until a final value for vc is reached.The summa-
tion of these incremental actions is given after rearrang-
ing Equation (9.10) and by the following integral relation-
ships:

∫

𝜀∗mix

𝜀∗m

(2𝜀∗mix + 𝜀∗c )
3𝜀∗mix(𝜀

∗
mix − 𝜀∗c )

d𝜀∗mix =
∫

vc

0
− 1
1 − ⌢vc

d⌢vc

(9.11)

The right-hand definite integral is straightforward and
equal to ln(1− vc), but the left-hand function is discontin-
uous (heading off to infinity) at 𝜀∗mix = 0 and at 𝜀∗mix = 𝜀∗c .
However, 𝜀∗mix is always greater than zero and less than 𝜀∗c .
Within the limits of the integration this function is thus
continuous and its integral can be obtained:

∫

𝜀∗mix

𝜀∗m

(2𝜀∗mix + 𝜀∗c )
3𝜀∗mix(𝜀

∗
mix − 𝜀∗c )

d𝜀∗mix =
1
3
ln

(
𝜀∗m
𝜀∗mix

)
+ ln

(
𝜀∗mix − 𝜀∗c
𝜀∗m − 𝜀∗c

)
From Equation (9.11) we then have the following rela-

tionship:

𝜀∗mix − 𝜀∗c
𝜀∗m − 𝜀∗c

(
𝜀∗m
𝜀∗mix

)1∕3
= 1 − ⌢vc (9.12)

This is generally known as the Hanai mixture equation
and is the relationship commonly employed to analyse
dielectric measurements performed on cell suspensions.
As far as the author can find, Hanai’s mixture equation
has not been taken further to give the dielectric incre-
ments and relaxation time of the forms of Equations (9.6)

to (9.9). To obtain the value of 𝜀∗c from the known value
of the volume fraction vc of the cell suspension and the
measured values for 𝜀∗mix and 𝜀∗m, requires the aid of a
computer program to find the complex roots of the poly-
nomial equation that results from cubing both sides of
Equation (9.12):

(𝜀∗mix)
3 − 3𝜀∗c (𝜀

∗
mix)

2 +

(
3(𝜀∗c )

2 +
[
(vc − 1)(𝜀∗m − 𝜀∗c )

]3
𝜀∗3m

)
𝜀∗mix − (𝜀∗c )

3 = 0

Employing the expression 𝜀∗ = (𝜀′ − i𝜎′∕𝜀o𝜔) for the
complex permittivity, values of 𝜀′ and 𝜎′ can be calcu-
lated. This method was used to obtain the membrane
capacitance of erythrocytes from the results shown in
Figure 9.9 [23]. A value of 6.5–7.0mF/m2 was obtained
using Equation (9.8), compared with 7.0–7.5mF/m2

obtained from a direct patch-clampmeasurement. Anal-
ysis of the data using theMaxwell–Wagner Equation (9.5)
gave a membrane capacitance value of 8.0mF/m2 [23].
These consistent values for the membrane capacitance

of the human erythrocyte can also be compared with the
value of 8.1mF/m2 obtained by Fricke for the dog ery-
throcyte [55]. He employed an equivalent electrical cir-
cuit for a cell suspension of the configuration shown in
Figure 9.1(b) and assumed that, at low frequencies, the
impedance of the cell membrane greatly exceeded that of
the cell interior. He obtained the membrane capacitance
value using the relationship:

C = 𝛼A
(
1 −

r1
r

)
Co = C100

(
1 −

r1
r

)
(9.13)

in which C is the measured specific capacity of the cell
suspension; Co the static capacity per sq. cm of the cell
membrane, r and r1 the specific resistances respectively
of the cell suspension and suspending liquid, 2𝛼 themajor
axis of the spheroid (cell). The factor A is a constant
equivalent to the depolarizing factor of Equations (7.33)
and (7.34). Fricke defined the specific electric capacity of
a cell suspension as the capacity that, combined in par-
allel with a certain resistance, electrically balances 1 cm.
cube of the suspension [56]. The parameter C100 is the
specific capacity of a suspension with a concentration
of 100% and its theoretical value was determined based
on measurements of C and r for various dilutions (with
serum, r1 = 75.8Ω) of whole blood. Based on 2𝛼 = 7.2
μm and an axial ratio of 4 : 1 for the discoid erythrocyte,
A = 1.28. The value for C100 was found to be 372 pico-
farads (±2%) per 1 cm3, so that, based on the relation-
ship Co = (C100/𝛼A) obtained from Equation (9.13), the
membrane capacitance was calculated to be 8.1mF/m2.
Assuming a value of 3 for the relative permittivity of
the lipid membrane material, a membrane thickness of
33 nm was derived [55]. This was the first indication of
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the molecular dimension of the membrane of an intact
and physiologically viable cell.
From numerous chemical, mechanical, optical, X-ray

and electron microscopy studies that have been per-
formed over the decades since Fricke’s pioneering work,
a value for the cell membrane thickness of 7.5∼10 nm
has emerged. A light-microscope technique, in which the
membrane material of a single intact human erythrocyte
is extracted into a long cylindrical strand, gave a mem-
brane thickness of 7.8 nm [57]. Justification is therefore
required as to why amembrane thickness of 7 nm is com-
monly assumed in the analysis of the dielectric proper-
ties of cells (e.g., see Tables 9.2 and 9.3). A cell mem-
brane is not a homogeneous structure. It consists of three
main regions connected ‘electrically’ in series. For exam-
ple around the outer surface of an erythrocyte there is a
‘fuzzy’ coat of thickness ∼100 nm, known as the glycoca-
lyx, consisting of hydrophilic oligosaccharides, glycopro-
teins and glycolipids. Ions can freelymigrate through this
structure and so is not the resistive interface responsi-
ble for the Maxwell–Wagner 𝛽-dispersion. The interface
of relevance is revealed after the cell is ‘fixed’ with glu-
taraldehyde and osmium tetroxide treatment. A trans-
mission electron micrograph of a section through the
membrane of a ‘fixed’ cell shows two dense lines that
correspond to the inner and outer polar layers of the
lipid head groups. The clear region between these lines
is the hydrophobic portion of the lipid bilayer, depicted
in Box 8.1. Coster and Smith [58] considered this molec-
ular organization in black lipid membranes (BLMs) and
concluded that the capacitance associated with the polar
head region was ∼300mF/m2. Because this capacitance
is ‘connected’ in series with that (∼8mF/m2) of the
hydrophobic lipid bilayer, the total effective value of the
membrane capacitance is given by:

1
Cmem

= 1
Clipid

+ 1
Cpolar heads

≈ 1
8
+ 2

300
(mF∕m2)−1

From this relationship we can deduce that the outer
and inner membrane layers containing the polar head
groups contribute no more than ∼5% of the total mem-
brane capacitance. It is therefore reasonable to take the
‘electrical’ thickness of a cell membrane to be at the
lower end of the range of observed physico-chemical
or ‘mechanical’ thickness values. A nominal membrane
thickness of ∼7 nm is reasonable.

Example 9.2 Deriving the Volume Fraction of Cells
in a Suspension using Hanai’s Mixture Equation
Human erythrocytes are suspended in a hypotonic solu-
tion of 50% phosphate buffered saline of conductivity
8mS/cm. Dielectric measurements reveal the existence

of a large dispersion with lower and upper frequency lim-
its of 300 kHz and 30MHz respectively. The conductiv-
ity of the suspension was measured to be 3.8mS/cm at
10 kHz. Use Equation (9.12) to derive the volume fraction
of cells in the suspension.

Solution 9.2 When suspended in 50% PBS erythro-
cytes have a spherical shape and Hanai’s mixture equa-
tion can be used for cell suspensions with volume frac-
tions up to ∼60%. At 10 kHz, a frequency well below the
range occupied by (what can be assumed to be) the 𝛽-
dispersion, the relationship 𝜀∗ = (𝜀′ − i𝜎′∕𝜀o𝜔) approxi-
mates to 𝜀∗ = −i𝜎′∕𝜀o𝜔, so that the Hanai mixture equa-
tion given by Equation (9.12) simplifies to:

𝜎′
c − 𝜎′

mix
𝜎′
c − 𝜎′

m

(
𝜎′
m

𝜎′
mix

) 1
3

= 1 − ⌢vc

Assuming that the cells have intact, high-resistance,
plasmamembranes then 𝜎′

m >> 𝜎′
c and to a good approx-

imation the left-hand side of this equation is equal to
(𝜎′

mix∕𝜎′
m)

2∕3, so that

⌢vc = 1 −
(

𝜎′
mix
𝜎′
m

) 2
3

For 𝜎′
mix = 3.8mS/cm and 𝜎′

m = 8mS/cm, the volume
fraction ⌢vc = 0.39.

9.4.1 Single-Shell Model of a Cell

Considering the range ofmeasurement and analysis tech-
niques employed, it is remarkable that the derived mem-
brane capacitance for mammalian erythrocyte is consis-
tently determined as 7.3 ± 0.8mF/m2. There is also the
experimental fact that erythrocytes do not always retain
their discoid shape in some suspension media, becom-
ing spherical in moderately hypotonic (∼70% PBS) solu-
tions, for example. Takashima et al. [23] did not employ
Equation (9.13) derived by Fricke to calculate the mem-
brane capacitance. So how did they achieve this from
their derivation of 𝜀∗c ? How were the dielectric parame-
ters for the cytoplasm, nuclear envelope and nucleoplasm
cited in Table 9.3 derived? A clue to this is provided by
considering the case n = 1 for the procedure outlined
in Box 9.1. This can represent a single sphere of radius
R1 located concentrically inside a slightly larger spherical
cell of radius R2. If we let the inner sphere have dielectric
properties similar to that of the cytosol of a cell, with the
material in the ‘shell’ between the inner and outer sphere
gap having a permittivity and conductivity similar to that
of a cell membrane, we have an elementary model for a
spherical cell such as an erythrocyte, which does not pos-
sess a nucleus or internal organelles. Proceeding as in Box
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9.1 and noting that, for n= 1, the volume fraction is given
by vc = (R1/R2)3, the following relationship is derived:

𝜀∗cell =
(2𝜀∗mem + 𝜀∗cyt)R

3
2 + 2(𝜀∗cyt − 𝜀∗mem)R

3
1

(2𝜀∗mem + 𝜀∗cyt)R
3
2 − (𝜀∗cyt − 𝜀∗mem)R

3
1

𝜀∗mem

(9.14)

where the sufficesmem and cyt represent the membrane
and cytoplasm phases, R2 is the cell radius and the mem-
brane thickness d is given by d = R2 − R1. Our system of
two concentric spheres, representing a single shell model
for a cell, is therefore equivalent to a homogeneous sin-
gle sphere whose complex permittivity is expressed in
terms of the cell radius and the permittivities of the cyto-
plasm and membrane. The permittivity 𝜀∗m of the sur-
roundingmediumdoes not appear in Equation (9.14) and
so our result is completely general. Altering the suspend-
ing medium will not influence the theoretical result, but
in an experiment this may cause osmotic stress to the cell
so that some of the parameters such as R1 and 𝜀∗m may
change.The procedure used to derive Equation (9.14) can
now be used to derive the equivalent homogeneous per-
mittivity of a sphere of permittivity 𝜀∗m that is inserted
into another sphere and so on. As shown in Figure 9.9
we can reach the stage of modelling a cell consisting of
a nucleus with its nuclear membrane, a cytoplasm con-
taining organelles and an outer cytoplasmic membrane.
Furthermore, through a combination of Equations (9.4)
and (9.14) the dielectric properties of the components of
a cell can be deduced from the dielectric properties of a
suspension of the cells.
The cell membrane thickness d is exquisitely small, so

that, in Equation (9.4), we canmake the following approx-
imations: R1 ≫ d; R1 ≈ R2 = R; terms such as d/R and
d3 ≈ 0.With these approximations Equation (9.4) simpli-
fies to:

𝜀∗cell = 𝜀∗cyt +
2d
R

𝜀∗mem (9.15)

Expressing the complex permittivity as 𝜀∗ = (𝜀′ −
i𝜎′∕𝜀o𝜔) and 𝜎∗ = i𝜔𝜀o𝜀

∗, the effective permittivity and
conductivity of the cell can be given in terms of the cell

radius R, with the cytoplasm and membrane dielectric
properties, as:

𝜀∗cell =
(

𝜀′cyt +
2d
R

𝜀′mem

)
− i 1

𝜀o𝜔

(
𝜎′
cyt +

2d
R

𝜎′
mem

)
(9.16a)

𝜎∗
cell =

(
𝜎′
cyt +

2d
R

𝜎′
mem

)
+ i𝜀o𝜔

(
𝜀′cyt +

2d
R

𝜀′mem

)
(9.16b)

where

𝜀′cell = 𝜀′cyt +
2d
R

𝜀′mem and 𝜎′
cell = 𝜎′

cyt +
2d
R

𝜎′
mem

The real and imaginary components of this equation
can be substituted into Equations (9.6) to (9.9) to derive
expressions for the dielectric increment and relaxation
time of the interfacial polarization. For example, the
relaxation time is given by:

𝜏 = 𝜀o
𝜀′cyt + 2𝜀′m + 2d

R 𝜀′mem

𝜎′
cyt + 2𝜎′

m + 2d
R 𝜎′

mem

(9.17)

To check the validity of this result, on removal of the
membrane the relaxation time should return to the value
given by Equation (9.7). With the membrane removed
(i.e., d = 0) parameters 𝜀′cyt and 𝜎′

cyt revert back to the
permittivity and conductivity of the cell (𝜀′c and 𝜎′

c) and
Equation (9.17) does indeed become Equation (9.7).
Miles and Robertson [59] employed the single-shell

geometry shown in Figure 9.10(a) to describe the dielec-
tric behaviour of a compound material consisting of col-
loidal particles each surrounded by an electrical double
layer.Thus, implicit in their model is the assumption that
the particles carry a net surface charge density and so
attract counter-ions to their surfaces. The particles are
modelled as spheres of radius R surrounded by a thin
ionic double layer, represented as a concentric conduct-
ing shell of thickness d (∼1 nm) with d ≪ R. It is also
assumed that the particles are poor conductors, so that
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Figure . (a) Single-shell model of a cell of radius R,
consisting of a plasma membrane of thickness d and
an internal phase. (b) Results obtained using the
MATLAB program in Box 9.2 to show how the
interfacial polarization (𝛽-dispersion) of a cell depends
on the integrity of the plasma membrane.
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the conductivity of the ionic shell is large compared with
that of the particle core. Following a mathematical treat-
ment similar to that described in Box 6.1 and adopted
in Box 9.1, Miles and Robertson derived an equation of
the same form as Equation (9.14) to describe the effec-
tive dielectric properties of the compound material, but
with the dielectric parameters expressed as complex con-
ductivity terms rather than complex permittivities [59].
Miles and Robertson concluded that the spread of relax-
ation times, predicted by Wagner [47] to describe the
dielectric behaviour of a compound dielectric formed of
spheres having a range of specific conductivities, may
also result from the colloidal particles having a spread of
diameters.

9.4.1.1 Maxwell–Wagner Interfacial Polarization
(𝜷-Dispersion)
The Maxwell–Wagner interfacial polarization of a cell
can be modelled using the MATLAB program given in
Box 9.2. An example to evaluate how interfacial polar-
ization is influenced by the cell membrane is given in
Figure 9.10. With an intact membrane exhibiting a high

resistance to passive ion flow, the modeled permittiv-
ity shows a large dielectric dispersion, known as the 𝛽-
dispersion, of the form shown in Figure 9.8. The magni-
tude of this dispersion reduces significantly as the high
resistance value of the membrane is degraded and ions
in the cytoplasm are allowed to diffuse down their con-
centration gradient from the cytoplasm to the outside
medium. The characteristic frequency of the dispersion,
corresponding to the point of inflection of the dielec-
tric decrement, is also observed to decrease. This corre-
sponds to an increase of the relaxation time 𝜏 , in agree-
mentwith the formof Equation (9.17)which predicts that
the value of 𝜏 should decrease as the values for 𝜎′

mem and
𝜎′
cyt increase.
The MATLAB program in Box 9.2 can also be used

to investigate how the 𝛽-dispersion exhibited by a sus-
pension of cells is influenced by the size of the cells and
the magnitude of their membrane specific capacitance.
The influence of cell size, whilst maintaining a constant
membrane specific capacitance and specific resistance,
is shown in Figure 9.11. This reveals that the magnitude
of the interfacial polarization increases with increasing

Box . MATLAB Program for the Single-Shell Model of a Cell

This program, which extends the one given in Box 6.9, treats
the case of a particle surrounded by a thin layer that mim-
ics the membrane of a spherical cell. When used together
lines 19 and 23 model a viable cell. Changing line 23 for
24 degrades the resistance of the membrane, whilst intro-
ducing line 20 with line 24 models the stage where ions
have diffused out of the cell to decrease the cytoplasm
conductivity.

1 % SSMC.m

2 % Internal phase assigned conductivity kc1

and permittivity kp1.

3 % Membrane assigned capacitance C (F/mˆ2) &

conductance G (S/mˆ2).

4 % From C & G derive membrane conductivity

kc2 and permittivity kp2.

6 % Table 9.2 used as a guide to assign

dielectric values.

7 % ki (i=1,2) complex permittivity of

cytoplasm, membrane.

8 % ———————————————————————————————————————-

9 % pO: permittivity of free space (8.854 x

10ˆ-12 F/m)

10 pO=8.854e-12;

11 % Membrane thickness d; cell radius a2

12 d=7e-9;

13 a2=5e-6;

14 a1=a2-d;

15 f=logspace(3,9,120);

16 zeroline=f-f;

17 w=2*pi*f;

18 % Cytoplasm conductivity and permittivity

19 kc1=0.8;

20 % kc1=0.1;

21 kp1=50*pO;

22 % Membrane conductivity and permittivity

23 G=0.2;

24 % G=2e4;

25 kc2=G*d;

26 C=8e-3;

27 kp2=C*d;

28 % Calculate Effective Permittivity –

using Equation (9.14)

29 k1=kp1-i*kc1 ./w;

30 k2=kp2-i*kc2 ./w;

31 am1=a1ˆ3;

32 am2=a2ˆ3;

33 keff2=k2 .*(am2*(k1+2*k2)-2*am1*(k2-

k1)) ./(am2*(k1+2*k2)+… am1*(k2-k1));

34 rm=real(keff2);

35 plot(log10(f),rm/pO,'-', log10(f),

zeroline,'-');

36 xlabel('Log Frequency (Hz)')

37 ylabel('Relative Permittivity')

38 hold on
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Figure . Plots of the real (𝜀′) and imaginary (𝜀′′) components
of the 𝛽-dispersion exhibited by a cell as modelled using the
MATLAB program in Box 9.2. The subscripts 3 and 12 refer to a cell
radius of 3 μm and 12 μm, respectively. The magnitude of the
dispersion increases, whereas the characteristic frequency
decreases as the radius of the cell increases.

radius of the cell. This result is consistent with an effec-
tive increase of the total surface charge storing capacity
the cell as its surface area increases with cell diameter.
It is also evident in Figure 9.11 that the characteristic
frequency of the dispersion decreases as the radius of the
cell increases. This can also be related to a geometrical
effect.The charges accumulating on the outer cell surface
are ions from the surrounding electrolyte, while counter
charges from the internal electrolyte also accumulate
on the inner cell membrane surface. At each half-cycle
of the applied AC electric field these accumulated ions
reverse polarity with respect to each other. The charac-
teristic time for this charge displacement increases as
the distance between opposite sides of the cell increases,
so that the characteristic displacement frequency (being
proportional to the reciprocal of the displacement time)
decreases, as shown in Figure 9.11. Another way of
viewing this is that the length (hence effective resistance)
of the ionic conducting path around the cell and between
opposing internal membrane surfaces increases as the
diameter of the cell increases. This, combined with
the increase of the area for charge accumulation raises
the effective RC time constant for charge displacement.
The influence of a change of membrane capacitance, for
a cell of constant diameter, is shown in Figure 9.12.

9.4.1.2 Factors Influencing Membrane Capacitance Value
A cell’s plasma membrane acts as an electrical charge
storing element because it has the same basic architec-
ture as a capacitor in an electrical circuit. It consists
of a thin dielectric sandwiched between two conduc-
tors, namely the outer electrolyte and the cytoplasm.
For a spherical cell this architecture is the same as that
depicted in Figure 3.21 for applying Gauss’s Law to cal-
culate the field produced in a dielectric situated between
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Figure . The real (𝜀′) and imaginary (𝜀′′) components of the
𝛽-dispersion exhibited by a cell of radius 5 μm, modelled using the
program in Box 9.2. The subscripts 8 and 20 refer to membrane
capacitance values of 8 and 20 mF/m2, respectively. The
magnitude of the dispersion increases, whereas the characteristic
frequency decreases, as the membrane capacitance increases.

two spherical conducting shells.The solution to this exer-
cise is given by Equation (3.43):

E = Q
4𝜋𝜀o𝜀rr2

for the condition R > r > (R − d)

We have assigned the radii of the outer and inner
surfaces of the cell membrane to be R and (R − d),
respectively, where d is the membrane thickness. From
Equation (3.8) and Table 3.2 we see that this is the same
expression for E created by a point chargeQ, as employed
in Example 4.4.We can therefore apply Equation (4.23) to
obtain an expression for the potential V of the inner con-
ductor (the cytoplasm) at r = (R − d) with respect to that
of the outer conductor (the external electrolyte) at r= R:

V = VR−d − VR = Q
4𝜋𝜀o𝜀r

(
1

(R − d)
− 1

R

)
= Q

4𝜋𝜀o𝜀r

d
R(R − d)

The capacitance of this system is given by

C = Q
V

= 4𝜋𝜀o𝜀r =
R(R − d)

d
(9.18)

The quantity 4𝜋R(R − d) is the geometric mean of the
areas 4𝜋R2 and 4𝜋 (R − d)2. Assigning this area as A, we
can rewrite Equation (9.18) as

Cm =
A𝜀o𝜀r
d

(9.19)

For the case of a mammalian cell, where we always
have the situation that R ≫ d, the membrane capaci-
tance can therefore be calculated using the same for-
mula as that for a capacitor composed of a dielectric
sandwiched between two parallel plate electrodes dis-
tance d apart and each of area A. As indicated in Table
9.2, if nominal values of ∼5 and ∼7 nm are adopted for
𝜀r and d, respectively, a specific membrane capacitance
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(Cm/A) of ∼6mF/m2 is obtained for a smooth cell mem-
brane. Values in the range 6 ∼ 8mF/m2 are observed for
erythrocytes, which have relatively smooth membranes
[e.g., 23, 55]. However, from Table 9.2 it is clear that val-
ues significantly larger than this are also observed. The
only parameter in Equation (9.19) capable of sufficient
adjustment to produce large values for Cm is the effec-
tive area of the membrane surface. This can be quanti-
fied by introducing a membrane topography parameter
𝜙 that represents the ratio of the actual membrane area
of the cell to the membrane area (4𝜋R2) that would form
a perfectly smooth and spherical covering of the cyto-
plasm. A perfectly smooth membrane corresponds to 𝜙

having a value of 1.0.The areaA in Equation (9.19) is thus
replaced with the factor 𝜙Ao, where 𝜙 is proportional to
the ‘roughness’ of the membrane surface:

Cm =
𝜙Ao𝜀o𝜀r

d
(9.20)

Tests of this concept have been performed by sub-
jecting cells to changes of osmotic pressure. In section
8.3 it is described how cells are ‘happy’ in an isotonic
medium, equivalent to a ∼145mM KCl solution, which
has an osmolarity of ∼290mOsm. Cells suspended in a
medium with a tonicity larger than this value are in a
hypertonic medium. The number of ‘particles’ per unit
volume of water outside the cell is larger than that in
the cytoplasm. Alternatively, we can say that the con-
centration (also termed activity) of water inside the cell
is larger than that of the suspending medium. These
two solutions are separated by a water-permeable mem-
brane and when confronted with this situation water will
always flow in the direction that will dilute the more con-
centrated solution. When placed in a hypertonic solu-
tion, water will thus flow out of the cell. This causes the
cell to shrink and the membrane to ‘wrinkle’. The value
of the membrane topography parameter 𝜙 in Equation
(9.20) increases. Conversely, cells suspended in a hypo-
tonic medium will swell as water flows into the cell. To
accommodate this increase in cell surface area the mem-
brane will stretch and smooth out membrane folds or
reduce the number of microvilli by utilizing their mem-
brane material. This should have the effect of reducing
the value of 𝜙. Irimajiri et al. [60] studied the dielec-
tric properties of basophil leukaemia cells and found that
the specific membrane capacitance value was strongly
correlated with the number density of microvilli on the
membrane surface. Sukhorukov et al. [61] performed
electrorotation studies on three cultured murine cell
lines (myeloma (SP2); hybridoma (G8); L-cells (fibrob-
lasts)) suspended in media of osmotic strengths ranging
from 60mOsm to 330mOsm. Under isotonic conditions
(280mOsm) the myeloma and hybridoma cells exhibited
Cm values of 10.1 and 10.9mS/m2, respectively, whilst

the fibroblasts exhibited a value of 21.8mS/m2. For all
three cell types the Cm value decreased with decreas-
ing osmolality. For example, for the G8 cells the Cm
value decreased from 12.7mS/m2 at 320mOsm to reach
a plateau of 7.7∼ 8.0mS/m2 below150mOsm, represent-
ing a fall of 𝜙 from ∼1.6 to ∼1.0. Electrorotation studies
were also performed by Wang et al. [62] for murine ery-
throleukaemia (DS19) cells during their erythropoietic
differentiation, over which time their Cm value fell from
17.4 to 15.3mS/m2 at 300mOsm. Scanning and trans-
mission electron microscopy revealed that this fall in Cm
correlated with a reduction in the density of complex
surface features, including microvilli. When the osmo-
lality was decreased from 450 to 210mOsm, the mean
Cm of undifferentiated DS19 cells changed from 20.5 to
15.8mS/m2 (a decrease of 22.9%) while that for differen-
tiated cells changed from 17.2 to 14.7mS/m2 (a decrease
of 14.5%). This demonstrated that cells exposed to the
differentiation treatment had an enhanced mechani-
cal resilience compared with their untreated counter-
parts, evidencing the early stages of the development
of the membrane skeleton, which becomes fully devel-
oped in mature erythrocytes. Asami [63] performed a
three-dimensional finite element method (FEM) simu-
lation of the dielectric properties of a cell model that
emulates the morphological changes of microvilli dur-
ing osmotic perturbation. In this simulation a microvil-
lous cell is modeled as a sphere with cylindrical pro-
jections. He confirmed that the dielectric properties of
cells are strongly influenced by such surface morphology
features.
The value of the membrane capacitance could also be

influenced by changes in the values of 𝜀r and d in Equa-
tion (9.20) arising, for example, from differences in the
protein content of the membrane. Gentet et al. [64] per-
formed patch-clamp measurements of Cm on embryonic
kidney cells (HEK-293) before and after transfection to
increase the content (expression) of glycine receptors and
other membrane proteins. Values of 11.1 ± 0.8mS/m2

and 10.5 ± 0.9mS/m2 were obtained for the untrans-
fected and transfected cells, respectively. Thus, despite
the large increase in the membrane protein content
of transfected HEK-293 cells, there was no detectable
change in the Cm value. Stoneman et al. [65] studied the
dielectric properties of yeast cells (Saccharomyces cere-
visiae) that had been genetically engineered to overex-
press a G protein-coupled receptor (Ste2p protein) in
the membrane of these yeast cells. These proteins were
fused with the green fluorescent protein (GFP) to enable
determination the extent of this expression by fluores-
cence microscopy. The double-shell model of a cell was
used to analyse the data. The control cells exhibited a
Cm value of 17.5 ± 1.6mS/m2, while for the cells with
an increased protein content in their membrane the Cm
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value was 16.3 ± 1.1mS/m2. Again, this demonstrates
that the protein content of a membrane plays a minor
part in determining its specific capacitance. Instead, it
may be assumed that the Cm value mostly reflects the
properties of the hydrophobic layer of the membrane,
which is populated by the hydrocarbon tails of the phos-
pholipids and hydrophobic segments of integral mem-
brane proteins. Of relevance to this are the highly effi-
cient (98%) dielectrophoretic separation of co-cultured
C2C12 myoblasts and GFP-expressing MRC-5 fibrob-
lasts reported by Muratore et al. [66]. Because of their
similar size and shape this high purity separation was
attributed to differences in the membrane capacitance
values of the two cell types. Raman spectra obtained
for their membranes indicated that the fibroblast mem-
branes contained a smaller proportion of saturated lipids
than those of the myoblasts. It was concluded that, apart
from the membrane topography parameter 𝜙, mem-
brane thickness and molecular composition may thus
also contribute to the specific membrane capacitance
of a cell.

9.4.2 Double-Shell Model of a Cell

Irimajiri et al. [67] measured the permittivity and
conductivity of suspensions of cultured rat basophil
leukaemia cells over the frequency range 10 kHz–
500MHz. Two dielectric dispersions were observed: a
low-frequency dispersionwith a characteristic frequency
of several hundred kHz and Δ𝜀 = 103 ∼ 104; a high-
frequency dispersion with a characteristic frequency
∼20MHz and Δ𝜀 = 10 ∼ 100. An analysis of the data
was attempted using the single-shell model of a cell
and the Hanai mixture theory expressed by Equation
9.12. A reasonable fit of the experimental data to the-
orywas obtained for frequencies below∼1MHz, yielding
a value of 14mF/m2 for the plasma membrane capaci-
tance. However, the single-shell model failed in its ability
to simulate the experimental data above 1MHz. It was
concluded that the single-shell model has limited ability
to describe the dielectric properties of cells, which may
contain subcellular organelles delineated with their own
membranes, such as nuclei, mitochondria and secretory
granules [60]. To account for the discrepancy between
experiment and theory, it was proposed that the double-
shell model proposed by Irimajiri et al. [68, 69] should
be used rather than the single-shell model. The number
of shells implied by the terminology corresponds to the
number of membranes represented in the model. Thus,
the single-shell model takes into the account the plasma
membrane for a cell without a nucleus (namely a normal
erythrocyte), whilst the double-shell model includes the
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Figure . (a) Single-shell model of a shell. (b) Double-shell
model. The number of shells is denoted by the number of
membranes, not the number of represented cell components. The
subscripts for the complex permittivities refer to the following
compartments: m, plasma membrane; i, inner phase of cell; cyt,
cytoplasm; ne, nuclear envelope; np, nucleoplasm. The
morphological parameters are: R, outer cell radius; Rn, outer radius
of nucleus; d, plasma membrane thickness; dn, thickness of
nuclear envelope. The double-membrane structure of the nuclear
envelope is modelled as a single homogeneous shell. To account
for the double membrane of the nuclear envelope requires a
triple-shell model of the cell.

nuclear envelope (treated as a single homogeneousmem-
brane) [69] or pentaphase systems consisting of shell
spheres [70].The double-shell model has been applied to
analyse of changes of the dielectric properties of lympho-
cyte membranes induced by GM1 and GM3 glycolipids
[71], as well as the dielectric properties of normal and
malignant leukocytes [72]. Other systems to have been
studied in this way include organelles such as mitochon-
dria [73], yeast cells [74, 75], E. coli [76] and plant pro-
toplasts [77]. Schematics of the single-shell and double-
shell models for a spherical cell are shown in Figure 9.13.
Asami et al. [78] have developed these models and the-
ory to describe nonspherical (i.e., ellipsoidal) particles. In
Box 9.3 the MATLAB program given in Box 9.2, for the
case of the single-shell model, is extended to encompass
the double-shell model.
An application of the double-shell model is demon-

strated in Figure 9.14 to show how the form of the
𝛽-dispersion is sensitive to the relative size of the
nucleus. The two relaxation processes observed by Iri-
majiri et al. [67] for leukaemia cells becomemore evident
as the nucleus-cytoplasm volumetric ratio increases.This
shows why nucleated cells cannot be analysed accurately
using the single-shell model.
The MATLAB program in Box 9.3 assumes that the

various components of the cell, including the nucleo-
plasm, are homogenous mediums whose dielectric prop-
erties do not vary as a function of frequency.This is of no
major consequence if the cytoplasm, nuclear envelope or
nucleoplasm contain polarizable entities with relaxation
times longer than that exhibited by the 𝛽-dispersion. In
this frequency range the cell interior is largely shielded
from the applied electric field. At the high-frequency
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Box . MATLAB Program for the Double-Shell Model of a Cell

This program models the dielectric properties of a cell in
terms of the nucleus-cytoplasm volume ratio. Dielectric val-
ues are assigned according to Table 9.3.

1 % DSMC.m

2 % Nuclear envelope represented as a single

homogeneous membrane

3 % Nucleoplasm(radius a1): conductivity kc1,

permittivity kp1

4 % Envelope: conductivity kc2; permittivity

kp2; thickness d2.

5 % Cytoplasm (radius a3): conductivity kc3

and permittivity kp3.

6 % Membrane: conductivity kc4; permittivity

kp4; thickness d4.

7 % ki (i=1,2,3,4) complex permittivity of

each compartment.

8 % ———————————————————————————————————————

9 %

10 clear;

11 % Establish relative size of nucleus wrt

total cell diameter

12 % Cytoplasm inner radius a3

13 a3=5.0e-6;

14 % Internal radius of nucleus a1

15 % Define fractional volume 'v' of cell

occupied by nucleus

16 v=0.8;

17 a1=(v*a3ˆ3)ˆ0.333;

18 % Thickness of nuclear envelope d2

19 d2=40e-9;

20 a2=a1+d2;

21 % Cytoplasm membrane thickness d4

22 d4=7e-9;

23 a4=a3+d4;

24 pO=8.854e-12;

25 f=logspace(4.01, 9.0,100);

26 zeroline=f-f;

27 w=2*pi*f;

28 % Nucleoplasm conductivity kc1 and

permittivity kp1

29 kc1=1.35;

30 kp1=52*pO;

31 % Nuclear envelope conductivity kc2 and

permittivity kp2

32 kc2=1.1e-3;

33 kp2=28*pO;

34 % Cytoplasm conductivity kc3 and

permittivity kp3

35 kc3=0.8;

36 kp3=50*pO;

37 % Plasma membrane conductivity kc4,

permittivity kp4

38 Gm=0.2;

39 kc4=Gm*d4;

40 Cm=8e-3;

41 kp4=Cm*d4;

42

43 k1=kp1-i*kc1 ./w;

44 k3=kp3-i*kc3 ./w;

45 k2=kp2-i*kc2 ./w;

46 k4=kp4-i*kc4 ./w;

47

48 am1=a1ˆ3;

49 am2=a2ˆ3;

50 am3=a3ˆ3;

51 am4=a4ˆ3;

52

53 keff2=k2 .*(am2*(k1+2*k2)-2*am1*(k2-k1))

./(am2*(k1+2*k2)+… am1*(k2-k1));

54

65 keff3=k3 .*(am3*(keff2+2*k3)-2*am2*

(k3-keff2)) ./(am3*(keff2+2*k3)+…
am2*(k3-keff2));

56

57 keff4=k4 .*(am4*(keff3+2*k4)-2*am3*

(k4-keff3)) ./(am4*(keff3+2*k4)+…
am3*(k4-keff3));

58

59 rm=real(keff4);

60 im=imag(keff4);

61

62 plot(log10(f), rm/pO,'+', log10(f),

zeroline,'-');

63 % plot(log10(f), -im/pO,'+', log10(f),

zeroline,'-');

64

65 hold on

66

67 xlabel('Log Frequency (Hz)')

68 ylabel('Relative Permittivity')

69

70 hold on
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Figure . Plots of the real (𝜀′) and imaginary (𝜀′′) components
of the 𝛽-dispersion exhibited by a nucleated cell, obtained using
the double-shell MATLAB program in Box 9.3. The subscripts 0.1
and 0.8 refer to nucleus-cytoplasm volume ratios of 0.1 and 0.8,
respectively. The additional component of the dispersion
associated with the nucleus becomes more apparent as its relative
size increases.

limit of the 𝛽-dispersion, however, the field penetrates
into the cell. Although there is no evidence (as yet) that
the nucleoplasm exhibits dipolar relaxations at high fre-
quencies, their potential influence can be considered by
replacing line 30 in the MATLAB program of Box 9.3
with the following ones:

delta=350*pO; % Magnitude of dielectric

dispersion

kp1h=50*pO; % Permittivity at high-

frequency limit of

dispersion

fc=3e8; % Characteristic frequency

of dispersion

kp1=kp1h + delta ./(1 + (f ./fc).ˆ2); %

Equation (7.36)

These extra lines of the program incorporate Equation
(7.36)

𝜀′(𝜔) = 𝜀∞ +
(𝜀s − 𝜀∞)
1 + f 2∕f 2c

with ‘delta’ defining the magnitude Δ𝜀 = (𝜀s − 𝜀∞) of
the dispersion, ‘kp1h’ the permittivity 𝜀∞ at the high-
frequency limit of the dispersion, fc its characteristic fre-
quency. An example of executing this program, for the
case of a nucleus occupying a fractional volume v= 0.6 of
the cytoplasm and fc = 300MHz, is shown in Figure 9.15.
Compared to the overall magnitude of the 𝛽-dispersion,
the effect of an extra dispersion arising, for example, from
relaxations induced in the DNA-protein complexes in
the nucleoplasm is small. It could, however, influence the
value of the high-frequency DEP crossover effect to be
described in the next chapter.
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Figure . Plot of the real (𝜀′) component of the 𝛽-dispersion
exhibited by a nucleated cell, with (dotted curve) and without
(solid line) a dielectric relaxation occurring in the nucleoplasm.
See main text for details.

9.4.2.1 Modelling the Nuclear Envelope
In the double-shell model the nuclear envelope is repre-
sented as a single, homogeneous, shell. In fact, it is com-
posed of two lipid bilayers, the inner nuclear membrane
and the outer nuclear membrane, separated by a fluid-
filled region known as the perinuclear space of thickness
30 ± 10 nm. The outer nuclear membrane is physically
linked to the endoplasmic reticulum, which consists of
a network of membranes that form sac-like structures
known as cisternae andheld together by the cytoskeleton.
Their function is to synthesize and export proteins and
lipids. The effective area of the outer nuclear membrane
is therefore much larger than that required to surround
the nucleus and is the reason why it exhibits anoma-
lous specific membrane capacitances ranging from 1000
to 5000mF/m2 [30, 31]. The inner nuclear membrane
encloses the nucleoplasm and is connected to the outer
membrane by nuclear pores. These pores are composed
of proteins that form a hollow tube that penetrating each
nuclear membrane, through which small particles can
pass by passive diffusion. The fluid in the perinuclear
space can thus be considered to have a similar conduc-
tivity value to that of the electrolyte in the cytoplasm.
The capacitances of the inner nuclear membrane and
outer nuclear membranes (Cinm and Conm, respectively)
are thus electrically connected in series. Their combined
value to give the nuclear envelope capacitanceCne is thus
given by the following formula:

1
Cne

= 1
Cinm

+ 1
Conm

, so that Cne =
CinmConm

Cinm + Conm

There is no experimental evidence to suggest that
the capacitance of the inner nuclear membrane has an
anomalously high specific capacitance, so the assump-
tion can be made that Conm ≫ Cinm. In this case, based
on the above formula, Cne ≈ Cinm. Therefore, the anoma-
lous specific capacitance of the outer nuclear membrane
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does not form part of the numerical data to be entered
into the double-shell model of a cell. In their double-shell
model of mouse lymphocytes, Asami et al. [34] assumed
that the capacitances of the inner nuclear membrane and
outer nuclear membrane were the same and each equal
to 2Cne. The best fit value to the experimental dielectric
data gaveCne = 6.2mF/m2, in reasonable agreement with
the value of 8mF/m2 reported by Irimajiri et al. [69].
Asami et al. [34] also found that the best fit to the

experimental data produced a relatively high conduc-
tance value of 15 S/cm2 for the nuclear envelope. This is
to be expected because of the large number of electrolyte-
filled nuclear pores that penetrate the inner and outer
nuclear membranes. Analysis of the dielectric data,
obtained over a frequency range from 0.1 to 250MHz,
was performed using both a double-shell model and a
single-shell model of the nucleus of the lymphocyte. No
difference between the two models and only one disper-
sion was found [34]. It was therefore concluded that the
nuclear envelope can be represented as a single shell.This
is why the MATLAB program in Box 9.3 treats a nucle-
ated cell in terms of the double-shell model. The two
nuclear membranes and the perinuclear space that com-
prise the nuclear envelope is treated as a single, homoge-
neous, shell.The plasmamembrane is represented by the
second shell.

. Effect of Cell Surface Charge on
Maxwell–Wagner Relaxation

As discussed in Chapter 2, cells carry a net surface charge
that can be characterized by the electrophoretic mobil-
ity of a cell [79]. X-ray standing waves can also be used
to investigate the extent to which counterions condense
on a charged membrane surface or form a diffuse layer
with a near exponential decay of concentration with dis-
tance from the surface [49]. Although it was implicit in
their model that their particles under consideration car-
ried a net surface charge density so as to attract counte-
rions, the theory adopted by Miles and Robertson [59]
is similar to that described in Box 6.1 for the solution of
Laplace’s equation. However, for a particle carrying a net
surface charge, rather than working with Equation (3.31)
we should in principle be seeking a solution to Equation
(3.30), namely Poisson’s equation:

∇2V = −
𝜌T

𝜀o𝜀
′
m

where 𝜌T is the net charge density carried by the cell.
Attention should also be given to the dynamics of the
diffuse layer of counterions in the electrical double layer
when an external AC field is applied.

As a first approximation we can treat a cell as a homo-
geneous solid particle, with no inner charged membrane
surface. In this case the internal potential of the cell can
be obtained by solving Laplace’s equation and we need
only solve Poisson’s equation for the external potential.
This is the approach of Bonincontro et al. [80] who con-
sider the case of spherical particles of net negative surface
charge 𝜎o suspended in an electrolyte containing mono-
valent positive and negative ions. The ions in the diffuse
region of the electrical double layer formed around the
particle are assumed to be subjected to thermal agita-
tion, as well as being under the influence of the field pro-
duced by the fixed charges on the particle’s surface. Near
the charged surface the positive ions (acting as counte-
rions) in the double layer will outnumber the negative
ions in a distribution profile dictated by the Poisson–
Boltzmann equation described in Chapter 12. On appli-
cation of an external electric field this distribution of ions
is perturbed by what we can term as electromigration,
together with the diffusion of counterions and co-ions
down induced concentration gradients. Taking these var-
ious factors into account, Bonincontro et al. [80] consid-
ered the spatial distribution of the charge density to be of
the form:

𝜌o(r) + 𝜌(r, 𝜃) = A
𝜅r

exp(−Kr) + B
𝛾r

(
1 + 1

𝛾r

)
exp(−𝛾r) cos 𝜃 (9.21)

where A and B are constants to be determined and 𝜅 is
equal to the reciprocal of the Debye screening radius.
The concept of the Debye screening radius is described
in Chapter 12, but in brief we can understand its signif-
icance by saying that for distances less than the Debye
radius the distribution of ions in the solution is strongly
influenced by their electrostatic interactions with the
fixed surface charges. For larger distances the counte-
rions already attracted to the charged surface act as an
ionic screen, so that electrostatic interactions of the elec-
trolyte ions with the charged surface are weaker. At a dis-
tance of around 10/𝜅 the ions in the bulk solution are not
perturbed by the charged cell. The parameter 𝛾 in Equa-
tion (9.21) is given by 𝛾2 = 𝜅2 +i𝜔/D, where D is the
ion diffusion coefficient. At low frequencies, as 𝜔 → 0,
𝛾 approaches a value equal to the reciprocal of the Debye
screening radius. With increasing frequency the value of
𝛾 is increased (i.e., the effective Debye screening radius
is decreased) by an incoming flux of counterions that is
out of phase with the applied field. As described in sec-
tion 7.4, a phase lag between a polarization process and
the applied field leads to energy absorption and a dielec-
tric dispersion.This dispersion is themanifestation of the
Maxwell–Wagner interfacial polarization.
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Thepotentials𝜙o and𝜙i outside and inside the charged
cells, respectively, have to satisfy Poisson’s equation and
Laplace’s equation, respectively, as follows:

∇2
𝜙o = − 1

𝜀o𝜀
′
m
[𝜌o(r) + 𝜌(r, 𝜃)];∇2

𝜙i = 0

Bonincontro et al. [80] determined the potentials 𝜙o
and 𝜙I on applying the boundary conditions described in
Chapter 5 at the surface of the cell (r = R), namely:

𝜙i(r, 𝜃) = 𝜙i(r, 𝜃) and 𝜀′c
𝜕𝜙i
𝜕r

− 𝜀′m
𝜕𝜙o
𝜕r

= 𝜎o (9.22)

Based on their solution for 𝜙o, Bonincontro et al.
derive the following expression for the induced dipole
moment of a charged sphere (cell):

p = 4𝜋𝜀o𝜀
′
mR

3
[
𝜀′c

(
1 − 𝜅2R2

𝛾2R2 + 2𝛾R + 2

)
− 𝜀′m

]
[
2𝜀′m + 𝜀′c

(
1 − 𝜅2R2

𝛾2R2 + 2𝛾R + 2

)]−1
Comparing this result with the form of the Clausius–

Mossotti factor given in Equation (6.4) it is apparent that
this induced dipole moment is equivalent to that which
would be induced in a spherical particle of effective per-
mittivity given by:

𝜀′ceff = 𝜀′c

(
1 − 𝜅2R2

𝛾2R2 + 2𝛾R + 2

)
(9.23)

Onmodelling the implications of this result, Bonincon-
tro et al. conclude that only a small and in some cases a
negligible, correction to the characteristic parameters of
the Maxwell–Wagner interfacial polarization is required
to account for cell surface charge. An interesting aspect
of the result expressed by Equation (9.23) is that it does
not include the net negative surface charge 𝜎o on the cell.
Neither the factor 𝜅 nor 𝛾 depend on the net charge of the
cell.TheDebye screening radius 1/𝜅 depends on the con-
centration and charges of ions in the solution, the permit-
tivity of the solution and temperature.The diffusion con-
stant of the ions depends on their charge, mobility and
the temperature. Another interesting feature of Equation
(9.21) is that the existence of an electrical double layer
around a charged cell is predicted to reduce the mag-
nitude of its induced dipole moment. This is in agree-
ment with expectations. The Maxwell–Wagner interfa-
cial polarization, as manifested by the appearance of the
𝛽-dispersion, occurs at frequencies where the effective
polarizability of the cell is less than that of the surround-
ing medium. According to the scheme shown in Fig-
ure 6.12 and reproduced in Figure 9.16, this corresponds
to an induced dipole moment aligned against the direc-
tion of an applied electric field. In the diffuse region
of the double layer around a cell that carries a fixed nega-
tive charge, positively charged counterions dominate in
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Figure . (a) The induced dipole moment p of a viable cell at
low frequencies is aligned against the direction of the applied field
Eo. (b) A cell with a net charge on its surface is surrounded by an
electrical double layer. An applied field distorts the diffuse part of
the double layer to produce an ‘ionic’ dipole moment aligned with
the field.

number over negative ions. As shown (in an exagger-
ated form) in Figure 9.16 we can expect the distribu-
tion profile of the counterions to be distorted on appli-
cation of an external field. For the instantaneous field
direction shown, positive counterions from the bulk elec-
trolyte will be driven the left-hand side of the cell, to then
move by conduction anddiffusionwithin the double layer
to the right-hand side. At low frequencies the conduc-
tive and diffusive counterion fluxes will be in phase with
the applied field, but with increasing frequency the diffu-
sive flux will not be in phase. Field-driven negative ions
approaching the right-hand side of the cell will be con-
fronted by coulombic repulsion from the fixed surface
charge in attempting to conduct and diffuse within the
double layer to the left-hand side of the cell. This pro-
duces a nonsymmetrical distribution of counterions and
a dipole moment aligned with the field. The net result is
a reduction of the total induced moment compared to
that exhibited by an uncharged cell. For the case of an
uncharged cell, the Maxwell–Wagner polarization arises
from the accumulation of field driven ions at the bound-
ary between two dielectric phases, namely the electrolyte
and the cell membrane. When fixed charges are added
to the membrane, the accumulated ions are envisaged
to form inside the diffuse region of the electrical dou-
ble layer. This provides a surface conduction path for the
accumulated counterions to redistribute themselves.
The result given by Equation (9.23) has been criticized

by Garcia et al. [81] who point out that in the limit as
𝛾R → ∞ the counterions have effectively all condensed
onto the surface of the cell (radius R) and we should
expect the external potential to have the same form as for
an uncharged spherical particle. In their view this lim-
iting situation corresponds to either the ionic diffusion
coefficient tending to zero with the medium conductiv-
ity remaining constant, or the radius of the cell tending
to infinity. In either case the result expressed by Equation
(9.21) does not have the correct limiting value as 𝛾R→∞.
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Analytical solutions of the equations obtained by Garcia
et al. [81] are not straightforward, but numerical calcula-
tions show that the characteristic frequency of the inter-
facial dispersion is always higher than that corresponding
to the Maxwell–Wagner approximation

𝜔MW =
2𝜎m

𝜀o(𝜀c + 2𝜀m)

by an amount that depends only on the ratio of the
permittivities of the cell and the surrounding solution,
together with the value of 𝛾R, but does not depend on
the conductivity of the solution. The effect of the charge
on a spherical particle can be neglected only when 𝜅R >

100. For example, for 𝜅R = 1, corresponding to a particle
of radius 10−8 m suspended in an ionic solution for which
𝜅 = 108 m−1, the dielectric increment is five times lower
and the relaxation frequency three times greater than the
values predicted by theMaxwell–Wagner approximation
for dilute suspensions [81]. For a cell of radius 10 μm
suspended in a 10mM ionic solution (𝜅 ≈ 3 × 108 m−1)
then 𝜅R > 1000 and according to Garcia et al. the influ-
ence on the 𝛽-dispersion and hence also on the form of
the Clausius−Mossoti factor, is negligible. Aspects of the
theoretical approach adopted by Garcia et al. [81] should
be mentioned. They determine the potential outside the
spherical particle using the Poisson equation:

∇2𝜙m(r, t) = − e
𝜀o𝜀m

[n+(r, t) − n−(r, t)]

where n±(r,t) represent the spatial and temporal densi-
ties of monovalent ions of charge ±e in the diffuse region
of the electrical double layer. Note that the angular com-
ponent of the potential involving cos𝜃 , considered by
Boninicontro et al. [80] in Equation (9.21), is not included
in the treatment by Garcia et al. For the second bound-
ary condition given in Equation (9.21) the negative sur-
face charge 𝜎o is not included, as a consequence ‘of the
fact that no true surface charge is considered’ [81]. This
is an interesting, almost philosophical, point that appears
to introduce an approximation of a key boundary condi-
tion required for a solution of Poisson’s equation. Garcia
et al. [81] derive the following expression for the induced
dipole moment of a charged sphere:

p = 4𝜋𝜀o𝜀
′
mR

3
𝜀′c −

(
𝜀′gm + 𝜀′cR

)
𝜀′c + 2

(
𝜀′gm + 𝜀′cR

)
where 𝜀′gm = 𝜀′m − i𝜎′

m/𝜔𝜀o. This result implies that the
induced dipole moment of a charged cell surrounded
by an electrical double layer in an ionic solution of
permittivity 𝜀′m and conductivity 𝜎′

m is equivalent to

that which would be induced in an uncharged spheri-
cal particle when suspended in a medium of effective
permittivity:

𝜀′meff = 𝜀′gm + 𝜀′cR (9.24)

Bonincontro et al. [80] and Garcia et al. [81] thus
present us with two quite different forms of a result.
Cesare Cametti’s group [80] endows an effective per-
mittivity to the charged particle plus its electrical dou-
ble layer, whilst Constantino Grosse and colleagues [81]
focus attention only on the properties of the ionic phase
surrounding the particle. The Maxwell–Wagner interfa-
cial polarization involves the interface between the par-
ticle and its surrounding medium, leading to both view-
points being valid.
Both results predict that the effect of surface charge is

to reduce the magnitude of the induced dipole moment,
as well as concluding that the influence on the magni-
tude of the interfacial polarization and its relaxation time
are likely to be negligible for the case of cell suspensions.
However, clarification is required regarding the dielectric
properties of smaller charged particles such as proteins,
viruses and bacteria. The form of Equation (9.24) pre-
dicts a linear proportionality between particle size and
the influence of charge on the particle, which does not
readily equate to the requirement that 𝜅R > 100 for such
influence to be neglected. This author is unaware of any
published, analytical, theory for Maxwell–Wagner inter-
facial polarization that treats the case of charged particles
with an electrical double layer that has a thickness com-
parable to that of the particle’s size.
Grosse and colleagues refined their theory in subse-

quent publications [82–84], which can be summarized
as indicating that the dielectric behaviour of suspensions
of charged particles depends little on the ionic compo-
sition of the electrolyte or on the fixed charge density
of the particle’s surface. The particle is considered to
be surrounded by a thin layer of counterions (which
neutralize it and hence avoids having to solve Poisson’s
equation) and by a diffused non-neutral cloud of ions.
Furthermore, the thin layer of counterions behaves
electrically as an electrical conductor, in electrical
contact with the counterions from the electrolyte but
insulated from the co-ions. When an external electric
field is applied, an ion cloud begins to build up around
the layer of counterions and finally attains a finite
equilibrium value. For a negatively charged particle the
counterion layer consists of positive ions and bears a
surface current in the direction of the applied field. This
transfers positive ions from one side of the particle to
the other. Negative ions cannot be conducted in this
fashion so that their concentration increases. As a simple
picture, the positive ions behave as if the particle was a
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perfect conductor, while for the negative ions the particle
appears as a perfect insulator. The resulting polarization
is thus due essentially to this asymmetry of the system
and for highly charged particles in low-conductivity
electrolytes the relaxation mechanism is rather insen-
sitive to the detailed distribution of ions in the double
layer and even to the value of the surface charge of
the particles. The magnitude Δ𝜀r of the corresponding
dielectric dispersion is given by:

Δ𝜀r =
9
16

(𝜅R)2(𝜅R + 2)
(𝜅R + 1)

⌢vc𝜀r (9.25)

where R is the particle radius and, as in Equation (9.21),
𝜅 is the reciprocal of the Debye screening radius [84]. For
a 10% concentration of cells of radius 5 μm suspended in
an aqueous 10mM ionic solution 𝜅R ≈ 1500 and Equa-
tion (9.25) predicts a value for Δ𝜀r ≈ 107. This is cer-
tainly large enough to be detected experimentally. How-
ever, the characteristic frequency fc of the polarization
mechanism is given approximately by

fc =
D

2𝜋R2 (9.26)

whereR is the particle radius andD is the diffusion coeffi-
cient of ions in the bulk electrolyte [84]. A typical value of
D for small ions in an aqueous medium is 2 × 10−9 m2/s,
so that for a cell of radius 5 μm the characteristic fre-
quency can be expected to have a value of around 10Hz.
Unless special care is taken to either avoid or to compen-
sate for electrode polarization effects, this ionic polariza-
tion effect will be difficult to detect for mammalian cell
suspensions. An example of where the high-frequency
tail of this dispersion may have been detected for ery-
throcytes is shown in Figure 9.8, where it is designated
as the 𝛼-dispersion.
Cametti and colleagues have extended their theoret-

ical approach to analyse the electrical polarizability for
the single-shell spherical model of a cell in the presence
of a layer of localized, partially bounded, charges at the
two cell membrane interfaces [85]. Allowing these par-
tially bounded charges freedom to conduct over the sur-
face of the cell produces a further dielectric relaxation,
besides the one due to the usual Maxwell–Wagner effect.
This extra dielectric relaxation is in fact the 𝛼-dispersion
to be described for the case of bacteria in the next sec-
tion. This is then extended for the case of shelled ellip-
soidal cells with a layer of localized charges at the outer
and inner membrane interfaces [86], as well as cylindri-
cal and toroidal particles [87]. Cametti et al. also apply
their theoretical framework to analyse the alterations
observed by dielectric spectroscopymeasurements of the
passive electrical parameters of the human erythrocyte
cell membrane induced by the presence of glucose in the
extracellular medium [88]. This analysis includes both

the low-frequency 𝛼-dispersion and the 𝛽-dispersion.
A marked increase of the membrane permittivity is
induced by a glucose concentration of 20mM, but with
no significant changes of the electrical properties of the
cytosol [88].

. Dielectric Properties of Bacteria

Living organisms can be classified on the basis of their
cell structure, namely the eukaryotes and the prokaryotes.
The eukaryotes (which include animals, plants and fungi)
possess a distinct envelope-enclosed nucleus containing
their DNA. Bacteria are prokaryotes – they do not have
a distinct nuclear compartment to contain their DNA.
Their genetic material is located in the cytoplasm inside
an irregular shaped body called the nucleoid, which con-
tains a single chromosome and associated proteins and
RNA. Bacteria are typically spherical or rod shaped and
of nomore than a fewmicrometres in diameter or length.
They often have a protective cell wall around a single
cytoplasmic compartment that is contained within one
or two plasma membranes. For many years molecular
biologists used a particular strain (K-12) of Escherichia
coli (E. coli) as the model bacteria to study, which pro-
vided most of our understanding of how cells replicate
their DNA and decode its ‘instructions’ for the synthe-
sis of specific proteins or RNA. The genome of E. coli
contains 4.6million nucleotide pairs, represented in texts
on molecular biology as a circle because the DNA dou-
ble helix of prokaryotes forms a single closed loop. Some
genes are transcribed from the origin of replication along
one strand of the double helix to the terminus of replica-
tion in the loop, while other genes are transcribed in the
opposite direction along the other strand of bases.
Bacteria are differentiated into two large groups,

Gram-positive and Gram-negative, based on a staining
procedure developed by the Danish bacteriologist
Hans Christian Gram. This process works because
Gram-positive bacteria generally have a single plasma
membrane surrounded by a thick peptidoglycan,whereas
Gram-negative bacteria generally possess a thin layer of
peptidoglycan between two membranes. Gram staining
involves applying crystal violet to a heat-fixed smear of
a bacterial culture, followed by the addition of iodine.
A rapid decolouring procedure is then employed using
alcohol or acetone. After this decolouring procedure
a Gram-negative cell has lost its outer membrane and
loses its purple colour, whereas the Gram-positive cell
remains purple. A counterstain, using safranin or basic
fuchsin, is applied last to give decoloured Gram-negative
bacteria a pink or red colour. This staining procedure
works because Gram-positive bacteria possess a thick
cell wall containing many layers of peptidoglycan and
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teichoic acids. The crystal violet-iodine complex
becomes trapped within the peptidoglycan multilayers.
Gram-negative bacteria, on the other hand, have a
relatively thin cell wall consisting of a few layers of
peptidoglycan surrounded by a second lipid mem-
brane containing lipopolysaccharides and lipoproteins.
These differences in structure can produce differences
in antibiotic susceptibility. As a general rule Gram-
negative bacteria are more pathogenic because the
lipopolysacharide in their outer membrane breaks
down into an endotoxin, which increases the severity
of inflammation. The human body does not contain
peptidoglycan and humans produce an enzyme called
lysozyme that attacks the open peptidoglycan layer of
Gram-positive bacteria. Gram-positive bacteria are also
more susceptible to antibiotics such as penicillin, which
inhibit a step in the synthesis of peptidoglycan.
Some types of bacteria, mainly of the Bacillus and

Clostridium genus, form into an endospore when con-
fronted with a hostile environment. This is a dehydrated
form of a bacterium, consisting of a core that contains
only the basic requirements for bacterial growth. It is sur-
rounded by the exosporium, a tough, hydrophobic and
highly impermeable multilayer coating consisting mainly
of proteins, lipids and carbohydrates. This protects the
spore from extremes of temperatures, pH and pressure,
as well as harmful chemicals and radiation. A quite amaz-
ing example of this survival strategy was the recovery and
revival of a Bacillus spore from 25 ∼ 40-million year old
amber [89].
The first study of the dielectric properties of bacteria

appears to be that reported by Fricke et al. [90] for sus-
pensions of E. coli (5 × 1011 cells/ml) suspended in 0.25%
NaCl solution. Measurements were taken over the fre-
quency range 50Hz to 150MHz for suspensions of E. coli
(5 × 1011 cells/ml) suspended in 0.25% NaCl solution.
A dielectric relaxation of the form of the 𝛽-dispersion
was observed, centred around 6MHz and with a decre-
ment Δ𝜀′r ≈ 500. This was taken as evidence that E.
coli possesses a low-conductance surface membrane of
approximately the same thickness and permittivity as
those found for cells (erythrocytes, leucocytes and yeast)
in previous studies. A membrane capacitance value of
7mF/m2 was determined and a large dispersion below
100 kHz was also observed.
In a dozen or so papers [e.g., 91–95], Edwin Carstensen

and collaborators extended the findings of Fricke et al.
[90] to show that the low-frequency dispersion (the
𝛼-dispersion) exhibited by E. coli and M. lysodeikticus
can be explained in terms of their conducting cell wall
[91, 92]. At low conductivities of the environment, the
conductivity of the cell appears to be dominated by the
counterions of the fixed charge of the cell wall. At higher
conductivities the ions from the environment invade the

cell wall, causing an increase in the effective conductivity
of the cell so that it takes on values roughly proportional
to that of the environment. It was possible to rule out ion
leakage from the cytoplasm as an important contribution
to the population of ions in the wall [92]. That the cell
wall’s conductivity and concentration of fixed charge are
directly related was later confirmed by direct observa-
tions of isolated bacterial cell walls [93].Thenumbers and
sign of fixed charge sites in the wall structure are of the
correct order ofmagnitude to explain the wall conductiv-
ity in terms of mobile counterions. The dominant effect
of the cell wall on the 𝛼-dispersion exhibited by bacteria
was later confirmed [94] by performing dielectric mea-
surements on protoplasts of Micrococcus lysodeikticus
(obtained by removing its cell wall). Removal of the
cell wall decreased the low-frequency permittivity
by two orders of magnitude. The upper limit of the
effective, homogeneous, conductivity for the protoplast
was 1mS/m as compared with 45mS/m for the intact
cell. Thus, on removal of the cell wall the 𝛼-dispersion
disappeared, but the 𝛽-dispersion due to the plasma
membrane was still evident. A significant finding was
that ion exchange resins exhibit low-frequency dielectric
properties similar to that observed for bacteria [95]. Such
resins comprise porous particles with a uniform volume
distribution of fixed charges. Schwarz [96] had already
proposed a mechanism to explain the low-frequency
dielectric dispersion in solid colloidal particles. This
mechanism involvesmovement of ions along the charged
surface of the particles and relates the magnitude of the
low-frequency dielectric constant to the surface charge
density of the particle. Ion exchange resins therefore pro-
vided a nearly ideal model system to test the conclusions
reached by Carstensen et al. in their dielectric measure-
ments, as well as the theory proposed by Schwarz.
Carstensen’s group also studied the dielectric prop-

erties of an endospore [97]. Dormant spores of Bacil-
lus cereus were found to have extremely low conduc-
tivities at 50MHz, indicating they contained very low
concentrations of mobile ions, both within the core and
its surrounding structure. Activation, germination and
outgrowth of the endospore were all accompanied by
increases in conductivity of the cells and their suspend-
ingmedium, indicating that intracellular electrolytes had
leaked from the spores. The 50MHz permittivity values
of spores were also consistent with normal states for cell
water. This observed rise in cell water content increased
during successive stages of development from dormant
spore to vegetative bacillus [97].
Asami et al. [98–100] have also contributed greatly

to our understanding of the dielectric properties of E.
coli. Dielectric measurements of E. coli cell suspensions
were carried out over a frequency range from 10 kHz to
100MHz [98]. The 𝛽-dispersions were analysed using as
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a cell model an ellipsoid coveredwith two confocal shells,
representing the plasmamembrane and the cell wall.The
cells were determined to have lengths in the range 1.2–
5.2 μm and diameter 0.68μm, with cell wall and plasma
membrane thickness assumed to be 20 nm and 5 nm,
respectively. When suspended in a 10mMNaCl solution
the 𝛽-dispersion exhibited a characteristic frequency of
1.1MHz, with bounding low- and high-frequency rela-
tive permittivity values of 460 and 71, respectively. The
characteristic frequency increased to 1.6MHz as the
NaCl concentration was increased to 50mM, but values
derived for the dielectric parameters of theE. coli compo-
nents did not change. Based on an assumed plasmamem-
brane conductivity of 5 × 10−8 S/m and a cell wall rela-
tive permittivity of 60, relative permittivity values of 11.1
± 0.3 and 63 ± 3 were determined for the plasma mem-
brane and protoplasm, respectively.This gives the plasma
membrane capacitance as 19.6± 0.5mF/m2, based on the
relationship Cm = 𝜀m𝜀o/dm. Conductivity values of 0.82
± 0.14 S/m and 0.2 ± 0.01 S/m were derived for the cell
wall and protoplasm, respectively.
Bai et al. [99] improved the double-shell model of

E. coli to that of a three-shell spheroidal model, where
the three shells correspond to the outer membrane, the
periplasmic space and the inner membrane, respectively.
A curve-fitting procedure was developed to analyse the
𝛽-dispersion, so that the dielectric properties of the outer
membrane and periplasmic space could be evaluated
quantitatively for the first time. For suspending medium
conductivities less than 10−4 S/m the relative permittiv-
ity of the outer membrane was determined to be 11 ± 1,
increasing to 34 for a medium conductivity of 10−3 S/m,
corresponding to specificmembrane capacitances of 13–
15mF/m2 and 43mF/m2, respectively. These relatively
high capacitances probably relate to the composition
and structure of the outer membrane being different to
the plasma membranes of mammalian cells. The outer
‘leaflet’ of the bacteriamembrane consists of lipopolysac-
charide, while the inner ‘leaflet’ consists of phospho-
lipids. In addition, the outer membrane is much more
permeable to sugar and ions than the inner membrane
and is not regarded as a barrier for ions but as a filter to
exclude large molecules.The outer membrane can there-
fore be expected to bemore hydrophilic andhave a higher
polarizability than mammalian plasma membranes. The
specific capacitance of the inner membrane was found
to be comparable to that for mammalian cells, namely
7mF/m2. Finally, the conductivity of the periplasmic
space was estimated to be 2.7 ± 0.5 S/m, some ten times
higher than the conductivity of the outer medium. This
large value could result from the peptidoglycan that fills
this space acting as an ion-exchange resin, which absorbs
ions from the surrounding medium.The relative permit-
tivity and conductivity of the cytoplasm was determined
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Figure . Frequency dependence of the relative permittivity for
viable and heat-treated (dead) E. coli cells suspended in 1 mM NaCl
solution. The 𝛽-dispersion exhibited by the viable cells is not
observed for those that have been heat treated. Both the viable
and dead cells exhibit the low-frequency 𝛼-dispersion.

to be 100 and 0.22 ± 0.02 S/m, respectively. This large
value for the permittivity could be due to the low accu-
racy in its determination, or the presence of dispersed
proteins, granules andDNA, which give to the cytoplasm
the high permittivity properties of a microemulsion.
Asami [100] investigated the effect on the 𝛼- and 𝛽-

dispersion of killing E. coli cells by heating at 60 ◦C for
30min. The result is shown in Figure 9.17, where it is
seen that the 𝛽-dispersion, due to interfacial polariza-
tion, appearing above 100 kHz disappeared completely,
whereas the 𝛼-dispersion observed below 100 kHz was
hardly modified at all. This indicates that the plasma
membranes of dead bacteria no longer act as an imper-
permeable barrier to ions and also that the mechanism
giving rise to the 𝛼-dispersion is not related to Maxwell–
Wagner interfacial polarization. This also disproves the
analytical result reported by Prodan et al. [101] that, for
a given cell concentration and geometry, the 𝛼-dispersion
correlates with the magnitude of the plasma membrane
potential. Asami [100] also investigated the influence of
the ionic concentration of the suspendingmediumon the
magnitude of the 𝛼-dispersion, finding that its magni-
tude increased as the NaCl concentration was increased
from 0.1mM, reaching a maximum of around a three-
fold increase at 2mM and then decreasing. The magni-
tude of the 𝛼-dispersion was also found by Asami [100]
to decrease as the pH of the suspending medium (for
heat-treated cells) decreased from 10 to 4 and to dis-
appear at a pH of ∼3.5 that corresponds to the isoelec-
tric point reported for many bacteria and isolated cell
walls [102]. The pH dependence of the 𝛼-dispersion on
pH is also similar to the acid-base titration curves of E.
coli suspensions [103], suggesting that the 𝛼-dispersion
is proportional to the density of net charges on the cell
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surface and / or within the cell wall. Although the sim-
plified model of Grosse and Foster [83] does not predict
that the 𝛼-dispersion depends on the magnitude of the
surface charge, certain aspects of their model do agree
with the findings ofAssami [100]. For example, Equations
(9.25) and (9.27) give reasonable predictions of the mag-
nitude and characteristic frequency of the low-frequency
dispersion found for bacteria of micron-scale dimension,
as well as the effects expected on changing the ionic con-
centrations of relatively weak ionic solutions.
Finally, it is reasonable to suggest that aspects of the

counterion polarization theory developed to describe the
𝛼-dispersion exhibited by DNA solutions (see Chapter 8,
section 8.5.1) are of relevance to the mechanism respon-
sible for the 𝛼-dispersion exhibited by bacteria. In par-
ticular, we can predict that the relaxation time 𝜏 of the
𝛼-dispersion is proportional to the square of a charac-
teristic length L (if not the radius R) of the bacteria cell
wall. From Equation (8.29) the induced dipole moment
(m = 𝛼E) associated with field-induced displacements of
n counterions of valency Z at a fixed temperature is given
by:

m ∝ 𝛼E ∝ Z2q2nL2E ∝ Zqn
⟨
ZqL2

⟩
E

where the term ⟨ZqL2⟩E can be considered to be the
mean displacement of the counterions. The relaxation
time is calculated by dividing this mean displacement by
the average velocity v of the fluctuating counterions:

𝜏 =
ZqL2E
𝜇ZqE

= L2
𝜇

where 𝜇 is the mobility of the counterions. This predicts
that the relaxation time is proportional to the square of
a characteristic length associated with the surface of the
cell wall. We can also adopt the counterion polarization
theory developed by Takashima [2, pp. 204–209] for a
spherical particle of radius R, which gives:

𝜏 = R2

2𝜇kT

Noting that 𝜇kT = D, the ionic diffusion coefficient
and that the characteristic frequency of the dispersion is
given by fc = (1/2𝜋𝜏), this result is the same (apart from
a factor of 1

2 ) as Equation (9.26) derived by Grosse and
Foster [83].

. Summary

The dielectric (hence dielectrophoretic) behaviour of a
mammalian cell is primarily controlled by the passive
electrical properties of its plasma membrane, namely
its specific conductance and specific capacitance. For a

dielectric material held between two plane-parallel elec-
trodes of area A separated by a distance d, its conduc-
tanceGm and capacitanceCm are defined by the relation-
ships:

Gm = A𝜎

d
; Cm =

A𝜀o𝜀r
d

The plasma membrane takes the form of a spheroidal
envelope, rather than a flat sheet of material. However,
because the membrane’s thickness (d) is so small com-
pared with the size of a cell, these two formulae can also
be used to describe the specific conductance (Gm/A) and
specific capacitance (Cm/A) of the plasma membrane of
an intact cell. The conductivity 𝜎 is the proportional-
ity factor between the induced electric current density
and the applied electric field (J = 𝜎E). It is a measure
of the ease with which delocalized charge carriers (ions)
migrate across the membrane under the influence of an
applied electric field. The intact plasma membrane of a
viable cell behaves essentially as an electrical insulator,
so that the value of 𝜎 (and hence Gm/A) is practically
zero in comparison to the conductivity of a physiolog-
ical electrolyte such as the cytoplasm. The factor 𝜀o is
the dielectric permittivity of free space and has the value
8.854 × 10−12 Farad/m, whilst 𝜀r is the permittivity of
the material relative to that of free space and is a mea-
sure of the extent to which localized charge distributions
can be distorted or polarized under the influence of the
field. The internal lipid-protein structure of the plasma
membrane has a very low polarizability, with an 𝜀r value
only slightly larger than that of a nonpolar insulating plas-
tic such as polypropylene. High-performance capacitors
used in electronic circuits are constructed by metalizing
the surfaces of thin sheets (2 ∼ 10μm) of polypropylene.
The plasma membrane of a cell is thus constructed in
the same form as an electronic capacitor device, namely
as a thin dielectric sandwiched between two electrical
conductors (the cytoplasm and the external physiological
medium). The equivalent electrical circuit of the plasma
membrane can thus be represented, as depicted in Fig-
ures 9.1 and 9.7, as a parallel combination of a resistance
(Rm = 1/Gm) and capacitanceCm.This provides a tool for
deriving values of Gm and Cm frommeasurements of the
electrical impedance of a suspension of cells, performed
for a range of frequencies of an applied electric field.
Erythrocytes exhibit a specific membrane capacitance of
∼8mF/m2.This is at least 1000 times larger than the spe-
cific capacitance exhibited by high-performance capaci-
tors composed of polypropylene and reflects the very thin
nature of the membrane. In fact, the experimental deter-
minationmore than 90 years ago of themembrane capac-
itance of erythrocytes provided the first direct evidence
of how exquisitely thin a cell membranemight be [55,56].
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As for the case of a capacitor in an electric circuit,
the magnitude of the membrane capacitance is a mea-
sure of the electrical charge that can accumulate at
the boundaries between its dielectric and conducting
‘electrodes’. For the case of cells suspended in an aqueous
electrolyte, this effect can be analysed in terms of the
properties of a heterogeneous dielectric as described in
Chapter 7. The field-induced accumulation of charges
at the boundaries between different constituents of a
heterogeneous dielectric is known as Maxwell–Wagner
interfacial polarization. For suspensions of viable cells
this is manifested as the so-called 𝛽-dispersion, typi-
cally observed in the 50 kHz–50MHz frequency range.
An example is shown in Figure 9.8 for a suspension
of erythrocytes. We can understand the frequency
profiles of the conductivity and permittivity of the cell
suspension in terms of the parallel combination of Gm
and Cm. The values of Gm and Cm remain fixed as a
function of frequency, but the equivalent resistance (the
reactance) of Cm is equal to 1/𝜔Cm. At low frequencies
the capacitive reactance is very high, so that field-driven
ions accumulate at the membrane surface because it
represents a barrier to current flow (Gm has a very low
value). This accumulation of charges at the membrane
surface equates to a high value of the permittivity (𝜀r)
of the cell suspension. At low frequencies the cells act
as insulating spheroids, so that the conductivity (𝜎) of
the cell suspension appears to be much lower than that
of the suspending medium by an amount proportional
to the cell concentration. With increasing frequency the
reactance of Cm decreases, so that this component of the
membrane’s equivalent circuit starts to provide a path
for the passive flow of ions, effectively bypassing Gm.
This is accompanied by an increase of 𝜎, whilst a reduc-
tion of charge accumulation leads to a decrease of the
effective value for 𝜀r. At a sufficiently high frequency the
membrane reactance (1/𝜔Cm) becomes negligibly small,
the applied electric field penetrates into the cytoplasm
and there is no field-driven charge accumulation at the
membrane surface. The value of 𝜀r falls to less than that
of the suspending medium (by an amount related to the
content of lipids and proteins in each cell) and 𝜎 increases
to a value that depends on the relative magnitudes of the
medium and cytoplasm conductivities.
It follows that the existence of the 𝛽-dispersion

depends on the plasma membrane acting as a high
resistance to passive ionic conduction. If this property
is impaired, through cell death or the cytotoxic action
of a chemical agent, for example, the 𝛽-dispersion
disappears. This was first observed more than 100 years
ago by Höber, when he found that the low-frequency
conductivity of compacted erythrocytes, after lysis of
their plasma membrane by saponin, increased to the
value observed at MHz frequencies [8, 9]. A more recent

demonstration, shown in Figure 9.17, was obtained by
Asami when he found that the 𝛽-dispersion exhibited
by bacteria disappears after impairment of their plasma
membrane by heat treatment [100]. Experimental studies
and applications of dielectrophoresis for cellular systems
are mostly performed in the frequency range where
the 𝛽-dispersion exists. This enables dielectrophoresis
to fully exploit the sensitivity of the 𝛽-dispersion, in
terms of its magnitude and characteristic frequency,
to changes in the physico-chemical properties of the
plasma membrane or other cell components as a result
of cell death (with subtle differences exhibited if this
results from necrosis or apoptosis), cell differentiation,
medium osmolarity, or the effects of chemical agents, for
example. The physico-chemical characteristics that can
be monitored by dielectrophoresis, or used to selectively
isolate or enrich cell subpopulations, include changes of:
cell size and / or shape; membrane surface area arising,
for example, from the appearance of microvilli or blebs;
membrane conductivity associated with a degradation of
membrane structure; cytoplasm conductivity associated
with leakage of ions or osmosis; nucleus-cytoplasm
volume ratio. Thus, although cell biologists might view
electrical circuits such as those shown in Figure 9.1
with suspicion regarding their possible cytological rele-
vance, these examples might reassure them that the end
product yields information of some relevance to their
work.
A useful way to analyse the dielectric properties of cell

suspensions and to derive the conductivity and permit-
tivity values of the various components of a cell, is by
means of the so-called multishell model [67–69]. The
single-shell model of a cell treats the cytoplasm and its
contents (organelles, reticulum and nucleus) as a homo-
geneous medium surrounded by the plasma membrane.
As shown in Figures 9.10–9.12, this can be employed
to investigate how the 𝛽-dispersion depends on cell
size, membrane conductance, membrane capacitance
and possible leakage of ions from the cytoplasm, for
example. At the high-frequency tail of the 𝛽-dispersion
the applied electric field penetrates into the cytoplasm, so
that the presence of the nucleusmay influence the dielec-
tric (andhence dielectrophoretic) behaviour of a cell.This
can be analysed by adding an extra shell, to represent the
nuclear envelope, in the form of the double-shell model
of a cell. This procedure is outlined in Figure 9.13 and
examples of its application to investigate the influence of
the nucleus-cytoplasm volume ratio or possible dielec-
tric relaxations in the nucleoplasm are given in Figures
9.14 and 9.15, respectively. The double-shell model can
be extended to that of the three-shell model to incor-
porate the outer membrane, the periplasmic space and
the inner membrane of Gram negative bacteria, such as
Escherichia coli [99].
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Mammalian cells and bacteria carry a net negative
charge on their outer surface. Theoretical analyses [80,
81] indicate that the presence of this surface charge may
have only a small, even negligible, influence on the char-
acteristics of the 𝛽-dispersion. However, mobile counter-
ions that are attracted to this surface charge are con-
sidered [83] to be responsible for a large low-frequency
dispersion, known as the 𝛼-dispersion, which has been
observed [90–93] for suspensions of bacteria cells. Cer-
tain aspects of this polarization mechanism are sim-
ilar to the field-induced fluctuating counterion model

described in Chapter 8 for the 𝛼-dispersion exhibited by
DNA solutions. In particular, the relaxation time of the
dispersion is predicted to be proportional to the square
of a characteristic dimension (e.g., the radius) of the
cell. This means that the 𝛼-dispersion occurs in a fre-
quency range that can be masked by electrode polar-
ization effects and is lower than that normally used for
dielectrophoresis experiments.The finding [95] that bac-
teria exhibit dielectric properties similar to that of ion
exchange resins is of relevance to understanding and pre-
dicting the dielectrophoretic properties of bacteria.
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Dielectrophoresis: Theoretical and Practical Considerations

. Introduction

Herb Pohl describes his book [1, Preface] as a ‘survey
of the principles, aims, and practical effects of nonuni-
form fields on matter’. Although it remains a valuable
entry point into the subject of dielectrophoresis (DEP)
we can expect that key aspectsmay need to be clarified or
updated. In this chapter, two main areas are considered,
namely refinements of the basic theory and the impact of
microfabrication and microfluidic technologies. As out-
lined by Pohl: ‘Provided certain simplifying assumptions
are made, the theory for the force exerted upon a body
suspended in a fluid medium when in a nonuniform field
can be expressed in relatively simple terms’ [1, p. 15].
These simplifying assumptions are reviewed in this chap-
ter, along with the work that has been achieved to refine
them and to understand their implications more com-
pletely. The electrodes available to Pohl and others for
their experiments largely took the form of metal wires,
pins or foil, with applied voltage potentials above 1 kV
sometimes required to produce an observableDEP effect.
The quantification of the DEP collection of cells at an
electrode was often facilitated by time-lapse photogra-
phy of the growth of pearl-chain whiskers. This particu-
lar aspect of the subject has witnessedmany changes that
are ongoing and reflect advances beingmade inminiatur-
ization techniques and the quest to exploit DEP in new
devices for biomedical, clinical, drug discovery, environ-
mental and food safety applications.
Cells suspended in media of relatively low conductiv-

ity (≤ 200mS/m) can exhibit a transition from negative
DEP to positive DEP, as the applied field frequency is
increased to where the high resistance to passive ion flow
of the plasma membrane begins to be short circuited
by its capacitive reactance. This transition takes place at
the DEP crossover frequency (fxo1) and typically occurs
in the readily accessible frequency range from ∼10 kHz
to ∼1MHz. If the typical value of fxo1 and cell size is
known for a particular cell type, it can be characterized
in terms of its membrane conductance and capacitance.
These dielectric parameters can in turn provide details of

cell viability and surface morphology, as well as enabling
protocols to be devised for separating different cell types
from mixtures of cells (based on their different fxo1 val-
ues). The value of fxo1 is determined by the interfacial
polarization taking place at the interface between the
plasma membrane and the suspending medium – it is
insensitive to the dielectric properties of the cell inte-
rior. As the field frequency is increased beyond fxo1 the
plasma membrane becomes essentially ‘invisible’ to the
applied electric field, so that the cell can be regarded in
dielectric terms as a ball of cytoplasm in direct contact
with the outside medium. If the permittivity of the cyto-
plasm is less than that of the surrounding medium, the
interfacial polarization at the medium-cytosol interface
can result in a second DEP crossover (fxo2) occurring at
a frequency, typically >200MHz for a viable cell, that
depends on the effective conductivity of the cell interior.
The frequency range for fxo2 is not as readily accessible
as for fxo1 and so has been relatively unexplored. How-
ever, some progress has been made in opening up what
could provide the means for simultaneously characteriz-
ing and monitoring the physico-chemical properties of
the plasma membrane and cell interior.

. Inherent Approximations in the DEP
Force Equation

10.2.1 Field Gradient across a Particle

In Chapter 2, Box 2.4, the following equation is derived
for the dielectrophoretic (DEP) force acting on a spheri-
cal particle, of dipole moment p and radius R, subjected
to a field gradient ∇E:

FDEP = (p ⋅ ∇)E (10.1)

A net electrostatic force is exerted on the particle
because the two charges (+q and −q) forming the dipole
moment (p= qd) are located a vector distance d apart and
so experience different field values. As described in Box
2.4, the effective field gradient acting across the dipole

Dielectrophoresis: Theory, Methodology and Biological Applications, First Edition. Ronald Pethig.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.



 Dielectrophoresis

is obtained by performing a Taylor series expansion of
E(r + d) about r and taking the effective length of the
dipole moment p as d = 2R. This expansion is incorpo-
rated into the following expression for the field gradient
across the particle:

(E(r + d) − E(r))
2R

= 𝜕E
𝜕r

+ R𝜕2E
𝜕r2

⋯

+ (2R)n−1

n!
⋅

𝜕nE
𝜕rn

+⋯ (10.2)

Equation (10.1) is obtained by ignoring the terms
beyond 𝜕E/𝜕r. In other words it is assumed that the
sphere’s diameter (2R) is much smaller than the scale
of the field’s nonuniformity. The validity of this assump-
tion can be tested for the particular case of the spherical
electrode geometry shown in Figure 2.10, which together
with a coaxial geometry and the isomotive (polynomial)
design [1 (pp. 50–55), 2] is amenable to analytical calcula-
tion of the generated field and field gradient. Computer-
aided numerical methods are required to calculate the
fields and field gradients generated by other electrode
geometries commonly used in DEP devices [3, 4]. For
the spherical electrode design of Figure 2.10 the poten-
tial V(r) at a point r, when a voltage V is applied to the
inner electrode and the outer one is grounded, is given
by (see Example 2.7):

V (r) =
Vr1(r2 − r)
r(r2 − r1)

The field at point r is given by:

E = −∇V = AV
r2

ro

where A = r1r2
(r2−r1)

and ro is the unit radial vector.
On differentiation we obtain

𝜕E
𝜕r

= −2AV
r3

ro

The second and third differentials are given by:

𝜕2E
𝜕r2

= 6AV
r4

ro = −3
r

𝜕E
𝜕r

; 𝜕3E
𝜕r3

= −24AV
r5

ro =
12
r2

𝜕E
𝜕r

For terms up to the third differential, Equation (10.2) can
thus be written as:

(E(r + d) − E(r))
2R

= 𝜕E
𝜕r

[
1 − 3R

r
+ 8R2

r2

]
(10.3)

For the spherical electrode geometry shown in Figure
2.10 and the dimensions (r = 190μm,R = 5μm) spec-
ified in Examples 2.7 and 2.8, the factor 3R/r = 0.079
and 8R2/r2 = 0.006. Ignoring the terms beyond 𝜕E/𝜕r
in Equation (10.1) leads to an overestimation by 7.3% of
the field gradient, and thus also to the value of the DEP
force.The error in assuming that the sphere’s diameter is

much smaller than the scale of the field’s nonuniformity
becomes less as the value of R is reduced. In fact, Equa-
tion (10.1) should strictly describe the DEP force acting
on an infinitesimally small dipole, where in the limit as
d → 0 the value of the dipole moment remains constant
and finite inmagnitude.This procedure is adopted in for-
mulating Equation (5.34) to describe the potential of a
point dipole in an external field.

10.2.2 Macroscopic Clausius–Mossotti Factor

Chapter 6 shows that the dielectrics literature describes
and uses two forms of the Clausius–Mossotti factor,
namely the microscopic (molecular) and macroscopic
form. The macroscopic form is the one adopted in the
DEP literature for describing the polarization of amacro-
scopic particle (such as a mammalian cell, bacteria, oil
droplet or gas bubble, for example) situated in a medium
whose dielectric properties differ from those of the parti-
cle. Themolecular version(s), for which we have adopted
the term Clausius–Mossotti–Lorentz relation, might be
applicable to a small bioparticle such as a protein or RNA
molecule. Such bioparticles could exhibit anisotropic
polarizability and possess a permanent, conformation
dependent, dipole moment, which interacts electrostati-
cally with polar molecules in the medium.
As described in Chapter 6 the derivation of the macro-

scopic Clausius–Mossotti factor assumes that the parti-
cle is uncharged and composed of an isotropic and homo-
geneous perfect dielectric material of relative permittiv-
ity 𝜀p, embedded in a homogeneous dielectric medium
of relative permittivity 𝜀m. A uniform electric field E is
assumed to have already been established in themedium,
which for distances far from the particle is not distorted
by the field of the particle’s induced dipole moment.
From the particle’s perspective the surrounding medium
should thus appear to be of infinite extent. It should not
be located near another polarizable particle or a bound-
arywhere an image potential such as that shown in Figure
5.18 is created.
The task is to deduce the form of particle polarization

whose field, when superposed onto E, produces a resul-
tant potential 𝜙, which satisfies the electrostatic condi-
tions described in Chapter 5, section 5.6, which are sum-
marized as:

1. On either side of the sphere’s surface the normal com-
ponent of the gradient of𝜙 changes such that 𝜀(𝜕𝜙/𝜕n)
remains constant.

2. 𝜙 is continuous across this boundary defined by the
sphere’s surface.

3. In all of the space, 𝜙 satisfies Laplace’s equation
(∇2𝜙 = 0).
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(a) (b)

d

Figure . (a) The lines of electric potential
associated with a dipole of moment qd. (b) In
the dipole approximation for the DEP force,
the potential generated outside an
uncharged dielectric sphere polarized by a
uniform imposed field E, is identical to that
produced by an induced dipole moment p.
The resultant potential, when this dipole
potential is superposed onto that of the
original field E, must satisfy the electrostatic
boundary conditions at the surface of the
sphere as described in Chapter 5, section 5.6.

For the field E directed along the positive z-axis, we also
have the condition:

4. At distances far beyond the sphere, the external poten-
tial is given by 𝜙o = −Ez.

If the sphere consists of an isotropic and homoge-
neous dielectric, it will be homogeneously polarized by
the external field E to create an internal field Ei symmet-
ric about the x-axis:

𝜙i = −Eiz = Eir cos 𝜃

(spherical coordinates, z = r cos 𝜃) (10.4)

Boundary conditions 3 and 4 are satisfied by assuming
an external potential of the form:

𝜙o = −Ez + E k
4𝜋𝜀o𝜀mr2

⋅
z
r

= −E cos 𝜃

(
r − k

4𝜋𝜀o𝜀mr2

)
(10.5)

The particle thus assumes the form of an induced
dipole of effective moment p = kE located at the sphere’s
centre. The potential profile generated by this dipole is
depicted in Figure 10.1. As a result of the spherical geom-
etry and the perfect (i.e., lossless) nature of the dielectric,
the induced moment field is aligned with and superim-
posed on the original external field E. Boundary condi-
tions 1 and 2 require the following equalities:

𝜙i = 𝜙o and 𝜀p
𝜕𝜙i
𝜕r

= 𝜀m
𝜕𝜙o
𝜕r

, when r = R

(10.6)

These conditions are satisfied by the following
relationships:

Ei = E
(
1 − k

4𝜋𝜀o𝜀mR3

)
and

𝜀pEi = 𝜀o𝜀mE
(
1 + 2k

4𝜋𝜀o𝜀mR3

)

Substituting Ei from the first relationship into the sec-
ond, we can solve for k and derive the sphere’s induced
dipole moment as:

p = kE = 4𝜋𝜀o𝜀mR3
(

𝜀p − 𝜀m

𝜀p + 2𝜀m

)
E (10.7)

Equation (10.4) describes the potential profile gener-
ated by a dipole, as depicted in Figure 10.1. However, we
should note from Example 5.7 that this profile applies
only to the potential at a radial distance r ≫ R. For dis-
tances closer to the particle than this the potential has
contributions from higher order multipoles. The func-
tion enclosed in brackets in Equation (10.7) can thus
be considered as being approximately proportional to
the polarizability per unit volume of the particle. This
function is known as themacroscopicClausius–Mossotti
factor.

10.2.3 The DEP Force Equation

On substituting the value of the dipole moment p from
Equation (10.7) into Equation (10.1), theDEP force acting
on a spherical particle in a DC nonuniform field is given
by:

FDEP = 4𝜋R3𝜀o𝜀m[CM](E ⋅ ∇)E (10.8)

where [CM] is the Clausius–Mossotti factor. As
described in Box 2.5, the vector transformation of
(E⋅∇)E leads to the identity:

2(E ⋅ ∇)E = ∇E2

Equation (10.7) can thus be written as:

FDEP = 2𝜋R3𝜀o𝜀m[CM]∇E2 (10.9)

In this expression for the DEP force, the AC field is
assumed to be sinusoidal and of magnitude given by its
root mean square (rms) value, as defined for the voltage
waveform in Figure 2.13.
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We can now appreciate that this formulation of the
DEP force equation, known as the dipole approximation,
involves the following deficiencies:
� Derivation of the Clausius–Mossotti factor assumes
that the imposed electric field is uniform, rather than
nonuniform.

� The assumption is made that the particle’s diameter is
much smaller than the scale of the nonuniformity of
the applied electric field.

� The particle’s induced polarization is assumed to
take the form of a simple dipole moment, ignoring
contributions from higher order multipoles such as
quadrupoles.

� The particle is composed of a homogeneous dielectric,
which exhibits no conductive losses and carries no net
charge.

� The particle exists in a dielectric medium of infinite
extent, implying that the field in the vicinity of the par-
ticle is not perturbed by the presence of a boundary
such as a metal or dielectric surface, or another polar-
izable particle, for example.

Before reviewing how these deficiencies can be
addressed, the positive aspects of Equation (10.9) should
be emphasized. This equation correctly informs us that:
The DEP force is zero if the field is uniform (i.e., for

∇E = 0).
� The dependence on R3 shows that the DEP force is
ponderomotive. With all other factors remaining con-
stant, the larger the particle volume the greater is the
DEP force acting on it.

� The direction of the induced dipole moment can be
with or against the applied field, depending onwhether
CM has a positive or negative value, respectively. A
positive CM value corresponds to the particle’s per-
mittivity being greater than that of the surrounding
medium. In this case, the particle is directed by a DEP
force along a path leading to a fieldmaximum, which at
every point follows the steepest field gradient (see Fig-
ure 5.20). A field maximum can only exist at an elec-
trode edge, never in free space (see Figure 5.11). The
DEP force therefore directs a particle to an electrode.
The opposite situation, where the particle’s permittiv-
ity is less than that of the medium, results in a DEP
force that directs the particle away from an electrode
towards a fieldminimum.

� The DEP force depends on the square of the applied
field magnitude, indicating that DEP can be observed
either using a direct current (DC) or alternating (AC)
electric field. Reversing the polarity of the voltage
applied to an electrode (e.g., from +V to −V) does
not reverse the direction of the DEP force, because
(−V)2 is equivalent to (+V)2. In an AC field of constant

periodicity, T the time-averaged DEP force acting on a
spherical particle is obtained by integrating Equation
(10.9) over a complete cycle as follows:

⟨FDEP⟩ = 4𝜋R3𝜀o𝜀m
T ∫

T

0
[CM∗](EAC ⋅ ∇)EACdt

(10.10)

where CM∗ is the complex Clausius–Mossotti factor
introduced in Chapter 6. The integration involved is
equivalent to that solved in Box 2.6 to derive the RMS
voltage.
With reference to the concepts described in Chapter

4, especially Equation (4.38), we can also interpret Equa-
tion (10.9) in terms of electrostatic energy, with the factor
𝜀mR3(CM)E2 being proportional to the energy required
to withdraw a sphere of radius R from a field E into a
region where there is no field (assuming that themedium
is isotropic and linear, such that 𝜀m may be a function of
position but not of the field E). A positive value for CM
indicates that work will be required to withdraw the par-
ticle from the highest field region, whereas for a negative
CM value work is required to push the particle from a
low to a high field region. As discussed in section 4.4.2
in terms of the energy of a lossless dielectric particle in a
field, these two situations describe positive and negative
DEP, respectively.
From Equation (10.3) we can also appreciate that

electrode geometry is an important design factor with
respect to the magnitude of the factor (E.∇)E, which
can be obtained for a specified applied voltage. There
are advantages, including the ability to use low-cost AC
voltage generators and avoiding electrolysis effects at
DC or low frequencies, in choosing the applied voltage
to be as low as possible. The field E and its gradient ∇E
have dimensions of V/m and V/m2, respectively, so that
their scalar product (E.∇)E has dimensions of V2/m3.
A constant value for (E.∇)E can thus be maintained on
combining, for example, a hundredfold reduction of
the applied voltage with a reduction by a factor of 1000
of the scale of the electrode geometry. It also follows
that, although the DEP force is directly proportional
to the volume of the target particle, it is particularly
well suited to applications in micro- and nanoscaled
technologies. As demonstrated in Examples 2.7 and
2.8, a value for (E.∇)E of ∼1013 V2/m3 is achieved using
spherical electrodes of radii 150μm and 750μm with
an applied voltage of 5V. This induces a significant DEP
force of magnitude ∼5 × 10−12 N on a biological cell of
diameter 10μm. By significant, we mean that this DEP
force is considerably larger by a factor of ∼25 than the
sedimentation force of ∼2 × 10−13 N acting on the cell
(see Example 2.3) and nearly 10 000 times greater than
the thermal (Brownian) randomizing force (kT/2R) of
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∼4 × 10−16 N. If the diameter of the target biological
particle is reduced to that of a virus (i.e., 10 ∼ 100 nm)
themagnitude of the DEP force acting on it would still be
∼25 times greater than the sedimentation force, because
that too scales with particle volume (see Example 2.3).
However, the thermal randomizing force would now be
only 10 ∼ 100 times smaller than the DEP force. Rather
than compensating for this by increasing the magnitude
of the applied voltage, the DEP force acting on the virus
can be increased by (say) a factor of 4.6 (1001/3) on
reducing the radii of the spherical electrodes to 1.5μm
and 7.5μm. In planning DEP experiments for small
particles it is in fact preferable to explore how electrode
geometries other than the simple spherical design of
Figure 2.9 can produce larger values for the factor (E.∇)E.

. Refinements of the DEP Force
Equation

10.3.1 The Induced Dipole Approximation

Equation (10.9) is based on the assumption that the field’s
nonuniformity is large enough to create a significant DEP
force on the particle, but that the field does not vary so
strongly throughout the particle as to induce within it a
polarization not properly described by equation (10.7).
A uniform polarization of the particle is assumed and,
as shown in Figure 10.1, is represented as an induced
dipole moment located at the particle centre. In reality
the response of a dielectric to an imposed electric field
involves the polarization of its constituent atoms and
molecules.These are distributed as a continuous function
of position and their polarizations will be sensitive to the
value of the local electric field. A nonuniform field will
result in an inhomogeneous polarization of the particle.
The treatment of the polarization of a particle in a

nonuniform field can be refined by incorporating the
‘theorem’ given in Chapter 5, which states that: the poten-
tial generated outside an uncharged sphere, by an arbi-
trary distribution of charges within it, is identical to the
potential of a system of multipoles located at its centre.
A multipole, pn, is classified according to the scheme:

n= 0 for a point charge; n= 1 a dipole; n= 2 a quadrupole
and so on. They can be distributed along an axis of sym-
metry in a particle, as shown in Figure 10.2, or take amore
general form, as shown in Figure 5.15 for the quadrupole
and octupole. For the linear quadrupole shown in Figure
10.2, located on and aligned with the field E along the
x-axis, it is straightforward to derive the x-directed DEP
force as:

FDEPn=2 = q [E(x + d) − 2E(x) + E(x − d)]

= qd2 ⋅ 𝜕2E
𝜕x2

+3q–3q –q+q–2q +q+q

Figure . Examples of axial multipoles constructed from evenly
spaced point charges. Examples of an axial quadrupole and
octupole are given in Figure 5.15.

For the octupole (n= 3) shown in Figure 5.15 we have:

FDEPn=3 = q
[
E

(
z + 3d

2

)
− 3E

(
z + d

2

)
+3E

(
z − d

2

)
− E

(
z − 3d

2

]
= qd3 ⋅ 𝜕3E

𝜕x3

From this example we find that only nth-order terms in
the Taylor series survive these calculations, so that for the
general nth-order linear multipole we have:

FDEPn = qdn ⋅ 𝜕nE
𝜕xn

The more general multipoles are treated by Washizu
and Jones [5]. Green and Jones [6] provide a method for
determining the linear multipoles (up to the ninth order)
for a range of particle shapes other than spheres (ellip-
soids, truncated cylinders and an approximation of an
erythrocyte).
For the situation where the particle is subjected to an

arbitrary nonuniform field we are required to derive a
resultant potential𝜙, which satisfies the standard bound-
ary conditions as well as Laplace’s equation (∇2𝜙 = 0).
Equation (10.5) is thus replaced to give a more general
expression for the potential 𝜙o generated outside the
sphere by a system of multipoles located within it:

𝜙o = −Ez +
∞∑
n=0

𝜙n

The partial potential 𝜙n of the general multipole pn of
nth order is given by:

𝜙n = 1
4𝜋𝜀o𝜀m

pn
Yn
rn+1

in which pn = n!qdn. Inspection of Box 5.5 and Equa-
tion (5.29) shows that Yn involves a Legendre polynomial
function determined by the spherical coordinates defin-
ing themultipole geometry.Thus, the potentials of higher
order moments fall off more rapidly with distance than
for a dipole (r−4 versus r−2 for a quadrupole, for example)
and so their relative importance increases with increas-
ing field nonuniformity.
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n = 3 n = 4

n = 1

n = 2

Figure . Boundaries of polynomial electrodes, where the full
and dotted lines denote electrodes of opposite polarity. The
number of electrodes of each polarity is equal to n. The electrodes
are designed to produce potentials defined by a polynomial that
obeys Laplace’s equation. (Based on Huang and Pethig [2].)

The first report of a DEP force calculation to include
the higher order components of an arbitrary field and
the induced multipole moments is that of Washizu [7],
who illustrated the importance of this for the quadrupole
‘polynomial’ electrode design shown in Figure 10.3. An
outline of his procedure is given in Box 10.1. As shown
schematically in Figure 10.4, particles can be directed
into the central location and slightly levitated above the
plane of these electrodes by a negative DEP effect [2].
At this central location the factor (E.∇E) is zero and
so no DEP force can be exerted. Washizu [7] demon-
strated that, in this situation and especially for distances
within one particle radius from the centre, the induced
quadrupolemoment should be included in the DEP force

Figure . (a) A spherical particle levitated and trapped in the
centre of planar quadrupole ‘polynomial’ electrodes [2]. (b) A
particle trapped in a field cage produced between two planar
quadrupole electrodes [10]. Zero field is generated along the axis
of symmetry in these two electrode assemblies, so no dipole
moment can be induced in the particles. Higher order moments
are induced and account for the DEP forces [7, 10].

calculation. However, for distances far from the cen-
tre the dipole approximation gives accurate results. This
condition is readily satisfied by taking DEP measure-
ments on cells located nearer to the quadrupole elec-
trode boundaries than to the central location.The impor-
tance of higher order moments was also found to apply
to circumferentially periodic electrode structures used to
achieve passive DEP levitation of particles, where pro-
nounced size-dependent effects not anticipated by the

Box . The Dielectrophoretic Force in an Arbitrary Field

Based on the procedure described in Example 5.4 and Box
5.5 for solving Laplace’s equation using Legendre polyno-
mials and the spherical (polar) coordinate system shown
below (x = rsin𝜃 cos𝜙; y = rsin𝜃 sin𝜙; z = rcos𝜃) Washizu
[7] gives the following expression for an arbitrary externally
applied potential:

𝜙ext =
N∑

n=0

n∑
m=0

rnPm
n (cos 𝜃)

[
Ac

n,m cos m𝜙 + As
n,m sin m𝜙

]
in which Pm

n is the associated Legendre function, N is the
order of the potential and A is a constant. The induced sur-
face charge 𝜎 i on a spherical particle of complex permittiv-
ity 𝜀∗p and radius R, subjected to this potential in an exter-
nal medium, is found by solving Laplace’s equation with the
standard boundary conditions at r = R:

𝜎i = −
N∑

n=0

n∑
m=0

𝜀oK∗
n Rn−1Pm

n (cos 𝜃)

×
[
Ac

n,m cos m𝜙 + As
n,m sin m𝜙

]
where

K∗
n =

n(2n + 1)(𝜀∗p − 𝜀∗m)

(n + 1)𝜀∗m + 2𝜀∗p

The DEP force is then given by the following surface inte-
gral:

FDEP = 𝜀m

𝜀o ∫

s

𝜎iEdS

As shown by Washizu [7], because 𝜎 i and E are expressed
as sums of spherical harmonics, their orthogonality (see
Box 5.5) can be used in this integration. Only those terms
with the same n and m yield a nonzero integral. Further-
more, the DEP force appears only when the external poten-
tial contains n-th and (n+1)-th components simultaneously.
This represents a logical extension of Equation (10.1), where
the surface charge produced by a uniform field (i.e., first-
order potential) interacts with a constant field gradient
(second-order potential). For the case of the polynomial
electrode design shown in Figure 10.3, the dipole approx-
imation for the DEP force breaks down if the particle’s
displacement from the centre of symmetry of the elec-
trodes is less than the particle radius. In this situation higher
order field effects should be taken into account when
comparing experimental to theoretical values of the DEP
force.
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conventional dipole-based theory were observed [8, 9].
Higher order moments are responsible for the levitation
force achieved by such electrode structures because the
electric field is zero along the central axis, resulting in the
lack of an induced dipole moment. Schnelle et al. [10]
investigated the situation for DEP field cages formed by a
sandwich structure of two planar quadrupole electrodes,
also shown in Figure 10.4 and concluded that quadrupole
moment forces contribute ∼5% of the total DEP force
for particles larger than about a quarter of the electrode
spacing. For particles smaller in diameter than about a
tenth of the electrode spacing, the error arising from a
DEP force calculation that ignores the quadrupole con-
tribution is typically smaller than 1%.
For a spherical dielectric particle of radius Rwith com-

plex permittivity 𝜀∗p, suspended in a medium of per-
mittivity 𝜀∗m and subjected to a sinusoidal steady-state
electric field vector E, the effective nth-order multipolar
moment is a tensor phasor of the form [9, 11]:

pn =
4𝜋𝜀mR2n+1

(2n − 1)!!
CM(n)(∇)n−1E

CM(n) is the general multipole form of the Clausius–
Mossotti factor, given by:

CM(n) =
𝜀∗p − 𝜀∗m

n𝜀∗p + (n + 1)𝜀∗m

where the asterisk denotes that the complex form of the
permittivity is considered. As shown in the next section
this accommodates the presence of dielectric losses in the
particle and surrounding medium. Following the form
of Equation (10.10) the general, time-average, expression
for the DEP force acting on the nth-order multipole is
given by:

⟨FDEPn⟩ = Re
[pn[⋅]n(∇)nE

n!

]
(10.11)

where [⋅]n represents n dot products performed on the
dyadic tensors and (∇)n represents n vector∇ operations
[11]. The parameter ‘Re’ denotes that the real part of the
complex function is taken (see Equation 10.22).Thismul-
tipolar analysis was also applied by Jones and Washizu
[11] to traveling wave dielectrophoresis. An important
conclusion was that the various multipolar DEP forces
show similar frequency dependencies, especially in terms
of the value of the so-called DEP crossover frequency
that marks the point where the DEP force reverses
polarity. This is important because, as described in the
next chapter, DEP-based cell separation protocols rely
on an interpretation of DEP crossover measurements.
Washizu [12] later extended the multipole moment anal-
ysis of the DEP force to the case of spherical particles

being manipulated by focused laser beams (i.e., optical
tweezers).

10.3.2 Consideration of Electrical Energy Loss

Bioparticles usually exhibit dielectric losses associated
with relaxations of permanent or induced dipoles, as well
as ohmic conduction loss due to the displacement of
mobile ions associated with their structure. The medium
in which particles are suspended during DEP experi-
ments may also be a buffered electrolyte that exhibits
ionic conduction and dipole relaxation losses. We have
noted that the factor 𝜀mR3(CM)E2 in Equation (10.9) is
proportional to the energy required to withdraw a sphere
of radius R from a field E into a region where there is
no field. However, this equation employs the CM fac-
tor obtained from a solution of the boundary conditions
described in Box 6.1, for an ideal dielectric sphere intro-
duced into an ideal dielectric medium. The existence of
electrical energy losses, manifested as the dissipation of
heat, negates the principle of energy conservation. The
energy variation approach used to derive Equation (4.38)
is therefore no longer valid and will tend to underes-
timate the magnitude of the DEP force. The effective
dipole moment p used in Equation (10.1) is also a point
dipole, composed of free charges, whichwhen exchanged
with the particle, produces the same dipole field as that
derived in Box 6.1. We can ask to what extent the neglect
of electrical losses, together with the use of the effec-
tive moment method, influences the validity of Equation
(10.9).
As described in Chapters 6 and 7, AC dielectric and

conduction losses are encompassed as either a complex
permittivity 𝜀∗ or complex conductivity 𝜎∗. It is of value
to rehearse these concepts. The total current density in a
dielectric is given by:

JT = JC + 𝜕D∕𝜕t

where JC is the conduction current given by Ohm’s Law
(JC = 𝜎E) and D is the electrical displacement (D = 𝜀E).
Assuming that all of the fields have a sinusoidal time vari-
ation given by the exponential ei𝜔t (see ahead to Box 10.3)
then

JT = JC + i𝜔D = (𝜎 + i𝜔𝜀)E (10.12)

where i is the imaginary vector (i =
√
−1) and 𝜔 is the

angular frequency (𝜔 = 2𝜋f) of the applied sinusoidal
electric field. This shows that the displacement current
leads the conduction current by a phase angle of 𝜋/2 radi-
ans. Ohm’s Law can therefore be written as JC = 𝜎∗E,
where 𝜎∗ is the complex conductivity given by:

𝜎∗ = 𝜎′ + 𝜎′′ (10.13)
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The real component 𝜎’ is the conductivity 𝜎 used in the
‘standard’ form of Ohm’s Law, while the imaginary com-
ponent 𝜎′′ is equal to 𝜔𝜀, with 𝜀 the absolute value of the
permittivity (𝜀= 𝜀o𝜀r).The formof the total current given
by Equation (10.12) can be modified as follows:

JT = (𝜎 + i𝜔𝜀)E = i𝜔(𝜎∕i𝜔 + 𝜀)E
= i𝜔(𝜀 − i𝜎∕𝜔)E = i𝜔𝜀∗E

where 𝜀∗ is the complex permittivity given by:

𝜀∗ = 𝜀′ − 𝜀′′

The complex relative permittivity is thus given by:

𝜀∗r =
𝜀∗

𝜀o
= 𝜀′r − i𝜀′′r

The real component 𝜀′r of the complex relative permit-
tivity is identical to the parameter 𝜀r used to define capac-
itance (C = A𝜀o𝜀r/d), whilst the imaginary component
can be separated into two parts, namely the DC conduc-
tivity and the high-frequency part 𝜀′′r , to give:

𝜀∗r = 𝜀′r − i
(

𝜀′′r +
𝜎dc
𝜔𝜀o

)
(10.14)

As described in Chapter 6, these complex permittiv-
ity and conductivity parameters can be inserted into two
equivalent forms of the Clausius–Mossotti factor:

CM∗ =

(
𝜀∗p − 𝜀∗m

𝜀∗p + 2𝜀∗m

)
or

CM∗ =

(
𝜎∗
p − 𝜎∗

m

𝜎∗
p + 2𝜎∗

m

)
As shown in Box 10.1, Washizu [7] adopted complex

permittivity quantities and by doing so included electric
losses in his multipole refinement of the DEP force equa-
tion. However, this theory leads to Equation (10.11) in
which the time average of the DEP force is determined
by the real part of the induced moment and hence also
by the real part of the CM factor. (An explanation as to
why the real part of CM is involved is deferred until Box
10.4.) The dielectric loss parameter 𝜀′′ and DC conduc-
tivity 𝜎dc in Equation (10.14) are therefore not taken into
account.The question thus arises as to the extent that this
omission affects the validity of Equation (10.11). Obvi-
ously, as long as the condition 𝜀′′ ≪ 𝜀′ holds and the
ohmic conductivity is small, then any error involved is
also small. Fortunately, DEP experiments on cell suspen-
sions are often performed using low conductivity aque-
ous media and at frequencies well below the dielectric
loss peak for water.The ohmic conductivity of viable cells
is also small. The extent to which this can be properly
quantified, however, requires further study.

The most rigorous method to derive a field-induced
force employs the Maxwell stress tensor. In this method
the DEP force is found by integrating the stress tensor T
over the surface of the test particle:

FDEP =
∫

S

(T ⋅ n)dA (10.15)

in which n is the unit vector normal to the particle sur-
face element dA. The method uses the concept of elec-
tromagnetic momentum density, commonly known as
the Poynting vector [13], which remains constant in its
mathematical form irrespective of whether or not the
medium involved is loss free. The method has been used
by Mognaschi and Savini [14] to calculate the forces and
torques acting in nonhomogeneous lossy dielectric sys-
tems, under the influence of nonuniform fields and with-
out recourse to the effective dipole approximation. Sauer
and Schlögl [15, 16] also employed an integration of the
Maxwell stress tensor over the surface of a spherical par-
ticle to derive an expression for the DEP force similar to
that of Equation (10.11). The complication involved in
taking into account the nonuniform nature of the applied
electric field meant that the analysis was restricted to
the case of a very small gradient of the field. Later work
by Wang et al. [17], which was not restricted to small
field gradients, led to the important conclusion that the
Maxwell stress tensor method gives the same expression
for the DEP force as the effective dipole and multipole
methods. We can conclude from this that application of
the effective dipole method does not result in an erro-
neous result for the DEP force. However, the effective
dipole method is best suited when dealing with parti-
cles of well defined geometry, such as a sphere or ellip-
soid. An advantage of the Maxwell stress tensor method
is that for arbitrary particle shapes, together with knowl-
edge of how the electric field is distributed over its sur-
face, the DEP force can be calculated directly by sum-
ming the scalar product (T.n) in Equation (10.15) over the
whole particle surface [17].
It is useful to have these two forms forCM given above,

because the total induced current in the particle can be
considered to comprise two components – a component
in phase with the applied electric field arising from field-
induced movements of free charges, as well as an out-of-
phase component associated with relaxations of dipoles.
At low frequencies (𝜔 → 0) the current is dominated by
the conduction of charges and its magnitude is deter-
mined by the electrical conductivity of the particle. If the
applied electric field changes with time, the current will
change in step with this. For a particle that behaves as
an ideal conductor (or resistor) there is no phase differ-
ence between the field and the current. However, at high
frequencies (𝜔 →∞) the dielectric displacement current
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dominates, so that the particle behaves as an ideal dielec-
tric that has no leakage conductance. As shown in Box
10.2, for a particle that behaves as the dielectric of an
ideal capacitor, the current leads the applied field by a
phase angle of 90◦ (equivalent to a lead of 𝜋/2 radians).
This appears to negate the relationship between cause
and effect. Surely, the current can flow only after the volt-
age is applied. However, the situation shown in Box 10.2,
where the sine and cosine waveforms are assumed to be
fully formed at time zero, ismisleading. Amathematician
will informus that we should assume thewaveformswere
established a very long time (theoretically an infinitely
long time) before our chosen reference of time zero. The
cosine function is given by cos(x) = sin(x + 𝜋/2) and so
is a sine wave, but with an advanced phase shift of 𝜋/2
radians. The current waveform shown in Box 10.2 thus
has an automatic ‘head start’ of 𝜋/2 radians on the volt-
age waveform.This situation is a consequence of the cur-
rent acting to oppose changes of the capacitor voltage. An
analogy is the interest rate set by banking authorities to
control an undesired rate of monitory inflation. We can
say that a cyclical change of inflation leads the cyclical
change of the interest rate. In a capacitor the cosine cur-
rent function leads the voltage sine function.
The opposition to current flow in an ideal conductor

is called its resistance, arising from thermally induced,

randomizing, deviations from the electric field-forced
paths that should be taken by the mobile charges. The
relationship between the applied voltage and the current
is given byOhm’s LawV= IR, whereV and I are either the
DC or RMS values (see Box 2.6).The resistance R is mea-
sured in units of ohms.The current does not oppose volt-
age changes, so that there is no phase difference between
the current and applied voltage. At any instant in time
the resistive current in an ideal conductor, subjected to a
sinusoidal voltage waveform, is given by:

iR(t) =
v(t)
R

= 1
R
Vpk sin(𝜔t) (10.16)

The conduction current stays in phase with the applied
voltage and its magnitude does not change as a function
of the voltage frequency. From Box 10.2 we know that a
capacitor opposes a voltage change, by inducing either a
charging or discharging current that is directly propor-
tional to the rate of change (frequency) of the applied
voltage. For a constant DC voltage the current is zero.
In Chapter 2 we refer to this current as the displacement
current. From Box 10.2 the instantaneous current ic(t) at
any time is given by:

ic(t) = 𝜔CVpk cos(𝜔t)
= Ipk sin(𝜔t + 𝜋∕2) (Ipk = 𝜔CVpk) (10.17)

Box . AC Capacitance

Figures 2.1 and 3.1 depict the charging of a capacitance C
when a DC voltage source is connected across it. The charg-
ing current ic, depicted in Figure 9.7, is initially large and
decreases to zero as the voltage difference vc across the
capacitor approaches that of the applied voltage. At any
instant in time the current is given by ic = dqc/dt, where
qc = vcC is the charge stored on each capacitor plate. If
a sinusoidal voltage of the form shown in Figure 2.13 is
applied, the charging current at any instant is given by:

ic(t) =
dqc

dt
= C

dvc

dt
= C

dVpk sin(𝜔t)

dt
= 𝜔CVpk cos(𝜔t)

The current is thus directly proportional to the frequency
of the applied voltage. The current waveform, together
with that of the applied voltage, is shown below:

π

π πππ

ω ω

ω

ω
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When the applied voltage completes its first quarter
cycle (at 𝜋/2 radians) the charging rate (dvc/dt) and current
ic are both zero. Although the applied voltage is still positive
for the next quarter-cycle, current ic flows in the opposite
(negative) sense in an effort to maintain a constant voltage.
At the half cycle (𝜋 radians) point the rate of change of the
applied voltage is at a maximum in the negative sense and
ic attains its peak negative value. At this point the capacitor
plates carry equal but opposite charges, so that no net volt-
age appears between them. During the second half cycle
the applied voltage proceeds to its negative peak value at
3𝜋/2 radians, the capacitor is fully charged in the opposite
sense to that at 𝜋/2 radians and the current flow is again
zero. As the applied voltage head backs to zero to com-
plete a full cycle at 2𝜋 radians, the fully charged capacitor
attempts to maintain the voltage across its plates by dis-
charging. The charging / discharging process then begins
its next full cycle.

We conclude that a capacitor opposes a change in volt-
age and this is manifested as the current waveform lead-
ing the applied voltage waveform by 𝜋/2 radians (90◦). The
magnitude of the current is directly proportional to the fre-
quency of the voltage waveform, being zero under steady-
state DC conditions.
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Figure . (a) As depicted in Figure 9.7 the equivalent circuit for a cell membrane consists of the passive membrane resistance Rm in
parallel with the membrane capacitance Cm. (b) At very low frequencies Cm appears as an electrical open circuit so that all of the signal
current must pass through Rm. The electrical impedance of a cell is dominated by its conductive rather than capacitive elements. (c) At a
sufficiently high frequency the membrane reactance Xm falls to a low value and short circuits the membrane’s high resistance. The
permittivity parameters of the cell’s constituents now dominate over its conductive properties.

The relationship between the peak voltage across a
dielectric in a capacitor and the peak induced (displace-
ment) current takes the same form asOhm’s Law, namely
Vpk = IpkXc. The symbol Xc is referred to as the reactance
of the capacitor. From Equation (10.16) we deduce that
Xc = 1/𝜔C.
In Figure 9.7 the observed electrical properties of a

mammalian cell membrane can be interpreted as an
equivalent circuit composed of the membrane resistance
in parallel with the membrane capacitance. Equation
(10.16) informs us that, at low frequencies (as 𝜔 → 0),
the current induced in the capacitor will tend to zero,
so that the capacitor appears as an electrical open cir-
cuit of infinite resistance. Although the specific resis-
tance of the membrane of a viable mammalian cell is
large, considered to be at least 100 000 times greater than
that of the cytoplasm (see Table 9.3), it is certainly not as
large as that presented by an open circuit. As depicted in
Figure 10.5 the current drawn from the applied voltage
source will thus flow predominantly through the resistive
component of the membrane. If instead of being applied
directly across the membrane, as depicted in Figure 10.5,
the voltage is applied across the whole cell (as it would be
when suspended in an electrolyte for a DEP experiment)
the current drawn from the voltage source will skirt
around the cell, as depicted in Figure 2.5.With increasing
frequency of the applied voltage signal, the effective

resistance (reactance) of the capacitive element of the
membrane gets smaller, in direct proportion to the
reciprocal value of the frequency. At a sufficiently high
frequency, the capacitive element of the membrane
will electrically short out the membrane resistance, as
depicted in Figure 10.5. If the voltage is applied across
the whole cell, when suspended in an electrolyte of lower
conductivity than the cytoplasm, the current drawn from
the voltage source will flow across the membrane and
into the cytoplasm, as depicted in Figure 2.5.
The situations shown in Figure 10.5 represent the lim-

iting low-frequency and high-frequency cases. At low
frequencies the current drawn from the supply is to a
good approximation in phase with the applied voltage,
whilst for much higher frequencies the current leads the
voltage by nearly 𝜋/2 radians. At intermediate frequen-
cies, the current is distributed between the resistive and
capacitive components of the membrane and so will lead
the voltage by less than 𝜋/2 radians. A helpful way to
depict this is the phasor representation of the voltage
and current waveforms. As the name suggests, a phasor
is a vector that quantifies the magnitude and phase of
a waveform. It is a complex number (i.e., has a real and
imaginary component), which represents a sinusoidal
waveformwhose peakmagnitude, angular frequency and
phase angle remain constant with time. As shown in Fig-
ure 10.6 a phasor takes the form of a vector of length
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Figure . (a) At very low frequencies
the voltage and current phasors,
associated with conduction through
the membrane shown in Figure 10.5, are
in phase. (b) At very high frequencies
the current phasor leads the voltage
phasor by 90◦ (𝜋/2 radians). (c) At an
intermediate frequency the current
phasor leads the voltage phasor by less
than (𝜋/2 radians).
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Figure . A voltage phasor is shown rotating in
an anticlockwise direction at 𝜔 radians per second
(in this 4𝜋 thousand radians/s, corresponding to
2 kHz). At each angular position the location of its
tip, equal to Vpksin(𝜔t), plots out the sinewave as a
function of time.

equal to the peak amplitude of the sinusoid and by con-
vention rotates in the anticlockwise direction at an angu-
lar frequency of 𝜔 radians per second. The voltage and
current phasors for the limiting low- and high-frequency
cases of Figure 10.5 are shown in Figure 10.6, together
with a situation between these two limits.
As shown in Figure 10.7 for the case of a voltage pha-

sor, the projected height of its tip on the imaginary (Im)
axis maps out a voltage sinewave as a function of time.
A horizontal orientation of the phasor along the real axis
corresponds to an angular position (𝜔t) of n𝜋 (n= 0, 1, 2,
⋅⋅⋅) radians, whilst an orientation along the imaginary axis
corresponds to angular positions of n𝜋/2 (n = 1, 3, 5, ⋅⋅⋅).
At any instant a projection of the phasor tip’s height onto

the imaginary axis is equal to Vpksin(𝜔t), which is the
function sketched out in Figure 10.7. The corresponding
projected heights along the real (Re) axis map out the
functionVpkcos(𝜔t).This illustrates in graphical form the
result derived in Box 10.3, known as Euler’s formula, for
the phasor representation of a sinusoidal waveform:

V (t) = Vpk(cos(𝜔t) + i sin(𝜔t)) = Vpkei𝜔t (10.18)

which also provides a formal mathematical definition of
the sine and cosine functions:

cos x = Re[eix] = eix + e−ix
2

sin x = Im[eix] = eix − e−ix
2i

Box . Expressing a Sinusoidal Voltage as a Complex Exponential Function

In Chapter 6 the value of representing relative permittivity
as a complex number was introduced. A complex number
takes the form z = x + iy, with x the real and y the imagi-
nary value of z. The horizontal and vertical components of
the phasor shown in Figure 10.7 are x = Vpkcos𝜔t and y =
Vpksin𝜔t, so that V(t) may be expressed as:

V(t) = Vpk(cos 𝜔t + i sin 𝜔t)

The Maclaurin series for the cosine and sine functions
are:

cos 𝜔t = 1 − (𝜔t)2

2!
+ (𝜔t)4

4!
+⋯ ⋅ + (−1)n−1

(2n − 2)!
(𝜔t)2n−2 +⋯

sin 𝜔t = 0 − (𝜔t)3

3!
+ (𝜔t)5

5!
+⋯ ⋅ + (−1)n−1

(2n − 1)!
(𝜔t)2n−1 +⋯

Substituting these series into the complex expression for
V(t) we obtain:

V(t) = Vpk(cos 𝜔t + i sin 𝜔t)

= Vpk

[
1+ i𝜔t− (𝜔t)2

2!
− i(𝜔t)3

3!
+ (𝜔t)4

4!
+ i(𝜔t)5

5!
+ ⋯

]

Substituting into this equation the following identities
i2 = −1; i3 = −i; i4 = 1; i5 = i; etc.:

V(t) = Vpk

[
1 + i𝜔t + (i𝜔t)2

2!
+ (i𝜔t)3

3!
+ (i𝜔t)4

4!
+ (i𝜔t)5

5!
+⋯

]

Within the brackets is the Maclaurin series for the expo-
nential function ei𝜔t, so that V(t) can be expressed in the
compact (Euler’s formula) format:

V(t) = Vpke
i𝜔t = Vpk(cos 𝜔t + i sin 𝜔t)

For a stationary AC field, where the phase remains con-
stant as a function of location, the field is given by E(t) =
−∇V(t). The expression for the field waveform in Equation
(6.39) is obtained as follows:

E(t) = Im
[
Eoei𝜔t] = Im

[
Eo (cos 𝜔t + i sin 𝜔t)

]
= Eo sin 𝜔t

where Im[..] indicates the imaginary part of the complex
function inside the brackets.
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Figure . The rotating bar-magnet generator shown in Figure 2.12 is used to create a nonuniform AC field between DEP electrodes. At
reference time zero, with the north pole at the 0◦ position, the applied voltage is zero. As the north pole approaches and passes the 90◦

position the voltage at the pin electrode attains its maximum positive value with respect to the grounded plate electrode. As the south
pole passes the 90◦ position the maximum negative voltage is generated at the pin electrode. A time-averaged positive DEP force acts on
the spherical particle.

A schematic is given in Figure 10.8 of how the rotat-
ing bar magnet shown in Figure 2.12 represents the
generation of a voltage phasor, which can be applied to
two electrodes to produce a nonuniform electric field for
a DEP experiment.
In Figure 10.7 the voltage phasor is shown ‘frozen in

time’ at an angle of 45◦ (𝜋/4 radians). If another phasor
begins to rotate at the same rate, starting at the zero-angle
position, its sinusoidal waveformwill lag behind the volt-
age phasor by 𝜋/4 radians. Alternatively we can say that
the voltage phasor will lead the second one by 𝜋/4 radi-
ans. The following mathematical relationship describes
the magnitude and phase angle of a phasor:

V (t) = Vpk (cos(𝜔t ± 𝜙) + i sin(𝜔t ± 𝜙))

= Vpkei(𝜔t±𝜙) (10.19)

A positive value (+𝜋 > 𝜙 > 0) indicates a leading phase
angle, whereas a negative value −𝜋 < 𝜙 < 0 indicates that
the signal lags the reference signal. A zero value for 𝜙 sig-
nifies that the signal is in phase with the reference, taken
to be Vpksin(𝜔t) for example.
From Equation (10.21) in Box 10.4 the time-dependent

DEP force is given by:

FDEP(t) = Re
[
(p∗ ⋅ ∇) Epkei𝜔t

]
(10.23)

where p∗ is the particle’s induced (complex) dipole
moment, given by:

p(t) = v𝛼∗Epkei𝜔t

with v the volume of the particle. The parameter 𝛼 is the
moment per unit volume, induced by a field of unit mag-
nitude, as given in Equation (6.4). From Equation (10.17)

the time-averagedDEP force, over a large number of peri-
odic cycles of the field, is given by:

⟨FDEP⟩ = v
T ∫

T

0
Re

[
(𝛼∗Epkei𝜔t ⋅ ∇)Epkei𝜔t

]
dt

= v
2T ∫

T

0
Re

[
𝛼∗∇(E2pke

2i𝜔t)
]
dt (10.24)

in which T = 2𝜋/𝜔 and the vector relationship 2(E⋅∇)E
= ∇E2 is employed. The integration step in this equation
can be performed as follows:

∫

T

0
Re

[
𝛼∗∇

(
E2pke

2i𝜔t
)]

dt =
∫

2𝜋∕𝜔

0
Re[𝛼∗] cos2𝜔t dt

= Re[𝛼∗]
[ t
2
+ sin 4𝜔t

4𝜔

]2𝜋∕𝜔

0
= 𝜋

𝜔
Re[𝛼∗]

Using this result in Equation (10.24) the time-averaged
DEP force is thus given by:

⟨FDEP⟩ = v
2T

𝜋

𝜔
Re[𝛼∗] = v

4
Re[𝛼∗]∇E2pk (10.25)

For a spherical particle, v = (4𝜋R3)/3 and 𝛼 is derived
in Box 6.1 as:

𝛼 = 3𝜀o𝜀m
(

𝜀p − 𝜀m

𝜀p + 2𝜀m

)
From Equation (10.25) the time-averaged DEP force

acting on a spherical particle of radius R in a nonuniform
time-varying, sinusoidal, field is thus:

⟨FDEP⟩ = 𝜋𝜀o𝜀mR3Re

[
𝜀∗p − 𝜀∗m

𝜀∗p + 2𝜀∗m

]
∇E2pk (10.26)

This result for the AC dielectrophoretic force follows
naturally from our definition of themagnitude of a sinu-
soidal voltage or field in terms of its peak amplitude. It
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Box . The DEP Force is related to the Real Part of [(p⋅𝛁)E]

The DEP force acting on a particle is given according to
Equation (10.1) as the scalar (dot) product of the particle’s
dipole moment p and the field gradient∇E. The scalar prod-
uct of any two vectors A and B is defined as the magnitude
of B multiplied by the component of A parallel to B. Thus, as
shown in the following diagram:

A

B

ϕ

ϕ

Acos

A ⋅ B = (|A| cos 𝜙) |B| = |A| |B| cos 𝜙

If A and B are phasors of the same angular frequency,
then

A(t) = |A| ei(𝜔t+𝜙) and B(t) = |B| ei𝜔t

A formal way to multiply together two complex pha-
sors is to use the conjugate of one of them (A and B are
conjugates if they have the same real parts and equal and

opposite imaginary parts). Thus, the product of A(t) and B(t)
is given by:

A(t)B̄(t) = |A| ei(𝜔t+𝜙) |B| e−i𝜔t = |A||B|ei𝜙

= |A| |B| [cos 𝜙 + i sin 𝜙]

Comparing this with the above expression for A ⋅ B it fol-
lows that:

A(t) ⋅ B(t) = Re
[|A||B|ei𝜙]

(10.20)

where Re signifies the real part of […]. From inspection of
Equations (10.1) and (10.20) the time-dependent DEP force
is thus given by:

FDEP(t) = Re [(p ⋅ ∇)E] (10.21)

The DEP force is thus related to the real part of the
Clausius–Mossotti factor. The product of two phasors is also
given by its time-averaged value (e.g., [18]):

⟨A(t) ⋅ B(t)⟩ = 1
2

Re
[
A(t) ⋅ B̄(t)

]
so that from inspection of Equation (10.1):

⟨FDEP(t)⟩ = 1
2

Re
[
(p ⋅ ∇)Ē

]
(10.22)

is the preferred form adopted by Morgan and Green [4],
for example. However,most of theDEP literature, includ-
ing relevant texts [e.g., 1, 3, 19, 20], adopt the root mean
square value of the field, derived in Box 2.6 as Erms =
Epk/

√
2. Equation (10.26) is thus more usually presented

as:

⟨FDEP⟩ = 2𝜋𝜀o𝜀mR3Re

[
𝜀∗p − 𝜀∗m

𝜀∗p + 2𝜀∗m

]
∇E2rms (10.27)

with Erms usually given simply as E. A perceived advan-
tage of the form given by Equation (10.27) is that it also
gives the DEP force in a DC field and is compatible with
the use of a digital multimeter (usually calibrated to read
rms values) to monitor the voltage signal applied to elec-
trodes during a DEP cell separation procedure, for exam-
ple. However, if an oscilloscope is used to monitor the
applied signal (the past normal practice in the author’s
labs) then the peak magnitude of the signal is readily
determined and Equation (10.26) is the more useful. It
is also helpful during an electrorotation experiment to
monitor the quadrature-phased signals applied to the
electrodes by means of an oscilloscope. As shown in sec-
tion 10.3.4 the magnitude of the rotating field is deter-
mined by the peak voltage of the applied signals.
FromWashizu’s result [7] the time-averagedDEP force

acting on a spherical particle, taking into account the

dipole and quadrupole terms is given by:

⟨FDEP⟩ = 2𝜋𝜀mR3Re

[
𝜀∗p − 𝜀∗m

𝜀∗p + 2𝜀∗m

]
∇E2

+2
3
𝜋𝜀mR5Re

[
𝜀∗p − 𝜀∗m

2𝜀∗p + 3𝜀∗m

]
∇ ⋅ ∇E2

(10.28)
For particles with diameters less than around one-

tenth of the interelectrode spacing, the first (dipole
force) term in Equation (10.28) dominates the overall
DEP force. For larger particles than this the second
(quadrupole) term becomes important. For the dipole
case we can use the expression given by Equation (6.50)
for Re[CM∗]:

Re[CM∗] =
[(

𝜔2𝜏2

1 + 𝜔2𝜏2

) (
𝜀p − 𝜀m

𝜀p + 2𝜀m

)
+

(
1

1 + 𝜔2𝜏2

) (
𝜎p − 𝜎m

𝜎p + 2𝜎m

)]
(10.29)

where 𝜏 is the relaxation time for the interfacial charg-
ing given by Equation (6.49), reproduced here for conve-
nience:

𝜏 = 𝜀o
𝜀p + 2𝜀m
𝜎p + 2𝜎m

(10.30)
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At low frequencies, where 𝜔𝜏 ≪ 1 (a signal frequency
typically below 10 kHz):

Re[CM∗] ≈
(

𝜎p − 𝜎m

𝜎p + 2𝜎m

)
(10.31a)

For the case 𝜔𝜏 ≫ 1 (typically above 500MHz):

Re[CM∗] ≈
(

𝜀p − 𝜀m

𝜀p + 2𝜀m

)
(10.31b)

At low frequencies the DEP force thus depends on
the conductive properties of the particle and suspending
medium, whilst at high frequencies the permittivity val-
ues are important. Figures 6.5 shows how the function
Re[CM∗] given by Equation (10.29) varies with frequency
for the situation where the conductivity of a homoge-
neous particle (𝜎p) exceeds that (𝜎m) of the surrounding
medium (𝜎m), with the medium permittivity (𝜀m) being
larger than that (𝜀p) of the particle.We find that Re[CM∗]
and hence the DEP force, makes the transition from a
positive to negative value as the frequency increases. For
a homogeneousmetallic particle we have the situation 𝜎p
≫ 𝜎m and 𝜀p ≫ 𝜀m. In this case, from Equations (10.31),
Re[CM∗] remains positive on sweeping from a low to a
high frequency, with a value close to the maximum theo-
retical value of+1.0. A system possessing electrical prop-
erties in strong contrast to that of a suspended metallic
particle would be an ideal dielectric particle suspended
in an aqueous electrolyte (i.e., 𝜎p ≪ 𝜎m; 𝜀p ≪ 𝜀m). In this
case Re[CM∗] will remain negative as a function of fre-
quency, with a value close to the theoretical minimum
of −0.5. From this we can appreciate that the dynamic
range of −0.5 ≤ Re[CM∗] ≤ +1.0 is not large, imply-
ing that it will be difficult to distinguish between parti-
cles having subtle differences in their electrical proper-
ties. However, inspection of Figures 6.5 and 6.6 show that
apart from a difference in the polarity of Re[CM∗], hence
also of the DEP force, a significant variation can occur
of the frequency at which Re[CM∗] and the DEP force
change polarity.This effect is commonly referred to as the
DEP crossover (DEPxo) and the frequency (fxo = 𝜔xo/2𝜋)
at which it occurs can be calculated by setting Re[CM∗]
equal to zero in Equation (10.29). On substituting for the
relaxation time 𝜏 given by Equation (10.30) we obtain the
following relationship for the crossover radian frequency:

𝜔2
xo =

1
𝜀2o

(𝜎m − 𝜎p)(𝜎p + 2𝜎m)
(𝜀p − 𝜀m)(𝜀p + 2𝜀m)

(10.32)

This equation is quadratic in form and so in principle
has two roots – in other words two possible values for the
crossover frequency can exist. We can test the validity of
this conclusion for the case of a lymphocyte suspended
in an aqueousmedium. As described in Chapter 9, Asami
et al. [21] adopted themultishellmodel of a cell to analyse

Re[CM*]
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Figure . The frequency variation of Re[CM∗] derived from the
dielectric data obtained by Asami et al. [21] for lymphocytes. The
DEP force acting on the cell is proportional to Re[CM∗] and so
follows the same frequency profile. Two DEP crossover points
exist, at fxo1 and fxo2.

impedance measurements performed on suspensions of
viable lymphocytes, the results of which are presented in
Table 9.3. Using these dielectric parameters to derive the
effective values for 𝜎p and 𝜀p as a function of frequency,
on inserting them into Equation (10.29) the frequency
variation of Re[CM∗] obtained for a viable lymphocyte
is shown in Figure 10.9. Two crossover frequencies, fxo1
and fxo2, are shown located at ∼280 kHz and ∼300MHz,
respectively.
Experimentally relevant solutions (i.e., real rather than

imaginary ones obtained from taking the square root of a
negative number) for 𝜔xo in Equation (10.32) only occur
where the following condition is satisfied:

(𝜎m − 𝜎p)
(𝜀p − 𝜀m)

> 0 (10.33)

The effective values for 𝜎p and 𝜀p obtained from the
data of Asami et al. [21] for viable lymphocytes are shown
in Figure 10.10. For cells suspended in an aqueous elec-
trolyte of conductivity 30mS/m and relative permittiv-
ity 79, it is apparent from this figure that the necessary
condition defined by Equation (10.33) is not met in the
frequency range between ∼2MHz to ∼100MHz. Below
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Figure . Effective values for the permittivity (𝜀p) and
conductivity (𝜎p) of a lymphocyte as a function of frequency,
derived from the dielectric data of Asami et al. [21].
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2MHz the factors (𝜎m − 𝜎p) and (𝜀p − 𝜀m) in Equation
(10.33) are both positive, whilst above 100MHz they are
both negative, to give a positive value for their ratios.
Between 2MHz and 100MHz, (𝜀p − 𝜀m) is positive but
(𝜎m − 𝜎p) is negative, so that the solution for𝜔xo involves
the square root of a negative number. The crossover fre-
quencies shown in Figure (10.9) do not lie within the fre-
quency range yielding a nonreal value for 𝜔xo.
From the single-shellmodel of a cell described inChap-

ter 9, the effective complex permittivity of a cell is given
by Equation (9.14) as:

𝜀∗cell =
(2𝜀∗mem + 𝜀∗cyt)R

3
2 + 2(𝜀∗cyt − 𝜀∗mem)R

3
1

(2𝜀∗mem + 𝜀∗cyt)R
3
2 − (𝜀∗cyt − 𝜀∗mem)R

3
1

𝜀∗mem

where the sufficesmem and cyt represent the membrane
and cytoplasm phases, R2 is the cell radius and the mem-
brane thickness d is given by d = R2 − R1. This equation
can be rearranged to the form:

𝜀∗cell = 𝜀∗mem

(
R2
R1

)3
+ 2

(
(𝜀∗cyt − 𝜀∗mem)
(𝜀∗cyt + 2𝜀∗mem)

)
(
R2
R1

)3
−

(
(𝜀∗cyt − 𝜀∗mem)
(𝜀∗cyt + 2𝜀∗mem)

) (10.34)

For frequencies well below 1MHz, the values for the
various dielectric parameters of the cell are such that
[22]: (

(𝜀∗cyt − 𝜀∗mem)

(𝜀∗cyt + 2𝜀∗mem)

)
≅ 1

Redefining the cell radius to be R, with the assumption
that this radius is far greater than the membrane thick-
ness d, Equation (10.34) simplifies to:

𝜀∗cell = 𝜀∗mem

⎛⎜⎜⎜⎜⎝

(
1

1 − d∕R

)3
+ 2(

1
1 − d∕R

)3
− 1

⎞⎟⎟⎟⎟⎠
≅ 𝜀∗mem

(
R + d
d

)
≅ 𝜀∗mem

(R
d

)
(10.35)

It is evident from Figure 10.10 that for frequencies well
below the region of the interfacial polarization, where the
low conductivity of the membrane dominates the effec-
tive conductivity of the cell (𝜎p), the effective permittiv-
ity (𝜀p) of the cell greatly exceeds that of the suspending
medium (𝜀m). The value for 𝜎p is also much less than the
conductivity of the medium (𝜎m). In this case, to a good
approximation, Equation (10.32) reduces to:

𝜔2
xo1 ≅

1
𝜀2o

2𝜎2
m

𝜀2p

TheDEP crossover frequency fxo1 can thus be given as:

fxo1 =
𝜔xo1
2𝜋

≈
√
2

𝜎m
2𝜋𝜀o𝜀p

(10.36)

For the special situation where the particle is a viable
cell with an intact membrane, suspended in a medium
of conductivity less than that of its cytoplasm, we can
assume that 𝜎p ≪ 𝜎m and 𝜀p ≫ 𝜀m. From the above rela-
tionship and Equations (10.30) the relaxation time 𝜏 can
be approximated as:

𝜏2 ≈ 2
𝜔2
xo1

Substituting this relationship into Equation (10.29),
together with the conditions 𝜎p ≪ 𝜎m, 𝜀p ≫ 𝜀m, we
obtain as the approximate frequency dependence of the
Clausius–Mossotti factor in the frequency range close to
the DEP crossover frequency:

Re[CM(f )] ≈
f 2 − f 2xo1
f 2 + 2f 2xo1

From Equation (10.27) we therefore have the follow-
ing approximation for the time-averaged DEP force of a
spherical, viable, cell:

⟨FDEP⟩ ≈ 2𝜋𝜀o𝜀mR3

[
f 2 − f 2xo1
f 2 + 2f 2xo1

]
∇E2rms (10.37)

Given in this form the DEP force equation illustrates
the significance of the crossover frequency fxo1, as well
as the practical interpretation that can be given of the
Clausius–Mossotti factor. For a relatively narrow fre-
quency range that encompasses fxo1, if the operating
frequency f is less than fxo1 the DEP force effect act-
ing on a viable cell is negative. The cell will be repelled
from a metal electrode. As the frequency f is increased
beyond the value for fxo1, the DEP force effect makes the
transition from negative to positive DEP and the cell is
attracted to the electrode. Equation (10.37) represents
the key guideline as to how DEP-based cell separation
protocols exploit the different values for fxo1 exhibited by
different cell types in a cell mixture.
The specific membrane capacitance Cmem can be

defined as Re[𝜀∗mem]∕d (units of F m−2). Noting that 𝜀∗p ≡

𝜀∗cell, from Equation (10.35):

Cmem =
𝜀o𝜀p

R
(10.38)

Substituting this relationship for 𝜀o𝜀p into Equa-
tion (10.36) we obtain the following expression for the
crossover frequency fxo1:

fxo1 ≈
1√
2

𝜎m
𝜋RCmem

(10.39)
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In a DEP experiment, the conductivity of the medium
(𝜎m) and the radius of a cell can be measured directly. A
determination of the crossover frequency fxo1 therefore
provides a method for determining the capacitance of
the plasma membrane, provided that the high resistance
value of the membrane has not been degraded due to
structural damage or the onset of cell death, for example.
Equation (10.38) can be compared with Equation (9.19)
obtained from treating themembrane as a dielectric slab,
of relative permittivity 𝜀r, sandwiched between two par-
allel plate electrodes distance d apart and each of area A:

Cmem =
𝜀o𝜀r
d

per unit area A (10.40)

From Equations (10.38) and (10.40) we note that the
relationship between the macroscopic, effective, permit-
tivity (𝜀p) value of the whole cell and the microscopic
relative permittivity (𝜀r) of the membrane is given by
(𝜀p/𝜀r) = (R/d). Equation (10.40) was derived in Chapter
9 by adopting the same geometrical scheme as that given
in Figure 3.21 when applying Gauss’s Law to calculate
the field produced in a dielectric situated between two
spherical conducting shells. The conducting shells are
unable to sustain an electric field, so that the result given
by Equation (10.40) assumes that all the applied electric
potential is dropped across the membrane. The approxi-
mations used to derive Equation (10.36) also employ this
assumption because the conductivity of the membrane is
taken to be negligible. The voltage dropped across a cell
membrane on application of an external AC electric field
of magnitude E is given by the following equation [23]:

Vmem(𝜔, 𝜃) =
3
2
RE cos 𝜃

(1 + i𝜔𝜏)
(10.41)

where R is the cell radius and 𝜃 is the polar angle with
respect to the field direction as shown in Figure 2.7.Vmem
is thus a complex quantity, with a real and imaginary
component, the latter having either a positive or nega-
tive value (depending onwhether the voltage leads or lags
the applied field, respectively). The field Emem across the
membrane is given by |Vmem|∕d , where d is the mem-
brane thickness:

Emem(𝜔, 𝜃) =
3
2
(R∕d)E cos 𝜃

(1 + 𝜔2𝜏2)1∕2
(10.42)

This function is plotted in Figure (10.11) and superim-
posed on the frequency variation of Re{CM∗} shown in
Figure 10.9 for lymphocytes. The value for the interfa-
cial relaxation time 𝜏 is calculated using Equation (6.49)
and the dielectric data derived for lymphocytes as given
in Table 9.3. At low frequencies (𝜔𝜏 < 1) the field Emem
across the membrane can exceed the applied field by a
factor of 103 or greater, depending on the size of the cell.
As the frequency is increased and approaches the DEP
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Figure . A plot of the transmembrane field Emem, derived from
Equation (10.41), is shown superimposed on the plot of Re[CM∗]
given in Figure 10.9 for lymphocytes. At the DEP crossover
frequency fxo1 there is a significant penetration of the external field
across the membrane and into the cell interior.

crossover frequency, it can be seen from Figure 10.11
that the magnitude of Emem begins to decrease, indicat-
ing that the total voltage drop across the cell is shared
between themembrane and cell interior.The applied field
begins to penetrate into the cell interior and the extent of
this increases with increasing frequency. The conductiv-
ity of the cell membrane can no longer be neglected.
An improvement of the approximate nature of equa-

tion (10.37) can be made by including the membrane’s
specific conductance Gmem [24]:

fxo1 =
1√
2

𝜎m
𝜋RCm

√
1 −

RGmem
2𝜎m

− 2
(RGmem

2𝜎m

)2

For values ofGmem less than around 600 S/m2, this rela-
tionship can be simplified to the form [25]:

fxo1 =
√
2

2𝜋RCmem

(
𝜎m −

Gmem
4

)
(10.43)

The value of the Gmem should include the surface
conductance (Kms) of the cell membrane [25]. This
contribution to the total effective conductance of the
membrane is described in section 10.3.6 of this chapter.
Values for the membrane capacitance for a particular cell
type can be obtained to a reasonable level of accuracy
(but less so for the membrane conductance) by deter-
mining their average radii (R) and fxo1 value at different
values of the medium conductivity (𝜎m). From Equation
(10.43) we expect a plot of (fxo1 R) against 𝜎m to produce
a straight line (y =mx + c, see ahead to Figure 10.26b) of
slopem given by:

m =
√
2

2𝜋Cmem

and an intercept c given by:

c = −
√
2

8𝜋Cmem
RGmem
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Figure . Plots of Re[CM∗] for two cells of the same radius,
suspended in a medium of conductivity 40 mS/m. Cells A and B
have membrane capacitances of 8 mF/m2 and 16 mF/m2,
respectively. As expected from Equation (10.39) cell A with the
smaller Cmem value exhibits a higher DEP crossover frequency fxoA
than cell B. On applying a field of frequency fDEP cell B should
experience a positive DEP force, which attracts it to an electrode,
whilst cell A should be pushed away from the electrodes and into
the surrounding medium by a negative DEP force.

As shown in Table 9.2, if nominal values of ∼5 and
∼7 nm are adopted in Equation (10.40) for 𝜀r and d,
respectively, a specific membrane capacitance (Cmem/A)
of ∼6mF/m2 is obtained for an ideal smooth cell mem-
brane. Values in the range 6∼8mF/m2 are observed for
erythrocytes, which have relatively smooth membranes,
but values significantly larger than this are observed for
other cell types. The only parameter in Equation (10.40)
capable of sufficient adjustment to produce large values
for Cmem is the value we take for the effective area of
the membrane surface. As discussed in Chapter 9, this
can be quantified by introducing a membrane topogra-
phy parameter 𝜙. This parameter represents the ratio
of the actual membrane area of the cell to that which
would form a perfectly smooth covering of the cyto-
plasm. A perfectly smooth membrane corresponds to 𝜙

having a value of 1.0. A cell whose membrane becomes
‘roughened’, as a result of the appearance of membrane
folds, blebs or microvilli, for example, should therefore
exhibit an increased membrane capacitance in direct
proportion to the increase of 𝜙. With all other factors
remaining constant (e.g., cell radius, medium conduc-
tivity) then from Equation (10.38) this should result in
a lowering of the DEP crossover frequency. This effect
is shown schematically in Figure 10.12 for two cells of
the same radius, suspended in the same medium con-
ductivity, but with one cell having a surface roughness
that effectively doubles the membrane capacitance (from
8mF/m2 to 16mF/m2). This example demonstrates an

important application of dielectrophoresis. By setting the
frequency of the applied nonuniform field to a value
between the DEP crossover frequencies exhibited by the
two cells, they experience opposite DEP forces. The cell
exhibiting the lower fxo1 value experiences a positive DEP
force that attracts it towards the nearest electrode, pos-
sibly trapping it there. The other cell experiences a nega-
tive DEP force that repels it from the electrodes and into
the bulk of the fluid medium. The two cell types are thus
physically separated from one another and completely
so if the fluid flows over the electrodes and is collected
downstream.
For Figure 10.12 it was specified that the radii and

the suspending medium for the two cells were the
same. The reason for this is clear from Equation (10.39),
where the value for fxo1 is shown to be directly propor-
tional to the medium conductivity and inversely propor-
tional to the cell radius.The value for fxo1 is related to the
frequency dependence of Re[CM∗] and so depends on
the relaxation time given by Equation (10.30). This equa-
tion does not contain the cell radius as an implicit factor.
So why should fxo1 for an isolated cell be a function of
its radius? For a particle that consists of a homogeneous
material then, in theory, the relaxation time 𝜏 for inter-
facial polarization should not vary as a function of par-
ticle size. However, no particle is strictly homogeneous
because its surface is likely to have physico-chemical
properties that differ from its bulk. The single-shell
model of a cell described in Chapter 9 can be modified to
accommodate the general case of a particle of radius R,
having a surface layer of thickness dwith dielectric prop-
erties that differ from its bulk. In this case the relation-
ships given in Equation (9.17) can bemodified as follows:

𝜀′p = 𝜀′bulk +
2d
R

𝜀′surface and 𝜎′
p = 𝜎′

bulk +
2d
R

𝜎′
surface

When these relationships are inserted into Equation
(10.30) it is evident that for some situations the relaxation
time for interfacial polarization can be sensitive to parti-
cle size. From Equations (9.16) we also have the following
general relationship:

𝜀∗p =
(

𝜀′bulk +
2d
R

𝜀′surface

)
−i 1

𝜀o𝜔

(
𝜎′
bulk +

2d
R

𝜎′
surface

)
The dependence of the DEP force on particle size as

a function of frequency is obtained by inserting this
expression for the complex permittivity into Equation
(10. 27). For the particular case of a cell enclosed by a
membrane, then fromEquation (10.30) the time constant
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can be given as [26, 27]:

𝜏 = RCmem

(
𝜎cyt + 2𝜎m

2𝜎cyt𝜎m + RGmem(𝜎cyt + 2𝜎m)

)
(10.44)

This relationship is derived by employing the limiting
low-frequency (DC) approximations:

𝜎p = 𝜎pDC ≡ 𝜎mem
R
d
= RGmem; 𝜀p = 𝜀pDC

≡ 𝜀mem
R
d
= RCmem

Adopting these DC approximations can lead to sig-
nificant errors when analysing DEP and electrorotation
data, especially for frequencies and medium conductiv-
ities above 100 kHz and 1mS/m, respectively. A refine-
ment of the theories has been described by Lei et al.
[28] to enable more accurate extraction of the dielectric
parameters of cells from such data.
The influence of cell radius on the values for fxo1 and

fxo2 is shown in Figure 10.13.Thismodellingwas achieved
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Figure . Re[CM∗] modelled for a nucleated cell as a function
of cell radius (with all other factors fixed). The value for fxo1
decreases as the radius increases but fxo2 remains constant.

using the modifications, described in Box 10.5, to the
MATLAB program given in Box 9.3. An increase of the
cell radius results in a shift of fxo1 to a lower frequency,
but the DEP crossover frequency (fxo2) at ∼300MHz

Box . MATLAB Program to Model the DEP Characteristics of a Cell

An extension is given from line 43 of the program given in
Box 9.3 to include the conductivity and permittivity of the
suspending medium. This enables Re[CM∗] and Im[CM∗] to
be modelled for a cell containing a nucleus. Dielectric val-
ues for the various components of the cell are guided by
the data given in Table 9.3.

42

43 % Suspending medium conductivity kc5

and permittivity kp5

44 kc5=40e-3;

45 kp5=79*pO;

46

47 k1=kp1-i*kc1 ./w;

48 k3=kp3-i*kc3 ./w;

49 k2=kp2-i*kc2 ./w;

50 k4=kp4-i*kc4 ./w;

51 k5=kp5-i*kc5 ./w;

52

53 am1=a1ˆ3;

54 am2=a2ˆ3;

55 am3=a3ˆ3;

56 am4=a4ˆ3;

57

58 keff2=k2 .*(am2*(k1+2*k2)-2*am1*

(k2-k1)) ./(am2*(k1+2*k2)+…
am1*(k2-k1));

59

60 keff3=k3 .*(am3*(keff2+2*k3)-2*am2*

(k3-keff2)) ./(am3*(keff2+2*k3)

+am2*(k3-keff2));

61

62 keff4=k4 .*(am4*(keff3+2*k4)-2*am3*

(k4-keff3)) ./(am4*(keff3+2*k4)+

am3*(k4-keff3));

63

64 m=(keff4-k5) ./(3*(k5+D*(keff4-k5)));

65

66 rm=real(m);

67 im=imag(m);

68

69 plot(log10(f), rm,'o', log10(f),

zeroline,'-');

70 % plot(log10(f), im,'+', log10(f),

zeroline,'-');

71

72 hold on

73

74 xlabel('Log Frequency (Hz)')

75 ylabel('CM Factor')

76

77 hold on



10 Theoretical and Practical Considerations 

remains unchanged. This reinforces our view that the
DEP force acting on a cell at the lower frequencies is
strongly influenced by the presence and integrity of the
plasma membrane. At high frequencies the membrane
capacitance electrically shorts out the large resistance
presented by the membrane (as shown in Figure 10.5), so
that the cell appears electricallymore like a homogeneous
sphere with a single DEP crossover frequency whose
value is governed by permittivity parameters rather than
conductive properties. This same effect can be demon-
strated, as shown in Figure 10.14, by modelling Re[CM∗]
for steadily increasing values of the plasma membrane
conductance. A cell with a membrane that has lost its
resistance to passive ion flow exhibits positive DEP in the
frequency range where viable cells usually exhibit nega-
tive DEP.This demonstrates an important feature of DEP,
namely its ability to not only distinguish between viable
and dead cells, but also to provide a simple method for
separating them. Figure 10.14 in fact presents a simpli-
fied scenario for what might be observed during a DEP
experiment as a cell progresses from the viable to apop-
totic state, for example. The size of the cell will proba-
bly change and this will alter the finer details of the DEP
response near fxo1. If, as is usually the case, the cell is sus-
pended in an aqueous medium of relatively low conduc-
tivity, ions will also leak from the cytoplasm. As we will
see in section 10.5, this will lead to a lowering of the value
for fxo2. However, the final result, that the dead cell will
exhibit positive DEP instead of negative DEP will be the
same.
Finally, it should be noted that the analyses of the DEP

force given here are not restricted to a simple sinusoidal
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Figure . Plots of Re[CM∗] are shown as the plasma membrane
conductance Gmem of a nucleated cell increases. This can mimic
the effect of degradation of the membrane as a result of cell
damage and death. With an applied field set at a frequency below
the usual value of fxo1 observed for a viable cell, the nonviable cells
will be attracted to the electrodes by positive DEP, whilst the
viable cells will be forced into the bulk fluid by negative DEP.

tω
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M

Figure . An application of Equation (10.34) with two terms of
the Fourier series. The waveform is created by adding a second
phasor, of angular frequency 3𝜔 and magnitude M/3, to the
primary phasor of frequency 𝜔 and magnitude M. A good
approximation to a square wave is produced by adding phasors of
frequencies 5𝜔, 7𝜔, 9𝜔 and magnitudes M/5, M/7, M/9,
respectively.

field. DEP experiments can be performed using voltage
signals in the form of square waves or multiple superim-
posed frequencies, for example. In such cases the applied
field can be expressed as a summation (a Fourier series
[29]) of the form:

E(t) =
N∑
n=1

Epkei𝜔nt (where integer N ≥ 1) (10.45)

An example of the summation of two phasors is shown
schematically in Figure 10.15. By adding the appropriate
number of harmonically related frequencies and appro-
priate amplitudes to the primary phasor it is possible to
generate awide range of periodicwaveforms (e.g., square,
saw tooth). The periodic time T to complete one cycle of
such waveforms is given by T = 2𝜋/𝜔. From the Princi-
ple of Superposition of Forces described in Chapter 3 the
total DEP force acting on a particle is given by the sum-
mation of the forces produced by each component of the
harmonic fields thatmake up the total electric field wave-
form applied to the particle. The mathematics described
here to calculate the time-averaged DEP force for the
case of a single applied sinusoidal field can therefore be
applied to more complicated waveforms.

10.3.3 Assumption of a Quasi-Static, Stationary AC Field

We have assumed that the applied AC field is of the form:

E(t) = Re[Epkei𝜔t] (10.46)

The magnitude of the sinusoidal waveform is thus
taken to be a function of time, but to be independent of
the location between the electrodes. A relationship of the
form:

E(t, x) = Re[Epk(x)ei𝜔t]
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Figure . The peak voltage applied to
the DEP electrodes shown in Figure 10.8 is
doubled by applying a voltage Vpksin(𝜔t) to
the pin electrode and −Vpksin(𝜔t) to the
plate electrode. There is no phase
difference between these two applied AC
signals. By doubling the peak voltage the
DEP force acting on the particle is
quadrupled.

indicates that the waveform attains its peakmagnitude at
different times t according to its location x. This is equiv-
alent to the sinewave shown in Figure 10.7 exhibiting a
phase shift as a function of location – in other words the
field exhibits a phase gradient. It is also implicit in Equa-
tion (10.46) that the field vector is real and not a complex
vector having an imaginary component at right angles to
the assumed direction (real component) of the field. To
what extent can we ignore complications arising from a
field phase gradient and an imaginary component of the
field? Before answering this wewill first review the nature
of an AC electric field.
An AC electric field can be launched into free space

by generating a regularly repeating electrical breakdown
of the air gap between two point electrodes, for exam-
ple. The electric field generated close to the electrodes is
termed thenearfield and for our purposeswewill assume
that it propagates into free space as a sinewave. After one
or two complete oscillations (wavelengths) of this near
field an orthogonal magnetic field is generated. Likewise,
a magnetic field launched into space from an induction
coil, for example, induces the appearance of an electric
field. These two fields travel together as an electromag-
netic (EM) wave at the speed of light. An EM wave has a
wavelength 𝜆 given by the relationship 𝜆 = c/f, where c is
the speed of light (∼3 × 108 m/s) and f is the frequency.
Thus, even at a frequency as high as 1GHz the wave-
length (∼30 cm) of the E-field is much larger than the
distance between the electrodes used in dielectrophore-
sis. At 1MHz thewavelength ismore than amillion times
larger than the characteristic interelectrode spacing (typ-
ically ∼200μm or less) of a DEP electrode array.
In a DEP experiment the electric field, at any instant in

time, can therefore be considered as the near field with
no accompanying magnetic field component. The field
can also be considered to be quasistatic, because at (say)
1MHz the spatial scale (∼200μm) divided by the tempo-
ral scale (10−6 s) equates to ∼200m/s and is insignificant
compared to the velocity (∼3× 108 m/s) at which the field
is transmitted in free space. For a ‘static’ or ‘stationary’

wave the phase of the applied voltage remains constant
in time and space with respect to a stationary reference
waveform. It is therefore safe to assume that the nonuni-
formE-field generated in the schematic of Figure 10.8 can
be considered to be quasistatic with no phase gradient.
Figure 10.16 illustrates how the peak (and rms) voltage
signal to the electrodes can be doubled by using two volt-
age generators. Because the DEP force is proportional to
E2, this provides a simple way to quadruple the DEP force
when using signal generators of limited output magni-
tude. In practice, of course, modern voltage signal gener-
ators employ digital electronics and not rotating barmag-
nets (although this was the method used to generate AC
voltages in the early studies of the dielectric properties
of cells, as for example those performed by Rudolf Höber
in 1910, as described in Chapter 9). The rotating magnet
scheme has been used simply to illustrate the generation
of a sinusoidal voltage signal and the concept of a phasor.
To what extent can we assume that the field vector is

real, without an imaginary component? For the majority
of reported DEP experiments, the electrodes used to
generate the electric field make contact with the fluid
medium in which the test particles are suspended. The
possibility that electrode polarization effects might
influence the observed DEP responses must therefore
be considered. As described by Schwan [30] electrode
polarization can be represented as an equivalent circuit
composed of a capacitance in series with the resistance
of the bulk solution. The capacitance is associated with
the electrical double layer at the electrode-solution
interface. At low frequencies the reactance of the double
layer (1/𝜔C) can greatly exceed the resistance of the bulk
fluid and so the applied voltage difference between the
electrodes acts predominantly across the electrical dou-
ble layer. Even though the voltage signal applied to the
electrodesmight remain constant, the field actually expe-
rienced by the test particles can thus vary significantly
as a function of frequency in the range where electrode
polarization occurs. The extent of this can be deter-
mined and correction made to the magnitude of the DEP
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Figure . (a) The variation in apparent conductance S of a DEP
cell suspension medium as a function of frequency (based on Burt
et al. [31]). (b) The real and imaginary components of the
normalized voltage drop across a solution above microelectrodes,
as a function of frequency (based on González et al. [32]).

effect, by measuring the apparent conductance of the
suspension medium in the DEP chamber as a function of
frequency. An example of such a measurement is shown
in Figure 10.17(a), based on the procedure described
by Burt et al. [28] to correct for the effect of electrode
polarization. It can be seen that electrode polarization
can extend up to a frequency as high as 100 kHz and
significant correction for it may be required below
10 kHz. However, relying solely on data such as that

shown in Figure 10.17(a) to correct for the magnitude of
the field in the medium is not sufficient. It does not take
into account the fact that the effective capacitance of
the double layer introduces a phase difference between
the resultant current in the medium and the applied
field. This is equivalent to the voltage drop across the
medium and hence the field, having a real and imaginary
component. This was analysed for the first time for
practical DEP electrodes by González et al. [32]. An
example of their analysis is shown in Figure 10.17(b). In
the frequency range where electrode polarization occurs
and particularly below ∼10 kHz, it cannot be assumed
that the field E in Equation 10.27, for example, is a purely
real quantity – it will be complex and have an imaginary
component. As shown in Box 10.6 this leads to the intro-
duction of an imaginary component of the DEP force. As
we will see in the next section, the imaginary component
of the field exerts a rotational torque on a test particle.

10.3.4 Rotating Fields and Electrorotation

Consider the scheme shown in Figure 10.18 where four
symmetrically arranged electrodes are energized by a
sequence of sinusoidal voltages of equal magnitude and
phased 90◦ (𝜋/2 radians) apart. A practical electronic
circuit that can be ‘home built’ for producing quadrature-
phased signals is shown in Figure 10.19. Alternatively,
commercial generators are available that provide quadra-
ture phased waveforms of different types.
The orthogonal field vectors Ex and Ey, shown in Figure

10.18, are given mathematically as:

Ex = Epk sin(𝜔t)x̂;
Ey = Epk sin(𝜔t + 𝜋∕2)ŷ = Epk cos(𝜔t)ŷ
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Figure . Quadrature-phased AC voltages of
equal magnitudes are shown applied to four
electrodes.
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Box . The DEP Force arising from a Gradient of Field Phase

From Equation (3.10) and Box 10.4 an electric field can be
expressed in Cartesian co-ordinates, in terms of its magni-
tude, frequency 𝜔 and phase 𝜙, as:

E = Ex(t)î + Ey(t)ĵ + Ez(t)k̂

=
∑

n=x,y,z

En0(x, y, z) cos(𝜔t + 𝜙n(x, y, z))n̂n

where n̂ is a unit vector. From Equation (10.1) the DEP force
is then given by:

FDEP(x, y, x, t) = FDEPx(t)î + FDEPy(t)ĵ + FDEPz(t)k̂

=
∑

n=x,y,z

(
px(t)

𝜕Ex(t)
𝜕n

+ py(t)
𝜕Ey(t)

𝜕n
+ pz(t)

𝜕Ez(t)
𝜕n

)
(10.47)

Referring to Box 10.4 this equation can be expanded in
terms of its real and imaginary components. For example,
for the first term of the summation in Equation (10.47):

px(t)
𝜕Ex(t)
𝜕n

= 4𝜋𝜀o𝜀mR3 (
Re[CM] cos(𝜔t + 𝜙x

)
−Im[CM] sin(𝜔t + 𝜙x))

×
(

𝜕Ex0

𝜕n
cos(𝜔t + 𝜙x) −

𝜕𝜙x

𝜕n
sin(𝜔t + 𝜙x)

)

The time-averaged DEP force for this component is given
by: ⟨

px(t)
𝜕Ex(t)
𝜕n

⟩
= 2𝜋𝜀o𝜀mR3

(
Re[CM]Ex0

𝜕Ex0

𝜕n
+ Im[CM]E2

x0

𝜕𝜙x

𝜕n

)
The second and third terms of the summation in Equa-

tion (10.47) have similar time averages, so that the time-
average DEP force for the situation of a complex nonuni-
form field is given by:

⟨FDEP(t)⟩
= 2𝜋𝜀o𝜀mR3

(
Re[CM]∇E2

rms + Im[CM]
∑

E2∇𝜙

)
(10.48)

where ∑
E2∇𝜙 = (E2

x0∇𝜙x + E2
y0∇𝜙y + E2

z0∇𝜙z)

In section 10.3.5 we find that the term involving Im[CM] in
Equation (10.48) introduces a rotational torque to the total
DEP force.
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Figure . Schematic of an electronic circuit, which can be used
to produce the quadrature phased sinusoidal signals shown in
Figure 10.18. A rotating electric field is created between the
electrodes.

where x̂ and ŷ are unit vectors along the x- and y-axes,
respectively and 𝜔 is the radian frequency of the applied
voltage signals. The amplitude of the field E produced
between the electrodes is in principle given by the vec-
tor sum of these two vectors:

E = Epk sin(𝜔t)x̂ + Epk cos(𝜔t)ŷ (10.49)

so that

E2 = E2x + E2y = E2pk(sin
2 𝜔t + cos2 𝜔t) = E2pk

to give E= Epk.The angle 𝜃 shown in Figure 10.20 is given
by:

tan 𝜃 =
Epk sin𝜔t
Epk cos𝜔t

= tan𝜔t

so that 𝜃 = 𝜔t. The resultant field E is thus constant in
magnitude, but rotates with an angular frequency 𝜔. A
rotating field can be generated using the four electrodes
with quadrature phases, as shown in Figure 10.19, or

E

Ex

Ey
p

θ
ϕ ω

Figure . The moment p induced in a particle exposed to a
rotating electric field (𝜃 = 𝜔t) is shown lagging the field by 𝜙

degrees.
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Figure . The charges on the electrified electrodes
of a quadrupole phase system are shown at the
initiation and completion of one-eighth of a phasor
cycle. (a) At time t = 0 the field vector generated is
directed from electrode 2 (90◦) to 4 (270◦). (b) At t = T/8,
corresponding to a phase advance of 𝜋/4 radians (45◦)
the field vector rotates in the anticlockwise direction
(i.e., against the clockwise sense of increasing phase
angle applied to the electrodes). After a further time
lapse of T/8, the field vector will be directed from
electrode 1 (0◦) to 3 (180◦).

using n electrodes with sinusoidal signals that are phase
shifted from each other by 2𝜋/n radians. The direction
of rotation of the field vector shown in Figure 10.19 is
against the sense of the increasing phase angle applied to
the electrodes (i.e., anticlockwise for a clockwise applica-
tion of increasing voltage phase). This may appear to be
counterintuitive but is explained in Figure 10.21.
For regions away fringe fields in the gaps between adja-

cent electrodes shown in Figures 10.19 and 10.21, the
rotating field E is uniform. A uniform field does not
induce a DEP force, but a particle in a rotating field expe-
riences a rotational torque. In Figure 10.20 the induced
moment p is shown lagging the rotating field E by 𝜙

degrees, but it can also lead the field. FromChapter 2 (see
Figure 2.8) we know that an out-of-phase dipole moment
experiences a torque that aligns it with a stationary field.
In a rotating field the moment will experience a torque
causing it to rotate constantly in the direction that should
align it with the field. If the moment lags the field it will
continually attempt to ‘catch up’ with the field under the
action of a positive rotational torque. The polarized par-
ticle will rotate in the same direction as the field. If the
moment leads the field it will continually try to ‘back-
track’, so that under the action of a negative rotational
torque the particle rotates in the opposite sense to the
field. These two situations are depicted in Figure 10.22.
We see that a positive rotational torque is created when
the induced charges on the particle are of opposite sign
to that of the adjacent electrified electrode(s). This sit-
uation arises when the rate of electrical response of the
particle to a change of field direction is less rapid than
that of its surrounding medium.This is equivalent to the
effective charge density relaxation time (𝜀o𝜀p/𝜎p) of the
particle being longer than the charge density relaxation
time (𝜀o𝜀m/𝜎m) of themedium.When the relaxation time
of the particle is less than that of themedium, the induced
charges on the particle are of the same sign as that of the
adjacent electrode(s). This leads to a negative torque that

causes the particle to rotate in the opposite sense to that
of the field.
As shown in Figure 10.22, the particle rotates about an

axis that passes through its centre of symmetry and is
normal to the x-y plane in which the field and induced
moment rotate. The torque T acting about this central
point is given by the product of the moment p (a vec-
tor) and the vector component of the field E that acts
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Figure . (a) The distributions of charges are shown for
electrodes and a particle whose induced moment p lags a rotating
field vector E. The moment p and the charges rotate
synchronously with the field E. (b) As the field rotates the
attractive forces between the charge distributions leads to the
particle rotating in the same sense as the field. (c) The electrode
and particle charge distributions are shown where the induced
moment p leads the rotating field. (d) The repulsion between the
charge distributions leads to the particle rotating in the opposite
sense to that of the field.
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Box . Electrorotational Torque is related to the Imaginary Part of [p × E]

From Equation (10.50) the torque T is given by a vector
(cross) product of the form:

T = p × E

Vectors p and E have components [px, py, pz] and [Ex, Ey,
Ez], respectively, with T also being a vector [Tx, Ty, Tz]. The
magnitude (length) of T is given by:

|T| = |p||E| sin 𝜙

where 𝜙 is the angle between p and E and is equivalent
to the area of the shaded parallelogram shown below. The
direction of T is perpendicular to both p and E, such that p,
E and T (in this order) form a right-handed triple of vectors
as shown below. In the right-handed Cartesian coordinate
system (see below) the components of T are given by:

Tx = pyEz − pzEy; Ty = pzEx − pxEz; Tz = pxEy − pyEx

For p and E both located in the x-y plane, then Ez and pz
are zero and Tx = Ty = 0. In phasor notation a right, circularly
polarized, field vector is given by:

E = E(x̂ − iŷ)ei𝜔t

where x̂ and ŷ are unit vectors (îx ,̂jy). For a particle of vol-
ume v and isotropic complex polarizability 𝛼∗, so that px =
py = v𝛼∗Eei(𝜔t+𝜙), we obtain the result:

Tz = −i(2v𝛼∗E2ei𝜙)

The real components of Tz have cancelled, to give a
purely imaginary value. From the formal definition of a vec-
tor product [18] the time-averaged torque is given by:

⟨T(t)⟩ = 1
2

[p × Ē] = −vIm[𝛼∗]E2ẑ (10.51)

(a) Vector product. (b) Right-handed triple of vectors and coordinates. 
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ϕ

T = p × E T
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E

z
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ĵk̂

orthogonally to and in the same plane as the induced
moment. From Figure 2.8 this product given by:

T = pEsin𝜙

where 𝜙 is the angle between the vectors p and E.This in
fact is the result of the so-called vector (cross) product of
p and E expressed by:

T = p × E = pE sin𝜙 (10.50)

As given by Equation (10.51) in Box 10.7 the time-
averaged torque acting on a particle is:

⟨T(t)⟩ = −vIm[𝛼∗]E2ẑ

where ẑ is the unit vector (k̂z) along the z-axis in a right-
handed Cartesian coordinate system (see Box 10.7). This
torque causes the particle to rotate about the z-axis that
passes through the centre of the particle and is directed
at right angles to the xy-plane, which contains the rotat-
ing field and the induced dipole moment. For a spherical
particle of radius R, v = (4𝜋R3)/3 and from Box 6.1:

𝛼∗ = 3𝜀o𝜀m

(
𝜀∗p − 𝜀∗m

𝜀∗p + 2𝜀∗m

)

The function inside the brackets is the complex form
of the CM-factor. The time-averaged torque exerted on
a spherical particle of radius R, suspended in a medium
of absolute permittivity 𝜀o𝜀m and subjected to a uniform
rotating field E in the xy-plane is:

⟨T(t)⟩ = −4𝜋𝜀o𝜀mR3Im[CM∗]E2ẑ (10.52)

Thus, unlike the DEP force, which depends on the real
component of the Clausius–Mossotti factor, the elec-
trorotational torque depends on the imaginary compo-
nent. The minus sign in Equation (10.52) indicates that
the direction of rotation of the particle is opposite to
the direction of rotation of the field when the imagi-
nary component of the CM factor has a positive value.
This is termed contrafield electrorotation. Cofield rota-
tion occurs when the imaginary component of the CM
factor has a negative value.
The frequency dependence of Im[CM∗] is given in Box

6.8 by the relationship:

Im[CM∗] =
3𝜔(𝜀p𝜎m − 𝜀m𝜎p)

(𝜎p + 2𝜎m)2 + 𝜔2(𝜀p + 2𝜀m)2

(10.53)

Im[CM∗] tends to a value of zero for very low and
very high frequencies and has a peak value at the radian
frequency where 𝜔 = 1/𝜏 . Substituting this frequency
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into Equation (10.53), with 𝜏 given by Equation (10.30),
the peak value for Im[CM∗] is:

Im[CM∗]pk =
3
2

𝜀p𝜎m − 𝜀m𝜎p

(𝜎p + 2𝜎m)(𝜀p + 2𝜀m)
(10.54)

For the situation 𝜀p ≫ 𝜀m and with 𝜎m ≫ 𝜎p, Im[CM∗]
has a peak value of 0.75. For 𝜀m ≫ 𝜀p, with 𝜎p ≫ 𝜎m,
Im[CM∗]pk = −0.75. From Equation (10.52) the torque
exerted on a spherical particle is given by:

⟨T(t)⟩ = −12𝜋𝜀o𝜀mR3

×

[
𝜔(𝜀p𝜎m − 𝜀m𝜎p)

(𝜎p + 2𝜎m)2 + 𝜔2(𝜀p + 2𝜀m)2

]
E2

(10.55)

From this equation we find that contrafield rotation
occurs for 𝜀p𝜎m > 𝜀m𝜎p. This condition for contrafield
rotation is equivalent to having (𝜀o𝜀p/𝜎p) > (𝜀o𝜀m/𝜎m) –
in other words the charge density relaxation time of the
particle exceeds that for the suspending medium. This
agrees with the conclusion drawn from inspection of Fig-
ure 10.22. Cofield rotation occurs for the condition 𝜀p𝜎m
< 𝜀m𝜎p, where the charge density relaxation time of the
suspending medium exceeds that for the particle.
As the particle rotates, it experiences a resistive viscous

torque (T𝜂) from the surrounding fluid, given by:

T𝜂 = −8𝜋𝜂R3Ωo

where Ωo is the constant angular velocity (radians per
second) of the particle and 𝜂 is the dynamic viscosity of
the surrounding fluid [33].The fluid is assumed to be sta-
tionary, with the angular velocity low enough for the fluid
streamlines around the particle to be of a laminar rather
than turbulent nature. At the steady state the electroro-
tational torque is exactly balanced by the viscous torque,
so that

T𝜂 + ⟨T(t)⟩ = 0

to give:

Ωo =
⟨T(t)⟩
8𝜋𝜂R3

From Equation (10.52)

Ωo = −
𝜀o𝜀m
2𝜂

Im[CM∗]E2 (10.56)

Thus, although from Equation (10.53) the variation of
the rotation rate with frequency is determined by the
frequency dependence of Im[CM∗], the rotation is not

(a) (b)

Figure . (a) Quadrupole electrodes of the ‘bone’ design create
a rotating field of constant magnitude over a significant area
between the electrodes. (b) A map of the field vectors following a
clockwise advance by 30◦ of the signal phases applied to the
electrodes. (Based on Dalton et al. [36].)

synchronous with the rate of rotation of the applied field.
The magnitude of the rotation depends on the square of
the applied field, which is determined by the peak volt-
age of the quadrature phases signals applied to the elec-
trodes. A scaling factor should be applied, whose value
depends on the geometry (e.g., straight, circular, elliptic)
of the electrodes and the specific location of the parti-
cle within the space bounded by the electrodes [34, 35].
A design that produces a rotating field that is uniform
over a good working area between the electrodes is the
so-called ‘bone’ design [36] shown in Figure 10.23.
Equation (10.56) informs us that particle size does not

influence the steady-state rotation rate. Unlike DEP, elec-
trorotation (ROT) is not a ponderomotive effect. This
is a consequence of the fact that Ωo is attained when
the viscous torque exactly balances the rotational torque.
Because these torques depend on particle size, when the
steady-state condition is reached the particle size can-
cels ‘out of the equation’. A comparable situation occurs
in dielectrophoresis regarding the stable levitation above
an electrode plane acquired by a particle that experi-
ences both a negative buoyancy force and a negative DEP
force. Negative buoyancy acts to bring the particle down
to the electrode plane and this force is proportional to
the particle volume and the difference in density between
the particle and the suspending fluid. The negative DEP
force pushing against this sedimentation force is pro-
portional to the particle volume. Equilibrium is attained
when the negative buoyancy is counterbalanced by the
DEP force, at which point the particle volume cancels
‘out of the equation’. It should be noted, though, that the
electrical frequency at which electrorotation attains its
peakmagnitude can depend on particle size. If the dipole
moment of a particle undergoing electrorotation arises
principally from interfacial polarization, the peak rota-
tion depicted in Figure 10.24 is determined by the value of
Im[CM∗]pk, given by Equation (10.53) and corresponds
to the condition 𝜔𝜏 = 1. For a heterogeneous particle
whose structure can be modelled in the form of multiple
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Figure . Electrorotation (ROT) response for a viable
lymphocyte suspended in a medium of conductivity 40 mS/m,
modelled using the MATLAB program given in Box 10.5, with line
70 modified according to details given in the main text. Below
1 MHz the sense of rotation is contrafield, with a peak rotation rate
of −8.5 radians s−1 (−1.35 revs s−1) at fpk1. A transition to cofield
rotation occurs at the crossover frequency frco (which does not
coincide with the DEP crossover at fxo1).

shells, the value of 𝜏 is given by Equation (10.44). Thus,
as for the DEP crossover frequency fxo1, the frequency
fpk1 at which the peak electrorotation occurs can depend
on particle size. Further details of the interrelationship

between dielectrophoresis and electrorotation are pre-
sented in Box 10.8.
The following important relationship, which relates the

frequency dependence of the electrorotation torque T to
that of the DEP force, is derived in Box 10.8:

T(𝜔o) = −
2𝜔o
𝜋k ∫

∞

0

FDEP(𝜔)
𝜔2 − 𝜔2

o
d𝜔

where k is a frequency independent parameter given by:

k =
|||∇E2DEP|||
(E2ROT )

From this the following interrelationship between DEP
and ROT can be derived [22, 39]:

� in a frequency range where the DEP force acting on
a particle increases with frequency 𝜕FDEP/𝜕𝜔 > 0) the
rotational torque T(𝜔) is negative, to give contrafield
rotation;

� where the DEP force decreases with frequency
(𝜕FDEP/𝜕𝜔 < 0) the rotational torque T(𝜔) is positive,
to give co-field rotation;

� at frequencies where 𝜕FDEP/𝜕𝜔 = 0 the rotational
torque is zero.

Box . Relationship between Dielectrophoresis and Electrorotation

We have treated the induced dipole moment of a particle
as a linear response of the applied electric field (p = v𝛼E).
Thus, using the terminology of electronic signal processing,
the temporal variation of the moment p(t) can be expressed
in terms of the applied field E(t) and the impulse response
h(t) by means of the convolution integral [37]:

p(t) =
∫

∞

0
h(𝜆)E(t − 𝜆)d𝜆

Taking the Fourier transform of both sides of this equa-
tion:

p(𝜔) = E(𝜔)H(𝜔)

where H(𝜔) is the Fourier response function of the induced
moment, which referring to Equation (10.26), is given by:

H(𝜔) = 4𝜋𝜀mR3

(
𝜀∗p − 𝜀∗m

𝜀∗p + 2𝜀∗m

)
For any practical (therefore causal) linear system, the

Kramers–Krönig theorem relates the real and imaginary
components of the system’s Fourier response [38]. This
should also be valid for our response function H(𝜔). From

Equations (10.26) and (10.52) the DEP force FDEP and ROT
torque T are determined by the real and imaginary com-
ponents of the CM factor, respectively. Thus, invoking the
Kramers–Krönig theorem, we have:

FDEP(𝜔o) − F∞ = 2k
𝜋 ∫

∞

0

T(𝜔)𝜔
𝜔2 − 𝜔2

o

d𝜔

and

T(𝜔o) = −
2𝜔o

𝜋k ∫

∞

0

FDEP(𝜔)
𝜔2 − 𝜔2

o

d𝜔

where F∞ is the DEP force at the high frequency limit,
reflecting the instantaneous response of the dipole
moment to the external field. The quantity k is a frequency
independent, positive, factor related to the DEP and ROT
applied fields by:

k =
|∇E2

DEP|
(E2

ROT )

This relationship indicates that through the Kramers–
Krönig theorem we can obtain the DEP frequency response
of a particle from its ROT spectrum and vice versa.
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Figure . Dielectrophoresis (DEP) and electrorotation (ROT)
responses modelled for a lymphocyte suspended in a medium of
conductivity 40 mS/m, using the MATLAB program given in Box
10.5 and modified according to details given in the main text. The
low- and high-frequency DEP crossover points (fxo1, fxo2) are
indicated, together with the contrafield and co-field peaks of
rotation at fpk1 and fpk2, respectively. A transition from contra- to
cofield ROT occurs at frco.

These relationships can be seen in Figure 10.25 for the
DEP andROTresponsemodelled for a lymphocyte, using
a version of the MATLAB program given in Box 10.5 in
which line 70 has been modified to read:

70 plot(log10(f), -55.3*im,'⋅', log10(f),

zeroline,'-');

As indicated in Figure 10.25, when viable lymphocytes
are suspended in a medium of conductivity 40mS/m
they can be expected to exhibit negative DEP at frequen-
cies below 100 kHz. The magnitude of this negative DEP
force decreases and tends towards a positive value with
increasing frequency (i.e., 𝜕FDEP/𝜕𝜔 > 0). If the electro-
rotation response were to be measured at the same time
as the DEP force, it would be negative (i.e., contrafield).
As the frequency is increased to the point of inflec-
tion of curvature of the DEP frequency response, corre-
sponding to the midpoint between its limiting low- and
high-frequency values, the electrorotation rate exhibits
its peak negative value at fpk1. The MATLAB program
in Box 10.5 is based on the multishell model of a cell.
In this model, if the cell possesses a viable membrane
its low-frequency dielectric properties are dominated by
the high-resistance (low conductivity) of the membrane.
The cell appears as an insulating particle suspended in a
conducting medium and so exhibits negative DEP deter-
mined by the Maxwell–Wagner interfacial polarization
taking place at the interface between the cell membrane
and the suspending medium. At frequencies in theMHz

range, the capacitance of the membrane shorts out the
high resistance of the membrane and the field pene-
trates the cell interior. The membrane appears invisible
to the field, so that the corresponding interface for the
Maxwell–Wagner polarization is now that between the
outside suspending medium and a sphere composed of
the cytoplasm and its internal contents. If, as is usually
the case, the effective permittivity of the cytoplasm and
its contents is less than that of the suspending medium,
the DEP response will decrease towards a negative value
(or at the very least a less positive one) so that 𝜕FDEP/𝜕𝜔

< 0. In this case, as shown in Figure 10.25, the cell
should now exhibit co-field electrorotation with a peak
rate at the frequency (fpk2) corresponding to the point
of inflection of the high-frequency DEP characteristic.
The author is not aware of a reported determination
of fpk2 for a viable cell. As also shown in Figure 10.25,
where the DEP response attains a plateau (i.e., 𝜕FDEP/
𝜕𝜔 = 0) the rotational torque is zero. This occurs at
very low and very high frequencies, as well as at the fre-
quency where there is a transition from 𝜕FDEP/𝜕𝜔 > 0
to 𝜕FDEP/𝜕𝜔 < 0. At this frequency value (frco) the elec-
trorotation makes the transition from contra- to co-field
rotation.

Example 10.1 Estimationof thePeakAngularVeloc-
ity of Electrorotation
Quadrature phased sinusoidal voltages of peak magni-
tude 5V are applied for an electrorotation (ROT) exper-
iment to the electrodes shown in Figure 10.19. Frequen-
cies between 10 kHz to 30MHz are to be investigated,
within which range Maxwell–Wagner polarization of a
test spherical particle is known to occur. The distance
between opposite electrode pairs is 400μm. Estimate the
peak angular velocity expected for the electrorotation
(ROT) response of the particle when located in the cen-
tral region between the electrodes.

Solution 10.1 From Equation (10.56) the maximum
(peak) magnitude of the rotation is given by:

Ωpk = −
𝜀o𝜀m
2𝜂

Im[CM∗]
pkE

2 (10.57)

From Equation 10.49) the magnitude of the rotating
field is determined by the peak value of the applied volt-
age signal to each electrode. The peak voltage is 5V and
the gap between opposing electrodes is 400μm. Neglect-
ing the fact that a correction factor of ∼0.9 may be
required to obtain the actual field profile [35], we can
estimate the field as 5V/(4 × 10−4 m) = 1.25 × 104 V/m
(N/C). For an aqueous medium we have 𝜀m ≈ 80 and 𝜂

≈ 1mPa s, so that from Equation (10.57) the predicted
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maximum rotation rate is:

|Ωpk| ≈ (
(8.854 × 10−12 C2N−1m−2) × 80

2 × 10−3 Nm−2s

)
×(1.25 × 104 NC−1)2Im[CM∗]pks−1

≈ 55.3 Im[CM∗]pks−1

In this calculation, the dimensional units (F/m) for
the electric constant 𝜀o are treated as equivalent to
C2N−1m−2, which can be verified from Appendix D.
From Equation (10.54) we have deduced that values for
Im[CM∗] lie within the bounds ± 0.75. The maximum
electrorotation rate expected is thus ±(0.75 × 55.3) =
±41.5 radians per second, equivalent to 6.6 revs / second
in either the co-field or contrafield direction.

Rotation rates for frequencies either side of the peak
value can, to a fair degree of accuracy, be determined by
eye and a stopwatch (e.g.,measuring the time taken for 10
revolutions). However, the most important parameter to
determine in a ROT experiment is the critical frequency
fpk1 at which the peak rotation rate occurs. If the rota-
tion rate is too high, determination of fpk1 can be achieved
by reducing the amplitude of the quadrature voltage sig-
nals. An alternative, quite ingenious technique involving
two contrarotating fields of equal amplitude is described
by Arnold and Zimmermann [40], who performed pio-
neering studies of cell electrorotation [41,42]. Other early
studies of cell electrorotation were reported by Glaser
et al. [43].
The frequency fpk1 at which the maximum contrafield

rotation occurs is when 𝜔𝜏 = 1, with 𝜏 given by Equation
(10.30), so that:

fpk1 = 1
2𝜋𝜏

= 1
2𝜋

(𝜎p + 2𝜎m)
𝜀o(𝜀p + 2𝜀m)

=
𝜎m

𝜋𝜀o(𝜀p + 2𝜀m)
+

𝜎p

2𝜋𝜀o(𝜀p + 2𝜀m)
(10.58)

Thus, if ROT experiments are performed as a function
of themedium conductivity (𝜎m), whilst maintaining iso-
tonic conditions for the cells (see Example 8.3), a plot of

fpk1 versus 𝜎m should thus produce a straight line with a
slope given by:

Slope = 1
𝜋𝜀o(𝜀p + 2𝜀m)

(10.59)

If the cells (or particles) are suspended in an aqueous
medium the value for 𝜀m will be known (∼79) and so the
value for permittivity of the particle can be obtained from
the slope value. If cells are being investigated and their
radii R have been measured, then the membrane capac-
itance Cmem can be determined with the aid of Equation
(10.38). The intercept of the straight line on the conduc-
tivity axis is given by setting fpk1 in Equation (10.58) to
zero, to give

Intercept = −
𝜎p

2
(10.60)

This relationship enables a determination of the parti-
cle conductivity. Furthermore, as described in the deriva-
tion of Equation (10.44), an estimate of the membrane
conductance Gmem of a cell can then be made using the
low-frequency approximation that Gmem = 𝜎p/R. It is
usually the case that the uncertainty in the value obtained
forGmem is much larger than that obtained for the mem-
brane capacitance Cmem [28]. One reason for this is
that the transmembrane conductance Gmem, which for a
viable cell is expected to have a value smaller than ∼10 S
m−2, can be masked by the surface conductance of the
cell [25]. This is discussed further in section 10.3.6.
A schematic of the plot of fpk1 versus 𝜎m is shown in

Figure 10.26, together with a plot of DEP data corre-
sponding to Equation (10.43).

10.3.5 Traveling Fields and Traveling Wave
Dielectrophoresis (TWD)

The rotational torque generated by the scheme shown
in Figure 10.19 can be converted to produce a transla-
tional force on a particle by ‘opening up’ the electrodes
and ‘laying them down’ to form a repeating linear array
of electrodes as depicted in Figure 10.27. A particle sit-
uated above these electrodes will experience an electric
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Figure . (a) A plot of the frequency (fpk1)
at which the peak contrafield rotation occurs
in a ROT experiment on viable cells, as a
function of the suspending medium
conductivity. (b) A plot of the product of the
DEP crossover frequency (fxo1) and cell radius
(R) as a function of the medium conductivity.
The expressions for the slopes and intercepts
of the linear plots are given by Equations 10.43
and 10.58.
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field having a gradient of both fieldmagnitude and phase.
This is the situation analysed in Box 10.6, which gives the
resultant time-averaged DEP force acting on a spherical
particle of radius R as:

⟨FDEP⟩ = 2𝜋𝜀mR3{Re(CM∗)∇E2

+Im(CM∗)ΣE2∇𝜙} (10.61)

where ΣE2∇𝜙 represents a summation of the magnitude
and phase 𝜙 of each field component in Cartesian coor-
dinates. The first term on the right relates to the in-
phase component of the induced dipolemoment and rep-
resents the dipole approximation of the DEP force, as
given by Equation (10.27). This force directs the parti-
cle towards either strong field regions at the electrodes
or weak field regions above the electrodes, depending
on whether Re[CM∗] is positive or negative, respectively.
The second term relates to the out-of-phase component
of the induced moment and produces a force that acts
to move the particle in a direction either with or against
the direction of the phase gradient, depending on the
magnitudes and sign of Im[CM∗] and the phase gradient
factor ΣE2∇𝜙 [44]. The field travels towards the smaller
phase regions as indicated in Figure 10.27. A positive

14 21432
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Figure . (a) View looking down on an interdigitated electrode
array designed for travelling wave dielectrophoresis. The direction
of the travelling field, as for the sense of rotation of a rotating field,
is against to the direction of increasing phase angle applied to the
electrodes. (b) Side view showing the sequence of
quadrature-phased signals at an instant in time. A particle is
shown levitated above the electrodes, under the action of a
negative DEP effect and propelled by a twDEP force against the
direction of the travelling wave at frequencies where In[CM∗] > 0.

value for Im[CM∗] produces a force that directs the par-
ticle towards regions of larger phases of the field compo-
nent along the electrode array – in other words against
the direction of the traveling field. For the case where
Im[CM∗] < 0, the particle is directed towards regions of
smaller phase and so with the direction of the traveling
field. If, as is usually the case, quadrature-phase voltages
are applied to the interdigitated electrodes shown in Fig-
ure 10.27, the distance between every second electrode
(2d1 + 2d2) corresponds to a one-half wavelength of the
traveling field and is thus equal to the distance of maxi-
mum phase difference on the electrode track.
As depicted in Figure 10.27, a particle suspended above

the electrodes is not capable of translational motion if it
is brought down to and trapped on the electrodes by a
positive DEP force. If the particle is levitated above the
electrodes by a negativeDEP force, it experiences a trans-
lational force provided themagnitude of Im[CM∗] is large
enough. This restricts traveling wave dielectrophoresis
(TWD) to the frequency range shown in Figure 10.28.
To simplify the discussion of this, the particular situation
has been chosen of a particle made from a poorly con-
ducting polymer suspended in an aqueous electrolyte.
This system therefore possesses a single interface and
so will exhibit a single Maxwell–Wagner interfacial dis-
persion. The particle can be expected to exhibit a DEP
response that follows the frequency-dependent form of
Re[CM∗] shown in Figure 10.28. A negative DEP force
will act to levitate the particle for frequencies up to
the DEP crossover point at around 300MHz, but TWD
will only commence at ∼200 kHz where Im[CM∗] is
large enough to produce a significant translational force.
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Figure . Plots of the real and imaginary components, Re[CM∗]
and Im[CM∗], respectively, of the Clausius–Mossotti factor for a
homogeneous spherical particle. Travelling wave DEP is restricted
to the frequency range bounded by the rectangular area, where a
negative DEP force levitates the particle and Im[CM∗] is of
sufficient magnitude to induce translational motion.
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Figure . Variations of the TWD force factors ∇E2 and Σ(E2∇𝜙)
as a function of levitation height above TWD electrodes, with (d1 +
d2)/2 = 10 μm and an applied quadrature-phase voltage signal of
1 Vrms [45].

Above ∼200MHz the value for Re[CM∗] is either not
large enough to levitate the particle or has a positive
value, which leads to its immobilization on the electrodes
by positive DEP. As shown in Figure 10.28 the imaginary
component of the CM factor is positive in this frequency
range extending from 200 kHz to 200MHz. The particle
will move along the electrode track in a direction oppo-
site to that of the traveling field.
The values for ∇E2 and ΣE2∇𝜙 in Equation (10.61)

vary as a function of height above the electrode plane.
An example is shown in Figure 10.29. This example indi-
cates a general trend, in that as a particle approaches the
electrode plane a strong DEP force directs it towards the
edge rather than the top of an electrode, whilst the TWD
force reverses in polarity.The same forms of variations of
∇E2 and ΣE2∇𝜙 have been derived using the charge den-
sity method [46], Green’s theorem [47] finite and Fourier
series analysis [48]. These various methods of analysis
indicate that TWD takes the form of simple translational
motion for particles levitated higher than d = (d1 + d2)/2
above the electrode plane, where as indicated in Figure
10.27 the distance between electrodes is d1 and d2‘ is the
electrodewidth.When particles approach the electrodes,
they can exhibit circular and spinning motions as well as
sudden reversals in their direction of travel. Such effects
were noted in earlier studies of TWD and designated as
the FUN (fundamentally unstable) regime [49].The term
‘FUN’ was adopted to reflect the amusement caused in
viewing these effects down a microscope.
For levitation heights greater than d, the time-averaged

TWD velocity is given by the following expression [47]:

vTWD = −
𝜀o𝜀mR2V 2

3𝜂
Im(m)ΣE2∇𝜙 (10.62)

in which 𝜂 is the viscosity of the suspending electrolyte
and V the applied (rms) voltage. For an aqueous elec-
trolyte we have 𝜀o𝜀m ∼7 × 10−10 F m−1 and 𝜂∼10−3 kg
m−1.s−1. For the case of a lymphocyte (r∼5μm) levi-
tated to a height of 25μm on applying a 1 Vrms signal
and assuming Im(m) ∼0.6, then from Figure (10.29) and
Equation (10.62) we obtain a contrafield TWD velocity
of ∼22μm.s−1. Particle velocity values of this order are
typically observed in TWD experiments. As discussed by
Wang et al. [47] theTWDvelocity increaseswith increas-
ing applied voltage, but not as a voltage squared depen-
dency as suggested by Equation (10.62). With increasing
voltage the increasedDEP force causes an increase of par-
ticle levitation height and as shown in Figure 10.29 this
leads to a smaller value for ΣE2∇𝜙 for levitation heights
greater than 15μm. If a particle is assumed to be way
above the electrode plane, where the field and DEP force
decay exponentially as a function of levitation height, the
following voltage-independent expression can be derived
for the TWD velocity [48]:

vTWD = 2
9
r2Δ𝜌g

𝜂

Im(m)
Re(m)

(10.63)

Δ𝜌 is the difference between the specific densities of the
particle and suspending electrolyte and g is the grav-
itational acceleration factor (9.81 m.s−2). For lympho-
cytes suspended in an aqueous electrolyteΔ𝜌 has a value
∼0.04 kg.dm−3. For Re(CM∗) = −0.4 and Im(CM∗) =
0.6, Equation (10.63) predicts a contrafield TWDvelocity
of ∼3.3μm.s−1 for lymphocytes. In most work reported
in the literature, TWD velocities are considerably larger
than this value and are voltage dependent. This indicates
that most reported experiments have operated under
conditions where Equation (10.62) rather than Equation
(10.63) is pertinent.
If a DEP or second TWD signal is added to the first

TWD signal, the resulting electrostatic potential at the
electrodes is a superposition of the separate voltage func-
tions. Provided that nonlinear effects are absent, such
as those arising from electrode polarization, high power
dissipation, or a frequency variation of 𝜀m, for example,
there is a linear superposition of the effects caused by
these two signals [45].The total resultant DEP and TWD
force acting on a cell will be the vector sum of the indi-
vidual forces produced by each signal acting separately.
This can be used to physically separate and isolate cells
of different types or stages of cell cycle, for example, by
inducing them to move in opposite directions along the
TWD electrode track [45].
Travelling waves dielectrophoresis electrodes have

mostly been designed to operate as linear ‘tracks’, but spi-
ral designs have also been used [47, 50].The spiral design
shown in Figure 10.30 combines traveling wave DEP and
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Figure . A combined traveling wave (TWD) and
electrorotation (ROT) electrode design. On energizing the four
spiral electrode elements with sinusoidal voltages of the indicated
phase relationships, a travelling field propagates radially from the
centre to the outer periphery of the electrode array. Particles
directed to the centre by TWD are exposed to an anticlockwise
rotating field [50].

electrorotation to concentrate and assay the viability of
microorganisms [50].

10.3.6 Particle Inhomogeneity, Net Charge and Surface
Conductance

Most particles, especially biological ones, are not homo-
geneous. As shown inChapter 9, bacteria and cells can be
modelled to take account of their heterogeneous struc-
tures using the so-calledmultishellmodel.TheClausius–
Mossotti function for a multishell particle and hence the
DEP force that acts on it, can be obtained by evaluating
effective values for the relative complex permittivity and
conductivity values of both the particle and its suspend-
ing medium. This has been described in some detail in
section 9.4 of Chapter 9.
Particles generally carry a net charge associated with

the presence of charged polymers and / or ionizable
acidic and basic groups on their surfaces. Early stud-
ies [51, 52] demonstrated that the low frequency DEP
response for erythrocytes and erythroleukemia cells was
affected following neuraminidase treatment to reduce
their cell membrane charge by 50∼60%.The fixed charge
on the surface of a particle can influence its DEP
behaviour through electrophoresis and counterion relax-
ations and conduction in the double layer that forms
around all charged particles when they are suspended in
aqueous media. Evidence for an electrophoretic contri-
bution to the low frequency (<10Hz) DEP response of a
suspension of bacteria was observed by Burt et al. [31],
but inertial constraints will render such contributions
to be insignificant at higher frequencies, even for very

small particles. Counterion relaxation processes, involv-
ing both ionic diffusion and ionic conduction around par-
ticle surfaces, will however contribute to the total polar-
izability and influence the DEP response for frequencies
up to ∼1MHz. A comprehensive treatment of electri-
cal double layer polarizations is given by Lyklema [53].
In summary, as described in Chapter 12, the electrical
double layer can be considered to consist of two classes
of counterions – those strongly attracted to the fixed
charges on the particle surface (termed the Stern layer)
and those more loosely associated in the diffuse outer
layer where the electrical potential of the charged parti-
cle approaches that of the surrounding bulkmediumwith
increasing distance from the particle surface. The ‘phys-
ical’ boundary between these two populations of coun-
terions can be considered to be the so-called ‘slip plane’
at the zeta potential, where a charged particle plus its
Stern layer separates from the outer diffuse population
of counter ions during electrophoresis. Fluid flow occurs
beyond the slip plane, but beneath the fluid layer next to
the charged surface can be considered to be ‘stagnant’.
The influence of the electrical double layer on DEP

behaviour is particularly important for nanoparticles,
where the thickness of this layer can approach, or even
exceed, the particle’s ‘physical’ diameter (2R). Field-
induced mobility of counterions in the double layer give
rise to a surface conductance Ks whose influence on the
overall polarizability can exceed that of the particle’s bulk
conductivity (𝜎bulk). The total conductivity of a particle
can be described as the sum of its bulk and surface con-
ductivity [54]:

𝜎p = 𝜎bulk +
2Ks
R

(10.64)

Values for Ks were determined from measurements of
the electrorotation response of different types of latex
particle of radii R in the range 2.5–5μm [54]. Depending
on particle type and pretreatment, the range of observed
surface conductivities was 0.2 to 2.1 nS and found to
be independent of the conductivity of the suspending
medium (0.2 − 1.6 S/m). Significantly larger values have
been reported [55] for 20-mer single-stranded DNA
(7.9 ± 1.9 nS), 40-mer double-stranded DNA (5.3 ±
0.7 nS) and yellow fluorescent protein (21.5 ± 1.6 nS).
There are two main contributions to the value of Ks,
namely that due to field-induced chargemovement in the
Stern layer (KStern) and charge movement in the diffuse
part of the electrical double layer (Kdiff). Both of these
contributions are given by the product of the equivalent
surface charge density and ion mobility in the two layers.
For the Stern layer, the surface charge density is defined
by the zeta potential (see Box 2.3 and Figure 12.21). The
total of Ks in Equation (10.64) is thus given by Ks = KStern
+ Kdiff.
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Referring to the expression for the low-frequency DEP
crossover frequency for a cell, given by Equation (10.43)
and repeated here for convenience:

fxo1 =
√
2

2𝜋RCmem

(
𝜎m −

Gmem
4

)
the value of the membrane Gmem should include the
membrane surface conductance (Kms). Adopting the low-
frequency approximation Gmem = 𝜎p/R:

Gmem = Gbulkmem + 2Kms∕R2.

For a cell of radius 5μm with Kms = 2 nS, then 2Kms/
R2 = 160 S/m2. The value of Kms obtained for pancreatic
𝛽 cells from electrorotation measurements is 179 ±
61 S/m2 [25]. This suggests that the membrane surface
conductance may well be greater than the bulk conduc-
tance of the membrane. Furthermore, the relationship
given by Equation (10.64) indicates that the influence of
Ks may dominate over the bulk conductivity for particles
of diameter less than 1μm. As discussed in Chapter 12,
the surface conductivity in the diffuse part of the double
layer consists of two parts, namely a contribution caused
by the movement of charges with respect to the liquid,
plus a contribution caused by liquid flow beyond the
shear plane, which gives rise to an additional mobility
of the charges. Beneath the shear plane, in the ‘stagnant’
fluid layer next to the charged surface, only electrically
induced movement of the counterions can contribute
to Kms. Lyklema and Minor [56] have shown that for
nonpenetrable surfaces, lateral mobilities of monovalent
ions in the Stern layer are not much lower than those
in the bulk fluid. Under certain conditions conduction
beneath the slip plane, in the stagnant layer, may be of the
same order of magnitude as that beyond it. Conduction
in the diffuse layer and in the Stern layer could therefore
contribute separately to the overall magnitude of Ks and
thus to the DEP behaviour of nanoparticles [57, 58].
A comprehensive study of the AC and DC electroki-

netic properties of latex nanoparticles, as a function of
suspending medium conductivity and viscosity, has been
reported by Ermolina and Morgan [59] and a theoreti-
cal modelling of the DEP force that takes into account
the influence of the electrical double layer has been pre-
sented by Zhou et al. [60]. Analysis of the normal and
tangential ionic currents that occur around and at the
surface of a particle, when its diameter approaches and
becomes smaller than the width of its own electrical dou-
ble layer, indicates that a capacitance effect contributes
to the total polarizability of the particle and exceeds
the influence of the surface conductance Ks [61, 62].
The DEP crossover frequency for nanocolloids has also
been shown to be inversely proportional to the RC time

constant of the diffuse layer component of the electri-
cal double layer [62]. This is considered to offer a sen-
sitive method for detecting the hybridization of target
molecules onto functionalized nanocolloid probes, based
on the change of the surface conductance of these probes
and the corresponding change of their DEP crossover
frequency [62]. Hoffman et al. [63, 64] have demon-
strated that electrical double layer effects influence the
way nanoparticles aggregate under the influence of aDEP
force.

10.3.7 Presence of Perturbing Particles or Boundaries

The derivation of the macroscopic Clausius–Mossotti
factor assumes that a particle is embedded in a homoge-
neous dielectric medium, which from the particle’s per-
spective should appear to be of infinite extent. The parti-
cle is thus assumed to be far removed from the influence
of the dipole field of another polarizable particle, or from
a boundary where image potentials such as those shown
in section 5.4.1 of Chapter 5 are created. However, it is
not uncommon when viewing the DEP response of cells
through a microscope to see that within a few seconds
of applying the field neighbouring cells move together
to form ‘pearl chains’ of two or more connected cells.
Pearl chaining also occurs in a uniform field (see Figure
10.31) so that we can assume the electrostatic interaction
between the particles arises from a ‘micro-DEP’ effect,
whereby neighbouring polarized particles respond to the
local distortions of the field caused by their dipole fields.
We can also assume that thismutual dipole-dipole attrac-
tion overcomes electrostatic repulsion between the nega-
tively charged surfaces of the cells. Pearl chaining is par-
ticularly evident if the average spatial distance between

E

Figure . Longitudinal (parallel to the field) and transverse
(perpendicular to the field) chaining of a mixture of yeast cells
(white) and polystyrene beads (dark) subjected to a 100 kHz
uniform field of 1 kV/m. (Lee, R. S. and Pethig, R., unpublished.)
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cells in a stationary fluid is seen to be less than 5∼6 parti-
cle diameters (i.e., a concentration greater than ∼107/ml
for cells of diameter ∼10μm). The DEP behaviour of a
cell can be expected to change after incorporation into a
doublet, triplet or higher order cell aggregate, as well as
when it approaches a metal or dielectric boundary.
The influence of a neighbouring particle can be appre-

ciated from the following simple example, based on a
model described by Stoy [65]. Instead of a single sphere
inserted into an imposed uniform field E within an
infinite medium, we consider the case of two identical
spheres placed distance D apart along an axis colinear
with the field E. The centre of sphere 1 is placed at the
origin of the spherical coordinate system employed to
derive Equation (10.5). The second sphere thus experi-
ences a net field E2 composed of the applied field E and
the dipole field created by particle 1:

E2 = E
(
1 + 2(CM)

D3

)
This in turn gives rise to an increased inducedmoment

created by particle 2, which sphere 1 now reacts to in the
form of an increase of its own induced dipole moment:

p1 = 4𝜋𝜀o𝜀m(CM)E
[
1 + 2(CM)

D3

(
1 + 2(CM)

D3

)]
Sphere 2 in turn senses this extra dipole field created

by the induced dipole of sphere 1 and so its own dipole
field changes accordingly. If this procedure is repeated ad
infinitum the interactive dipole moments p1 and p2 can
be obtained in closed form according to the expression
[65]:

p1 = p2 = 4𝜋𝜀o𝜀m(CM)E
(

1
1 − 2(CM)∕D3

)
Each polarized sphere distorts the local field of the

other, so that they experience a mutual attractive DEP
force given by:

FDEP2 = −FDEP1 = −
6p1 ⋅ p2

4𝜋𝜀o𝜀mD4

The major contribution to this mutual DEP force will
be that of an assumed dipole-dipole interaction only
when the spheres are separated by more than a distance
equal to that of their radii. As the spheres approachmore
closely than a distance equal to that of their radii, the
mutual DEP force between them depends not just on
induced dipole-dipole interactions, but of all the mul-
tipoles induced in sphere 1 and sphere 2. Stoy [66]
extended his model to compute the DEP force between
identical touching spheres in a parallel field, to include
up to 2800 interactions of linear multipoles.

Early computer-aided studies (Monte Carlo simula-
tions) of how dipole-dipole interactions can lead to par-
ticle chain structures considered the particles to be hard
spheres with permanent dipole moments [67, 68]. The
first attempt to investigate the situation of relevance
to DEP studies was made by Sancho et al. [69], who
treated the spheres as nonpolar so that chain formation
resulted from induced dipole-dipole interactions driven
by an external polarizing field. The spheres were also
treated as lossy dielectric particles immersed in a con-
ductive medium. The existence of a threshold of field
intensity, necessary for chain structures to appear, was
predicted – together with a frequency dependence of
the process of chain formation that reflected the pres-
ence of Maxwell–Wagner polarization. This work was
later refined to take account of the interaction between
induced multipoles [70]. A multiple image approxima-
tion has also been employed to study the polarization
spectra of a pair of touching cells and colloidal parti-
cles by Huang et al. [71]. These studies were restricted
to plain spherical particles, aligned with the direction of
the electric field. The practical calculation of the inter-
action requires truncation of expansions at some finite
number of terms and is affected by convergence problems
when particles have high permittivity or they are closely
spaced.
An important application of DEP is the selective sepa-

ration of target cells from a cell mixture. For suspensions
of the same type of particle, the alignment of pearl chain-
ing is always seen to be parallel with the applied field.
However, Griffin and Ferris observed transverse pearl
chains inmixtures of polystyrene spheres with either ery-
throcytes or unicellular algae [72]. An example of this
phenomenon is shown in Figure 10.31 for a mixture of
polystyrene spheres with yeast cells.
An explanation for the transverse orientation of pearl

chains shown in Figure 10.31 has been provided by Giner
et al. [73]. For simplicity we restrict ourselves to a sus-
pension of particles, half of type 1 and half of type 2, sub-
jected to a uniform electric field Ez directed along the z-
axis.This field induces a dipole moment for each particle
type given by

p1,2 = v1,2𝛼∗
1,2Ez (10.65)

where v1,2 and 𝛼∗1,2 are the particle volumes and complex
polarizabilities, respectively. From Box 6.1:

Re
[
𝛼∗
1,2

]
= 3𝜀o𝜀m

(
𝜀1,2 − 𝜀m
𝜀1,2 + 2𝜀m

)
(10.66)

From Equations (4.41) and (10.65) the time average of
the interaction energy (per unit volume) between a par-
ticle of type 1 and type 2 is given by:⟨

U1,2
⟩
= −1

2
𝛼1E2z = −1

2
Re[p1 ⋅ E2] (10.67)
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where E2 is the dipole field created by particle type 2,
given by Equation (5.42). For the case where the two par-
ticles are located at ri and rj situated on a plane parallel
to the z-axis:

E2 =
p2

4𝜋𝜀o𝜀m

1
R3
ij
(3 cos2 𝜃ij − 1)

where Rij = |ri − rj| and 𝜃ij is the angle between Rij and
Ez. From Equation (10.67) and the above expression for
E2 the time average of the potential energy of the inter-
acting particles is:⟨

Ui,j
1,2

⟩
= 1

4𝜋𝜀o𝜀mR3
ij
Re[�̄�∗

1𝛼
∗
2 ](1 − 3 cos2 𝜃ij)E2z

(10.68)

where �̄�∗
1 represents the complex conjugate of 𝛼∗

1 . Once
the dielectric properties of the interacting particles and
their suspending medium are chosen, whether this inter-
action energy is positive or negative will depend only on
the frequency of the applied field Ez. If the particles are of
the same type thenRe[�̄�∗

1𝛼
∗
2 ]= |𝛼2

1| or |𝛼2
2| andwill always

have a positive value, irrespective of whether a particle is
more or less polarizable than the surrounding medium.
In this case the particles can minimize their potential
energy by adjusting their positions so that the factor (1 −
3cos2𝜃ij) achieves its maximum negative value, corre-
sponding to when they are touching (Rij a minimum)
and 𝜃ij = 0◦. This corresponds to a doublet pearl chain
aligned with the field direction along the z-axis. For par-
ticles of a different type, field frequencies can exist where
the factor Re[�̄�∗

1𝛼
∗
2] is negative. In this case to minimize

their potential energy the particleswill endeavour to rear-
range themselves such that they touch with 𝜃ij = 90◦,
in other words forming a transverse doublet chain. This
argument can be extended to understand the formation
of the triplet and higher order transverse chains shown in
Figure 10.31. Examples of how the factor Re[�̄�∗

1𝛼
∗
2 ] varies

as a function of frequency is shown in Figure 10.32 for
a mixture of yeast cells and polystyrene beads, using lit-
erature values for the dielectric properties of yeast and
modelling the polystyrene beads as spheres surrounded
by amobile ion double layer and appropriate surface con-
ductivity value. Between 20 kHz and 300MHz the nega-
tive value exhibited by Re[�̄�∗

1𝛼
∗
2 ] for the interaction of a

polystyrene beadwith a yeast cell indicates that they form
transverse chains aligned at right angles to the applied
field direction. This effect can be seen in Figure 10.31.
In the Monte Carlo simulation performed by Giner

et al. [73] an initial two-dimensional configuration was
established that mimics a random distribution of par-
ticles settled on a plane parallel to the applied field.
The surface concentration was equivalent to a volume
concentration of ∼107 particles/ml. Avoiding a situation
where particles overlap, each particle was then moved
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Figure . Values of the factor Re
[
�̄�∗

1 𝛼∗
2

]
in Equation (10.68) for

the interaction of polystyrene-polystyrene (p-p) beads,
polystyrene beads with yeast cells (p-y) and pairs of yeast cells
(y-y) as a function of frequency. Over the whole frequency range
the interaction of the same particle types results in longitudinal
chaining. From 20 kHz to 300 MHz the negative value for Re

[
�̄�∗

1 𝛼∗
2

]
indicates that the interaction of a polystyrene bead with a yeast
cell leads to transverse chaining. (Based on Giner et al. [73].)

at random on the plane and its energy was computed
according to Equation (10.68). A new configuration was
allowed if either the particle energy was lower than the
initial configuration, or the exponential of minus the dif-
ference of these energies relative to kT (with T = 300K)
was greater than a certain number picked at random
between zero and unity. The simulation was supposed
to be a part of an indefinite system, so periodic bound-
ary conditions were imposed and long-range interactions
calculated. The simulation was performed for a constant
field amplitude 13 kV/m over the frequency range 10Hz
to 10MHz.
To quantify the Monte Carlo simulation results and

compare them with experiments on mixtures of yeast
cells and polystyrene beads, the connectivity of the parti-
cles was defined as the average number of particles (cells
or polystyrene beads) contacting each other. Two par-
ticles were considered to be in contact when the dis-
tance between the centre coordinates of two particles
was less than 2.1r, r being the radius of the yeast cell
or polystyrene bead. If two particles satisfied this cri-
terion and a line joining the centres of the two parti-
cles made a small angle (±7◦) with respect to the field
direction, then the contact was defined as longitudinal.
A transverse contact was defined for connected particles
with this angle lying within ±7◦ from a line perpendicu-
lar to the field direction. The longitudinal and transverse
connectivity obtained from the Monte Carlo simulation
compared well with experimental results [73], an exam-
ple ofwhich is shown in Figure 10.31.Mutual interactions
between polarized particles also couples their electroro-
tation response [74] and produces an effect whereby two
neighbouring rotating cells revolve around each other as
they slowly come together to form a rotating doublet [75].
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Figure . Experimental DEP crossover frequencies (fxo1) for
single T-cells and doublet / triplet chains [75]. The solid line
represents the theoretically modelled fxo1 versus radius for a single
cell of membrane capacitance 6 mF/m2. The scattering of data
shows the variability of the morphology and dielectric
characteristics of the cell population. (Reproduced with
permission.)

Sancho et al. [75] also investigated both experimentally
and theoretically the effect that pearl chaining of cells
has on their DEP cross-over frequency (fxo1). Human T-
lymphocytes (∼106 cells/ml) were suspended in an iso-
tonic medium of conductivity 40mS/m. From observa-
tions of more than 500 cells it was found that single cells
exhibited amean fxo1 of∼210 kHz, whereas for those that
formed doublets, triplets and higher order pearl chains
(65% of the total cell population) the value for fxo1 shifted
on average 10.7 kHz to a higher frequency. The corre-
sponding distributions of the fxo1 values and cell radii are
shown in Figure 10.33. The largest shift in fxo1 from the
single cell value occurred for doublets and triplets, with
the addition thereafter of extra cells to the chain pro-
ducing a much smaller shift of the fxo1 value. As shown
in Figure 10.34, the theoretically derived shift of fxo1
agreed qualitatively in sign and order of magnitude with
experimental observations [75]. Although pearl chaining
results in a relatively small change of the DEP crossover
frequency, it is an important consideration when design-
ing efficient DEP-based cell separation protocols.
Camarda et al. [76] performed a three-dimensional

Monte Carlo simulation to determine the equilibration
of a 3D suspension of 1920 interacting cells suspended
in a defined volume (1600 × 1600 × 1500μm3) of static
liquid, subjected to a DEP force generated by polynomial
electrodes.The purpose of this study was to compare this
simulation with an actual experiment performed using
the same cell type; cell concentration (5 × 105 cells/ml);
aqueous medium conductivity (30mS/m); polynomial
electrode geometry (similar to Figure 2.15) and applied
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Figure . Best fit sigmoidal curves to the cumulative
percentage distributions of the experimental fxo1 values shown in
Figure 10.32 for single T-cells and doublet / triplet chains. (Based on
Sancho et al. [75].)

voltage signal (1MHz, 8 Vpk-pk). No mention is made of
the mass density of the cells compared to that of the sus-
pending medium, so that the buoyancy of the cells does
not appear to have been factored into the simulation.The
cells were chosen to be a breast cancer cell line (MDA-
MB-231) whose average radius (6.2μm) and dielectric
properties had been evaluated by Gascoyne et al. [77].
The Monte Carlo simulation consisted of 2 × 108 itera-
tions, equivalent to 180 seconds in real experiment time,
which allowed sufficient time for the cells to attain equi-
librium positions. The local field at each simulation step
was taken to be the sum of the field generated by the
electrodes and the contributions of the induced dipole
fields of the cells. The configuration potential energy of
the cells was taken to be the sum of the potential energy
given by Equation (4.41), whose minimization leads to
DEP capture of the cells at the electrode edges and the
interaction energy given by Equation (10.68) whose min-
imization drives pearl chain formation. Excellent agree-
ment was found between the final spatial distribution
of cells at the electrode edges obtained by the Monte
Carlo simulation with that found experimentally. At a
frequency of 1MHz the cells are expected to collect at
the electrode edges under the influence positive DEP. In
both the simulation and experiment this was observed,
with single cells and small pearl chains distributed at the
electrodes in a manner similar to that shown in Figure
2.15(a). However, away from the electrode edges the cells
appear to be distributed randomly. This resulted from
the fact that the distance between opposing electrode
edges was 780μm, much less than the distance 128μm
reported in reference [2], so that the field and field gra-
dient would have been low and zero at the centre. The
evidence for pearl chaining at the electrodes was taken
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to indicate that the effects of particle-particle interac-
tions play a crucial role, even for concentrations as low as
105 cells/ml. Taking into account the fact that the large
distance between the electrode reduced the volume for
effective cell trapping region, Camarda et al. [76] con-
cluded that to avoid dipole-dipole interaction the con-
centration of cells should be below 3 × 104 cells/ml! This
represents an average distance of 203μm between cell
centres (i.e., greater than 16 cancer cell diameters).
The three-dimensional Monte Carlo method devel-

oped by Camarda et al. [76] is undoubtedly a powerful
one, but their interesting conclusion regarding a max-
imum cell concentration of 3 × 104 cells/ml to avoid
dipole-dipole interactions appears too conservative and
is worthy of further study regarding its relevance to the
development of protocols for DEP-based cell separation
protocols. For example, this proposed limit can be com-
pared to the concentration of ∼109 bacteria/ml [78],
∼4 × 106 myoblasts/ml [79], ∼4 × 106 mononuclear
blood cells/ml [80, 81] and ∼107 mononuclear blood
cells/ml [82] reported for various cell enrichment or
separation protocols using various forms of fluid-flow
assisted DEP devices. These various cell concentrations
probably represent the upper limit for efficient DEP pro-
cessing and will depend on such factors as the geom-
etry and dimensions of the electrodes and the fluidic
chamber; the magnitude of the applied voltage signal;
the fluid flow rate; the difference in dielectric proper-
ties of the target cells and those from which they are to
be separated. Because DEP is a ponderomotive effect,
the occurrence of pearl chaining may in fact be benefi-
cial in increasing the rate at which unwanted cells are
either attracted or repelled from the electrodes.However,
an undesired effect would be cell-cell interactions that
lead to the entrapment of target cells by the unwanted
cells. A fine line will divide these two situations. Of great
valuewould be 3DMonteCarlo simulations of the kinetic
evolution of the equivalent experiment where rare tar-
get cells, to be collected by positive DEP, are spiked into
a much larger concentration of cells that should exhibit
negative DEP. The chamber height chosen by Camarda
et al. [76] is about ten times higher than the range at
which a DEP force on a cell can be effective. In their sim-
ulation, single cells may have been attracted to the elec-
trodes by positive DEP, whilst the dipole-dipole interac-
tions that formed pearl chains may only have been a sig-
nificant factor in determining the way the cells built up at
the electrodes. In other words, were the cells attracted to
cells already trapped at the electrode? This is commonly
observed in DEP experiments and would be an impor-
tant aspect to clarify. It is also clear that when fluid flow
is incorporated into a DEP cell sorting protocol, large cell
concentrations can be considered when sample volume
size and processing time is important. Finally, would it

be pushing the wish list too far to wonder if the normal
biological distribution of cell size and dielectric proper-
ties, such as that shown in Figure 10.33, together with
cell buoyancy (sedimentation) and surface charge, can
be incorporated into the powerful Monte Carlo method
described by Camarda et al. [76]?
The effect of the perturbing influence of boundaries has

not received as much attention as that given to particle-
particle interactions. A polarized particle located near a
metal or dielectric wall will induce image charges in the
wall material to create an attractive or repulsive force,
respectively. Lo and Lei [83–85] have employed the the-
ory of images described in Chapter 5 to derive DEP force
and torque expressions for a sphere of radius R located
a distance h from a wall. The ratio of the wall perturb-
ing force to the DEP force was found to be of the order
(L/h)(R/2h)3. L is the length scale of the electric field,
taken to be the distance between opposing electrodes for
DEP and electrorotation experiments. For L = 100μm
and a particle radius of 5μm, the particle centre would
need to bemore than 12μm from a boundary for the wall
effect to be negligible (i.e., less than 5% of the primary
DEP force or electrorotation torque). This condition can
readily be satisfied for electrorotation experiments, but
this is not the case when particles are being attracted
to an electrode by positive DEP. For traveling-wave DEP,
L is the distance between every second electrode, cor-
responding to a one-half wavelength when quadrature-
phase voltages are used and thus equal to the distance of
maximum phase difference on the electrode track [45].
A typical value for L is 20μm. A 5μm radius particle
would need to be levitated more than 8μm above the
electrode plane for the wall effect to be negligible. Levi-
tation heights above 25μm are common and so this con-
dition is readily met in most applications and studies of
traveling wave DEP.
Camarda et al. [86] have described the existence of

‘anomalous’ regions on the electrode and interelectrode
surfaces of a planar array of interdigitated electrodes (i.e.,
the geometry depicted in Figure 10.27) where the effec-
tive DEP force does not depend directly on the complex
permittivity of the particles and suspendingmedium (i.e.,
is independent of the CM factor). As shown in Figure
5.21, the image force resulting from a positive CM factor
is expected to enhance the attractiveDEP force at an elec-
trode surface. Likewise, a negativeCM factor that drives a
particle from an electrode to an insulating surface should
give rise to a repulsive force with its dipole image. How-
ever, based on both analytical models and finite element
simulations, Camarda et al. [86] have identified situations
where negative DEP at an electrode edge can result in
a positive DEP force of attraction towards the centre of
the electrode strip! This effect appears to be related to
the effective values of the field E and the factor ∇E2, as



10 Theoretical and Practical Considerations 

averaged over the particle volume and determined by
solving Poisson’s equation (which is scale invariant). If
the particle radius R is less than a critical value given by
0.19Wel, where Wel is the electrode width, the average
value of E exceeds ∇E2 at the surface so that the image
dipole force dominates and leads to a cohesive rather
than repulsive force.Thus, for the case ofWel = 50μm, all
cells with radius smaller than 9.5μm will be attracted to
the centre of the electrodes, rather than being repelled
by negative DEP. Camarda et al. [86] suggest that the
separation efficiency of field-flow assisted DEP separa-
tion of rare cells (e.g., cancer cells) from blood could be
improved by using an interdigitated design of electrode
width 14μm and gaps of 50μm. It would be of inter-
est to investigate to what extent this anomalous dielec-
trophoretic effect compares with that described in early
studies using castellated interdigitated electrodes [39]
and later determined to be caused by electro-osmotic
fluid flow [3 (pp. 65–69), 4 (pp. 144–145), 32].

. Electrodes: Fabrication, Materials and
Modelling

10.4.1 Metal Electrodes

In his early DEP experiments Pohl [87, 88] employed
metal wires and thin sheet electrodes to produce nonuni-
form fields. For example, he used a 10mm diameter
tungsten wire as the central electrode and a band of
tinfoil as the outer concentric electrode to remove by
positive DEP the carbon black filler from solutions of
polyvinylchloride. DC or AC voltage differences of up
to 11 kV were applied across the electrodes [1, pp. 122–
367]. To quantify DEP collection of particles, the elec-
trodes were observed through a microscope and particle
collection (often in the form of pearl chain growth) was
photographed over several minutes [1, pp. 361–380].The
use of high voltages often resulted in fluidmotion, arising
from thermal effects, which perturbed the DEP-induced

motions of the particles. In more recent times this prob-
lem has been reduced in a DEP microfluidic device in
which 100μm diameter platinum wires, in a pin-plate
configuration, span the entire depth of the DEP chamber
and are energized with 15Vpk-pk voltages [89].
The fact that the parameter (E.∇)E in Equation (10.8)

has units of V2m−3 provided the clue that, by minia-
turizing the electrodes and thus being able to use much
smaller applied voltages, thermal and electrolysis effects
could be avoided. The application of photolithography
and metal vapour deposition for fabricating micro-
electrodes was described in 1979 [90] and modern
developments of this are now well documented [e.g.,
91, 92]. The interdigitated, castellated, geometry shown
in Figure 10.35 was chosen because it provided a large
value for (E.∇)E, using modest values of applied voltage
and enabled both positive and negative DEP behaviour
to be observed [93]. The first sets of electrodes were fab-
ricated by sputtering onto a glass substrate a seed layer
of chrome, followed by a 1μm layer of sputtered copper,
which was then etched by a standard photolithographic
method and finally covered with a 0.2μm layer of chem-
ically deposited gold. To avoid the cytotoxic effects of
copper, this microfabrication procedure was modified to
sputter gold directly onto the chrome seed layer, to give
a final electrode thickness of ∼70 nm. The characteristic
dimension defining the planar geometry typically ranged
from 10 − 120μm, chosen to be 5∼10 times the diam-
eter of the particles to be manipulated by DEP. These
dimensions were refined using a finite-difference compu-
tational method to solve Laplace’s equation for defined
electrode voltage potentials [94]. Field and potential
energy profiles were later obtained using the charge den-
sity method with the aid of a VAX computer and FOR-
TRAN (VAX/VMS) operation system [95]. Commercial
software packages are now available for such modelling
to be performed on a personal rather than main-
frame computer. An example is shown in Figure 10.36
using COMSOL Multiphysics® finite element analysis
software. Reproduction in grayscale of the original

Positive
DEP

Negative
DEP 

(a) (b)
Figure . (a) The interdigitated,
castellated, microelectrode design for
facilitating both positive and negative
DEP collection of cells [39]. (b) Dead
cells (stained) held by negative DEP
are weakly trapped and can readily be
removed by flowing fluid over the
electrodes, whereas viable cells held
by positive DEP remain trapped [93].
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Figure . COMSOL Multiphysics® model of an array of
interdigitated electrodes. The original colour scale more clearly
revealed the voltage potential profiles along each electrode
element (unpublished).

colour-scale output does not adequately demonstrate
the value of such modelling, which in this case was
performed to analyse the voltage drop along the whole
length, as well as along individual finger elements, of
an array of interdigitated electrodes. Along with the
development of user-friendly software packages, the
technical challenge in producing microelectrodes has
also been eased. Rapid and low cost microfabrication
methods to produce electrode arrays of the interdig-
itated, castellated, geometry have been described by
Rajaraman et al. [96].
As depicted in Figure 10.35, the interdigitated, castel-

lated, electrode geometry can be used to observe both
positive and negative DEP of cells across an array of
microelectrodes simultaneously [39]. Cells experienc-
ing negative DEP are directed to regions of local field
minima in the ‘bay’ regions of the castellations. When
located in such a potential energy well, the cells are in
fact elevated slightly above the electrode plane in the
fluid medium. This has been exploited in flow-through
devices for the DEP separation and isolation of different
cell types in mixtures (e.g., [93]). By aligning the castella-
tions, as shown in Figure 10.37(a), particles elevated into
a flowing fluid are directed into well defined flow paths
[97]. This effect has been exploited by Yasukawa et al.
[98] in a modified design, shown in Figure 10.37(b), to
separate particles according to their size. By coupling
acoustic waves into an interdigitated microelectrode

system, particles can first be preconcentrated before
focusing them into flow channels and to precise locations
using DEP forces [99].
Another electrode design, the quadrupole ‘polynomial’

electrode system shown in Figures 10.3 and 10.23, was
chosen to provide defined analytical expressions for the
spatial variation of the factor ∇E2 [2]. The design of
polynomial electrodes is based on the assumption that
the electrical potential at any point created by an elec-
trode system of interest is defined by a polynomial that
obeys Laplace’s equation. By substituting this polynomial
into Laplace’s equation the corresponding equipoten-
tials can therefore be determined and these in turn can
be used to define the electrode boundaries. The general
design comprises 2n electrodes, but the most common
one employs n = 2, namely the quadrupole. Electrode
separations from 5μm to 500μm (as measured between
opposing electrodes across the centre) have been exten-
sively used for both DEP and electrorotation experi-
ments. The quadrupole design has found wide appli-
cation. For example, a quadrupole electrode array has
been used by Gagnon et al. [100] in a device to monitor
the DEP crossover frequencies (fxo1) of oligonucleotide-
functionalized silica nanoparticles as they participate in
DNA-DNAhybridization reactions. Kuo andHsieh [101]
describe amethod for performing single-bead-based bio-
chemical assays on a quadrupole DEP microfluidic chip,
whilst Voldman et al. [102, 103] have designed extruded
quadrupole electrodes, with an asymmetric trapezoidal
geometry, which are electrically switchable and can be
scaled up to form a dynamic array cytometer. The ability
of quadrupole electrodes to form negative DEP traps is
useful when operating at high values of the fluid medium
conductivity. For example, they have been developed as
single-cell trapping devices for fluids having conductivi-
ties (1.25 S/m) typical of physiological fluids and culture
growth conditions [104]. A ‘zipper’ electrode design has
been described by Hoettges et al. [105] in the form of
an array of interlocking, approximately circular, electrode
pads. This design exploits field-induced electrohydrody-
namic fluid flow to direct particles towards the electrode
pads and then DEP forces to trap them. The effective
capture volume for particles is increased, so there is also

(a) (b) Figure . (a) Cells focused into
narrow bands of fluid flow by negative
DEP using interdigitated, castellated,
electrodes oriented at right angles to
the fluid flow [97]. (b) A modified
geometry of the electrodes designed
to separate particles into separate fluid
flow lines according to their size [98].
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the advantage that the particles are deposited at the cen-
tres of relatively large electrodes and can potentially be
detected by surface plasmon resonance or evanescent
light scattering. Hoettges has also reviewed the types of
electrodes commonly used for DEP studies of cells [106].
The consequence of a particle experiencing positive

DEP is that it should always tend to move against a local
field gradient that leads to a local maximum of the field.
For the particle this represents it quest to search for a
local potential energy minimum. Field maxima always
occur at the edges of an electrode, so that is where par-
ticles will collect under the action of positive DEP [95].
For the early efforts to quantify such DEP collection,
the electrodes were observed through a microscope and
recorded as a sequence of photographs. More sophis-
ticated methods have been developed, including the
monitoring of changes in the optical scattering of light
beams through particle suspensions [107]; computerized
image analysis of particle motion [108, 109]; changes of
the impedance of the electrodes [110, 111]; fluorescence
detection for the case of submicron particles [112, 113].
An array of zipper DEP electrodes has been fabricated
onto a quartz crystal to provide an extra force to drive
particles towards the crystal surface [114]. Particles load-
ing onto the crystal can be detected very sensitively as a
shift in resonant frequency of the crystal and this DEP-
aided device was found to perform up to five times faster
than other quartz crystal microbalance surface loading
techniques described in the literature. Surface enhanced
Raman scattering has been used as an on-chip detection
method in an integratedDEP for the continuous filtering,
trapping and sorting of bacteria [115].

10.4.1.1 Materials
A significant development has also been the intro-
duction of new materials and methods for fabricating
microelectrode DEP devices. The early ones (e.g., [94])
consisted of two glass slides held apart by a thin gasket,
with microelectrodes deposited on one or both inner
faces, sealed together with inlet and outlet fluid ports
using epoxy resin. The microelectrode fabrication
required access to photolithography and metallic vapour
deposition facilities in a clean room.The introduction of
the silicone polymer poly(dimethylsiloxane) (PDMS) has
enabled fast and inexpensive fabrication of microfluidic
devices by ‘soft lithography’ under normal benchtop
conditions [116, 117]. Apart from being robust, flexible,
biocompatible and of low thermal conductivity, PDMS
is also ideal for producing devices that require more
than one material in fabrication, since it can seal to a
variety of materials. 3D devices are easily fabricated by
aligning and sealing different layers of PDMS contain-
ing channels, reservoirs, valves and electrode-bearing
substrates. Valuable protocols for using PDMS in the
fabrication of microfluidic devices has been provided by

Friend and Yeo [118]. A reconfigurable microfluidic chip
system has been developed by Dalton and Kaler [119], in
which PDMS microchannels are reversibly bonded onto
the chip, allowing them to be readily removed for clean-
ing, changing of analytes or to accommodate different
microfluidic channel and electrode geometries. Using
this technique, rapid prototyping of both microelectrode
designs and microfluidic systems can be performed by
most research groups (PDMS is commercially avail-
able as a two-part self-curing material supplied as
liquids). Using photo-patternable silicones, two levels
of metal deposited electrodes can be sandwiched into a
microchannel layer, without an extra etching step being
required to make electrical contact between the fluid in
the channel and electrodes on the upper and lower layers
[120]. Patterned microfluidic networks can also be cre-
ated using dry film resist in either a cleanroom or basic
laboratory conditions. The resist can be double bonded
at relatively low temperatures without the use of extra
adhesives, so that complex devices can be fabricated with
active elements on two substrate layers [121]. Aspect
ratios of more than two can be achieved for free standing
structures such as channels and pillars. The dry resist
is inexpensive, fluid sealable, biocompatible and can be
processed on almost any substrate with any dimension,
ranging from a single chip to complete silicon wafer.
Electron beam lithography and thin film techniques

have been used to fabricate vertical microelectrodes,
with electrode gaps down to 0.2μm, made by the super-
position of niobium, titanium and gold layers [122]. The
niobium layer improves the mechanical strength and
ensures a good resistance of the structure to galvanic cor-
rosion. Excimer laser ablation, capable of high-resolution
patterning over large areas, has also been used to fabri-
cate DEP devices. Examples of this are glass-based chips,
combining traveling wave DEP and electrorotation, to
concentrate and assay the viability of microorganisms
[50], as well as structures incorporating DEP, traveling
wave DEP and electrorotation for selectively isolating
and then characterizing cells, microorganisms and other
particles [123]. Figure 10.38 shows a traveling wave
DEP junction, fabricated by excimer laser ablation and
designed to either bring together or separate different
particles types [123]. Other examples of combining the
complementary techniques of DEP, traveling wave DEP
and electrorotation include their combination onto a
single, PC-controlled, printed circuit board, which was
tested by manipulating tumour cells [124]. All three AC
electrokinetic techniques have also been incorporated
onto a single, integrated, silicon chip (3 × 6mm) using
conventional microfabrication and tested using human
malignant cells to demonstrate the ability to perform
as a programmable microsystem [125]. Electrode arrays
have also been produced by the excimer laser ablation
of indium tin oxide (ITO) electrodes [126, 127, 128].
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Figure . Part of a travelling wave DEP (TWD) device that was
fabricated using excimer laser ablation [123]. The section shown
here acts as a TWD junction to either bring together (from left to
right) two types of particle, or to separate (from right to left)
particle types according to their dielectric properties.

Although the optical transparency of an ITO film is high,
making this electrode material particularly suitable for
observing DEP particle manipulation with transmission
microscopy, it can be micromachined using an excimer
laser beam because UV radiation is strongly absorbed by
ITO.
The development of DEP technology has always been

driven by both curiosity and the search for potential
practical applications.The separation of target cells from
cell mixtures or biofluids for diagnosis, drug screening
assays, therapeutic applications or for further analysis
are obvious applications. Examples of how DEP technol-
ogy has evolved to address such opportunities include
the ‘funnel’ electrode design shown in Figure 10.39 and
developed by Fuhr et al. [129,130]. A positive DEP force,

(a)

(b)

Figure . (a) DEP funnel electrode design for focussing and
concentrating particles in a flowing aqueous suspension (based
on Fiedler et al. [129]). (b) ‘Herringbone’ electrodes located at the
top and bottom of a DEP chamber. Cells experiencing positive DEP
remain in two outer fluid streams, whilst those experiencing
negative DEP are deflected into the centre output fluid port
(based on Muratore et al. [79]).

directed normal to the angled electrodes, guides parti-
cles to a small exit gap, at which point particle concen-
tration can be considerably enhanced over the starting
concentration introduced into the device. Angled elec-
trodes are employed in an integrated DEP chip design by
Cheng et al. [131] for the continuous filtering and sorting
of bioparticles and also used to great effect in a continu-
ous DEP size-based particle sorter [132] and a multitar-
get DEP activated cell sorter [133]. A simple arrangement
for aligning cells in fluidic channels, consisting of two
face-to-face strip electrodesmounted on the top and bot-
tom of a microchannel, has been described by Schnelle
et al. [134]. In this device, particles exhibiting nega-
tive DEP are brought by fluid flow to an energized elec-
trode pair and as a result of experiencing repulsion forces
from both electrodes are lifted into the central stream
of the fluid flow. This basic concept has been refined
by Demierre et al. [135] who fabricated a microfluidic
device based on an arrangement of lateral metal elec-
trodes and a patterned insulator. This device combines
the concept of insulator-based ‘electrodeless’ DEP with
multiple frequencies to achieve focusing and continu-
ous separation of dielectric particles flowing through a
channel. The opposition of two DEP-force fields, oper-
ating at different frequencies, defines a position of equi-
librium for the dielectric particles placed in these fields.
As well as being able to direct particles into specific flu-
idic streams or ports, the selective trapping of them is
also important. A simple method for producing microw-
ell DEP traps has been described by Fatoyinbo et al. [136]
and involves drilling holes through a laminate consist-
ing of 20 aluminium layers and 19 epoxy layers. Bocchi
et al. [137] describe a similar method, which involves
drilling holes through a polyimide substrate containing
copper-gold or aluminium metal layers that form three
annular electrodes within the well. A channel under the
device provides themeans for fluid flow into themicrow-
ells by capillary action. An array of traps designed for
single-particle patterning and capable of holding cells
in position against the force produced by practical fluid
flow rates, has been described by Rosenthal and Vold-
man [138]. Thomas et al. [139] describe a particle trap,
consisting of a metal ring electrode and a surrounding
ground plane, to create a closed electric field cage for par-
ticles experiencing negative DEP. The simplification that
each trap requires just one electrical connection allows
for the fabrication of a large array of single particle trap-
ping centres, capable of holding the particles in a flow-
ing fluid. The operation of the device was demonstrated
by trapping single latex spheres and HeLa cells against a
moving fluid. Cells can bemaintained on the chip for fur-
ther culture, or released from the chip by fluid flow. Kang
et al. [140] describe a microfluidic device for separating
particles based on a hybrid design of a PDMS insulating
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hurdle and a pair of embedded metal electrodes to gen-
erate DEP forces. DEP forces can be used to increase the
rate at which particles drift towards a sensing element.
An example of this is described by Pham et al. [141],
who theoretically modelled and fabricated electrodes, in
the form of pyramidal shaped trenches, to enhance the
transport of bioparticles such as cells, proteins and DNA
towards reactive surfaces. Particles experiencing either
positive or negative DEP can be attracted towards sep-
arate collection regions in this pyramidal design. Buyong
et al. have described the design and use of tapered alu-
minium microelectrodes for improvement of DEP parti-
cle manipulation [142].

10.4.1.2 Theoretical Modelling
A detailed analysis of the factor (E.∇)E is often required
for the design of the electrodes in a DEP device. A
common problem when attempting this arises from the
nature of the boundary conditions. The applied electric
potential is chosen for the surface ofmetal electrodes (the
Dirichet condition) and in the rest of the space to be anal-
ysed the Neumann condition is used to specify that the
normal derivative of electric potential at a boundary sur-
face is zero. This can limit the number of simple geome-
tries able to be analysed accurately. Numerical meth-
ods have been adopted to derive approximate solutions,
based on Green’s theorem [143] and Fourier series [48].
However, as discussed by Green et al. [144] these meth-
ods can lead to inaccurate results. A closed-form solu-
tion with the exact boundary conditions for conventional
DEP electrodes has been presented by Chang et al. [145],
but is difficult to apply to traveling wave DEP, for exam-
ple. Analytical solutions of the electric potential for pla-
nar electrodes that are relevant to both normal DEP and
traveling wave DEP applications have been presented by
Sun et al. [146] and Alazzam et al. [147]. Song and Ben-
nett [148] have described a new semianalytical approach
to the modelling of the DEP force generated by planar
parallel electrodes as well as those forming 3D arrays of
the form developed by Chen et al. [149]. The unknown
coefficients of the Fourier series derived for the electric
potential equation were determined by training a linear
neural network, using appropriate data that satisfy both
the Dirichet and Neumann conditions.
Voldman et al. [102, 103] have developed simulation

tools tomodel the performance of quadrupoleDEPparti-
cle traps.This simulation takes as inputs the electric-field
data and other experimental parameters and computes
the total force acting on a particle everywhere in space.
From this it can be determined if the total force on the
particle in the trap stably goes to zero at some location.
Such locations are called holding points and represent
where the particle will be held in a trap. By varying the
applied flow rate for a given experimental condition, this

modelling environment can determine when the hold-
ing points cease to exist and therefore the strength of
the DEP particle trap. Schnelle et al. [150] conducted
a comprehensive analysis and experimental investiga-
tion of the forces acting on dielectric particles and living
cells exposed to alternating and rotating fields generated
by three-dimensional multielectrode microsystems.This
analysis included a description of numerical procedures
for calculating the electric field distribution and negative
DEP forces for electrodes of any shape and dielectric par-
ticles of complex structure, produced by high-frequency
AC or rotating electric fields up to 400MHz. Various
multielectrode systems were tested for their ability to
move and assemble microparticles or living cells without
contact with the electrodes. Park and Beskok [151] have
provided a simple, but valuable, theoretical model that
considers the relative magnitudes of DEP, electrophore-
sis, AC-electro-osmosis and Brownianmotion forces act-
ing on microparticles. This theoretical model provides
quantitative descriptions of ac electrokinetic transport,
for a given target species and suspending medium con-
ductivity, over a wide spectrumof electric field amplitude
and frequency. Experimental validations of the model
were conducted using interdigitated microelectrodes for
polystyrene and gold particles, as well as Clostridium
sporogenes bacterial spores [151].

10.4.2 Insulator-Based Dielectrophoresis (iDEP)

Before describing the development of DEP devices in
which metal electrodes are replaced with electrical insu-
lators, a brief explanation of why this could be useful
will be helpful. We have seen that electrode-based DEP
devices have been applied successfully to the physico-
chemical characterization of inanimate particles and
bioparticles and especially for the selective isolation or
separation of cells from cell mixtures. However, the fre-
quency range overwhich cell separation protocolsmostly
operate is from around 10 kHz to 50MHz. It is not sensi-
ble to operate electrode-based DEP devices at lower fre-
quencies because of the disturbing effects of electrode
polarization, electrolysis and electro-osmosis. For mix-
tures of viable cell types of roughly the same size, effi-
cient cell separation is based on exploiting the differ-
ence in membrane capacitance of the target cell from
other cell types, which manifests itself as a difference
in the DEP crossover frequency fxo1 given by Equation
(10.43).This equation informs us that cell separation can
also be based on finding the appropriate operating fre-
quency that exploits the difference in the sizes of the
cell types. If the target cells to be removed are nonviable
cells, then differences in the membrane conductance is
exploited. If we wish to extend the basis of DEP cell sep-
aration to include differences in cell surface charge, we
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(a) (b) Figure . (a) The distortion,
caused by two diamond-shaped
insulator posts, of a uniform electric
field in a conducting fluid can create
regions where particles collect by
either positive or negative DEP. (b) Two
particles of the same polarizability are
shown driven along field lines by
electro-osmosis towards an insulating
obstacle in a fluidic channel. The larger
particle is diverted further away from
the field lines because it experiences
the larger negative DEP force.

need to operate below ∼1 kHz and avoid the situation
where metal electrodes make contact with the particle
suspension. Removing the metal electrodes and replac-
ing them with insulating structures becomes an option.
For example, external electrodes can be used to generate
a large DC electric field across a channel containing an
electrically conducting fluid. Distortions of this field can
be created by placing insulating constrictions inside the
channel, as first demonstrated byWashizu et al. [152,153]
in devices that bring together two cell types before elec-
trofusing them into a hybrid cell. If instead of a con-
striction, insulator posts are placed in a channel con-
taining a conducting fluid, an imposed electric field is
distorted according to the basic scheme shown in Figure
6.12 for the case of a particle less polarizable than its sur-
rounding medium. Localized regions in the conducting
medium around such posts can be created, which repre-
sent potential energy minima to which particles may be
attracted by DEP.This is illustrated in Figure 10.40(a) for
the case of two diamond-shaped insulating posts located
in a conducting medium. For a fixed shape and size of
the post, the depths of these potential energyminimawill
depend on the magnitude of the applied field. Washizu
et al. [152, 153] generated the fields using metal elec-
trodes embedded into fluidic channels and they also used
mechanical pumps to produce fluid flow. If the electrodes
are placed outside the chamber and energized with a
DC voltage, particle and fluid flow can be generated by
electrophoresis and electroosmosis, without the need for
mechanical pumps. In this situation an insulating con-
striction, such as that depicted in Figure 10.40(b), with
an imposed DC field strong enough to induce a signifi-
cant DEP force, can be used to deflect particles of differ-
ent size (or conductivity) into different flow streams.The
electrokinetic forces of electrophoresis and electroos-
mosis are linearly dependent on the DC field strength,
whereas the DEP force depends on the square of this field
strength. We can therefore expect some form of critical
field value at which DEP will become effective.
The first approach to the development of iDEP devices

that incorporate electrokinetic fluid flow was that of
Chou et al. [154, 155] who described the fabrication

on quartz wafers of DEP traps that can operate at fre-
quencies far lower than is practicable using metal elec-
trodes. An array of insulator constrictions, of the form
depicted in Figure 10.41, was fabricated using reactive
ion etching techniques. After pretreating the internal
walls and surfaces of the fluidic channel with oxygen
plasma, so as to make them hydrophilic and wettable,
the influence of fluid flow caused by electro-osmosis was
minimized by adding polyacrylamide to the buffer solu-
tion. The concentration and patterning of both single-
strand and double-strandDNAwas observed at the insu-
lating constrictions. The DNA was driven through the
array of constrictions by electrophoresis, generating the
required field using external gold electrodes and a high
voltage amplifier with 1 kHz bandwidth and an output of
±1 kV.The DEP trapping force on the DNA was found to
increase with increasing applied voltage and frequency,
up to the maximum assessable frequency of 1 kHz [154].
This frequency dependent polarizability (i.e., CM fac-
tor) of the DNA was attributed to it exhibiting a dielec-
tric relaxation associated with counterion fluctuations,
as described in Chapter 8. Chou and Zenhausern [155]
later described how this device could efficiently separate
a mixture of E. coli in 2% whole blood in a 100mm salt
solution.With a 100Vpk-pk applied signal at 2 kHz, E. coli

E

Figure . An electrodeless DEP trapping device consisting of
an array of constrictions (1 μm wide and 1.26 μm deep) etched in
quartz. In a conducting solution an applied electric field E is
‘squeezed’ to produce high field regions for the positive DEP
collection of molecular species such as DNA (based on Chou et al.
[154]).
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cells were trapped by positive DEP at the restrictions,
whilst the blood cells were repelled from them by neg-
ative DEP.
Following the work of Chou et al. [154], Cummings

and Singh [156] described what they termed as insulator-
based dielectrophoresis (iDEP).They investigated theDC
electrokinetic behaviour of fluorescent latex nanoparti-
cles suspended in a series of 7μmdeep channels contain-
ing 1mM phosphate solution and uniformly patterned
arrays of insulating glass posts. These posts were spaced
63μm apart and fabricated on glass wafers using stan-
dard photolithography and wet etch techniques. Differ-
ent channels contained posts of different shapes (round,
square, diamond) oriented at different angles to an
appliedDCfield.Thediamond and square posts had sides
of 36μm, whilst the circular posts were 36μm in diam-
eter. Under normal conditions, in the absence of insu-
lator posts, the particles should flow along the DC field
lines with electrokinetic behaviour that combines the
effects of electrophoresis and electro-osmosis. However,
as shown in Figure 10.40 the introduction of insulator
posts introduces another electrokinetic factor – namely
dielectrophoresis. Very interesting regimes of electroki-
netically driven particle transport were observed by
Cummings and Singh [156]. For relatively low field
strengths (∼250V/cm), dielectrophoresis was found to
be small compared to the electrokinetic flow. At mod-
erate applied electric fields (800V/cm) dielectrophore-
sis overwhelmed diffusion and electrostatic repulsion
among the particles, but not electrokinetic flow. This
resulted in streams of concentrated and rarefied parti-
cles. At a critical field of ∼1 kV/cm, dielectrophoresis
dominated over the other transport mechanisms, result-
ing in the trapping of particles at field maxima. For the
case of diamond-shaped posts the trapping sites corre-
sponded to the regions of field maxima shown in Figure
10.40 and could be coherently reinforced depending on
the patterning, shape and orientation of the posts. This
effect was termed as streaming dielectrophoresis. Sim-
ple mathematical models and continuum simulations,
based on ideal electrokinetic flow and dielectrophore-
sis, for various DEP particle concentrators and sorters
were described by Cummings and Singh [156]. The per-
ceived advantages of using insulating posts rather than
metal electrodes were considered to include: simpler and
cheaper fabrication (by stamping, etching or moulding);
lower susceptibility to fouling; no electrochemical alter-
ation of the fluid or particles, manifested for example by
the generation of gas bubbles.
The iDEP device described by Cummings and Singh

[156] was later shown to be capable of selectively sep-
arating and concentrating in a continuous manner two
species of live bacteria [157]. Four species of bacteria
were studied, namely the Gram-negative Escherichia coli

and the Gram-positive Bacillus subtilis, B. cereus and B.
megaterium. All four types of bacteria exhibited negative
DEP. E. coli was found to become trapped at the weakest
applied electric field, while the Bacillus species were
trapped at different characteristic threshold fields. The
order of trapping, from the lowest to the highest electric
field required, was B. megaterium < B. subtilis, < B.
cereus. This same order of trapping was observed at two
different values of the solution conductivity (2.25 and
10.4mS/m). This trend was not in agreement with the
relative hydrodynamic diameters of the bacteria, which
was determined from light scattering to be: B. subtilis
(5.65 ± 1.23μm) > B. cereus (4.01 ± 0.66μm) > B. mega-
terium (3.15 ± 0.86μm). The hydrodynamic diameter of
E. coli was determined as 1.09 ± 0.32μm. Because DEP
is a ponderomotive effect we would expect the order
of trapping to be that B. subtilis would be trapped at
the lowest threshold field and E. coli at the largest field.
Their different shapes and the fact that E. coli and B.
cereus possess flagella was probably a major contributing
factor for the order of trapping. The observed order of
trapping means that mixtures of the bacteria can be
separated by choosing the appropriate magnitude of
the applied field. At stronger applied electric fields, two
different species of bacteria in the microchannel were
dielectrophoretically trapped into two spatially distinct
bands. In another paper by the same team [158], using
the same device, live and dead E. coli were concentrated
and selectively released by applying steppedDC voltages.
The dead cells were observed to have significantly lower
dielectrophoretic mobility than live cells, whereas the
electrokinetic mobilities (electrophoretic plus electro-
osmotic) of live and dead cells were indistinguishable.
The electrodes were two platinum wires placed in the
inlet and outlet reservoirs, spaced 10.2mm apart, pro-
ducingmean electric fields of up to 2000V/cm across the
insulators (i.e., applied voltages up to 2 kV). In a separate
set of experiments [159] the threshold field to trap B.
subtilis spores, suspended in distilled water at a con-
centration of ∼6 × 108 cells/ml, was found to be larger
than those of vegetative B. subtilis cells (∼500 versus
∼1500V/cm). This difference allowed the iDEP device
to separate vegetative cells from spores. The threshold
field (∼2 kV/cm) for trapping Tobacco Mosaic Virus
(TMV) was observed to be larger than those required
to trap bacterial cells or spores. Additionally, TMV was
selectively concentrated against a background of 200 nm
polystyrene particles, demonstrating the ability of iDEP
to separate particles having similar sizes but different
dielectric properties. Cummings and his colleagues
[160] later demonstrated the potential of insulator-based
dielectrophoresis (iDEP) for particle filtration and
concentration by describing devices that incorporated
three-dimensional ridgelike glass structures in



 Dielectrophoresis

micrometre-sized fluid channels. They were created
using a two-level etching process of an insulating
substrate, which produced channels of depth 50μm,
width ∼200μm, length ∼1 cm and an insulator-based
ridge of height 50μm in this channel. Conceptually,
this ridge design can be employed to trap particles
selectively in desired locations of a microchannel, so
that they can be detected directly at these locations or
held in position for chemical reactions (e.g., labelling) or
washing steps. Alternatively, particles can be released
after a desired period of concentration or trapping for
later batch processing. A continuous processing mode
was demonstrated whereby a mixture of bacteria (B.
subtilis, 6 × 107 cells/ml) and polystyrene nanoparticles
(4.5 × 108 per ml) were separated.With channel volumes
∼10−4 ml, this represents the processing per batch of
5∼50 × 104 bacteria plus nanoparticles at a rate dictated
by the electrophoretic flow velocity.
Baylon-Cardiel et al. [161] have shown that a sim-

ple set of equations can effectively model the perfor-
mance of iDEP devices. The devices studied comprised
a microchannel of length 10.22mm, width 2mm wide
and depth 10μm, with an array of 8 columns × 4 rows
of cylindrical insulating posts 470μm in diameter and
arranged 510μm centre to centre. The total volume of
their chamber was thus ∼0.2μl, of which ∼28% was
occupied by the glass posts. By employing a relationship
involving electrokinetic and dielectrophoretic velocities,
the location and magnitude of the regions of DEP trap-
ping along an array of insulating cylindrical structures
can be predicted. The computational simulations cor-
related accurately with their experimental observations.
With 500VDC applied across the channel the maximum
electric field strength (2.5 kV/cm) occurred in the nar-
row region between posts, coincidingwith the location of
the maximum value for∇E2 (7 × 1014 V2/m3). This value
can be compared to that of −7.1 × 1012 V2/m3 calcu-
lated for the metal electrode based DEP device described
in Example 2.7 and of similar dimensional scale (but
with an applied voltage of 5V and not 500V). How-
ever, in order to trap DNA much larger values of ∇E2
must have been generated by the constriction channels
described by Chou et al. [154]. Another factor of rele-
vance to the performance of DEP-based particle sorting
devices is the sample throughput, which for a set con-
centration of suspended particles depends on the volu-
metric flow rate. For an open channel, with no obstruc-
tions such as posts, this quantity can be obtained by the
product of the cross-sectional area of the channel and the
velocity of the fluid. The fluid in the channel described
by Baylon-Cardiel et al. [161] was essentially driven by
electroosmosis, with a maximum electrosmotic mobil-
ity of ∼2 × 10−4 cm2V−1s−1. For an applied potential
difference of 500V along the channel, this produces

an electrokinetic velocity of ∼0.1 cm s−1. The volumet-
ric rate of fluid processed through their channel was
thus 1 cm × (2 × 10−3 cm) × 0.1 cm s−1 = 2 × 10−4 ml
s−1. To account for the cross-sectional area occupied
by the posts, this estimate reduces to ∼1.4 × 10−4 ml
s−1, which is rather modest compared to the rates of
10−2 ml s−1 readily obtained using electrode-based DEP
and mechanical pumps [e.g., 162]. Another important
factor inmicrofluidic systems, especiallywhenusing high
applied voltages and electric fields, is the generation of
Joule heating. The electrical powerW generated per unit
volume is given by

W = 𝜎mE2 (watts per cubic metre)

where 𝜎m is the electrical conductivity of the fluid
medium. With an applied voltage of 500V, the field
generated in the narrow fluidic region (𝜎 = 10mS/m)
between the insulating posts was determined as 2.5 ×
105 V/m [161]. This gives W = 6.25 × 108W/m3, which
is generated in a very small volume (∼40μm × 80μm ×
10μm = 3.2 × 10−14 m3) to give a power dissipation of
∼20μW within each active DEP region. There are 52
such micro-DEP regions in the chip design described by
Baylon-Cardiel et al. [161], to give a total power dissipa-
tion of ∼1mW. The generation of this amount of power
over time in a slowly moving liquid of very small volume
∼0.15μl could potentially result in a significant increase
of temperature within the iDEP device. An evaluation
of this potential problem requires solving the following
energy balance equation [163, 164]:

𝜌mCp

(
𝜕T
𝜕t

+ v ⋅ gradT
)
= div(k gradT) + 𝜎E2

(10.69)

where 𝜌m, Cp, v, k is the mass density, specific heat,
velocity and thermal conductivity, respectively, of the
fluid medium. Based on an order-of-magnitude analysis
of Equation (10.69) by Ramos et al. [164] for a typical
electrode-based DEP device, the incremental tempera-
ture rise can be estimated from the relationship:

gradT ≈
𝜎mV 2

k
(10.70)

where V is the rms or DC voltage applied across the
fluid to produce the imposed field E. In the iDEP sys-
tem described by Baylon-Cardiel et al. [161], three fluid
stream paths can be identified across which there is an
applied potential difference of 500V.These fluid streams
have conductivities of 10mS/m and for an aqueous
electrolyte k ≈ 0.6Wm−1K−1, so that Equation (10.70)
predicts for these regions of fluid an incremental tem-
perature rise of∼4 × 103 ◦C! Although this probably rep-
resents a gross overestimation of what can happen in
practice, it does draw attention in a dramatic way to
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the inherent thermal problems that could be a feature
of iDEP devices. Equation (10.70) does however offer
clear guidelines for minimizing possible Joule heating –
namely: the electrical conductivity 𝜎m of the fluid should
be as low as possible; the main channel along which the
field is applied should be as short as possible (tominimize
the magnitude of the applied voltage V).
Following these early pioneering studies [154–161]

numerous other laboratories explored different designs
and applications of iDEP devices. These included the use
of various types of insulating material to distort the field
(e.g., oil droplets [165], pairs of oil menisci [166], PDMS
[167, 168], hot embossed thermoplastic [169]); post
shapes other than circular, square and diamond (e.g.,
rectangular [167], triangular [170], saw tooth [171, 172];
different geometries of the fluid channel, including ser-
pentine [173, 174]. Numerical simulations, validated by
experiments with polystyrene particles, were reported,
which related an average trapping condition and the
average lateral-to-longitudinal force ratio experienced by
particles [175]. These were used to determine improved
geometrical parameters (e.g., shape, length and width)
and arrangement (e.g., lateral and longitudinal spacing)
of the insulator posts. The use of DC-biased AC fields
has also been investigated [169, 176–178]. Hawkins et al.
[169] describe the operation of a continuous-flow iDEP
‘spectrometer’ for sorting particles according to size.
In this device a 50V DC voltage is applied to induce
a combined electrophoretic and electroosmotic fluid
flow along a channel of high aspect ratio (250 : 1, width
to depth). A thermoplastic ridge across the channel
is curved in such a way that the angle between the
ridge and the direction of the electrokinetic flow varies
continuously across the channel. A 1 kHz AC signal is
superimposed on the DC voltage to induce a DEP force
on the particles as they flow over the ridge and results
in larger particles being deflected in the fluid stream to
a greater extent than smaller particles. The extent of this
deflection was determined by themagnitude of the 1 kHz
signal (up to 250Vrms) andwas demonstrated for the case
of a mixture of 2- and 3-micron diameter polystyrene
spheres. At the other end of the range of applied DC
voltage and AC frequency is a system that employs
asymmetric insulating posts and a square DC-biased AC
signal, with a positive peak voltage of +500V, a negative
peak voltage of −700V and a frequency of 0.4Hz [178].
This signal profile had the effect of producing a net
movement in the upstream direction for the smaller
particles in a mixture, whilst preferentially trapping
the larger particles in the downstream direction. This
effect was validated for a mixture of yeast cells (6.3μm
diameter) and 2μm polystyrene beads.
The first study of Joule heating effects on electroos-

motic flow in a typical iDEP device appears to be that of

Sridharan et al. [179], for a constriction microchannel
under DC-biased AC voltages. The fluid was found to
reach a high temperature (e.g., 325K) within the con-
striction. Depending on themagnitude of theDC voltage,
a pair of thermally induced counter-rotating fluid circu-
lations was also found to occur at either the downstream
end alone or each end of the channel constriction. A tran-
sient, 3D, full-scale numerical model to study Joule heat-
ing and its effects on the coupled transport of charge, heat
and fluid in an iDEP device with a rectangular constric-
tionmicrochannel was also developed byKale et al. [180].
This model was validated by comparing the simulation
results with experimentally obtained fluid flow patterns.
A significant differencewas identified in the time scales of
the electric, temperature andflowfields in iDEPmicrode-
vices. Predictions could also be made of the locations of
electrothermal flow circulations in different halves of the
channel at the upstream and downstream of the constric-
tion. Other studies have drawn attention to the impor-
tance of considering Joule heating effects when designing
iDEP systems for manipulating bioparticles [181, 182].
In some of these systems temperature variations above
50 ◦C can be obtained, in some cases reaching 100 ◦C at
the end of an insulator post array and presenting a threat
to the viability of cells trapped in that location.
A significant advance in the building of iDEP devices

that reduce Joule heating effects is that of Braff et al.
[183], who employed micromilling to construct devices
with three-dimensional features, which exhibit very
large constriction ratios. These three-dimensional iDEP
devices allow for the trapping ofmicroparticles at average
electric fields one order of magnitude lower than two-
dimensional designs with the same footprint. For exam-
ple,E. coli sampleswere observed to be trapped near con-
striction regions at potentials as low as 50V/cm, whilst
B. cereus was hardly trapped at all for applied potentials
in excess of 80V. These three-dimensional iDEP devices
therefore provide a clear differentiation between these
bacteria species while keeping temperature variation
within the channel to the order of 1 ◦C or less [183].
Finally, note should be made of what has sometimes

been referred to as a sister technique to iDEP, namely,
contactless DEP (cDEP), which generates the DEP field
gradient without having electrodes in contact with the
sample fluid. Shafiee et al. [184, 185] described a proof-
of-principle method for this where metal electrodes are
located in highly conductive solutions, which are iso-
lated from the main fluidic channel by a thin PDMS
membrane. This membrane should be thin enough to
provide good capacitive coupling of the electrode field
into the main channel, but not so thin as to lack struc-
tural integrity. Amembrane thickness of∼20μmappears
to be suitable. A perceived advantage of this method is
that electrode electrolysis and fouling is avoided, but a
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disadvantage over bare metal electrodes is that higher
applied voltages are required to generate sufficiently large
values for ∇E2. The electrodes are connected to the sec-
ondary side of a transformer, the primary of which can
be connected to the output of a wideband power ampli-
fier.The resonant frequency at which this circuit operates
is highly dependent on the load impedance connected to
the secondary side of the transformer. Two high-voltage
power supplies were fabricated, with resonant frequen-
cies tested in the range 85 kHz – 500 kHz, with an out-
put voltage that could be adjusted from approximately
20Vrms to 500Vrms and capacitively coupled to a flu-
idic channel bounded by the PDMS membrane. Viable
human leukaemia monocytes were observed to be influ-
enced by positive DEP and trappedwhen flowing past the
shaped PDMS channel, under the influence of a capaci-
tively coupled 500 kHz, 40Vrms signal, whilst the passage
of dead cells was not influenced by a DEP force. Reported
trapping (live / dead cell) efficiencies of 89.6% at a flow
rate of 0.02mL/h and 44.8% (±14.2) at 0.8mL/h, were
reported. Cell damage, in the form of lysis, was seen at all
frequencies when a voltage of 50Vrms was applied [185].
An interesting application of this method was found to
be the rapid mixing of 0.5μm diameter beads, indicat-
ing that the method can be extended to the mixing of
low diffusivity biological samples such as cells, which can
be a challenging problem in laminar flows at small scales
[186]. Čemažar et al. [187] advanced the design of con-
tactless DEP to include insulating pillars with diameters
of the same order as the cells to be trapped. The viabil-
ity and trapping efficiency of a mouse ovarian surface
epithelial cell line was tested for a design consisting of
68 664 pillars of diameter 20μm located in four paral-
lel fluidic chambers of height 50μm. Electrode channels
running parallel to the fluidic channels were filled with
tenfold concentrated PBS solution, with immersed elec-
trodes being energized by the combination of a function
generator and high-voltage amplifier, so that the applied
field was directed at right angles to the direction of exter-
nally pumped fluid flow.The cancer cells were suspended
at 2.5× 106 cells/ml in a buffer of conductivity∼12mS/m
and processed at a flow rate of 2.2ml/h with an applied
30 kHz signal of 350Vrms. The DEP crossover frequency
for these cells was stated to be 11.9 kHz and the CM fac-
tor as equal to 0.5 at the operating frequency of 30 kHz
[187]. Subpopulations of viable cells were collected at the
pillars, to be released later for possible off-chip analysis.
To what extent the characteristics of the collected cells
were determined by CM-factor value or cell size was not
discussed by the authors.

10.4.2.1 Niche Applications of iDEP
An objective assessment of the capabilities of iDEP
would suggest that it will not compete well against

electrode-based and contactless DEP devices for appli-
cations that require high volumetric processing of sam-
ples, in combination with fine tuning of the frequency
of the applied field to achieve sufficient dielectric dis-
crimination between target and background cells. Parti-
cle and fluid flow rates achieved by electroosmosis and
electrophoresis tend to be much less than that achieved
using pressure-driven flow and it is more straightforward
to design and operate AC voltage generators, with tun-
ing capabilities in the kHz–MHz range, than is the case
for the combination of high voltage DC and AC sources.
However, a consistent finding with the iDEP devices
described in the literature is that they have the capa-
bility to efficiently sort micron- and submicron-sized
particles on the basis of size, using device structures
that are cheaper and simpler to construct than a typi-
cal electrode-based DEP device. A good example of this
is a device described by LaLonde et al. [188], which is
capable of efficiently and selectively trapping 2μm-sized
particles against a background of 100 000 smaller (1μm)
particles. This discrimination increased to a concentra-
tion ratio of 1 : 1 000 000 when the smaller particle was
reduced to a diameter of 500 nm. An iDEP device would
also be the method of choice for DEP sorting of bacteria
based on size and surface charge [e.g., 159, 183]. These
relative advantages, especially for situations where only
low volumes of pure product are required, offer niche
areas of application for iDEP.
One such niche application of iDEP in nanocrystal-

lography has been identified by Abdallah et al. [189].
To obtain high-resolution diffraction patterns from crys-
tals, a well ordered crystal is necessary so that the
diffracted signal is void of crystal lattice imperfections.
Consequently, crystals in the sub-500 nm size regime
are desired for improved shape transforms, crystal phas-
ing uniformity and compatibility with the beam diame-
ter and sample injection of current state-of-the-art free
electron lasers employed for nanocrystallography. Vari-
ations in crystal size and shape lead to large amounts
of single-crystal diffraction data, with several hundred
thousand images needed for one data set. A monodis-
persed sample of nanocrystals with a narrow size dis-
tribution could therefore reduce the amount of data
required by an order of magnitude. Abdallah et al. [189]
were able to sort by iDEP, without further sample treat-
ment, crystals from batch crystallization broths of the
huge membrane protein complex photosystem I (PSI).
A high degree of monodispersity and crystallinity in the
∼100 nm size range was obtained. To avoid Joule heat-
ing effects and sample destruction, the iDEP device was
restricted to a length of 5mm, with a single inlet channel
(100μmwidth, 12μm depth) leading to five outlet chan-
nels. Applied potentials of no more than 55V were used
and a low conductivity buffer of 1.5mS/mwas employed.
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Nanocrystals of ∼100 nm in size were isolated from a
bulk solution containing a broad crystal size range. Even
when multiple experiments were performed to provide
a large volume of sorted sample, the process was repro-
ducible and resulted in a large volume (∼300μL) of
fractionated nanocrystals (∼60–300 nm). This volume is
in the range typically required for nanocrystallography
experiments.
The potential for iDEP to provide a simple on-chip

procedure for concentrating DNA from such samples as
cytoplasm, saliva and blood has been highlighted by Li
et al. [190], who designed a simple chip, with microchan-
nels separated by nanoslits, capable of trapping small
fragments (2k bp) of DNA in both high (< 1 S/m) and low
conductivity (< 5mS/m) media. This was achieved for a
low field strength of 10V/cm, so that any significant Joule
heating was avoided. iDEP has also been demonstrated
to offer a new method for the isolation and separation of
subcellular organelles [191]. The dielectrophoretic prop-
erties of isolated Fischer 344 (F344) rat semimembranous
muscle mitochondria and C57BL/6 mouse hepatic mito-
chondria in low conductivity buffer (0.025–0.030 S/m)
at physiological pH (7.2–7.4) were studied using poly-
dimethylsiloxane (PDMS) microfluidic devices and AC
signals up to 50 kHz.This established that the mitochon-
dria exhibited negative DEP. The DC potential required
to trap themitochondria was found to be generally above
200V, when applied over a channel length of 1 cm and
to be only weakly dependent on the signal frequency. A
separation scheme using DC potentials less than 100V
was demonstrated to perform a size-based iDEP sorting
of mitochondria. Samples of isolated mitochondria with
heterogeneous sizes, 150 nm to 2μm diameters, were
successfully separated into submicron fractions, indicat-
ing the ability to isolate mitochondria into populations
based on their size.

10.4.3 Liquid Electrodes

The concept of a liquid electrode, as first described and
named by Demierre et al. [192, 193] is shown in Fig-
ure 10.42. The electrodes producing the field are in fact
made of metal, but are located at the base of narrow
access channels leading up to the main fluid channel in
which the DEPmanipulation of particles takes place.The
field lines from an electrode to the main channel are con-
stricted to follow parallel paths along the access channel,
so that at the boundary interface to the main channel the
emerging field lines create an almost equipotential sur-
face, as if this boundary was in fact metallic rather than
a fluid surface. In any theoretical analysis or modelling
of the field produced in the main channel, the electri-
cal resistance of the access channel has to be taken into
account. The perceived advantage of a liquid electrode is

Metal
electrode

Access
channel

Electric
field

+V –V

Main
channel

Figure . Particles are shown deflected across a main fluid
channel by negative DEP. The nonuniform field is created by
energized metal electrodes located in the narrow access fluid
channels. As the field lines emerge from an access channel they
form an equipotential surface at the boundary with the main
channel, to form a liquid electrode [193].

that it avoids electrode electrolysis effects (e.g., bubbles
and electrochemical byproducts) appearing in the main
channel, as well as fouling of the electrode surfaces by cell
fragments or the like. A potential problem could be the
blocking of an electrode access channel by cellular debris
or even whole cells, which could alter the effective elec-
trical resistance to the main channel.
Demierre and Braschler et al. [194, 195] incorporated

arrays of liquid electrodes along the side walls of a main
flow channel, with a low frequency voltage signal applied
on both sides and a high frequency signal superimposed
on one side only of the channel. Particles with different
dielectric properties experienced different DEP forces
and were continuously focused to different streamlines
in the flow channel. A particle’s dielectric response could
be related to its position in the downstream channel.
This effect was demonstrated by separating amixed yeast
cell population into pure fractions of viable and nonvi-
able cells with nearly 100% efficiency and also to enrich
erythrocytes infected with a major pathogen in cattle,
namely Babesia bovis. This result also confirmed the
working hypothesis that infection with B. bovis causes
significant changes in the dielectric properties of ery-
throcytes [195–197].

10.4.4 Carbon Electrodes

Pyrolysed, glasslike, carbon electrodes are widely used
in analytical electrochemical techniques because of their
excellent mechanical and inert chemical properties in
both aqueous and nonaqueous electrolytes. They exhibit
a wider electrochemical window of ∼4.4V between
oxidation and reduction potentials than that exhibited
(∼2.8V) by platinum or gold electrodes, for example
and can bemicrofabricated into three-dimensional struc-
tures such as wires, plates, ribbons and pillars [198–
200]. Carbon electrodes thus share the advantage with
insulator-based electrodes that sample electrolysis can be
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minimized, but have the added advantage of being able
to generate suitable fields for DEP with applied voltages
in the range of tens of volts, rather than the hundreds
or thousands of volts typically required for iDEP devices.
This alsomeans that although they havemuch lower elec-
trical conductivities than metal electrodes, carbon elec-
trodes can be used over the same broad frequency range
and not be limited to the lower kHz range available to
IDEP devices.
The first indication that carbon-electrode DEP devices

could be employed in future analytical applications
such as DNA preconcentration and fractionation was
obtained by Martinez-Duarte et al. [201]. The DEP
response of 𝜆-DNA (48.5 kbp) under various frequencies
and flow conditions necessary for retention of 𝜆-DNA
were studied. When suspended in phosphate buffer at
pH 8.1 and a conductivity of 19mS/m, the DNA sam-
ples exhibited positive DEP from 5 kHz to 75 kHz, with
a crossover to negative DEP occurring above 75 kHz.
With a potential of 14Vpk-pk applied between two rows
of carbon posts, an analysis of the field generated gave
a maximum value for ∇E2 of 7 × 1015 V2/m3. Elitas
et al. [202] also employed three-dimensional carbon-
electrode arrays to demonstrate for the first time that
antibiotic-treated mycobacterial subpopulations can be
both enriched and recovered for downstream analysis
using a DEP system. Their efforts were focused on opti-
mizing the method to allow separation of Mycobac-
terium smegmatis cells based on only small changes in
their intrinsic properties, such as membrane integrity,
rather than differences in size, shape, or volume. Follow-
ing antibiotic treatment, intact and damaged cells were
separated via DEP; intact cells were then washed and
recovered from the device. Enrichmentwas confirmed by
using flow cytometry and purification exceeding 99%was
achieved, with recovery of up to 3 × 104 cells of interest
from the DEP device for further analysis.

10.4.5 DEP ‘Tweezers’

The ability to isolate and accurately position single cells
in three dimensions is becoming increasingly impor-
tant in many areas of cell biology and tissue engineer-
ing. The simplest electromanipulation device, utilizing
DEP, would consist of a single wire. Schnelle et al. [203]
demonstrated that yeast cells could be attracted to a sin-
gle gold wire, capacitively coupled to a counter elec-
trode. Maintaining a consistent DEP force using capac-
itive coupling to a moveable single wire is difficult, as
is the selective trapping of a single cell from a collec-
tion of cells. In a variation of this single wire design, Lee
et al. [204] demonstrated that yeast cells and erythro-
cytes can be manipulated in three dimensions using an
electrode arrangement comprising an electrochemically

sharpened tungsten wire positioned above a planar elec-
trode. However, the DEP force generated at the wire tip
was very sensitive to its height above the planar elec-
trode and this compromised spatial accuracy for cell cap-
ture and release. The fact that a captured cell is held by
a single point of contact can limit the extent to which
it can resist fluid drag forces and hence limit the speed
at which it can be translocated through a fluid medium.
Thefirst reported design of a twin-electrodeDEP tweezer
for manipulating cells was that by Matsue et al. [205].
The tweezer took the form of a microring+ring elec-
trode assembly formed by the vacuum deposition of plat-
inum and gold films onto the outer and inner surfaces,
respectively, of a 6∼10μm diameter capillary tip. Single
myeloma cells could be trapped by positive DEP, but this
was found to result in cell damage arising from electropo-
ration of the cell membrane [205]. With a later design, in
the form of a dual microdisk comprising two platinum-
rhodium electrodes of diameter ∼2μm, single chlorella
cells were captured by positive DEP and released by neg-
ative DEP at a new location, without harming the cell
[206]. Hunt andWestervelt [207] have also demonstrated
that a DEP tweezer, fabricated by vacuum evaporating
electrically isolated Ti-Au films onto two sides of a sharp-
ened glass rod, can trap yeast cells for several hours with-
out harming them (the trapped cells were observed to
bud and form daughter cells).
Menachery et al. [208] describe the design, theoreti-

cal modelling and testing of a DEP ‘tweezer’ for picking
out and relocating single target cells. The device took the
form of two electrochemically etched gold wires insu-
lated from each other except for a short region near the
electrode tips, which formed the working ends of the
DEP tweezer. It was constructed using facilities avail-
able in most electrophysiology laboratories, without the
requirement of sophisticated microfabrication technol-
ogy. A three-dimensional modelling of the tweezer using
COMSOL Multiphysics software, revealed that the field
parameter ∇E2 had a peak value of ∼1018 V2/m3 at the
tips of the gold wires, reducing rapidly to less than
1011 V2/m3 for distances greater than 20μm from the
electrodes, with an applied voltage of 1Vpk. The prac-
tical use of the tweezer was demonstrated by isolating
schwannoma cells expressing a membrane channel pro-
tein of interest, tagged to the green fluorescent protein
(GFP), fromnontransfected cells. A schematic of the pro-
cedure is shown in Figure 10.43. While traditional meth-
ods for production of stably transfected cell lines involve
transfection of cells and selection by drug susceptibil-
ity, this new procedure has the potential to simplify and
shorten the process.
An improvement of the earlier tweezer design [208]

was described later by Graham et al. [209]. It consists
of a single, commercially available, microelectrode that
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Figure . Schematic of a DEP tweezer, energized with
a voltage function generator, involving an inverted
fluorescence microscope equipped with a
micromanipulator and video camera. A target cell, tagged
with a green fluorescent protein, is shown selectively
picked and placed within an electrode array for
electrokinetic studies (Menachery et al. [208], reproduced
with permission).

is capacitively coupled to a grounded thin metal ring
below a cell culture dish, negating the need for a direct
ground in the liquid medium. Although this design gen-
erates largerDEP forces (e.g.,∇E2 ∼1011 V2/m3 at a radial
distance of ∼40μm from the electrode tip) than the pre-
vious design [208], cell damage is avoided due to a thin
porous metal oxide coating on the microelectrode tip.
The overall usefulness of this single DEP electrode in spa-
tial manipulation of living cells was demonstrated using
CHO and HeLa cell clonal cell lines. Cells labelled with
calcein-AM and nonloaded cells were actively separated
from the mixed population using the single DEP elec-
trodewith an applied voltage of 1Vrms and frequency set-
tings of 10MHz and 50 kHz for positiveDEP (cell pickup)
and negative DEP (cell release), respectively. An exam-
ple of how the cells could be separated into two dis-
tinct populations of loaded calcein-AM and nonloaded
cells is shown in Figure 10.44. The use of the single elec-
trode DEP was also tested on smaller diameter organ-
isms. Fresh-water green algae, Eremosphaera viridis and
growing lily pollen tubes were used for their pellucid uni-
cellular bodies, which contain several chloroplasts and
rapidly trafficking organelles, respectively. Both Eremo-
sphaera and lily pollen tubes thrive in low conductiv-
ity media, making them amenable to DEP studies. A
single DEP electrode was positioned near either a sin-
gle Eremosphaera cell or a growing lily pollen tube. On
application of a 100 kHz signal, the Eremosphaera were

attracted to the electrode by positive DEP, indicating that
the electric field penetrated the outermembrane and into
the cell interior. The intracellular chloroplasts were also
attracted towards the electrode tip. In the growing pollen
tube, a flowing stream of organelles was repelled by nega-
tive DEP, greatly slowing the rate of cytoplasmic stream-
ing within the growing tube. Both types of intracellular
organelles exhibited strong redistributions in response to
the DEP force. Upon removal of the voltage signal, the
intracellular organelles evenly redistributed themselves

100 μm

Figure . A mixed population of Calcein-AM loaded and
nonloaded CHO cells separated into two distinct populations
using a single electrode DEP ‘tweezer’. (Graham et al. [209],
unpublished image.)
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in the Eremosphaera after approximately 1 h, whilst cyto-
plasmic streaming recommenced within the lily pollen
tube after seconds.

10.4.6 Isodielectric Cell Separation

Vahey and Voldman [210, 211] have introduced a
new type of DEP-based cell separation method called
isodielectric separation (IDS). This falls into the equilib-
rium gradient category of particle separation methods,
wherein a medium with some type of spatial physico-
chemical nonuniformity is combined with a force field to
focus particles to equilibrium positions related to their
intrinsic physico-chemical properties. A well exploited
example of this is isoelectric focusing, where amphoteric
molecules are forced via electrophoresis to the location
in a pH gradient where their net charge vanishes at their
isoelectric point. Cells can be sorted using this method,
but the net surface charge of a cell does not provide
a particularly specific indicator of its phenotype. Cell
and particle separations in biology and biotechnology
predominantly rely on techniques that fall within the
nonequilibrium category of separation. These methods
exploit labels or tags to sort cells based on their extrinsic
properties, exemplified by fluorescence-activated cell
sorting (FACS) and magnetic-activated cell sorting
(MACS). In IDS the forcing mechanism is DEP, which
directs cells to the point in a conductivity gradient where
the net induced polarizability is zero.
Markx et al. [212] describe a cell separation proce-

dure that uses a conductivity gradient of the fluid sus-
pending medium. This was tested on pure suspensions
and mixtures of bacteria, which were first immobilized
by positive DEP at 10 kHz onto electrodes in a fluidic
chamber. A conductivity gradient was then established
along the chamber as a function of time. The bacteria
were released from the electrodes according to their own
dielectric properties and as a function of flow rate and
the local medium conductivity. For example, at a flow
rate of 0.44ml/minute andwith the conductivity gradient
established between values of 0.4mS/m and 307mS/m,
90∼100% of E. coli, B. subtilis and M. luteus in a mix-
ture of ∼5 × 107 cells/ml were released at medium con-
ductivites of ∼2, 100 and 120mS/m. respectively. Lee
et al. [213] have also described how yeast cells, trapped
at 4MHz by positive DEP at a microelectrode array,
were released within an isotonic permittivity gradient.
The upper and lower permittivity values in the gradient
were established using 0.8M glycylglycine (𝜀r = 136.2)
and 0.6M glucose (𝜀r = 76.7) solutions. However, these
methods [212, 213] employed time-varying gradients of
conductivity or permittivity in the same direction as the
fluid flow – they do not represent equilibrium gradi-
ent categories of particle separation. They do, however,

Conductivity gradient
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Figure . The isodielectric method of cell separation involves
using a diffusive mixer to establish a conductivity gradient across
a diagonal array of electrodes. A combination of the DEP force and
hydrodynamic drag carries the cells across the width of the fluidic
chamber, in the direction of decreasing conductivity, until the
iosdielectric point is reached. (Based on Vahey and Voldman [210]. )

demonstrate the principle of operation of the isodielec-
tric method.The trick performed by Vahey and Voldman
[210] is to create a conductivity gradient normal to the
fluid flow and to angle the electrodes so as to also gener-
ate a component of the DEP force normal to the flow.
The principle of operation of the isodielectric method

of cell separation is shown in Figure 10.45. A mono-
tonic gradient in electrical conductivity across the width
of a microfluidic channel is established by injecting one
solution of relatively high conductivity containing the
cell mixture and a second solution of relatively low con-
ductivity through a diffusive mixer. This mixer gener-
ates a smooth monotonic conductivity profile that flows
directly into a channel containing a diagonal array of
electrodes. These electrodes guide the cells in the direc-
tion of decreasing medium conductivity, until the DEP
force becomes sufficiently small that it is overwhelmed
by hydrodynamic drag. The cells then continue down-
stream for collection at different sampling ports, segre-
gated according to their dielectric properties. The IDS
device must operate in an advection-dominated trans-
port regime to ensure that the conductivity gradient
is preserved over the channel length. This requirement
is quantified by the dimensionless Peclet number (Pe),
which gives the ratio of advection and diffusion. This
number is given by Pe = UL/D, where U denotes the
characteristic velocity of the fluid, L denotes the rele-
vant length scale and D is the diffusivity of the chemical
species of interest (see Chapter 12, section 12.6.1). As the
diffusion coefficient of the species increases, the relative
significance of advection decreases (Vahey and Voldman
use the term convection, but this is commonly restricted
to where heat is being transferred).The two length scales
of importance are the channel width (w) from which
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the time scale for diffusion is obtained (∼w2/D) and the
channel length (l), which enters through the advective
time constant (∼l/U). This suggests that transport in the
device is best governed in terms of the modified Peclet
number (w2U/Dl), which defines for a given separation a
critical Pe value below which cell separation is no longer
possible. Vahey and Voldman [210] investigated the rela-
tionship between transport (as determined by Pe) and
the conductivity profile using a two-dimensional model
(2-D rather than 3-D because of the rapid equilibration
of the conductivity over the depth of the shallow fluidic
channel). Since the separation is based upon a mapping
of the effective conductivity of a particle to the position
along the channel width where it matches the solution
conductivity, there is a direct correspondence between
the ranges of conductivities preserved in the device and
the maximum range of conductivities that can be simul-
taneously resolved. For example, if a sample contains par-
ticles varying in conductivity by a factor of 5, the Pe num-
ber must be maintained above ∼18 to accommodate the
full range, independent of other parameters and operat-
ing conditions [210]. The parameters that determine Pe
also influence the forces throughout the system and in
turn the maximum flow rate (and Pe) at which the device
can operate. Specifically, a particle will pass over the elec-
trode barrier when the axial component of the drag and
dielectrophoretic forces balance. This occurs when the
real part of the complex Clausius–Mossotti factor given
by:

|Re[CM]| = f 𝜂 sin(𝜃)h2U
𝜀o𝜀mRV 2

o
≈ f 𝜂Dh2

𝜀mRV 2
o w

Pe

where 𝜂 denotes the fluid viscosity, 𝜃 (≈ w/l) is the angle
of the electrode with respect to the axis of the channel,
h is the channel height, U is the mean fluid velocity, Vo
is the amplitude of the applied voltage and 𝜀m is the rel-
ative permittivity of the fluid. The function f (≈ 250) is a
dimensionless number, which depends upon the geomet-
ric ratio of the channel height and electrode spacing.
Vahey and Voldman [210] also considered the con-

straints arising from electrohydrodynamic flows. The
conductivity gradient will modify the local electric field,
whilst at the same time the electric field can perturb the
fluid through both Joule heating and induced electroki-
netic fluid flow. Predictions of the electric field intensities
that can be used in the isodielectric device were obtained
by considering the influence of induced electroosmo-
sis (ICEO) and electrohydrodynamics (EHD) driven by
polarization of both the imposed conductivity gradient
(intrinsic EHD) as well as gradients in conductivity and
permittivity induced by Joule heating (thermal EHD).
The strong frequency dependence of ICEO indicates that
it will be negligible when the frequency of the applied

voltage signal is greater than ∼10 kHz. From a scaling
analysis [210] the DEP force and intrinsic EHDboth scale
as E2, while thermal EHD scales as E4. At sufficiently
low electric fields, thermal EHD will be less than intrin-
sic EHD. The similar physics underlying intrinsic EHD
and the DEP force on a particle, however, make decou-
pling these two phenomena by tuning the electric field
intensity impossible. A simple scaling argument reveals
that the relative magnitude of the DEP and induced drag
forces is ∼R2w/h3, implying that the smallest particle
that can be separated has a radius of the order

√
(h3/w).

Although this was shown [210] by both numerical simu-
lation and experiments to overpredict the minimum par-
ticle size by approximately three times, it provides rea-
sonable guidelines for sizing an isodielectric device.
The isodielectric separator was tested using

polystyrene beads of different diameters, as well as
live and dead yeast cells (S. cerevisiae). Beads of diameter
1.60, 1.75 and 1.90μm, respectively, when suspended
in a medium of conductivity 33mS/m exhibited DEP
crossover frequencies of 180, 120 and 40 kHz, respec-
tively [210]. From Equation (10.64) we expect the
effective conductivity of these beads to vary as a function
of both their surface conductance Ks and radius R:

𝜎p = 𝜎bulk +
2Ks
R

It was verified that the separation of the beads was
based upon differences in the equilibrium positions of
the beads in a conductivity gradient, rather than differ-
ences in bead size. Additionally, the requirement for the
conductivity gradient and the variation of the separation
with frequency together precluded the possibility that
the separation was due to any other nonelectrical param-
eter. To further verify that the separations were based
upon surface conductance as opposed to other proper-
ties that differ between the beads, complementary exper-
iments were performed in which beads with compara-
ble sizes but different surface coatings were sorted. For
carboxyl-modified beadswith comparable surface charge
densities, it was found that the smaller beads separated at
the higher end of the conductivity gradient, whilst small
unmodified polystyrene beads exhibited lower effective
conductivities than their larger and more highly charged
counterparts. These experiments demonstrated that IDS
may be used to separate particles according to their elec-
trical properties, even in the presence of competing dif-
ferences in the sizes of the particles. The separation of
live and dead yeast cells was also demonstrated, with
or without the use of heat treatment to deliberately kill
the cells. Further separation experiments were later per-
formed on polystyrene beads and yeast cells, as well as
BA/F3 murine pro B cells [211]. After passing through
the isodielectric separator (operating at 6Vpk-pk, 10MHz
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and a flow rate of 4μL/min) the murine cells were found
to have no significant difference in viability before and
after the cells were passed through the device, with via-
bility >85% in both cases. The lack of adverse effects on
cell viability is consistent with the brief residence time of
around 16 s of the cells in the device, together with oper-
ation in theMHz frequency range where the imposed
transmembrane voltage would have been relatively small
[214]. From knowledge of the point along the conduc-
tivity gradient at which the DEP force succumbed to the
fluid drag force, the electrical properties of the beads and
cells could be determined, including how these electrical
properties varied with the electrical conductivity of the
suspendingmedium [211]. By far themost exciting appli-
cation of the isodielectric separator has been its applica-
tion to identify for yeast cells those genes whose deletion
changes theirDEP phenotype [214].This is described and
discussed in detail in Chapter 11 (section 11.2.2.2).

. The Second (High-Frequency) DEP
Crossover Frequency (fxo)

TheDEP response, as represented by Re[CM∗], in Figure
10.13 shows the existence of two DEP crossover points,
at fxo1 and fxo2. The physical reason for the two DEP
crossovers can be explained in terms of the relaxation
time 𝜏 for the interfacial polarization given by Equation
(10.30) and repeated here for convenience:

𝜏 = 𝜀o
𝜀p + 2𝜀m
𝜎p + 2𝜎m

At low frequencies the dielectric parameters 𝜀p and
𝜎p refer to the effective permittivity and conductivity of
the cell and is dominated by the presence and dielectric
properties (especially the high resistance) of the plasma
membrane. At high frequencies, much higher than fxo1,
the effective resistance of the plasma membrane is zero,
having been shortcircuited by the capacitive reactance of
the membrane. The applied electric field penetrates the
membrane and effectively ‘sees’ the cell as a bag of cytosol
and its contents. We now have a mismatch between the
conductivity of the outside medium and the conductivity
of the cell interior – which gives rise to a second relax-
ation time 𝜏2 given by:

𝜏2 = 𝜀o
𝜀int + 2𝜀m
𝜎int + 2𝜎m

(10.71)

where 𝜀p and 𝜎p refer to the effective permittivity and
conductivity of the cell interior. At high frequencies we

can therefore rewrite Equation (10.32) to give the value
for fxo2 as:

f 2xo2 =
1

4𝜋2
1
𝜀2o

(𝜎m − 𝜎int)(𝜎int + 2𝜎m)
(𝜀int − 𝜀m)(𝜀int + 2𝜀m)

(10.72)

which is a result previously reported byGimsa et al. [215].
This quadratic equation in principle has two roots, real
(rather than imaginary) ones existing when the following
condition is obeyed:

(𝜎m − 𝜎int)
(𝜀int − 𝜀m)

> 0 (10.73)

For an aqueous suspending medium, where 𝜀m ≈ 79, it
is usually found from analysis of dielectric spectroscopy
measurements on cells that 𝜀m > 𝜀int (e.g., see Tables
9.2 and 9.3). To satisfy the condition given by Equation
(10.73) requires that 𝜎int > 𝜎m, which will usually be the
case when using media of conductivity less than around
200mS/m. In fact, in a typical DEP cell-separation proto-
col (e.g., 79–82) the conductivity (𝜎m) of the suspending
medium is some 20-times less than that of the cell inte-
rior (𝜎int). In this situation Equation (10.72) can to a good
approximation be simplified to give:

fxo2 =
𝜎int
2𝜋

1
𝜀o

√
1

(𝜀int − 𝜀m)(𝜀int + 2𝜀m)
(10.74)

This indicates that the value for fxo2 is largely controlled
by the conductivity of the cell interior and to a lesser
extent by its permittivity.This conclusion was previously
obtained, through different theoretical routes, by Broche
et al. [216] and Chung et al. [217]. The relative contribu-
tions that 𝜎int and 𝜀int have on the value of fxo2 are shown
in Figure 10.46, obtained using the single-shell model for
a cell. It can be seen that fxo2 is particularly sensitive to the
cytoplasm conductivity, but not so sensitive to changes in
of its permittivity. The DEP crossover at fxo1 is not influ-
enced by the dielectric properties of the cytoplasm. Fig-
ures 10.13 and 10.14 further illustrate how the values of
fxo1 and fxo2 differ in their sensitivity to changes in cell
size and plasma membrane conductance. These various
sensitivities to changes of cell dielectric parameters are
summarized in Table 10.1.
Chung et al. [217] described the circuitry and electrical

load modelling of an interdigitated microelectrode array
for performing DEP measurements on cells up to a fre-
quency of 400MHz. Particular effortsweremade to avoid
the electrical resonance effects reported by Gimsa et al.
[218] in their DEP and electrorotation measurements on
erythrocytes at 80MHz. The first systematic determina-
tion of the high-frequency DEP crossover (fxo2) exhib-
ited by mammalian cells (murine myeloma) could then
be reported, an example of which is shown in Figure
10.47(a). The value of fxo2 was found to be sensitive to
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Figure . Single-shell modelling of a cell to show (a) that the high-frequency DEP cross-over at fxo2 is particularly sensitive to the value
of the cytoplasm conductivity, but as indicated in (b) is not so sensitive to changes in the permittivity of the cytoplasm. The DEP crossover
at fxo1 is not influenced by the dielectric properties of the cytoplasm. This model is for a cell of fixed diameter 10 μm and plasma membrane
capacitance of 10 mF/m2.

Table . Relative sensitivities of the DEP crossover frequency
values of fxo1 and fxo2 to changes of various cell parameters. In
summary, fxo1 is sensitive to changes in cell size and the dielectric
properties and morphology of the plasma membrane. The value
of fxo2 is insensitive to these changes but is highly sensitive to a
reduction of conductivity associated with ion leakage from the
cytoplasm.

Sensitivity

Parameter fxo fxo

Cell diameter High None
Ion leakage from cytoplasm None High
Cytoplasm permittivity None Moderate
Membrane capacitance High None
Membrane passive conductance of ions High None

both the osmolarity and temperature of the cell suspend-
ingmedium [217]. A rapid decrease in themean value for
fxo2 was consistently observed and found to be a func-
tion of the medium temperature. For example, at 37 ◦C
the value of fxo2 typically dropped from ∼200MHz to

∼90MHz over a period of 2 h, whereas at 10 ◦C the fall
was from ∼200MHz to ∼120MHz over 6 h. During this
period the value observed for fxo1 did not change. An
Arrhenius plot, of the rate of fall of fxo2 versus recipro-
cal absolute temperature, produced a straight line giv-
ing an activation energy of ∼44 kJ/mol for the underlying
process leading to this temporal behaviour of fxo2. This
is close to the activation energy of ∼41 kJ/mol obtained
for water self-diffusion through lipid bi-layermembranes
[219], which is a coincidence worth further investiga-
tion. As shown in Figure 10.47(b), erythrocytes were
found to have a less wide distribution and a lower mean
value of fxo2 values compared to the myeloma cells, but
still exhibited a shift to lower frequencies with time. In
later experiments [220] ratiometric flow cytometry of
murine myeloma cells loaded with a potassium-sensitive
fluorophore revealed temporal trends in the intracellu-
lar concentration of potassium ions that were similar to
the observed time course of the fxo2 values.This indicated
that fxo2 did scale with intracellular conductivity and that
changes to the intracellular permittivity were minimal by
comparison.
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Figure . (a) Distribution of fxo2
values for murine myeloma cells (n =
418), 10 minutes after their suspension
in a medium of conductivity 33 mS/m.
(b) Distribution of fxo2 values for
human erythrocytes (n = 328) 10
minutes after their suspension and
2 hours later (n = 315) in a medium of
conductivity 33 mS/m. (Chung [220],
to be published.)
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. Summary

The basic DEP force equation:

FDEP = (p ⋅ ∇)E

as derived by Pohl in his book [1, pp. 15–17] and referred
to as the ponderomotive force (die ponderomotorischen
Kräfte) in text books on electricity way before that time
(e.g., [221]), requires some simplifying assumptions for it
to be presented in this straightforward form. Two signif-
icant assumptions are that the particle is much smaller
than the scale of the nonuniformity ∇E of the field and
that the particle’s induced polarization is equivalent to
that of a simple dipole moment p. The basic DEP force
equation is in fact only strictly valid for the case of a
point dipole, corresponding to a vanishingly small par-
ticle radius. As indicated by the simple assessment made
in section 10.2.1 we can expect that for cell-sized parti-
cles this particular assumption typically leads to an over-
estimate of the DEP force’s magnitude by a factor of
5% to 10%. For most, if not all, situations this is of no
major consequence. The assumption that the particle’s
polarization takes the form of a simple dipole moment
is more interesting and for some situations quite signif-
icant. Expressed as an induced dipole moment p, the
polarization of a spherical particle of radius R is given by
the Equation (10.7) and as derived in the early literature
[e.g., 203]:

p = 4𝜋𝜀o𝜀mR3
(

𝜀p − 𝜀m

𝜀p + 2𝜀m

)
E

where E is the mean value of the local field, assumed to
be uniform, before insertion of the particle. The parame-
ter 𝜀o is the permittivity of free space, whilst 𝜀p, 𝜀m refer
to the relative permittivity of the particle and surround-
ing medium, respectively. This induced dipole produces
a field with lines of electric potential as shown in Figure
10.1. For the case of a uniform field E the particle is uni-
formly polarized and the term in brackets in the above
equation represents the polarizability per unit volume of
the particle – otherwise known as the Clausius–Mossotti
factor CM. But for a DEP force to act on the particle it
must be subjected to a nonuniform field and so it will not
be uniformly polarized. Using the procedure outlined in
Box 10.1,Washizu [7] took account of this by introducing
into the DEP force equation induced moments of higher
order, known as multipoles. Jones and Washizu [9, 11]
derived the followed expression for the nth-order multi-
polar moment:

pn =
4𝜋𝜀mR2n+1

(2n − 1)!!
CM(n)(∇)n−1E

where CM(n) is the general multipole form of the
Clausius–Mossotti factor, given by:

CM(n) =
𝜀∗p − 𝜀∗m

n𝜀∗p + (n + 1)𝜀∗m

In this expression the dipole moment corresponds to
n= 1, withn= 2 the quadrupole;n=3 the octupole and so
on. Consideration of multipoles beyond the quadrupole
are normally not required. The inclusion of the aster-
isks denotes that the complex form 𝜀∗ of the permit-
tivity is considered. This accommodates the presence of
dielectric losses in the particle and surroundingmedium,
addressing another simplification in the basic DEP force
equation, namely that it does not take into account such
energy losses. Washizu [7] demonstrated that contribu-
tions from the quadrupole moment should be included
for particles located near the centre of the ‘polyno-
mial’ electrode design shown in Figure 10.3. At the cen-
tral location the factor (E.∇E) is zero and so no DEP
force is created. At locations within one particle radius
from the centre, the induced quadrupole moment con-
tributes significantly to the overall DEP force and should
be included. For distances greater than a particle diam-
eter from the centre, the quadrupole contribution is
insignificant, so that the dipole approximation that gives
the basic DEP equation is sufficiently accurate. Higher
order moments are also important for the circumferen-
tially periodic electrode structures used to achieve pas-
sive DEP levitation of particles, where pronounced size-
dependent effects not anticipated by the standard DEP
theory have been observed by Washizu, Jones and Kaler
[8, 9]. Higher order moments are responsible for the
levitation force achieved by such electrode structures
because the electric field is zero along the central axis of
such electrodes. As a general rule, higher order moment
effects can be ignored where the particle diameter is less
than around one-tenth of the interelectrode spacing. For
example, Schnelle et al. [10] investigated the situation for
DEP field cages formed by a sandwich structure of two
planar quadrupole electrodes (see Figure 10.4) and con-
cluded that quadrupole moment forces contribute ∼5%
of the total DEP force for particles larger than about a
quarter of the electrode spacing. For particles smaller in
diameter than about a tenth of the electrode spacing, the
error arising from a DEP force calculation that ignores
the quadrupole contribution is typically smaller than 1%.
A factor to be considered with the higher order

induced moments is that their potentials fall off more
rapidly with distance r as their order increases. For exam-
ple, the dipole potential falls off as 1/r2, whereas the
quadrupole potential falls off as 1/r4. This is of relevance
regarding another significant approximation made in the
derivation of the basic DEP force equation, namely that
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the polarized particle is assumed to be far removed from
the perturbing influence of another polarized particle, or
from the surface of an electrode or a boundary wall of
the fluidic chamber, for example. The effects of higher
order moments can therefore become significant in the
situation where cells approach each other to form pearl
chains, such as those shown in Figure 10.31, orwhere par-
ticles experience the image forces shown in Figure 5.21
when they are close to an electrode surface or chamber
wall.
A multipole analysis was also applied by Jones and

Washizu [11] to traveling wave dielectrophoresis. An
important conclusion was that the various multipolar
DEP forces show similar frequency dependencies.This is
significant in the context of Equation (10.37):

⟨FDEP⟩ ≈ 2𝜋𝜀o𝜀mR3

[
f 2 − f 2xo1
f 2 + 2f 2xo1

]
∇E2rms

which demonstrates the practical significance of the
Clausius–Mossotti factor in the DEP separation of dif-
ferent cell types in a cell mixture. Multipole effects could
slightly influence the magnitude of the DEP force, but
should not influence the value of the DEP crossover
frequency fxo1 and thus the protocol adopted for the
DEP sorting of cell mixtures. In most applications of
DEP the most important experimental factor is identi-
fication of the appropriate operating frequency f, tak-
ing into account the value (or range of values) of fxo1
for the target cell, with other considerations such as the
rate of fluid flow. Accurate knowledge, to within ±10%,
of the DEP force is of no real practical consequence. The
basic DEP force equation, formulated using the equiva-
lent dipole moment approximation and the assumption
that the particle ismuch smaller than the scale of the field
nonuniformity, serves most purposes very well. These
approximations are also valid for the electrorotation and
traveling wave dielectrophoresis phenomena not consid-
ered by Pohl. However, the approximation that the polar-
ized particle is exposed to an external field of infinite
extent, unperturbed by other fields, can lead to inaccu-
racies when the particle is in close vicinity to a metal sur-
face or dielectric boundary. This includes the anomalous
DEP effects identified by Camarda et al. [86].
Pohl [87,88] sometimes employedmetal wires and thin

sheet electrodes to produce nonuniform fields, which
required the application of DC or AC voltage potentials
of up to 11 kV. Joule heating effects often perturbed the
DEP-induced motions of the particles. The parameter
(E.∇)E in Equation (10.8) has units of V2m−3, provid-
ing the clue that by miniaturizing the electrodes much
smaller applied voltages would result in the same mag-
nitude of DEP force, but would avoid undue thermal and
electrolysis effects [94].The impact thatmicrofabrication

technologies have made on the DEP field has been sum-
marized in this chapter. A particularly good review has
also been given byMartinez-Duarte [199]. Until compar-
atively recently, DEP devices that usemetal-basedmicro-
electrodes have tended to dominate the field, but they are
perceived to have disadvantages related to their cost and
complication of fabrication. In this author’s view, more
valid objections relate to the fact that frequencies below
∼5 kHz are not attainable because of problems associated
with fluid motion induced by electroosmosis and elec-
trochemical / electrolysis effects that can lead to the gen-
eration of gas bubbles. DEP ‘tweezers’, capable of select-
ing an individual cell from amongst other cells, picking
it up and then releasing it at a new location for further
investigations ormanipulation (e.g., patch-clamp or elec-
trorotation studies) can find useful applications in many
areas of cell biology and tissue engineering.They operate
at frequencies above 5 kHz and can be fabricated quite
simply and at low cost, in the form of vacuum deposited
metal electrodes at a capillary or sharpened glass tip [205,
207]. An even simpler design uses two electrochemically
etched gold wires insulated from each other, except for a
short region near the electrode tips [208]. The simplest
electromanipulation device, utilizing DEP, consists of a
single wire and can be realized using low cost and com-
mercially available microelectrodes commonly found in
electrophysiology laboratories [209]. Apart from being
able to manipulate individual cells (e.g., see Figure 10.44)
this form of device has also been demonstrated to alter
the location of intracellular organelles, such as chloro-
plasts in algae or pollen tubes [209]. A relatively sim-
ple metal electrode structure is also used in an innova-
tive isodielectric cell separation device that incorporates
a fluidic conductivity gradient [210, 211]. The electrodes
guide the cells in the direction of decreasing medium
conductivity, until the DEP force becomes comparable
to the viscous drag force of a fluid flowing over the elec-
trodes.The cells then move with the fluid flow (as shown
in Figure 10.45) for collection at different sampling ports,
segregated according to their dielectric properties (and
not on cell size, for example).
Masuda, Washizu and Nanba [152,153] demonstrated

that insulating structures placed in a microfluidic chan-
nel could distort an imposed electric field sufficiently
enough to generate a DEP force on cells. This con-
cept of insulator-based (iDEP) devices has been signifi-
cantly advanced by the pioneering works of Chou et al.
[154, 155], Cummings, Singh, Simmons and Lapizco-
Encinas, for example [e.g., 156–161]. Interesting and
exploitable balances between electrophoretic, electroos-
motic and dielectrophoretic forces have been demon-
strated and niche applications such as the efficient
sorting of rare (larger sized) particles from a million-
fold or greater number of smaller particles has been
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demonstrated by LaLonde et al. [188], together with
the concentrating of protein nanocrystals [189], DNA
[190] and mitochondria [191]. The advantages that iDEP
devices have over electrode-based DEP devices include
their easier construction and ability to operate at DC
or low frequencies. Downsides are that iDEP devices
have generally been operated at much larger voltage
potentials and field strengths, which can create undesir-
able Joule heating effects, coupled with the fact that the
perceived advantage of using electroosmotic fluid flow
rather than pressure-driven pumping can lead to much
lower volumetric particle throughput. This means that
heat-sensitive particles such as cells can be exposed to
high fields for longer periods in an iDEP device than
is generally the case with an electrode-based device.

Three-dimensional structures, which lead to increased
volumetric throughput, are certainly possible in iDEP
devices [e.g., 187] and can probably be addressed. Liquid
electrodes, where conducting narrow fluid channels elec-
trically connect metal electrodes to a main channel have
also been described [192–197] and merit further study.
Finally, a recent innovation has been the use of three-
dimensional carbon electrodes in DEP devices [201,202].
The indications are that such electrodes will compete
very well with metal ones. Although they are less con-
ductive and so require higher applied voltage potentials,
carbon electrodes are electrochemically less active than
metal ones, can operate at frequencies below 1 kHz and
are readily fabricated into three-dimensional structures
[200].
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 Sauer, F. A. and Schlögl, R. W. (1985) Torques exerted
on cylinders and spheres by external electromagnetic
fields, in Interactions between Electromagnetic Fields
and Cells (eds A. Chiabrera, C. Nicolini and H. P.
Schwan). Plenum Press, New York, NY, pp. 203–
251.

 Wang, X., Wang, X.-B. and Gascoyne, P. R. C. (1997)
General expressions for dielectrophoretic force and
electrorotational torque derived using the Maxwell
stress tensor method. J. Electrostatics 39, 277–295.

 Ramo, S., Whinnery, J. R. and Van Duzer, T. (1994)
Fields and Waves in Communication Electronics, 3rd
edn. John Wiley & Sons, Inc., New York, NY,
Appendix 4, pp. 825–827.

 Jones, T. B. (1995) Electromechanics of Particles,
Cambridge University Press, Cambridge.

 Chang, H.-C. and Yeo, L. Y. (2010) Electrokinetically
Driven Microfluidics and Nanofluidics, Cambridge
University Press, Cambridge.



10 Theoretical and Practical Considerations 

 Asami, K., Takahashi, Y. and Takashima, S. (1989)
Dielectric properties of mouse lymphocytes and
erythrocytes. Biochim. Biophys. Acta 1010(1), 49–55.

 Wang, X.-B., Huang, Y., Hölzel, R., Burt, J. P. H. and
Pethig, R. (1993) Theoretical and experimental
investigations of the interdependence of the dielectric,
dielectrophoretic and electrorotational behaviour of
colloidal particles. J. Phys. D: Appl. Phys. 26, 312–322.

 Grosse, C. and Schwan, H. P. (1992) Cellular
membrane potentials induced by alternating fields.
Biophys. J. 63, 1632–1642.

 Huang, Y., Wang, X.-B., Becker, F. F. and Gascoyne, P.
R. C. (1996) Membrane changes associated with the
temperature-sensitive P85gag-mos-dependent
transformation of rat kidney cells as determined by
dielectrophoresis and electrorotation. Biochim.
Biophys. Acta 1282, 76–84.

 Pethig, R., Jakubek, L., Sanger, R. H. et al. (2005)
Electrokinetic measurements of membrane
capacitance and conductance for pancreatic 𝛽-cells.
IEE Proc. Nanobiotechnol. 152(6), 189–193.

 Schwan, H. P. (1957) Electrical properties of tissue and
cell suspensions, in Advances in Biological and
Medical Physics (eds J. H. Lawrence and C. A. Tobias).
Vol. V, Academic Press, New York, NY, pp. 147–209.

 Pauly, von H. and Schwan, H. P. (1959) Über die
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Dielectrophoretic Studies of Bioparticles

. Introduction

The first demonstration that dielectrophoresis (DEP)
could find useful applications in the biomedical sciences
was the report in 1966 by Pohl and Hawk [1] that heat-
killed yeast cells (Saccharomyces cerevisiae) could be sep-
arated from living yeast. Herb Pohl thought this was
probably the first time a purely physical technique had
been used to both distinguish and separate live and dead
cells at the same time. There is no evidence in the lit-
erature to suggest otherwise. Twelve years later, in his
seminal book on dielectrophoresis, Pohl could describe
in some detail the DEP characterization of yeast cells and
several types of bacteria, as well as preliminary results for
blood platelets, chloroplasts, erythrocytes, green algae
and mitochondria. He also provided preliminary results
for the use of DEP to form masses of living cells, as
well as the continuous DEP separation of some cell types
from cell mixtures. The preliminary results were either
described in the theses of Pohl’sMSc students (I. L. Hawk
[1967]; K. L.Wiley [1970]; C. S. Chen [1972]; J. E. Rhoads
[1973]) or formed part of work in progress with Kaler for
later publication [2]. This work with Kaler describes the
continuous DEP separation of yeast from green algae.
The objective of this chapter is to outline, with refer-

ences to carefully chosen publications, the progress that
has been achieved over the past 50 years in the various
avenues of DEP described by Pohl. At the time of Pohl’s
book (1978), there were 16 reports on biological DEP
to be found in the published literature, all but four of
which had originated from his laboratory in Oklahoma.
A search in November 2015, using the Web of Science
Core Collection and other databases, revealed that well
over 4500 publications on the theory and applications of
DEP have been published since 1978!
Of Pohl’s many achievements, the demonstration that

DEP is able to separate dead cells from live ones is of par-
ticular importance. It is the first topic in this chapter.

. DEP Characterization and Separation
of Live and Dead Cells

To employ an expression that comes from basketball in
the United States, distinguishing and selectively sepa-
rating dead cells (having degraded plasma membranes)
from live cells is a ‘slam-dunk’ application for DEP. Before
describing the reasons for this and giving examples from
the literature, it is of value to consider the ways in which
a cell can die.

11.2.1 Types of Cell Death

There are three main processes leading to cell death,
namely necrosis, apoptosis and autophagy [3–13]. With
review titles such as: ‘A blast from the past’ [6]; ‘Eat me
or die’ [7], ‘Can’t live without them, can live with them’
[9], ‘Cell death in the neighbourhood’ [10] and ‘Means
to an end’ [11], the subject appears to attract those with
a special, if not morbid, sense of humour. Schematics of
necrosis and apoptosis are shown in Figure 11.1. A com-
prehensive review of the dielectric techniques, including
dielectric spectroscopy andDEP,which have been used to
investigate cell viability is given by Patel and Markx [14].
Necrosis is the premature death of a cell due to acute

stress or injury, caused for example by exposure to tox-
ins, change of pH, heat or radiation, nutrient or oxygen
deprivation, hypertonic or hypotonic conditions, viral
or parasite infection. Many of these can also elicit pro-
grammed cell death (apoptosis). These external assaults
lead to unregulated self-digestion (autolysis) of cell com-
ponents, performed by its own enzymes, which degrade
proteins. This results in loss of integrity of the plasma
membrane and the membranes of internal organelles,
producing uncontrolled release of cell death products
into the external environment. This commonly leads to
an inflammatory response in tissues. Unless the cells are

Dielectrophoresis: Theory, Methodology and Biological Applications, First Edition. Ronald Pethig.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.



 Dielectrophoresis

Apoptosis

Necrosis
Viable 
cell

Swelling

Blebbing

Lysis

Fragmentation

(a)

• •••

• •• •
• •

•

•• •
• •

•• ••

• •

(b)

Figure . Two of the ways that a viable cell may die. (a) Necrosis:
this is initiated by cell trauma. The plasma membrane loses its
integrity, the cell’s organelles swell, leading to cell lysis and
rupture with leakage of its contents. (b) Apoptosis: a biochemically
regulated process – the cell shrinks, blebs appear on the plasma
membrane, leading to disassembly and fragmentation of the cell’s
contents.

deliberately exposed to a chemical that can induce apop-
tosis, necrosis is probably the most common form of
cell death to occur in a DEP experiment. It is important
to remember that necrosis is a ‘downhill’ process while
apoptosis requires energy, so that in DEP experiments
necrosis is likely to occur when cells are not at physio-
logical temperature, for example.
Programmed cell death is the process mediated by an

intracellular sequence of biochemical events, the best
known form of which is apoptosis. This leads to char-
acteristic changes in the morphology (shape, structure,
size) of a cell and finally to its destruction. One of the
first changes is the degrading of the cytoskeleton and
its decoupling from the plasma membrane. This gives
the membrane sufficient flexibility to bulge and form
what are known as blebs. The normally asymmetrical
transmembrane distribution of phospholipids also reor-
ganizes in such a way that phosphatidylserine, normally
localized exclusively in the cell’s inner membrane leaflet,
redistributes to the outer membrane leaflet. This can be
identified by the ability of the cells to bind Annexin-V
[5]. (Annexin-V is a Ca2+-dependent anticoagulant
protein that has high affinity for negatively charged
phosphatidylserine and when conjugated with a fluo-
rochrome can be used as a marker to identify apoptosis.)
The cell nucleus also fragments, so that complexes of
DNA and protein dissociate from the chromosomes
and are released and distributed within the cytoplasm.
The various components of the fragmented cell are
partitioned into small packages known as apoptotic
bodies, before being engulfed by phagocytes. Phagocy-
tosis prevents the contents of the cell leaking out, which

could cause inflammatory sequelae and include death of
additional cells. One of the pathways to apoptosis is the
so-called extrinsic pathway of apoptosis, mediated by
death-receptor ligands on the cell surface. An alternative
route, the intrinsic pathway, is activated by multiple
stimuli and is characterized by regulatory proteins being
released from the intermembrane space of mitochondria
located in the cytoplasm. Both pathways (which are
interconnected) activate enzymes, called caspases,
which degrade other proteins. Controlled apoptosis
endows advantages to an organism. An often cited
example of this is the removal of cells that initially bind
together the fingers and toes of a developing human
embryo. Defective apoptotic processes can lead to dis-
ease. For example, excessive apoptosis can result in the
breakdown of tissue, whereas the opposite situation can
produce uncontrolled cell proliferation – as in cancer.
Another pathway that can lead to cell death, not

shown in Figure 11.1, is a regulated process known
as autophagy [12]. Autophagy is responsible for the
lysosome-mediated degradation of damaged proteins
and organelles. This process starts with the formation
of a double-membrane bound vesicle in the cytoplasm,
known as an autophagosome. This vesicle fuses with a
lysosome to become an autolysosome and acts to ‘eat up’
damaged organelles in the cytoplasm.

11.2.2 Yeast Cells

11.2.2.1 Structure and Life Cycle
Yeast cells are unicellular eukaryotes (they possess a
nucleus) and are classified as members of the fungus
kingdom. They number around 1500 species, although
when referring to yeast most people have in mind the
species Saccharomyces cerevisiae – the name given by
Franz Meyen in 1837 to an organism discovered in malt
used for beer brewing. By fermentation, S. cerevisiae
converts carbohydrates to carbon dioxide and alcohol,
which for at least two thousand years has been exploited
in baking and wine / beer production. As the fruit fly or
squid axon is to genetics or electrophysiology, respec-
tively, so is S. cerevisiae to the study of dielectrophoresis.
It is readily available as bakers’ or brewers’ yeast; can
be readily cultured by engineers or physicists lacking
cell biology training; harvested at various stages of its
life cycle; is resilient enough to withstand abuse in the
hands of an engineer (e.g., suspending in distilled water,
exposing to high electric fields); nonviable (dead) cells
are easily identified by a simple dye treatment using
methylene blue. The first test bioparticle of choice for
newcomers to DEP has been S. cerevisiae. They (the
cells) are typically round to ovoid in shape and 5∼10μm
in diameter, thus lending themselves amenable to theo-
retical modelling and observation of their DEP response
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Figure . Yeast cells collecting as pearl chains by positive DEP at
the rounded tip of a platinum wire [15].

using standard microscopy. A photomicrograph [15]
of viable yeast cells collecting by positive DEP at the
rounded tip of a platinum wire is shown in Figure 11.2.
As for all fungi, yeast may have asexual and sexual

life cycles. The most common form of vegetative yeast
growth is asexual reproduction by budding – where a
daughter cell in the form of a small bud appears on the
parent cell. The nucleus of the parent cell splits into a
daughter nucleus andmigrates into the daughter cell.The
bud continues to grow until it forms a new cell on sepa-
rating from the parent cell. A daughter cell is generally
smaller than its parent. A photomicrograph of a divid-
ing yeast cell is shown in Figure 11.3. Another species of
yeast, also used in brewing and baking, which has been
studied by DEP, is Schizosaccharomyces pombe. This is
also known as fission yeast, which, as its name implies,
reproduces by fission instead of budding. It is a rod-
shaped cell, 3∼4μm in diameter and 7∼14μm in length,
which grows from its tips and then divides to create
two identical daughter cells (∼7μm long). S. pombe is an

Mitochondria

Periplasm

Septum

Spindle

Cell well

Vacucle

Nucleus

Figure . Photomicrograph of a dividing yeast cell [16].

important organism in the study of cellular responses to
DNA damage and the process of DNA replication.
The cytosol of the dividing yeast cell shown in Fig-

ure 11.3 is surrounded by a cell envelope. As viewed
from outside the cell and progressing into its interior,
the cell envelope consists of an external cell wall, the
periplasmic space and then the plasma membrane. The
cell wall is a rigid structure about 100–200 nm thick and
constitutes about 25% of the total dry mass of the cell.
This wall prevents the cell from overexpansion when
water enters its interior, as will occur when suspended
(for a DEP experiment) in an aqueous medium of low
ionic strength. The composition of the cell wall can vary
according to growth conditions, but is essentially com-
posed of just four types of macromolecule, namely gly-
coproteins, chitin and two types of 𝛽-glucans. Chitin
is a tough material formed of a long-chain polymer of
glucosamine, constituting the shell of a crab and the
exoskeleton of a beetle, for example. It is the reason why
yeast cells are so robust.The periplasmic space is narrow,
3.5∼4.5 nm inwidth, containingmainly secreted proteins
such as invertase and phosphatase, which catabolize sub-
strates that are unable to cross the plasma membrane
into the cytosol. The plasma membrane of S. cerevisiae is
about 7.5 nm thick, which like mammalian cells consists
of a lipid bilayer containing proteins that act as cytoskele-
tal anchors and as enzymes for ion channel transport,
cell wall synthesis, osmotic control and signal transduc-
tion, for example.The cytoplasm contains solublemacro-
molecules such as proteins and glycogen, as well as ribo-
somes, lipid particles and mitochondria.The nucleus has
a diameter of∼1.5μm, surrounded by an inner and outer
nuclear membrane. Nuclear pore complexes, 50∼100 nm
in diameter, form channels through thesemembranes for
the exchange of components between the nucleus and
cytosol. At cell division, motor proteins (kinesins) move
the mitotic spindle attached to the nucleus into the nar-
row neck between the parent and daughter cell, to segre-
gate accurately the duplicated chromosomes. As can be
seen in Figure 11.3 a dominant feature of a yeast cell is the
vacuole, whichmay occupy up to 30% of the total cell vol-
ume. This organelle has a single membrane and amongst
other functions acts as a store of simple amino acids and
metal cations (K+, Mg2+, Ca2+). They are dynamic struc-
tures, which may exist in a cell as a single large com-
partment or as several smaller ones.Whilst the cytosol is
maintained at ∼pH 7.2, an enzyme (ATPase) in the vac-
uole membrane maintains the vacuolar pH at 5.0. This is
the optimum pH for the functioning of more than 40 dif-
ferent hydrolytic enzymes stored within the vacuole, so
that another of its roles is to degrade unwanted proteins
and the products from autophagy.
For at least 100 years in the brewing industry, methy-

lene blue has been used as the standard vital stain for
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yeast. This dye takes on a blue colour when dissolved
in oxygenated water (i.e., in its oxidized form) and can
readily pass through the cell wall and plasma membrane
of either a live or dead yeast cell. In a living yeast cell,
active enzymes called dehydrogenases are involved in the
breaking down of glucose (glycolysis) and in the Krebs
cycle, to produce ATP. These enzymes are capable of
transferring their captured hydrogen atoms tomethylene
blue, thereby chemically reducing it. In its reduced state
methylene blue is colourless. Methylene blue that enters
into a dead cell should not be reduced and will retain its
colour. Methylene violet can also be used in this way as
a vital stain. However, the method is not perfect. Some
dead cells could have enough active enzymes remaining
in them to reduce the dye; in a live cell the dye may bind
to a protein other than a hydrogenase so that it cannot be
reduced. The method can also fail to distinguishing live
and dead cells that have formed a clump of cells. A signifi-
cant disadvantage is that the method does not depend on
the integrity or otherwise of the plasma membrane. For
these reasons trypan blue is favoured. Trypan blue, as its
name implies, is also a blue dye and stains dead cells blue.
Unlike the situation for methylene blue and methylene
violet, the staining action depends on the plasma mem-
brane losing its integrity. An intact and viable plasma
membrane represents an impermeable barrier to trypan
blue – it can only pass across a damaged membrane.
It does though have one disadvantage. Although it has
become the gold standard for nonfluorescent vital dyes,
it is cytotoxic. Cells exposed to trypan blue for too long
will die and stain blue.

11.2.2.2 Live and Dead Yeast
In their DEP experiments with yeast cells, Pohl and
Hawk [1] used a pin-plate electrode arrangement, with
a carefully rounded 0.66mm stainless steel wire facing
a flat steel plate positioned 1mm away. Yeast cells (not
stated, but presumably S. cerevisiae) were killed by heat
treatment at 60–70 ◦C for 3min and simultaneously
stained with crystal violet. These dead cells were mixed
with live ones in water. After successive suspending and
washing of the cells in high-resistivity water, the final
conductivity of the suspending medium fell to a value
in the range from 2.8 to 10mS/m. This conductivity is
equivalent to that of 20–35mM KCl. On application
of a 2.55MHz, 30Vrms, signal to the electrodes, the
live cells clustered at the pin electrode by positive DEP
within a period of 15 to 30 s, whilst the stained dead
cells tended to remain unperturbed in the suspension
medium. Viable cells that had been exposed to the DEP
field for several minutes were removed and cultured.
They grew again on an agar medium, showing that the
cells had not been damaged irreversibly by exposure to
the low ionic strength medium and the high-voltage AC

signal. Further studies by Pohl and Crane [17,18], Mason
and Townsley [19] confirmed these results and added
new details. When using a cell separator with coaxial
cylindrical electrodes, the rate of collection (yield) of
cells was determined in Pohl’s lab by obtaining the slope
of a plot of the total length of pearl chains (such as those
depicted in Figure 11.2) as a function of the square-root
of the length of time (up to ∼5min) the electric field
had been applied. This approach is credited by Pohl
to an original theoretical analysis by John A. Wheeler
[20] and is expanded further in Box 11.1. This analysis
predicts that for a coaxial cylindrical geometry a plot
of cell yield versus

√
t is proportional to the product of

the initial cell concentration and the square root of the
Clausius–Mossotti factor. A linear dependence on

√
t

was observed for cell concentrations up to ∼107 cells/ml,
beyond which concentration the dependence was super-
linear [22, p. 364]. The superlinearity probably arose
from the formation of cell doublets and higher order
pearl chaining before the cells reached the electrode.
This would have the effect of increasing the effective
size of the cells and the DEP force acting on them. As
shown in Box 11.1, for the case of spherical electrode
geometry, a linear relationship is expected for a plot
of the cell yield versus t5/2. Mason and Townsley [19]
determined their cell collection rates by optical density
measurements of the effluent from the sample port,
compared with that of the sample before introduction
into a DEP particle separator. They used a cell separator
of the coaxial cylindrical design shown in Figure 11.4,
which is based on that originally described by Pohl [21].
A basic understanding of why live and dead yeast cells

exhibit a significant difference in their DEP response is
obtained from the modelled DEP frequency-dependent
characteristics shown in Figure 11.5, derived using the
MATLAB program detailed in Box 11.2. This program
employs the double-shell model of a cell, as described in

Main
outlet

Sample
outlet

Central
wire

electrodeCylindrical
electrode

Cell
suspension

Figure . The basic structure of the cylindrical DEP cell separator
described by Mason and Townsley [19] based on that described by
Pohl [21]. Typical dimensions for the outer cylindrical electrode are
2 cm inner diameter, 10 cm height.
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Box . Particle Yields for Cylindrical and Spherical Electrode Geometries

In the absence of fluid flow or other disturbing influences,
the mass yield W by positive DEP of particles at an electrode
depends on the particle mass concentration c and the vol-
ume swept in (Vsi) over time t. For cylindrical and spherical
geometries:

Wcyl = c Vsi = ch(𝜋r2
t ); Wsph = c Vsi = 4c(𝜋r3

t )∕3 (11.1)

where c is the mass concentration of particles, h is the
height of a cylindrical separator and rt is the radius swept
clean in time t. The value of rt will depend on the velocity
v imparted on the particles, which is given by the balance
of the DEP force and viscous drag force. From Stokes’ Law
given by Equation 2.4 and the DEP force given by Equation
(2.19), for a suspension of spherical particles of mean radius
R and suspending medium viscosity 𝜂, this balance is given
by:

2𝜋R3𝜀o𝜀m[CM]𝜕2E∕𝜕r2 = 6𝜋R𝜂v

to give:

v =
𝜀o𝜀mR2[CM]

3𝜂

𝜕2E
𝜕r2

Values for 𝜕2E/𝜕r2 are obtained by differentiating the
expressions for ∇E given in Table 3.2 for the cylindrical elec-
trode and spherical electrode geometries:

Cylindrical: 𝜕2E∕𝜕r2 = 𝜆∕(𝜋𝜀o𝜀mr3).

Spherical: 𝜕2E∕𝜕r2 = 3Q∕(2𝜋 𝜀o𝜀mr4)

where 𝜆 and Q are the charge densities on the inner elec-
trode of the cylindrical and spherical electrodes, respec-
tively. The corresponding particle velocities are thus:

vcyl = R2𝜆[CM]∕(3𝜋𝜂r3); vsph = R2Q[CM]∕(2𝜋𝜂 r4)

A time interval dt can be given as: dt = dr/(𝜕r/𝜕t) = dr/v.
For the two geometries:

Cylindrical: dt = (3𝜋𝜂 r3)dr∕(R2𝜆[CM]) = Kr3dr ;

Spherical: dt = Kr4dr

where K is of fixed magnitude, proportional to [CM]−1, for a
particular experiment. For the two geometries we assume
that the inner electrode radius ri ≪ r, so that

tcyl = K
∫

ri

r
r3dr = K

4
[
r4 − ri

]
≈ K

4
r4;

tsph = K
∫

ri

r
r4dr ≈ K

5
r5

From Equation (11.1) the corresponding collected yields
over time t are:

Wcyl = ch
(
𝜋r2

t

)
= ch(2𝜋∕

√
K)t1∕2;

Wsph = 4c(𝜋r3
t )∕3 = 4c(2𝜋∕

√
K)t5∕2

A plot of cell yield versus t1/2 or t5/2, for the cylindrical and
spherical geometry, respectively, should be linear with a
slope proportional to the cell concentration, the cell radius
and the square root of the Clausius–Mossotti factor [CM].
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Figure . Relative DEP responses (as determined by CM factor
evaluation using the MATLAB program in Box 11.2) of viable and
dead yeast suspended in a medium of conductivity 3 mS/m. The
responses at 2.55 MHz agree qualitatively with those reported at
this conductivity and frequency by Pohl and Hawk [1]. At 10 kHz
dead cells are collected at an electrode whilst live ones are
repelled. The opposite result occurs at 10 MHz.

Chapter 9. It is basically the same as the program given
in Box 9.3, but modified to take into account the exis-
tence of the cell wall. The presence of the vacuole and
nucleus is incorporated into the effective dielectric prop-
erties of the cytosol. This simplification results in only a
small difference in modelled results, compared to those
that would be obtained if the vacuole and nucleus were
included [23, 24].
In early analyses of the dielectric properties of yeast,

it was assumed that the wall conductivity is almost the
same as that of the external suspending medium [25,
26]. However, this did not take account of the work
of Carstensen et al. [27] on the dielectric properties
of the bacterium M. lysodeikticus, regarding counterion
conduction associated with fixed charges (e.g., ionized
groups on glycoproteins) in the cell wall. The following
relationship for the cell wall conductivity 𝜎w was estab-
lished [27]:

𝜎w ≈ cfw𝜇w

⎡⎢⎢⎣1 +
(
2
cm
cfw

)2⎤⎥⎥⎦
1∕2

(11.2)
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Figure . The conductivity of an isolated cell wall of Micrococcus
luteus as a function of the conductivity of the suspending medium
(from Carstensen et al. [27]).

where cfw is the fixed charge concentration in the cell
wall, 𝜇w is the mobility of the counterions in the cell
wall and cm is the ionic concentration of the suspending
medium. For high values of the medium’s ionic concen-
tration, from Equation (11.2) we have:

𝜎w ≈ 2cm𝜇w

The conductivity of themedium is given by 𝜎m = cm𝜇m
where 𝜇m is the mobility of the ions in the bulk solution.
Thus, for high values of the medium conductivity:

𝜎w ≈ 2𝜎m
𝜇w
𝜇m

so that the cell wall conductivity varies in direct propor-
tion to the medium conductivity and the ratio of the ion
mobilities in the wall and bulk electrolyte. Asami and
Yonezawa refer to this ratio as the effective porosity of
the cell wall [23]. As the medium conductivity tends to
lower values, from Equation (11.2) we expect the cell wall
conductivity to reach a constant value determined by the
concentration of fixed charge density in the wall and the
mobility of the counterions.This form of relationship for
the cell wall conductivity as a function of medium con-
ductivity is shown in Figure 11.6 for the case of the bac-
teriaMicrococcus lysodeikticus [27]. For the case of yeast
cells, for a suspending medium conductivity of 2.8mS/m
the ratio (𝜎w/𝜎m) of the cell wall and medium conductiv-
ity was determined as 𝜎w/𝜎m = 0.24, tending to a con-
stant value of 0.1 with increasing medium conductiv-
ity [23]. The capacitance of the plasma membrane was
also determined to be ∼6.5mF/m2 [23]. This low value
indicates that the membrane surface is relatively free of
membrane folds or blebs, possibly reflecting the fact that
under hypotonic conditions it is pressed hard against the
inner cell wall. The relationship between cell wall and
medium conductivity [23], together with the relatively
small membrane capacitance value, is taken into account
in the MATLAB program of Box 11.2. It is also assumed
in the program that themajor effect of the heat treatment
to kill the yeast is to degrade the structure of the plasma

membrane, resulting in a 500-fold reduction of its resis-
tance to passive ion flow and the leakage of ions from
the cytosol into the surrounding medium. The dielectric
properties of the more robust cell wall are assumed to
remain unaltered. Evenwith these arbitrary assumptions,
it is interesting to see that the DEP responses shown in
Figure 11.5 are in good agreement with those reported
[1, 17–19]. At a frequency of 2.55MHz live yeast cells
exhibit strong positive DEP, whilst the dead cells expe-
rience no or little DEP force. Mason and Townsley [19]
found good collection of dead cells (by positive DEP) at
10 kHz, whereas at 100 kHz the rate of collection of dead
cells was less than that of live cells. These results can also
be predicted by the DEP responses shown in Figure 11.5.
In Figure 15.7 of his book [22, p. 367] Pohl provides a plot
of the collection by positive DEP of live yeast cells, as a
function of the conductivity of the suspending medium
and the frequency of the applied voltage signal.The same
conductivity values used by Pohl are employed in the pro-
gram detailed in Box 11.2 to provide the plots shown in
Figure 11.7.The form of the positive DEP responses (Pohl
was unable to evaluate negative DEP effects) shown in
Figure 11.7 closely mirror those described by Pohl.
Mason and Townsley [19] also investigated the pos-

sibility that DEP could separate cells, which differ less
markedly than being dead or alive. It was hoped that
cells different in their respective biochemical makeup
would also differ in their DEP responses. They cultured
yeast under three different nutrient conditions. It was
expected that cells cultured under conditions of a bal-
anced medium might have a higher RNA:protein ratio
than cells cultured under conditions of nitrogen starva-
tion. Likewise, cells grown in a rich medium might have
higher nucleic acid content per cell than cells cultured in
aminimalmedium. Although cells grown under different
culture media could be separated, it was apparent that a
complex function of both cell size and polarizability was
involved. This situation, also revealed through the theo-
retical treatment in Box 11.1, remains an important con-
sideration in devising protocols for the DEP separation of
different cell types.
The formation of cell pearl chains through dielec-

trophoresis can be used as the first step in a procedure
to hybridize cells through electrofusion, with early tests
of this being performed with protoplasts of S. cerevisiae
[28].The yeast cells first have their cell wall removed, usu-
ally by enzyme digestion, to produce protoplasts. They
are then brought together by DEP into an electrode gap,
using a nonuniform field of 33∼670 kV/m at 1–2MHz,
over a period of 2–10min [28, 29]. Membrane fusion
is then induced by subjecting the cells to a high volt-
age pulse, of typical magnitude ∼1500 kV/m and dura-
tion 7∼40μs. Förster and Emeis [29] tested the viability
of protoplasts from S. cerevisiae and S. diastaticus that
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Box . MATLAB Program for Double-Shell Model of a Yeast Cell

1 % YEAST.m
2 % Cytosol: conductivity kc1; permittivity kp1;

radius a1.
3 % Plasma membrane: conductivity kc2;

permittivity kp2.
4 % Cell wall: conductivity kc3, permittivity kp3,

radius a3.
5 % Suspending medium: conductivity kc4;

permittivity kp4.
6 % Plasma membrane thickness d2; Cell Wall

thickness d3.
7 % –––––––––––––––––––––––––––––––––––––––––
8 clear;
9 d2=7.5e-9;
10 d3=1.5e-7;
11 a1=4.0e-6;
12 a2=a1+d2;
13 a3=a2+d3;
14 pO=8.854e-12;
15 f=logspace(3, 8,100);
16 zeroline=f-f;
17 w=2∗pi∗f;
18 % Cytosol conductivity and permittivity.
19 % Live Cell : kc1=0.5 S/m; kp1=50.
20 % Dead Cell : kc1=50 mS/m; kp1=50.
21 kc1=0.5;
22 %kc1=5e-2;
23 kp1=50∗pO;
24 % Plasma membrane conductivity kc2 and

capacitance Cm.
25 % Live Cell: kc2=5 exp-7 S/m; Cm=7 mS/mˆ2.
26 % Dead Cell: kc2=1 exp-5 S/m; Cm=7 mS/mˆ2.

27 kc2=5e-7;
28 % kc2=1e-5;
29 Cm=7e-3;
30 kp2=Cm∗d2;
31 % Cell Wall conductivity kc3 and permittivity

kp3.
32 % Viable and dead cell: kc3=0.24∗kc4; kp3=60.
33 kc3=0.24∗kc4;
34 kp3=60∗pO;
35 % Suspending medium conductivity kc4 and

permittivity kp4.
36 kc4=2.8e-3;
37 kp4=79∗pO;
38 k1=kp1-i∗kc1 ./w;
39 k2=kp2-i∗kc2 ./w;
40 k3=kp3-i∗kc3 ./w;
41 k4=kp4-i∗kc4 ./w;
42 am1=a1ˆ3;
43 am2=a2ˆ3;
44 am3=a3ˆ3;
45 keff2=k2 .∗(am2∗(k1+2∗k2)-2∗am1∗(k2-k1))

./(am2∗(k1+2∗k2)+…am1∗(k2-k1));
46 keff3=k3 .∗(am3∗(keff2+2∗k3)-2∗am2∗(k3- keff2))

./(am3∗(keff2+2∗k3)+keff2)) ./(am3∗(keff2+2∗k3)
+am2∗(k3-keff2));

47 m=(keff3-k4) ./(keff3+2∗k4);
48 rm=real(m);
49 plot(log10(f), rm,'o', log10(f),zeroline,'-');
50 xlabel('Log Frequency (Hz)')
51 ylabel('DEP Response')
52 hold on
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Figure . Relative DEP response (as determined by CM-factor
evaluation using the MATLAB program in Box 11.2) of viable yeast
as a function of frequency and medium conductivity. (a)
0.32 mS/m; (b) 2.12 mS/m; (c) 15.6 mS/m; (d) 91 mS/m.

had been electrofused over this range of electrical treat-
ments. The regeneration rates of yeast protoplasts col-
lected under the conditions employed for the DEP and
electrofusion steps did not differ from those of proto-
plasts that had been maintained under the same exper-
imental conditions, but had not been subjected to the
electric field treatments. This was an important fact to
establish, because a common first question by biologists
introduced to DEP is to enquire about the cell damage
caused by exposure to the electric field.
The first detailed differences in the DEP behaviour of

live and dead yeast cells appear to be those reported by
Huang et al. [30]. The best fit curves to this data (which
also included electrorotation responses) are shown in
Figure 11.8. The relative permittivity values of the cell
wall (60), plasma membrane (6) and cytosol (50) were
assumed to remain unchanged after heat treatment
(75 ◦C for 5min), as is the case for the modeled DEP
responses shown in Figure 11.5. The best-fit conductiv-
ity values of the cell wall, plasma membrane and cytosol
were determined to be 14mS/m; 2.5 × 10−7 S/m and
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Figure . Dielectrophoretic (DEP) and electrorotation (ROT)
spectra obtained for live S. cerevisiae and heat-treated (dead) cells.
The curves are the best fits to experimental data reported by
Huang et al. [30].

0.2 S/m, respectively [30]. After heat treatment, these val-
ues changed to 1.5mS/m; 1.6 × 10−4 S/m and 7mS/m,
respectively. The large reduction in cytosol conductiv-
ity after cell death indicates that ions in the cytosol were
able to leak across the damaged plasmamembrane, down
their osmotic gradients, into the suspending medium (of
conductivity 0.5mS/m). The difference in electrokinetic
behaviour of the live and dead yeast cells is particularly
evident when the DEP and electrorotation results (ROT)
are displayed as a function of frequency in the geometri-
cal formof anArgand plot, as shown in Figure 11.9. (Sight
of this geometric distinction between life and death still
induces a sense of awe in the author.) The semicircu-
lar form of these Argand plots is a manifestation of the
Kramers–Krönig relations described in Chapter 7 (sec-
tion 7.3.1) and outlined further in Box 10.8.The underly-
ing dielectric phenomena that give rise to their semicir-
cular form are also described by Wang et al. [31].
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Figure . Geometrical representations of the variations of the
normalized DEP velocity and electrorotation (ROT) rate as a
function of frequency for live and dead (heat-treated) S. cerevisiae
cells. The normalizations were such that the velocities were
directly equal to the DEP force and ROT torque factors Re[CM] and
−Im[CM] of Equations (10.27) and (10.52), respectively. (Based on
Wang et al. [31].)

Markx et al. [32, 33] demonstrated that known
mixtures of live and dead S. cerevisiae cells could be
separated with good efficiency by DEP using castellated,
interdigitated, microelectrodes. Through measurement
of cell viability by staining with methylene blue and plate
counts, for an initial cell concentration of ∼1.4 × 107
cells/ml containing 60% nonviable cells, the DEP sepa-
rated nonviable fraction contained 3% viable cells, with
the viable fraction 8%dead cells. Fromdirectmicroscopic
observations of theDEP effect onmethylene blue-treated
suspensions, this ‘contamination’ was found to occur
because nonviable cells were sterically hindered and
even trapped by the viable cells. This effect was reduced
significantly on tenfold dilution of the initial suspension.
Improved efficiency of separation was also obtained by
passing the cells through two or more stages of DEP
separation. Patel et al. [34] reported that the dielectric
capacitance of suspensions and the DEP behaviour of
dying and dead yeast cells were both strongly dependent
on the method used to induce cell death. Methods (e.g.,
heat treatment) that cause denaturation of proteins
and directly affect the membrane permeability and
consequently the membrane and internal conductivities,
resulted in large changes in DEP behaviour, whereas
methods that affected the cell interior but had little
effect on the cell membrane resulted in small or no
changes in the dielectric properties of the cells. Methods
deemed to damage the plasma membrane were heat
treatment and solubilization with iso-octonal, whilst
lethal treatments that did not damage the membrane
were glutaraldehyde to stabilize (fix by crosslinking) the
membrane and the multipurpose disinfectant, Virkon.
These findings were taken to imply that, depending on
the method by which cell death is induced, DEP will
not always be able to separate viable from nonviable
cells. The difference in the DEP behaviour of viable and
nonviable cells, as demonstrated in Figures 11.8 and 11.9
and also discussed by Patel and Markx [13], is caused
by the Maxwell–Wagner interfacial polarization arising
from the plasmamembrane acting as a high resistance to
passive ion flow across it. The fact that an environmental
stress on the cell, which causes minimal damage to the
plasma membrane and leads to no or minimal change
in its DEP behaviour, is on its own not surprising.
(Although it should be mentioned that fixing a cell with
glutaraldehyde typically results in cell shrinkage and
membrane ‘ruffling’, which is an effect usually distin-
guishable by DEP.) However, if this stress leads to lethal
damage to the cell interior and nucleus, such as protein
synthesis inhibition or DNA fragmentation, it should be
expected that amongst secondary effects there would be
damage to the membrane. For example, it is known that
cells undergoing apoptosis maintain their plasma mem-
brane integrity for several hours after initiating nuclear
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damage [14]. Membrane permeabilization, resulting in a
large increase inmembrane conductance and ion leakage
is considered a relatively late-stage event of apoptosis.
It may simply be the case that a toxicant that primarily
targets the plasma membrane results in a more rapid
change of a cell’s DEP characteristic than a toxicant that
primarily attacks enzyme activity or nucleic acid. Patel
et al. [34] have raised important questions regarding the
efficacy of DEP to distinguish between live and dead cells,
which certainly require further study and understanding.
For example, it would be of value to repeat their work
using trypan blue as the vital stain. As discussed in the
previous section, this dye can only pass across a damaged
membrane, whereas methylene blue can pass through
both intact and damaged membranes.The use of Virkon,
which is widely used as a disinfectant, could also be
explored further. It is composed of a surfactant (sodium
dodecybenzene-sulphonate), which disrupts the lipid
structure of a membrane, as well as an oxidizing agent
(potassium peroxymonosulphate).This oxidizing activity
could interfere with the efficacy of methylene blue as
a vital stain (remaining blue even in a viable cell with
active enzymes that might otherwise have reduced it).
Figure 11.8 indicates that, for an appropriate value of

the suspending medium conductivity, whether or not
viable or dead yeast cells exhibit positive or negative DEP
depends on the frequency of the applied field. At low fre-
quencies (below ∼10 kHz) viable and dead cells exhibit
negative and positive DEP, respectively. At 10MHz this
behaviour is reversed. Based on an analysis of the poten-
tial energy surfaces generated by microelectrodes of
interdigitated castellated geometry, aswell as fromexper-
imental findings, it was concluded that particles trapped
in potential energy wells under the action of negative
DEP can more easily be removed from an interdigitated
electrode array (e.g., by fluid flow or gravitational forces)
than those trapped under positive DEP [35]. This is of
relevance to the protocol to be adopted for the separation
of viable and dead cells. By operating at a low frequency
the dead cells can be trapped at the electrodes, whilst the
live ones are carried away over the electrodes and eluted
from the DEP chamber. Trapping the viable cells at a
high frequency (and eluting the dead cells) would expose
them to a high field gradient, increasing the risk of dam-
age or stress-induced physiological changes. As given by
Equation (10.62) the direction and rate of movement of
a cell exposed to a traveling electric field depends on the
polarity and magnitude of Im[Re]. This has been verified
using mixtures of live and dead yeast cells [36, 37]. In
their studies of the electrokinetic behaviour of yeast cells
in travelling electric fields, Huang et al. [36] reported that
within a relatively narrow range of frequencies (400 kHz
to 1MHz) the cells exhibited a random range of spinning,
circular and zig-zag motions along the channel between

the tips of opposing electrodes. This was designated
as the FUN regime of electrokinetic activity, ostensibly
as the acronym for ‘fundamentally unstable’ but really
as an expression of how amusing it was to observe a cell
executing these random motions. However, unless con-
trolled, this effect can compromise the main advantage
of travelling-wave DEP in being able to selectively trans-
port cells along a microchannel without having to pump
the fluid itself. Through both numerical simulations of
the forces involved and experiments with yeast cells,
Nudurupati et al. [38] have provided considerable
insights into what controls the FUN regime and of ways
to minimize its effect.
An advantage of using DEP to sort cells is that it is a

label-free method, not requiring add-on optical or mag-
netic techniques to interrogate fluorescent probes or to
capture magnetically labeled cells, for example. This has
led to investigations of the possibility that DEP can be
used in point-of-care diagnostics. An excellent example
of this is the combination of a DEP cell separator and cell
counter on a single chip, as described by Mernier et al.
[39]. In this device living and dead yeast cells were sep-
arated by DEP and counted using the coulter method,
to determine the percentage of living and dead cells
for viability studies of cell samples. The authors suggest
that this device could further be used, for sorting and
counting blood cells, in applications such as diagnosis of
insufficient cell concentrations, identification of cell defi-
ciencies or bacterial contamination. A novel microflu-
idic approach, termed reservoir-based dielectrophoresis
(rDEP) to separate cells by viability has been described
by Patel et al. [40]. Its effectiveness was demonstrated
by selectively trapping dead yeast cells at a microchan-
nel junctionwithin a reservoir containing the cells, whilst
continuously separating them from live cells.This has the
significant advantage of eliminating ‘dead spaces’ within
fluidic channels and as envisaged by the authors can be
readily integrated with other components into lab-on-
a-chip devices for applications to biomedical diagnos-
tics and therapeutics. Budding yeast cells offer a versatile
model of eukaryotic cells for cytological studies because
their genome is well understood and links can be drawn
to higher eukaryotes. Tang et al. [41] have demonstrated
that theDEP responses of budding and nonbudding yeast
cells are so different that they can efficiently be separated
and immobilized onto microelectrodes at desired densi-
ties down to the level of a single cell. Once immobilized
the budding yeasts can be converted to sphereoplasts or
protoplasts using the enzyme lyticase to lyse their cell
walls [41].
An exciting development has been the identification

by Vahey et al. [42] of genes whose deletions change
the electrical conductivity of a yeast cell. This work
used the genetically bar-coded yeast deletion library
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and high-throughput sequencing for quantifying strain
abundance [43]. The Saccharomyces cerevisiae sequenc-
ing project (1998–2002) resulted in the yeast deletion
collection, also known as the yeast knockout set, which
comprises 21 000 mutant strains and represents the only
complete collection for any organism [44]. Using their
iso-dielectrophoretic separation method [45] described
in Chapter 10, Vahey et al. [42] characterized the DEP
properties of ∼107 cells that had been pooled from
approximately 5000 strains of S. cerevisiae. Through its
barcodedDNA the strain type of each yeast cell was iden-
tified and matched to its DEP characteristic at 300 kHz
(to probe the electrical properties of the cell envelope)
and at 10MHz (to probe the cell interior). A determina-
tion was made of the mean and variance in conductivity
for each strain, as a measure of how electrically dis-
tinguishable they were. 419 strains were identified
whose dielectric properties differed on average from the
composite pool. An interesting correlation was found
between strains exhibiting altered dielectric properties
and those exhibiting defects in fitness (i.e., growth under
various stresses). For example, strains with increased
cell envelope conductivity had a high incidence of ionic
sensitivity (more than tenfold higher than expectation)
while strains with decreased cytoplasmic conductivity
were enriched for sensitivity to nutritional limitations
(more than fivefold higher representation than across
the genome). Overall, ∼30% of strains with altered
electrical properties exhibited a fitness defect, with
the largest overlap occurring for strains with decreased
cyoplasmic conductivity. Strains with decreased effective
conductivity were also found to be significantly enriched
for shapes that could be described as round, small
and dumped, whereas strains with increased effective
conductivity were enriched for ellipsoidal morphologies.
However, the data also revealed that morphological
changes were neither necessary nor sufficient to change
the electrical properties of a cell, pointing to a substantial
set of mutations that alter electrical properties through
changes that are more subtle than those associated with
visibly different morphology (such as having different
depolarization factors related to an ellipsoidal rather
than spherical shape). The important question was also
addressed as to whether changes in the electrical prop-
erties of the cell envelope or intracellular space would
result from the deletion of proteins localizing to these
compartments, or whether the connection between
gene deletion and electrical change is more complex. It
was found that a significantly enriched fraction of genes
whose deletion changes cell envelope conductivity code
for proteins that localize to the cytoplasm and nucleus.
This suggests that downstream functional consequences
of a protein’s absence determine electrical differences,
rather than the direct physical consequences of the

protein’s absence. So, to summarize, by sorting the
deletion collection into fractions with different electrical
characteristics and counting the relative abundance of
each strain within the different fractions, Vahey et al.
[42] were able to generate for the first time a genome-
wide mapping between genotype and DEP phenotype.
This mapping revealed that dielectric properties are
largely independent of, and thus complimentary to,
other phenotypic data including fitness and morphology.
This enables the ability to identify specific processes and
pathways whose perturbations can be detected through
changes in DEP properties. It also demonstrates the
feasibility of performing whole-genome screens based
on intrinsic properties – a methodology that can be
translated to other devices (including the hybrid-DEP
devices described in Chapter 1) that sort cells based
upon physical properties other than their dielectric ones.

11.2.3 Yeast as a Model Cell for DEP Studies

Since the publication of Pohl’s book [22] in 1978, around
300 publications have described the use of yeast as the
model particle in various aspects of DEP. The extent of
such studies can be appreciated from the following exam-
ples of this work.
The kinetics of pearl-chain formation of yeast cells

were studied by Schmidt et al. [46] for application as
a parameter for measuring the DEP of cells, whilst
Venkatesh and Markx [47] performed a systematic study
of the parameters that influence the height of cell aggre-
gates formed by positive DEP. Interdigitated electrodes
(of optimum characteristic size, which depended on cell
type and size) with oppositely placed castellations gave
higher aggregate heights than interdigitated parallel
electrodes. Following simple rules, such as an optimal
frequency of 1MHz; as low as possible conductivity
of the suspending medium and fluid flow rate through
the chamber; it was shown possible to create aggregate
cell heights of over 150μm for all the three cell types
(bacteria, yeasts and mammalian cells) studied, using
voltages of only 20Vpk-pk. In studies directed towards
developing electrorheological fluids, Kadaksham et al.
[48] studied the induced transient clustering of sus-
pended viable yeast cells in a microelectrode device on
the sudden application of an AC field gradient. Two dis-
tinct regimes of positive DEP were identified. Although
for both regimes the cells eventually clustered at the
electrodes edges, their transient behavior and their final
arrangement were quite different. When the frequency
was much smaller than the crossover frequency, yeast
cells near the electrodes quickly rearranged in well
defined chains and then moved toward the electrode
edges, remaining aligned as elongated chains at their
final location. However, when the frequency was close
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to the crossover frequency, the cells moved individually
towards the regions of collection and simply agglomer-
ated along the electrode edges. Analysis of these effects
showed that in the first regime both the DEP force and
the mutual DEP force arising from electrostatic particle-
particle interactions were important. In the second
regime only the DEP force dominated [48]. Different
methods have been described to quantitatively monitor
the DEP behaviour of cells and other colloidal particles.
A dual beam optical spectrometer was developed by
Talary and Pethig [49] having the advantage over previ-
ous DEP experiments of having the ability to characterize
both positive and negative DEP. This provided a simple
method for deriving the practical conditions required for
the selective manipulation and separation of cells using
DEP forces. Measurements were reported for viable and
nonviable yeast cells, as a function of the conductivity of
their suspending medium and also of the magnitude and
frequency of the applied AC voltage.
Yeast cells have been employed as the test bioparti-

cle for developing methods to control the translational
movement of cells, an interesting example being the
use of two AC fields exhibiting antiparallel field gradi-
ents that can be operated at frequencies ranging from
10Hz to 1GHz [50]. Prasad et al. [51] describe an effi-
cient real-time, multiple-cell tracking platform coupled
with DEP to quantify the dynamics of cell motion and
obtain cell viability information. The use of DEP to pat-
tern and immobilize cells in a hydrogel [52], a microflu-
idic cell-culture chip for trapping, cultivating and releas-
ing selected individual cells [53] and studies of the effects
of cell viability from exposure to DEP fields [54] have all
employed yeast cells. Other examples include the appli-
cation of DEP to improve the sensitivity of PCR [55–57];
programmable microfluidic chips to trap and move cells
and droplets with DEP [58] or as continuous cell sepa-
rators [59]; novel electrode structures, based on textile
technology, for large scale DEP cell separations [60]; trav-
eling wave DEP to concentrate suspended particles in
solution at a subset of electrodes, with impedance sens-
ing to determine the particle concentrations [61].
An interesting example of insulator-based DEP is that

of Suehiro et al. [62], who demonstrated the continuous
separation and recovery of biological cells suspended
in water using a DEP filter. The filter consisted of a
chamber containing about one million glass beads of
diameter 220μm packed between two parallel stainless
steel electrodes.The total volume of beads and free space
in the chamber was 4.2 and 3.8ml, respectively, whilst
each electrode had a small hole that served as inlet and
outlet ports for fluid flow. Without a voltage applied to
the electrodes, viable yeast cells in suspension flowed
freely through the gaps between the beads. However, at
a flow rate of 30ml/hr and an applied electrode potential

of ∼50Vpk–pk the cells were trapped by positive DEP,
preferentially at the lateral surfaces of two adjacent
beads. On removing the applied potential the cells were
released into the flowing fluid. In an experiment where
viable and nonviable yeast cells were mixed at the same
density of 106 cells/ml in 100ml of an aqueous electrolyte
of 0.2mS/m, the DEP filter was operated in a circulation-
flow mode (the outlet fluid returning to the inlet). The
density of viable cells was decreased from 106 cells to 102
cells/ml in a period of 5 h at a fluid flow rate of 60ml/hr.
The density of nonviable yeast cells decreased to ∼105
cells/ml.The yeast Pichia pastoris is a popular eukaryotic
host used in studies of heterologous protein expression.
Strains are available, for example, which are capable of
overexpressing various membrane proteins. Due to their
small size and cell wall, however, P. pastoris cells are not
suitable for direct electrophysiological studies such as
those shown in Figures 9.2 and 9.3. To overcome these
limitations Terpitz et al. [63] produced giant protoplasts
of P. pastoris by means of multicell electrofusion. The
protocol for the electrofusion process was refined by
thorough analysis of the dielectric properties of parental
protoplasts (2–4μm diameter) by means of DEP and
electrorotation. Stable multinucleated protoplasts of a P.
pastoris strain expressing channelrhodopsin-2 (ChR2),
with diameters of up to 35μm, were produced. These
giant protoplasts were suitable for electrophysiological
measurements, as proved by whole-cell patch clamp
recordings of light-induced ChR2-mediated currents,
which was not possible with parental protoplasts.
Finally, Tang et al. [64] have developed a novel DEP-
based microfluidic platform for interfacing nonadherent
cells with high-resolution scanning electron microscopy
(SEM) in the low vacuum mode. This system enables
rapid immobilization and dehydration of cells without
deposition of chemical residues over their surface, also
enabling on-chip chemical stimulation and fixation of
immobilized cells with minimum dislodgement.The sys-
tem was tested by comparing the morphological changes
of nonbudding and budding yeast cells following lyticase
treatment.

11.2.4 Bacteria

Basic details of the structure, morphologies, patho-
genecity and their division into Gram-positive and
Gram-negative types are given in Chapter 9 and
Appendix L. In brief, all bacteria are prokaryotes – they
do not have a well defined nucleus surrounded by a
nuclear envelope. Genetic information is stored in the
form of either a bacterial chromosome or plasmid. The
chromosome contains genes essential for cellular func-
tions, is located in what is referred to as the nucleoid
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Figure . Basic structure of a Gram-positive bacteria (e.g., B.
megaterium). Gram-negative bacteria (e.g., E. coli) have a wider
periplasmic space, an additional (outer) bilayer lipid membrane
and a thinner cell wall. The outer capsule is a polysaccharide layer
found most commonly among Gram-negative bacteria but also
for some Gram-positive bacteria.

region (not surrounded by nuclear envelope) and con-
sists of single, double-stranded, circular DNA. Plasmids
also consist of a single, double-stranded, circular form
of DNA, but are much smaller than a chromosome –
they number from one to several and are located in the
cytosol. Unlike a chromosome they do not contain infor-
mation essential for growth and metabolism, but have
genes giving resistance to drugs and heavy metals. Of
particular relevance to DEP studies is the fact that many
types of bacteria possess a single flagellumor several flag-
ella. By either pushing or pulling the cell through a liquid
medium these long filamentous appendages enable the
cell to move to different parts of their environment, help-
ing them to findnew resources for survival. Such locomo-
tion will obviously compete against a DEP force.
The basic structure of a Gram-positive bacterium,

without flagella, is shown in Figure 11.10. It typically has
a cell wall of thickness∼20 nm, composedmainly (∼90%)
of peptidoglycan and ∼10% teichoic acid. Peptidoglycan,
also called murein, is made from polysaccharide chains
cross-linked by unusual peptides containing D-amino
acids. Gram-positive bacteria are also characterized by
having no, or a small, periplasmic space and a single
lipid bilayer membrane – the inner plasma membrane.
Gram-negative bacteria are characterized by having a
thinner cell wall (that does not contain teichoic acid) and
a larger periplasmic space, as well as a second lipid bilayer
membrane at the outside surface of the cell wall. This
outermembrane contains protein channels called porins,
which allow the passage of small hydrophilic molecules
across it, as well as lipopolysaccharide molecules that
extend into the external medium. Because of their thick
cell wall Gram-positive bacteria are stained purple by
crystal violet, whereas Gram-negative bacteria with their
much thinner wall do not (but can be counterstained
pink by safranin). Through microscope inspection,
we can readily familiarize ourselves with some of the
characteristic shapes of bacteria and the way they
group or cluster together after cell division. Common
examples include: rod-shaped, as for the bacillus genus

of Gram-positive bacteria (e.g., Bacillus cereus) and
the Gram-negative Escherichia coli; spherical (coccus)
such as the Staphylococcus and Streptococcus genus;
or spiral-shaped such as the Spirochaetes. Other forms
include square-shaped (Arcula) and star-shaped (Stella).
E. coli often group in pairs, Streptococcus in chains and
Staphylococcus in clusters.
The vast majority of bacteria bear a net negative charge

at normal pH values, associated with ionizable groups
of the polysaccharide plus teichoic acid cell wall content
of Gram-positive bacteria and the lipopolysaccharide of
Gram-negative bacteria.The plasmamembrane also car-
ries a net negative charge. These charges are often sta-
bilized by the presence of divalent counterions, such as
Ca2+ and Mg2+. As a result of this electrical character-
istic, many antibacterial agents are cationic – requiring
only a strong positive charge together with a hydropho-
bic region in their molecular structure to interact with
the cell surface and integrate into the inner plasmamem-
brane [65]. Inhibitors of peptidoglycan biosynthesis also
act as antibiotics – producing loss of cell wall integrity
and cell lysis. Specific antibacterial compounds that con-
tain a 𝛽-lactam structure (e.g., penicillin) interfere with
the synthesis of the cell wall for both Gram-positive and
Gram-negative bacteria, by competing for the binding
sites of the D-amino acids that crosslink the polysaccha-
ride chains. Mammalian cells lack a cell wall structure,
so that this class of antibiotic selectively targets bacteria
without harming the cells of the animal or human host.

11.2.4.1 Live and Dead Bacteria
Thefirst report of the difference between theDEP charac-
teristics of a viable and nonviable bacterium is that given
by Chen in his M.Sc thesis [66] and later discussed by
Pohl [22] who supervised this work. The DEP collection
yield for Bacillus cereus was found to be remarkably sen-
sitive to the age of the colony. For a suspension medium
of conductivity∼1mS/m, the yield peak occurred at a fre-
quency that advanced from ∼100 kHz to ∼300 kHz. For
an 11-hours old culture that had been briefly extracted
with chloroform, there was a marked shift of the peak
yield to a lower frequency.This was attributed [22, p. 417]
to a lessening of the cytoplasmic ionic concentration as
the membrane is destroyed. The influence of chloroform
on membrane structure (and its anesthetic effect) in
fact remains an active research topic. There is strong
evidence to indicate that chloroform loosens cholesterol-
containing bilayers, thereby changing their lateral lipid
organization [67]. Zhou et al. [68] performed electro-
rotation measurements on polystyrene beads on whose
surfaces biofilms of Klebsiella pneumoniae had been
grown. This bacterium is Gram-negative, rod-shaped,
nonmotile and naturally occurs in soil. The presence of
a biofilm coating was found to alter the electrototation
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properties of a bare bead and, in turn, these properties
were altered by adding a biocide (CosmocilTM) to the
surrounding aqueous medium. Cosmocil is a cationic
polymeric biguanide, commonly used as a surface
and topical antimicrobial, which displaces divalent
cations from the walls and membranes of both Gram-
positive and Gram-negative bacteria [65]. A single-shell
model was used to analyse the dielectric properties of the
biofilm and thus the overall effective dielectric properties
of a K. pneumoniae bacterium before and after biocide
treatment [68]. The dielectric properties of its various
compartments were then obtained by finding the best fit
curve to the data points, employing a triple-shell model
of a cell so as to take account of the bacterium’s cytosol,
plasma membrane, cell wall and outer membrane. The
presence of the periplasmic space was not included in the
model – its dielectric properties were in effect merged
with that of the cell wall. The dielectric properties and
physical characteristics determined for live and biocide-
treated K. pneumoniae by Zhou et al. [68] are presented
in Table 11.1. The most significant changes resulting
from biocide treatment were found to be a thousandfold
decrease of the plasma membrane’s effective resistivity,
with a 22-fold decrease of the cytosol conductivity.
This indicates that damage was caused to the plasma
membrane, resulting in leakage of ions from the cytosol.
Interestingly, no change was indicated to have occurred
to the effective resistivity of the outer lipid membrane,
implying that the biocide acted mainly on the plasma

Table . Dielectric properties of the compartments of viable and
biocide-treated Klebsiella pneumoniae derived from
electrorotation measurements on biofilm-covered beads [68].

Compartment No treatment Biocide treatment

Cell Wall
Conductivity 5.5 ± 0.5 mS/m 0.17 ± 0.03 mS/m
Permittivity (60 ± 15) 𝜀o (60 ± 10) 𝜀o

Outer Membrane
Conductivity 0.1 ± 0.05 μS/m 0.1 ± 0.09 μS/m
Permittivity (8 ± 0.5) 𝜀o (8 ± 1) 𝜀o

Plasma Membrane
Conductivity 0.6 ± 0.3 μS/m 0.6 ± 0.1 mS/m
Permittivity (6 ± 2) 𝜀o (6 ± 2) 𝜀o

Cytoplasm
Conductivity 0.44 ± 0.1 S/m 20 ± 4 mS/m
Permittivity (60 ± 20) 𝜀o (60 ± 10) 𝜀o

Notes: The suspending medium conductivity values were 0.4mS/m
and 1.3mS/m for measurements performed on the untreated and
biocide-treated samples, respectively. The following dimensions were
also obtained from a sensitivity analysis of the best fit data: cell-wall
thickness 20 ± 2.5 nm; membrane thickness 7 ± 1 nm; bacteria diame-
ter 0.5 ± 0.01μm [68].

0.5

0.4

0.3

0.2

0.1

0

–0.1

–0.2

–0.3

–0.4

3 4 5
Log frequency (Hz)

b

a

R
el

at
iv

e 
D

E
P

 r
es

po
ns

e

6 7 8

Figure . DEP responses for (a) viable and (b) biocide-treated
Klebsiella pneumoniae, derived from the data given in Table 11.1
and a three-shell version of the MATLAB program given in Box 11.2.
These responses are modelled for a suspending medium
conductivity of 0.4 mS/m.

membrane. After biocide treatment there was a 32-fold
decrease of the cell wall conductivity.This implies that in
replacing the divalent cations in the cell wall, the cationic
biocide depleted the concentration of mobile counte-
rions that contributed to the cell wall’s conductivity.
The dielectric data presented in Table 11.1 can be used
to derive the DEP characteristics of a K. pneumoniae
bacterium using a modified (three-shell) form of the
MATLAB program given in Box 11.2.The result is shown
in Figure 11.11. The effect of biocide-treatment is clearly
evident – mainly manifested as a replacement of the
positive DEP response at high frequencies by negative
DEP. This result implies that selective DEP separation
of a mixture of viable and nonviable K. pneumoniae can
be achieved at a frequency of ∼10MHz, for an aqueous
suspending medium conductivity of 0.4mS/m.
In response to the risk to public healthcare posed

by increasing numbers of antibiotic-resistant strains of
bacteria (e.g., methicillin-resistant S. aureus (MRSA),
vancomycin-resistant S. aureus (VRSA), ciprofloxacin-
resistant E. coli) there is the demand for rapid antibi-
otic testing. The common test, which can take from 16–
24 h or even several days to complete, involves streaking
bacteria onto a culture dish in which antibiotic impreg-
nated disks are placed. Another test, known as the broth
dilution method, involves incubating the bacteria in soy
broth in tubes containing various dilutions of the antibi-
otic and examining the changes of suspension turbidity.
The use of DEP as a more rapid test of antibiotic efficacy
or antibacterial resistance is thus worth exploring.
Hoettges et al. [69] have demonstrated that the action

of polymyxin B as an antibiotic against E. coli can be
detected as a significant change in this bacterium’s
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Figure . Best fit lines (using a single-shell model of a cell) of
the relative DEP response of E. coli before and after 4 h treatment
with 20 μg/ml polymyxin B (based on Hoettges et al. [69]).

DEP characteristics as soon as 1 h after isolating a
treated culture from nutrient broth. Polymyxin is a
cationic antimicrobial that acts in a similar manner
as that described above for cosmocil [65]. For their
DEP experiments, control and treated samples were
suspended in an iso-osmotic medium, consisting of
280mM mannitol adjusted to a conductivity of 5mS/m
by adding phosphate buffered saline. An example of their
findings is shown in Figure 11.12. To better understand
the significant change of the DEP characteristic as a
function of exposure time to the antibiotic, a single-shell
model of a spherical cell was manually fitted onto the
experimental data [69]. As the authors state, this model
will provide qualitative rather than absolute values for
the dielectric properties of the components of E. coli (no
account is taken of the cell wall and outer membrane).
From their model Hoettges et al. concluded that even
1 h after exposure to polymyxin B the cytoplasm con-
ductivity dropped by nearly two-thirds from 0.35 S/m
to 0.13 S/m and then down to 0.05mS/m after 4 h. This
mirrors, but more dramatically so, the fall in cytoplasm
conductivity following biocide treatment of K. pneumo-
niae (see Table 11.1). The membrane conductance was
deduced to increase from 7.75 kS/m2 to 17.8 kS/m2 after
2 h treatment. This appears to be too modest a fall in
conductance to account for the dramatic leakage of ions
that must have occurred from the cytosol across the
membrane. Qualitatively, the trends shown in Figures
11.11 and 11.12 are similar regarding the change in DEP
response following drug exposure. Hoettges et al. [69]
also deduced that the plasma membrane capacitance
nearly doubled from a value of 13.3mF/m2 for untreated
E. coli to 24.3mF/m2 after 1 h of treatment, remaining
constant at this value even after 4 h. This suggests that
the membrane shrivelled as the ions leaked from the
cytosol into the external medium, followed by water
driven down its concentration gradient. The fact that
the membrane capacitance remained constant in the

studies of K. pneumoniae [68] may reflect that they were
suspended in a hypotonic medium where there would
be a constant osmotic pressure for water to enter the
cytosol, pressing the plasma membrane hard against the
cell wall and preventing the formation of blebs (which
would increase the membrane capacitance).
Chung et al. [70] have reported a significant lowering

within 1 h of the DEP crossover frequency exhibited by
E. coli exposed to 32μg/ml of the 𝛽-lactam antibiotic
cephalexin. This antibiotic inhibits cell division by bind-
ing to proteins responsible for the polymerization of the
peptidoglycan in the cell wall, causing elongation of the
E. coli cell [71]. The change in the DEP crossover fre-
quency was thus considered to primarily result from this
elongation of the cell. Chung et al. [72] extended their
studies to include the reduction of the DEP crossover
frequency caused by cefazolin treatment of E. coli and
K. pneumoniae. The bacteria became filamentous due to
the inhibition of cell wall synthesis and cell division, with
cell lysis occurring for the higher antibiotic dose. The
crossover frequency decreased from ∼2MHz down to
the hundreds of kHz range within 2 h, whilst cell lengths
extended to more than 10μm, even up to 20–30μm for
the higher drug doses. The drug resistant strains did not
behave in this way. Tests on control cells, untreated and
treated cells could be carried out simultaneously using
eight sets of quadrupole electrodes, fabricated on indium
tin oxide glass slides. The minimum inhibitory concen-
tration determined using the DEP-based method was
consistent with the results of the broth dilution method.
An analysis was also performed of possible damage to
the cells due to electrothermal effects near themicroelec-
trodes. According to the applied voltage of 10Vpk–pk, the
frequency range of 100 kHz – 10MHz, the medium con-
ductivity of 0.3 S/m and the thermal conductivity of the
aqueous medium (1.0W/mK), the temperature rise was
estimated to be no more than ∼7.5 ◦C. Moreover, each
DEP examination of the bacteria did not exceed 3min.
Heat damage to the cells should not have occurred under
these conditions. It is of interest and value to consider
to what extent the lowering of the DEP crossover fre-
quency depended on elongation of the bacteria caused by
the cefazolin treatment. The Clausius–Mossotti factor is
given by:

CM =
𝜀∗p − 𝜀∗m

3(𝜀∗m + (𝜀∗p − 𝜀∗m)A)

where A is the depolarization factor described in Chap-
ter 7. From Figure 7.11, A = 1/3 for a sphere, so that:

CM =
𝜀∗p − 𝜀∗m

𝜀∗p + 2𝜀∗m
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in agreement with Equation 6.1 and its form in the
expression for the DEP force acting on a spherical par-
ticle given by Equation (10.26). Chung et al. [72] describe
elongation of the bacteria to filaments of rough dimen-
sion 1μmand lengths exceeding 10μm. FromFigure 7.11
this corresponds to A = 0.5. The MATLAB program in
Box 11.2 can be modified to incorporate values for the
factorA obtained from Figure 7.11 (or by inserting Equa-
tion (7.34) to approximate a rod-shaped bacterium as a
prolate spheroid):

47 A=0.333;

48 % A=0.5;

49 m=(keff3-k4) ./(3∗(k4+A∗(keff3-k4)));

This change in the program produced the plots shown
in Figure 11.13. The change from a sphere-shaped bac-
terium to one resembling a rod does lower the DEP
crossover frequency, but not to the extent reported by
Chung et al. [72]. Also shown in Figure 11.13 is the result
of assuming that along with elongation of the bacterium
therewas also damage to the plasmamembrane, resulting
in a lowering of its resistivity. It is likely that this combina-
tion did occur for their bacteria. An increase of the cross-
sectional area normal to the long axis of the bacterium
would also result in a lowering of the DEP crossover fre-
quency, but there is no evidence for this.
Jones et al. [73] have exploited the fact that their

insulator-based DEP separator, described in Chapter 10
(references 171 and172) that uses a field gradient and
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Figure . From this modelling of the DEP behaviour of a
bacterium (using a modification of the program in Box 11.2) the
DEP crossover frequency is expected to fall if, due to the effects of
an antibiotic, it changes from a spherical to rod shape. This
behaviour is enhanced if the plasma membrane is also damaged
so as to increase its electrical conductance and the leakage of ions
across it.

sawtooth channel, can be used to separate particles on
the basis of a combination of their electrophoretic and
DEP characteristics. They achieved resolution of gen-
tamicin resistant and susceptible strains of Staphylococ-
cus epidermidis. This demonstrated that the presence
of antibiotic resistance enzymes (or secondary effects)
produces a sufficient degree of electrophysical difference
to allow separation of these strains. The differentiating
factor was found to be the ratio of electrophoretic to
dielectrophoretic mobilities. This factor was 4.6 ± 0.6 ×
109 V/m2 for the resistant strain, versus 9.2 ± 0.4 ×
109 V/m2 for the susceptible strain. This difference was
sufficient to produce clear and easily discerned differen-
tiation of the two S. epidermidis strains.
Elitas et al. [74] have addressed the problem of the

persistence of bacteria during antibiotic therapy. This
is of particular importance in refractory mycobacterial
infections such as leprosy and tuberculosis. Persistence
is characterized by the phenotypic tolerance of a subpop-
ulation of baxcterial cells to antibiotics. Characterization
of these ‘persister’ cells is often difficult due to the
transient, nonheritable nature of the phenotype and due
to the presence of contaminating material from nonper-
sisting cells, which usually comprise the larger fraction.
In their study Elitas et al. [74] used 3D carbon-electrode
arrays to purify intact cells from cultures of Mycobac-
terium smegmatis treated with isoniazid, a frontline
antituberculosis drug.The rate of persistence against this
drug is relatively high compared to other antituberculosis
drugs and drug combinations. Intact persister cells were
differentiated and separated from damaged cells by dif-
ferential staining with propidium iodide and flow cytom-
etry. Most of the ‘omics-based’ approaches for down-
stream characterization of purified bacterial populations,
such as transcriptomic and proteomic analysis, require a
sample containing at least 105∼106 targeted cells. Elitas
et al. [74] were able to recover up to 3 × 104 intact cells,
with up to 99% purity, following their DEP assay proto-
col. Serial assays, or preferably improvement of the DEP
device’s performance in terms of throughput, could pro-
vide enough material to perform downstream analysis.
As emphasized by Chung et al. [72], for microfluidic

applications of DEP it is important to evaluate the
limiting conditions that can be used in terms of applied
voltage potentials and flow rates that allow damage-free
cellmanipulation. Donato et al. [75] have investigated the
physiological impact on E. coli resulting from their DEP
capture in a PDMS microfluidic channel. Cell suspen-
sions (5 × 106 cells/ml) at fluid-flow velocities between
10−2 and 2.6 × 10−2 m/s were trapped by quadrupole,
titanium-tungsten, electrodes. Trapping by positive DEP
was performed at 15MHz and a medium conductivity
of 30mS/m. This medium conductivity was chosen as it
is low enough to allow strong pDEP trapping, but high
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enough to avoid ionic losses by the cells. Trapping by
negative DEP was performed at 1MHz and a medium
conductivity of 0.35 S/m (chosen to avoid electrolytic
corrosion of the electrodes observed at higher medium
conductivities). The metabolic viability of cells during
DEP trapping was studied by first performing a negative
viability control with an E. coli population previously
submitted to an ethanol shock for 30min at 65 ◦C.These
conditions effectively killed the cells, as confirmed using
the trypan blue stain test and they were not trapped
when subjected to the nDEP and pDEP experimental
conditions. A second, positive test was performed by
trapping cells under flow conditions using pDEP, testing
for viability using two dyes to discriminate cells on the
basis of the state of their membranes. Cells with com-
promised membrane were stained red with ethidium
bromide, whereas cells with intact membranes were
stained green. The trapped cells were green, suggesting
that cells trapped by DEP were alive. The impact of DEP
immobilization on cell viability was further studied using
genetically modified E. coli cells to express green fluores-
cence protein (GFP). Bymonitoring the expression of the
GFP reporter, Donato et al. [75] were thus also able to
confirm cell viability by means of a metabolic outcome.
This work demonstrated that E. coli cells trapped in
a microchannel, using either pDEP or nDEP under
conditions of fluid flow or nonflow, remained viable.
However, beyond a certain electrical field magnitude
(1.3 × 106 V/m) and 15minutes of pDEP exposure time,
the viability of the cells was shown to be compromised.
(A field magnitude of (∼1.3 × 106 V/m corresponds to a
peak applied voltage of 130V across a 100μm electrode
gap.) Meanwhile, after 10min of pDEP exposure time
in the same conditions, the cell viability was confirmed.
These results provided the following important guidance
[75] for the development of a number of lab-on-chip
applications: (i) the observed effect of cell concentration
can potentially be used to increase the sensitivity of
integrated biosensors and the speed of miniaturized
bioanalysis; (ii) the metabolic viability of trapped cells
suggests that genetically modified trapped cells can be
used as live biosensors inwhich the timing and amplitude
of the expression of a marker protein can be correlated
with a complex fluidic stimulation; and (iii) the robust
definition of trapping conditions, in particular, the time
of exposure to the electric field and the observation that
dead cells are not trapped indicates that complex spatial
and chemical manipulation of cells can be performed in
microfluidic devices without compromising cell viability.
An electrical impedance method for monitoring the

DEP collection of bacteria at an interdigitated chrome
electrode array has been developed by Suehiro et al.
[76, 77]. As the cells collect at the edges of the elec-
trodes by positive DEP and span the interelectrode gap

as pearl chains, the electrical impedance between the
electrodes changes. If the cells are suspended in a low-
conductivity medium, both the conductive and capaci-
tive components of this impedance will increase. Higher
cell concentrations will exhibit a faster development of
the pearl chains. By monitoring the temporal change
of the impedance a quantitative evaluation of the cell
number density is possible. For example, it was demon-
strated that an E. Coli suspension of 105 cells/ml could be
accurately assayed in about 10min [76]. In later studies
[77] selective DEP-impedance inspection of viable E. coli
from a mix of viable and nonviable bacteria was per-
formed. Nonviable E. coli were prepared by two different
sterilization methods, namely heat treatment (80 ◦C for
15min) and by 10 s UV irradiation (254 nm, 2.5mW/cm2

power density). Cell viability was determined by incu-
bating control and sterilized bacteria on agar plates
for 48 h. It was found that heat-treated bacteria exhib-
ited a considerable change in their DEP and dielectric
parameters, whilst UV-based sterilization hardly affected
those properties. For example, DEP collection observa-
tions were made at two different electric field frequen-
cies, 100 kHz and 1MHz, using interdigitated, castel-
lated, electrodes. At 100 kHz, both viable and nonviable
E. coli were trapped at the castellated edges due to pos-
itive DEP, whereas at 1MHz only viable bacteria were
trapped and nonviable cells were not collected by pos-
itive DEP. These observations suggested that the pos-
itive DEP force exerted on the nonviable heat-treated
bacteria was negligibly small at 1MHz. In contrast to
the heat sterilization case, both viable and UV-treated
(nonviable) E. coli collected under positive DEP at both
100 kHz and 1MHz.The threshold for impedance detec-
tion of bacteria is reduced to 104 cells/ml in less than
5min in a technique described by Zhou et al. [78]. The
method uses the high polarizability and DEP mobility of
single-walled carbon nanotubes (SWNT). Concentrated
SWNT solutions are mixed with the test sample and a
low frequency (<100 kHz) field is applied by a micro-
electrode array, to enhance bulk absorption of the bacte-
ria by the SWNTs via dipole–dipole interactions and to
then drive the SWNT+bacteria aggregates to the micro-
electrodes by positive DEP. The SWNTs and absorbed
bacteria assemble rapidly (<5min) into conducting lin-
ear aggregates between the electrodes. Measured AC
impedance spectra by the same trapping electrodes and
fields show a detection threshold of 104 bacteria/ml with
this pathogen trapping and concentration technique [78].
Amako et al. [79] investigated the DEP properties of

E. coli as a function of heat stress. The cells were col-
lected by positive DEP, at 100 kHz, between 10 pairs of
interdigitated chromium electrodes. The rate of cell cap-
ture was determined from the temporal change in the
electrical impedance measured across the electrode gaps
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conductance of E.coli collected at DEP
electrodes as a function of the temperature of
heat treatment. Also shown is an indicator of
growth ability in terms of colony count C
relative to that at 36 ◦C. (b) Normalized values
of cell viability and respiration enzyme
activity as a function of the heat treatment
temperature (based on Amako et al. [79]).

where the cells collected. This was determined for vari-
ous temperatures and time lengths of heat treatment in
a water bath. Control samples were maintained at 4 ◦C,
whilst the test samples were heated at temperatures rang-
ing from 15–80 ◦C for up to 15min before determin-
ing their DEP collection rate. The cell suspensions (∼3 ×
107 cells/ml) were pumped over the electrodes at a flow
rate of 60ml/hr. The conductivity of the cell suspension
medium was not specified, but presumably the medium
was high-resistivity water so as to maximize the sensitiv-
ity of conductance change measurements. The conduc-
tance component of the measured impedance was found
to change more significantly than the capacitance com-
ponent. In parallel with these electrical measurements
the following biologicalmethodswere employed to verify
the effect of heat treatment on the E. coli:

� Enzyme activity associated with respiratory activity of
the mitochondrial electron transport chain was eval-
uated by staining the cells with cyanoditolyl tetra-
zolium chloride (CTC) and observing their fluores-
cence intensity. Under the influence of this enzyme
activity CTC is reduced to red fluorescent CTC for-
mazan, which accumulates inside the cells. Thus,
an observed increase in fluorescence intensity corre-
sponded to enzyme activity.

� Viability was determined by dispensing control and
heat-treated cells into sterilized Petri dishes, then
monitoring bacterial growth from a colony count
determined by the pour plate method.

� Observation of surface morphology was achieved by
fixation with glutaraldehyde and osmium tetroxide,
followed by gold coating and then observation under
a scanning electron microscope.

� Theviability andmembrane state of the cells was deter-
mined using amembrane permeable, greenDNA stain,
together with a propidium iodide red stain (which is
non-membrane-permeable). Viable cells with undam-
aged plasma membranes thus exhibited green DNA
fluorescence, whilst those with a damaged membrane
assumed a red fluorescence.

The relationship between the temporal change ΔG in
the measured conductance and the heat treatment tem-
perature is shown in Figure 11.14(a). It can be seen
that ΔG increased with increasing heat treatment tem-
perature in the range 4 ◦–20 ◦C, decreasing thereafter
until at 80 ◦C the collection rate was very low. Also
included in this figure is the variation in observed growth
ability (relative to the control at 36 ◦C). Growth abil-
ity was maintained between 4◦ and 38 ◦C, but dropped
dramatically thereafter. Bacteria are capable of recov-
ering from heat stress damage, depending on the level
of this damage and their growth medium. However,
no such recovery occurred for treatment temperatures
above 60 ◦C, presumably because metabolic functions
were lost due to denaturation of proteins and damage
to the plasma membrane and entire cell surface. The
relationship between heat treatment and the live / dead
stain results are shown in Figure 11.14(b), together with
the determined enzyme activity. The viability data mir-
rored to some extent the growth ability trend, whilst the
enzyme activity (normalized to results for 5min heat
exposure) exhibited a peak value at a heat treatment tem-
perature of ∼50 ◦C. This appearance of a peak in activ-
ity can partly be explained by the fact that above this
heat stress level membrane-bound enzymes are dam-
aged, whereas cold shock induces a ribosomal-associated
protein that unwinds double-stranded RNA so that pro-
tein synthesis is inhibited [80]. The SEM observations
on the fixed cells found that with heat treatment tem-
peratures above 47 ◦C numerous indentations and folds
appeared on their surface, whilst above 80 ◦C shrinkage
of the bacterial body was added to these surface changes.
Amako et al. [79] concluded that their combined DEP
and impedance results provided an integrated estimate,
including bacterial metabolic conditions, degree of dam-
age and viable-to-dead ratio. Their stated future objec-
tives were to further clarify the correlation between vari-
ations of bacterial metabolic activity and DEP properties
under different heat treatment conditions and to carry
out metabolismmonitoring experiments with yeasts and
lactobacilli of relevance to fermentation processes.
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11.2.4.2 DEP and Electrorotation Studies of Flagella
Some bacteria, for example strains of E.coli and
salmonella, are motile. They possess flagella that act
as rotary molecular engines, driven by ions moving
inwards across the plasmamembrane.This generates the
thrust enabling the cells to swim. The ion flux across the
membrane is powered by an electrochemical gradient,
either a proton-motive force or sodium-motive force in
motors driven by protons or sodium ions, respectively.
Their rotation speeds are remarkable, ranging up to a
few hundred Hz in cells driven by proton-motors and
1000Hz for those driven by sodium motors. Typical
speeds up to 50μm/s are achieved by motile bacterium,
with some species moving at over 500μm/s [81].
Washizu et al. [82] investigated the external force-

velocity characteristics of swimming Salmonella
typhimurium using DEP, as well as the torque-speed
characteristics of their flagella motor by electrorotation.
Electrostatic orientation of the bacteria parallel to an
applied electric field was established using concentric
electrodes of spherical geometry. A two-level DEP force
was applied at 1MHz by switching several times between
a low and high applied voltage potential, while gradually
letting a bacterium under observation go outward from
the inner electrode. This continued until the critical
radius from the inner electrode was finally exceeded and
bacterium could not be pulled back by positive DEP. By
repeating this procedure the force-velocity relationship
for a given position could be measured several times.
After accomplishing this for live bacteria, the whole
area between the electrodes was irradiated by a UV
beam for several minutes until the bacteria lost motility.
The force-velocity relationships for dead bacteria were
then obtained. Because dead bacteria lacked motility
they were unable to ‘fight against’ and move outwards
from the inner electrode under conditions of an applied
positive DEP force. An example of the force-velocity
characteristic obtained for live and dead bacterium, of
roughly similar size, is shown in Figure 11.15. Rotating
fields generated by six electrodes were used to apply an
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Figure . Force-velocity characteristics of a live and dead
Salmonella typhimurium of roughly the same size, suspended in a
medium of conductivity ∼3.5 mS/m. Using a 1 MHz, bi-level applied
potential, the DEP force was applied in the direction to reverse
the bacterium from a positive (outward) velocity and back towards
the inner of two spherically concentric electrodes. Dead cells were
unable to oppose a positive DEP force (based on Washizu et al. [82]).

external torque to tethered bacterium. By attaching one
of the flagella to aminosilane or mercaptosilane-coated
glass, with the main body of the bacterium and its
other flagella remaining free, the motor of the attached
flagellum rotated the whole cell. The torque-to-speed
characteristic was obtained by changing the magnitude
of the applied rotating field. Over their operating angular
velocity of 0–100Hz, Washizu et al. [82] found that
the molecular motor generates approximately constant
torque, regardless of its sense of rotation. This result
was confirmed by Berry and Berg [83] in electrorotation
studies of motile E. coli. The torque generated by the
flagellar motor was estimated using an analysis that
explicitly considered the angular dependence of both
the viscous drag coefficient of the cell and the torque
produced by electrorotation. In agreement withWashizu
et al. [82], the motor torque was found to vary approx-
imately linearly with speed up to over 100Hz in either
sense of rotation.This places constraints on mechanisms
for torque generation in which rates of proton transfer
for backward rotation are limiting. For example, it rules
out those models of the mechanism of flagellar rotation
that predict a barrier to backward rotation. Barriers
to backward rotation are predicted by models where
rotation is tightly coupled to the flux of ions through the
motor and where the rate of transit of ions against their
electrochemical gradient is strictly limited. At a kinetic
rather than mechanical level, the torque-speed curve
can be understood in terms of the torque dependence
of the rate-limiting step in the torque-generating cycle.
Interpreted in the context of a simple three-state kinetic
model, this suggests that the rate-limiting step in the
torque-generating cycle is a power stroke in which
motor rotation and dissipation of the energy available
from proton transit occur synchronously [83]. Hughes
and Morgan [84] employed the polynomial, quadrupole,
electrode design shown in Figure 10.4(a) to exert a neg-
ative DEP force on motile S. typhimurium suspended in
brain / heart infusion medium. The interelectrode gap at
the centre was 25μm. For 1MHz, 1Vpk applied signals,
no collection of the bacteria was observed between the
electrodes. Presumably the magnitude of the DEP force
was insufficient to hold the bacteria within the confines
of the electrodes. At an applied potential of 2Vpk the
DEP force was sufficient for some bacteria to become
trapped, with some of them occasionally swimming away
and escaping along the upper electrode surfaces. This
only happened when a bacterium was moving straight
toward the electrode edge. At higher voltages this did
not happen; the bacteria in the electrode vicinity were
forced into an approximately circular pattern. At a signal
of 10Vpk the bacteria were observed to levitate above
the centre of the electrodes. Adopting a double-shell
model for the bacterium as a spherical particle with a
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Figure . (a) Euglena gracilis suspended between polynomial
electrodes. Half of the algae are shown swimming against the
electrorotational torque (b) Plot of the time period after exposure
to DPPH when half the algae rotate with the field [85].

cytoplasm (𝜀r = 60, 𝜎 = 0.19 S/m), membrane (𝜀r = 10,
𝜎 = 5 × 10−8 S/m) and cell wall (𝜀r = 60, 𝜎 = 0.9 S/m)
with a measured suspending medium conductivity of
1.58 S/m, theClausius–Mossotti factor at 1MHzwas cal-
culated to have a value of−0.488.The average value of the
field gradient factor∇E2 for the threshold of containment
of the bacteria was determined to be 1.4 × 1015 V2/m3.
For an assumed bacteria radius of 0.5μm, from the
expression for the DEP force acting on a spherical
particle given by Equation (10.26), Hughes and Morgan
[84] estimated the flagellar motor force to be ∼0.37 pN.
Electrorotation can also be employed to evaluate the

relative effectiveness of, or resistance to, the exposure of
toxic agents to motile microorganisms. An example of
this is shown in Figure 11.16 in a study of how themotility
of a common algae (Euglena gracilis) is affected by expo-
sure to the well known free radical compound diphenyl-
picryl hydrazyl (DPPH). This chemical causes oxidative
damage to membranes and has been used in assays to
characterize new antioxidants. These microorganisms
were taken straight from a pond. After simple filtration
to remove debris they were resuspended in fresh water
and retained within the bounds of quadrupole polyno-
mial electrodes of an electrorotation chamber.The length
of time taken for half of the organisms in any one exper-
iment to succumb to the rotational torque and exhibit a
steady rotation rather than random motility was deter-
mined [85]. This was repeated for various concentra-
tions of added DPPH. This procedure could, if required,
be adopted in the form of a handheld device for detec-
tion of toxic chemicals in the environment, using as test
microorganisms those that are readily available for col-
lection from natural sources.

11.2.5 Mammalian Cell Apoptosis

The first detailed study of the correlation between the
effect of a cytotoxic agent and its influence on the DEP

characteristics of a cell appears to be that by Ratanachoo
et al. [86].They studied the responses to toxicants of HL-
60 cells, which is a cultured human leukemia cell line.
The responses were determined as temporal changes
of the DEP crossover frequency (fxo1) and changes of
surface morphology as observed by scanning electron
microscopy (SEM). From measurements of fxo1 and the
cell radius, values of the specific membrane capacitance
(Cmem) were determined using Equation (10.39), as well
as from the procedure outlined in Figure 10.26(b) and
Equation (10.43). Four toxicants were chosen because of
their different mechanisms of cytotoxic action, namely:
free radical attack on the plasma membrane (paraquat);
simultaneous membrane and nucleic acid attack
(styrene oxide); nucleic acid alkylation (N-nitroso-N-
methylurea); protein synthesis inhibition (puromycin).
Exposure to all four toxicants resulted in a decrease with
time of the value for Cmem, while the specific membrane
conductance (Gmem) increased. A decrease of Cmem
implies a reduction of surface morphological features,
such as membrane folds, microvilli and blebs. This
was confirmed by SEM inspection of the cell surfaces.
For a given dose concentration, the rate of reduction
of Cmem with time was more rapid for the agents that
had a direct action on the membrane than to agents
for which membrane alterations were secondary. For
example, responses to paraquat and styrene oxide, which
directly damaged the cell membrane, could be detected
15min after exposure, while those for puromycin and
N-nitroso-N-methylurea, which acted on intracellular
targets, could be detected after 30min. As described in
section 11.2.2.2, studies of this nature were performed
some six years later by Patel et al. [34] for different
methods of inducing the death of yeast cells. Whereas
Patel et al. concluded that DEP will not always be able to
separate viable yeast cells from those killed by toxicants
that act primarily on the cytosol rather than the plasma
membrane, the work of Ratanachoo et al. [86] imply
otherwize. Toxicants that kill cells by acting on the
cytosol do change the dielectric properties of the plasma
membrane, which can potentially be exploited by DEP
to separate the dead cells from the live ones. However, in
terms of a temporal response, a DEP-based sensor will
be more sensitive to detecting toxic agents that have a
direct action on the plasma membrane than to agents
for which membrane alterations are secondary effects.
Wang et al. [87] also studied how the DEP charac-

teristics of HL-60 cells changed following exposure to
genistein. This chemical agent is a topoisomerase and
tyrosine protein kinase inhibitor that induces apopto-
sis at all phases of the HL-60 cell cycle. After adding
genistein at 100μg/ml to the cell cultures, cell viability
remained above 90% for up to 8 h, as determined using
the trypan blue dye-exclusion method. The cell DNA
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content was also quantified by permeabilizing the cells
and treating them with a fluorescent dye (ethidium bro-
mide) followed by flow cytometry. Because of DNA frag-
mentation, cells undergoing apoptosis have a diminished
susceptibility to DNA staining. The nuclei of apoptotic
cells contain less DNA than nuclei of healthy cells in
the (G0/G1) phase of the cell cycle, resulting in a sub-
G1 peak in the fluorescence histogram. At two hours
post-treatment there was no significant evidence of this
effect, but the sub-G1 population increased thereafter
from ∼22% of the total cells at four hours, to ∼26% at
six hours, ∼45% at eight hours and ∼52% at ten hours
[87]. A decrease in forward light scattering, beginning
at two hours post-treatment, was also observed but with
no alteration of side scattering, indicating a reduction in
cell size. A significant translocation of phosphatidylser-
ine from the inner plasma membrane leaflet to the outer
leaflet occurs for apoptotic cells and this can be detected
by staining with the phosphatidylserine-binding protein
Annexin-V. The number of Annexin-V positive cells one
hour post-treatment was found to be similar to that of
untreated control cells and only became different two
hours after treatment. Annexin-V positive cells repre-
sented ∼5.7% of the whole cell population, at both zero
and one hour, increasing to 22.3% at two hours, 27.2%
at three hours, 47.9% at four hours, 56.7% at five hours
and 62.4% at six hours post-treatment [87]. In summary,
for genistein-treated HL-60 cells it took two hours to
detect significant changes of cell size, quantitative stain-
ing of DNA and Annexin-V staining. In sharp contrast
to this, values for the DEP crossover frequency (fxo1)
were observed to increase within minutes of treatment.
At a suspending medium conductivity of 56mS/m, the
crossover frequencies for control cells remained brack-
eted between around 80 to 130 kHz for four hours after
treatment, whereas for the cells undergoing apopto-
sis the values were between ∼130 and ∼200 kHz. This
corresponded to the apparent specific cell membrane
capacitance of the cells falling from an initial value of
17.6 ± 0.9 to 13.1 ± 0.8mF/m2 after 2 h and then down
to 9.1 ± 0.5mF/m2 4 h after genistein treatment.The dif-
ferences in the temporal responses of the DEP crossover
frequency, against those of DNA content and Annexin-V
staining, are shown in Figure 11.17. These results show
that detection of the DEP crossover-frequency fxo1 was
the most sensitive method, especially at the early time
points post genistein treatment.
In the analysis of their DEP data, Wang et al. [87]

assumed the single-shell model of a cell and calcu-
lated the membrane capacitance according to Equation
(10.43), namely:

fxo1 =
√
2

2𝜋RCmem

(
𝜎m −

Gmem
4

)
(11.3)
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Figure . Based on the studies of Wang et al. [87], these plotted
data show that the temporal change of the DEP crossover
frequency fx01, especially for short times after treatment of HL-60
cells with genistein, provides a more sensitive detection of
apoptosis than the standard DNA content and Annexin V staining
methods.

During the first two hours of genistein treatment, the
medium conductivity 𝜎m was held constant and the
values of the cell radius R and membrane conductance
Gmem were not found to change. This indicates that for
the first two hours post-treatment, the observed increase
of fxo1 resulted from a decrease of the membrane
capacitance Cmem caused by a general smoothing of the
membrane. Thereafter, R decreased and fxo1 continued
to increase, suggesting that two distinct morphological
responses were occurring during the early stages of
apoptosis. It was found that treatment by the broad
spectrum caspase inhibitor N-benzyloxycarbony-Val-
Ala-Asp(O-methyl)-fluoromethyketone (zVAD-fmk) did
not prevent these early DEP-detectable cell membrane
responses, suggesting that the caspase system was not
involved [87].Themembrane conductanceGmem did not
alter during the first four hours post genistein treatment,
but increased significantly and progressively thereafter.
Finally, as the barrier function of the plasma membrane
failed and the cells became necrotic, the value of Gmem
increased by many orders of magnitude.
Results in broad agreement with those observed for

HL-60 cells were obtained by Pethig and Talary [88] for
Jurkat cells undergoing induced apoptosis using etopo-
side. A dose of 50μM etoposide was used because after
six hours of exposure about half the cells remained viable
and the other half exhibited early stages of apoptosis
comparable in time scales to those studied byWang et al.
[87]. Annexin-V positive Jurkat cells (i.e., apoptotic cells)
constituted around 4% of the untreated control cell pop-
ulation, whilst after two hours exposure to etoposide 14%
of the cells were Annexin-V positive. The correspond-
ing populations at four and six hours of exposure were
38% and 52%, respectively. A progressive decrease in for-
ward light scattering was observed at four and six hours
of etoposide exposure, which, as for the HL-60 cells, was
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Figure . The distributions of radii for the
untreated (control) cells (n = 256) and those (n =
283; 253) exposed to etoposide for two hours and
four hours, respectively. At two hours
post-treatment cells of both reduced and increased
size appear. At four hours a larger population of
apoptotic cells, characterized by their size reduction,
is evident. This population increases further as time
progresses after treatment (Pethig and Talary [88],
reproduced with permission).

indicative of an overall reduction in the average cell diam-
eter. No significant change in side scatter intensity was
detected over the first four hours of etoposide exposure,
but a slight increase was detected at six hours, indicative
of a small increase in cell granularity.The results reported
by Wang et al. [87] were obtained from the study of tens
of cells, whereas the later work on Jurkat cells used a cell
‘physiometry’ profiling technique capable of determining
at the same time the size and DEP crossover frequency
of hundreds of cells. Advantages of this capability are
demonstrated in Figures 11.18 and 11.19.
Figure 11.18 shows the distributions of size of the

untreated Jurkat cells and those for cells at two hours
and four hours post-treatment. Although the light scat-
tering measurements indicated that there was very little
change in the average value of cell size at a post-treatment
time of two hours, it is evident from Figure 11.18 that
exposure to etoposide resulted in changes in distribu-
tions of the Jurkat cell radii, with the appearance of more
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Figure . A scatter plot of individual cell size and DEP crossover
frequency fxo1 for Jurkat T-cells (n = 217) exposed to etoposide for
6 hours. Cells of radius less than 5.25 μm are arbitrarily designated
as ‘small cells’. The highest fxo1 values (> 250 kHz) are
predominantly exhibited by the smallest cells (R < 5.25 μm).
(Pethig and Talary [88], reproduced with permission.)

cells having radii larger than 7.2μm and a new popula-
tion of presumptive necrotic cells having radii less than
4.3μm.These changes accompanied a small reduction in
the number of cells of radii close to the average of 5.3μm.
These trends continued for cells exposed to etoposide for
six hours, with a reduction of the number of cells of radii
between 4.5 and 6.5μmand the appearance of an increas-
ing number of small cells (R < 4.5μm) being particularly
evident [88].The relationship between the size of a Jurkat
cell and its DEP crossover frequency fxo1 is shown in Fig-
ure 11.19 for 217 cells 6 h post-treatment. Inspection of
this data reveals that the cells exhibiting the highest fxo1
values (> 250 kHz) are predominantly exhibited by the
smallest cells, with radii less than 5.25μm.
The DEP crossover frequency (fxo1) values for the

control and induced-apoptotic HL-60 cells (n = 20)
suspended in a 56mS/m solution were found to fall
into two separable, relatively narrow, frequency bands
(80∼130 kHz) and (130∼200 kHz), respectively [87].This
situation was not observed for the Jurkat cells. The con-
trol cells (n = 526) suspended in a 40mS/m solution
exhibited fxo1 values ranging from50 to 250 kHzAs apop-
tosis progressed over six hours the upper value for fxo1
progressively increased and extended beyond 500 kHz
[88]. Also, unlike the situation for HL-60 cells, which
were reported to exhibit a change in fxo1 values within
minutes of exposure to the apoptosis-inducing agent
[87], the Jurkat cells exhibited a relatively small initial
change. With increasing exposure, larger numbers of
cells exhibited fxo1 values above 250 kHz and, as shown
in Figure 11.20(a), extended beyond 400 kHz for some
cells exposed to etoposide for six hours. With the aid of
Equation (11.3) and the simultaneous determinations of
the fxo1 value and radius of each cell, this corresponded
to a reduction in plasma membrane capacitance from
13.34 (± 2.88) to 10.49 (± 4.00) mF/m2, reflecting (as
for the HL-60 cells) a general smoothing of the mem-
brane through loss of microvilli, for example. The dis-
tribution of the membrane capacitances of the control
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membrane capacitance values than the untreated (control) cells (reproduced with permission: Pethig and Talary [88]).

Jurkat cells and those treated for six hours are shown in
Figure 11.20(b).
An interesting conclusion, not described in the previ-
ous work on HL-60 cells [87], is that the observed [88]
reduction in the plasma membrane capacitance of the
Jurkat cells after two hours of exposure resulted mainly
from the cells exhibiting an increase of their average
size. Thereafter, as exposure to etoposide increased the
reduction of membrane capacitance was mainly associ-
ated with the appearance of smaller cells. Wang et al.
[87] also reported that putatively necrotic cells exhib-
ited fxo1 values in the megahertz range, with some above
10MHz. As shown in Figure (11.19) just one cell in this
category was found for the Jurkat cells, with an fxo1 value
near 1MHz. Mulhall et al. [89] investigated the change
in DEP behaviour of Jurkat cells after exposure to the
apoptosis-inducing agent staurosporine. They used an
optical method to investigate the DEP-induced motions
of cells contained within microwells, each well capable of
holding ∼0.3μl of a cell suspension [90, 91]. After incu-
bating with 0.5μM staurosporine, Jurket cells at a con-
centration of ∼5 × 106 cells/ml were placed in each well
(i.e., ∼1500 cells). Cell viability was measured using the
trypan blue assay. Cell radii were obtained by capturing
images of 100 cells per experiment on a haemocytome-
ter and measuring the cell diameter using image analysis
software. The cell radii showed a reduction from 5.7μm
to 4.5μm during the first four hours of treatment, after
which they remained stable.The rate of change of optical
absorbance of the cell suspension was converted into a
DEP response of the formof those shown in Figures 11.11
and analysed using the single-shell model of a cell. The
average plasma membrane capacitance of the cell popu-
lation was determined to remain relatively stable, begin-
ning at 9.1mF/m2, varying within ±12% of this value
throughout the experiment and ending at 8.0mF/m2

after 24 h of treatment [89]. The observed reduction (9.1
down to 8.0mF/m2) in the average membrane capaci-
tance of staurosporine-treated Jurkat cells [89] was thus
in broad agreement with the reduction (13.34 down
to 10.49mF/m2) observed for etoposide-treated Jurkat
cells [88].
Lv et al. [92] followed changes in the value of fxo1 of

NB4 cells after their treatment with cytosine arabinoside
(Ara-C). NB4 is a cancer cell line originally established
from the bone marrow of a patient with acute promye-
locytic leukaemia, whilst Ara-C is the most widely used
antimetabolite for inducing remission of acute leukemia.
Ara-C is a potent killer of dividing cells through its
action in inducing the mechanisms of cellular apoptosis.
The DEP electrodes were fabricated by patterning non-
closed ring gold electrodes (width 20μm, inner diameter
200μm) onto a glass wafer using standard photolithog-
raphy. A 200μL Eppendorf tube was cut and assembled
on the chip to construct the DEP measurement cham-
ber. The proportion of Annexin-V positive (i.e., apop-
totic cells) at two hours post-treatment was not signif-
icantly different compared to control cells. Among the
entire cell population, the proportion of apoptotic cells
increased from 4.51% ± 0.44% at two hours, to 7.19%
± 0.26% at four hours, 12.42% ± 0.68% at six hours
and 21.68% ± 0.45% at 12 h. Values of fxo1 for around
20 cells were measured over a time period of less than
20min for each experiment and at 2 h post-treatment dis-
played distinct differences with those obtained for the
untreated control cells. The fxo1 values were reported
to continually increase over 12 h post-treatment, from
96 ± 4.73 to 354 ± 6.11 kHz, whilst at the same time
the cell diameter constantly decreased from 16.30 ± 0.35
to 13.81± 0.62μm over 12 h. (Deliberate selections of
cell size and / or fxo1 values will have been made by the
experimenters, because the reported standard deviations
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are much smaller than that expected, based on biologi-
cal variation alone. For example, inspection of Figure 1A
of the paper [92] shows NB4 cells of diameters ranging
from 13 to 23μm.) Together with Equation (11.3) and
the single-shell model of a cell, the (presumably selected)
values of fxo1 and cell radius were used to determine the
plasma membrane capacitance Cmem. This was reported
to decrease from9.42 to 7.63mF/m2 in the first two hours
following treatment with Ara-C, finally falling to a very
low value of 3.03 ± 0.05mF/m2 after 12 h. A measure-
ment of the high-frequency DEP crossover fxo2 (see Fig-
ure 10.25) was also conducted and observed to fall from
an initial value of 301 ± 7.09 to 165 ± 7.78MHz over the
12 h post-treatment. (This, again, is a surprisingly small
spread of values. For example, a typical value of fxo2 for
SP2/O cells was found to be 190 ± 60MHz [93].) A fall
in the value of fxo2 signifies a drop in the cytoplasmic
conductivity 𝜎cyt [93, 94], so that a decrease of 𝜎cyt from
0.217 to 0.190 S/m within 2 h of Ara-C treatment was
determined. This lower value was maintained for a short
period of time before decreasing further [92].
To better understand themolecularmechanismunder-

lying apoptosis using DEP monitoring, Lv et al. [92]
examined mRNA changes in NB4 cells after Ara-C treat-
ment over a 12-hour time course using a human whole
genome oligo array. A total of nine, 37, 42 and 117 genes
displayed altered expression levels at two, four, six and
12 h, respectively. Gene ontology analysis revealed that
differentially expressed genes could be grouped into five
main categories, namely apoptosis; cell division and pro-
liferation; cell morphogenesis; ion transport [92]. Addi-
tionally, cluster analysis confirmed the expression level
of some known apoptosis-related genes changed after
Ara-C treatment, including the upregulated proapopto-
sis genes and the downregulated antiapoptosis genes.
The expression level of nearly all genes involved in cell
division and proliferation was downregulated. Notably,
the expression level of some genes involved in cell mor-
phogenesis or ion transport changed as early as two
hours post-Ara-C treatment, which may correlate with
the measured alteration in membrane capacitance or
alteration in cytoplasmic conductivity. For example, their
studies indicated that expression levels of KIF20A and
CENPE, which are related to the synthesis of cytoskele-
tal proteins such as tubulin (and hence to membrane
morphology and its capacitance) are downregulated,
while expression levels of P2RX4 and KCTD9, which are
related to ion transport are upregulated as early as two
hours post-Ara-C treatment. Thus, a decrease in intra-
cellular potassium concentration induces a loss of cyto-
plasmic conductivity, even though the intracellular cal-
cium and sodium levels increase. As remarked by Lv et al.
[92] the changes in cell membrane capacitance and cyto-
plasmic conductivity make apoptotic cells amenable for

characterization using DEP analysis.They also suggested
that this could be used to help physicians detect apoptosis
earlier and that as DEP technology develops, individually
tailored and more personalized patient treatment will be
possible.
Nikoloic-Jaric et al. [95] describe a DEP cytometer

that incorporates a differential coplanar electrode array
that allows independent detection and actuation of sin-
gle cells within a short section (∼300μm) of a microflu-
idic channel. A first electrode pair detects an electrical
impedance signal (P1) as each cell passes through the
channel. The next pair of electrodes is electrically ener-
gized to produce a DEP force on the passing cell, which
either elevates the cell higher into the fluid flow stream
by negative DEP, or reduces its elevation by attracting it
towards the electrode pair by positive DEP. The cell then
passes over the second set of passive electrodes where a
second impedance signal is (P1) detected. A change in
altitude smaller than 0.25μm of a cell flowing between
the two impedance detection sites can be detected. By
analysing the experimental signatures of cells of known
dielectric properties a simple connection can be made
between the Clausius–Mossotti factor and the amount
of vertical cell deflection during DEP actuation. To quan-
tify the changes in impedance signals, a force index𝜙was
used:

𝜙 =
P2 − P1
P2 + P1

Positive or negative 𝜙 is associated with pDEP or
nDEP, respectively, with 𝜙 = 0 corresponding to no DEP
actuation close to theDEP crossover frequency.Themag-
nitude of𝜙 is related to the strength of the DEP force that
caused the altitude change. A linear correlation between
the two exists for small values of 𝜙. Theoretically, for a
large population of cells with a range of different polar-
izabilities, values of 𝜙 are expected to follow a sigmoid
function that saturates at the two extreme values (exam-
ples of such curves are shown by Pethig and Talary [88]).
In practice, neither of these limits could be reached: the
lower limit (𝜙 = −1) was unattainable due to the limits of
equipment sensitivity and signal-to-noise issues, while
the higher limit (𝜙 = +1) lay beyond the cutoff imposed
by how close the attracted cells could approach the
electrodes [95]. The DEP cytometer was validated using
Chinese hamster ovary (CHO) cells that were followed
in their rapid transition from a healthy viable to an early
apoptotic state. The CHO cells were suspended in a
medium of conductivity 0.17 S/m and exhibited a DEP
crossover frequency for the healthy cell of ∼0.5MHz. An
operating frequency of 6MHz was thus chosen in order
tomonitor both negative and positive DEP through a fre-
quency range of 0.1 to 6MHz. The nonviable (apoptotic)
cells exhibited negative DEP throughout this frequency
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range, indicating that their crossover frequencies had
advanced above 6MHz.The DEP cytometer cell viability
estimates closely matched an Annexin-V assay on the
same population of cells. Fluid flow rates were limited
to the range 5∼10 nl/s, so that for cell concentrations
of ∼106 cells/ml only 500∼1000 cells were typically
analysed. However, this was sufficient to determine the
fraction of cells involved in early apoptosis. As pointed
out by Nikoloic-Jaric et al. [95], even at a low through-
put rate of one event per second, it would take only
10–15min to determine the fraction of cells involved
in early apoptosis in a given dilute sample. By com-
parison, the standard fluorescent flow cytometer assay
for detection of early apoptosis, namely the Annexin-V
assay, requires between 2000 and 10 000 cells (typically
from dilutions of an initial concentration of around
106 cells/ml). These cells then have to be incubated for
at least 15min before the measurements can be made.
This illustrates the advantages of the DEP cytometer in
terms of its sensitivity and ability to quantify changes in
the electronic signature produced by single cells.
An important requirement for a rapid and sensitive

detection of apoptosis is in the large-scale production of
glycoproteins from mammalian cell culture processes,
driven by the application of these molecules as biophar-
maceuticals for unmet medical needs [96, 97]. Large
volumetric production and maintenance of a constant
product quality are essential requirements. Indicators
of early events leading to apoptosis are highly desirable
in such cell bioprocesses because these initial stages
may be reversible by appropriate intervention, such as
nutrient feeding. Mid-stages of apoptosis indicate the
end of protein production from the cells, but late stages
may cause harm as lysed cells release proteinases and
glycosidases into the mediumwith a potential to degrade
the glycoprotein product. As a further demonstration
of the usefulness of the DEP cytometer described by
Nikoloic-Jaric et al. [95], Braasch et al. [98] investigated
five different and independent methods of monitoring
cell density and / or cell viability of CHO cells grown in a
batch culture in a controlled bioreactor. These methods
included: a particle counter; trypan blue exclusion; an
in situ bulk capacitance probe; an offline fluorescent
flow cytometer and a prototype DEP cytometer. These
various techniques gave similar values during the expo-
nential growth phase of the cells. However, beyond the
exponential growth phase the viability measurements
diverged. Fluorescent flow cytometry with a range of
fluorescent markers was used to investigate this diver-
gence and to establish the progress of cell apoptosis.
The cell density estimates by the intermediate stage
apoptosis assay agreed with those obtained by the bulk
capacitance probe and the early stage apoptosis assay
viability measurements correlated well with those of the

DEP cytometer. The trypan blue assay showed higher
estimates of viable cell density and viability compared to
the capacitance probe or the DEP cytometer. The DEP
cytometer identified at least two populations of cells,
each with a distinct dielectric polarizability, one popu-
lation being associated with viable (nonapoptotic) cells
and the other with apoptotic cells. From the end of the
exponential through the stationary and cell decline stages
there was a gradual shift of cell count from the viable
into the apoptotic population. However, the two popu-
lations maintained their individual dielectric properties
throughout this shift. This led to the conclusion that
changes in bulk dielectric properties of cultures might
be better modeled as shifts in cells between different
dielectric subpopulations, rather than assuming a homo-
geneous dielectric population. This demonstrates that
bulk dielectric probes are sensitive to the early apoptotic
changes in cells and that DEP cytometry in particular
offers potential applications as a low-cost, label-free,
electronic monitor of physiological changes in cells.
Differences in the way various apoptosis-inducing

agents act on different stages of the cell cycle for differ-
ent cell types can be expected. This therefore remains an
interesting area for future study – one in which a DEP
cell profiling technique could play an important role. Of
relevance to this is the interesting fact that in a study of
the DEP spectra of K562 (chronic myeloid leukemia) cell
suspensions [99,100] a reduction of average cell size was
observed as expected, but the membrane capacitance
was deduced to increase from 9.7 to 14.9mF/m2 (rather
than to decrease in value as for other studies [87, 88, 92]
after eight hours incubation with the apoptosis-inducing
agent staurosporine.The cytoplasmic conductivity of the
K562 cells was also deduced to increase from 0.28 to
0.45 S/m [100], a result again contrasting sharply with
conclusions derived for HL-60 cells [87], Jurkat cells [88]
and NB4 cells [92]. Could it be that there was a greater
population of necrotic K562 cells than realized? K562
cells are also known to be refractory to induction of apop-
tosis by topoisomerase II-targeting agents, thus leading
to the suggested alternative [100] that the morphologi-
cal differences caused by apoptosis in HL-60, Jurkat and
NB4 cells differ from those in K562 cells. This is worthy
of further study, along with studies of whether DEP can
distinguish between apoptotic and necrotic cells.

. Mammalian Cells

11.3.1 Blood Cells

In 1986 Tsoneva et al. [101] determined the DEP veloci-
ties of human erythrocytes in the field produced between
two concentric cylindrical metal electrodes, of inner and
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outer radii 0.24mm and 1mm, respectively. The AC fre-
quency was fixed at 2MHz and the voltage was varied up
to 19Vrms. Two formulations for the suspendingmedium
were used: (i) 90% of a 2.1% glycine solution mixed with
10% of a 5.5% glucose solution; (ii) 5.4% sorbitol solution.
In both mediums the DEP velocities were found to be
proportional to the square of the applied voltage and
inversely proportional to the cube of the distance from
the symmetry axis of the coaxial cylindrical electrodes
(as predicted by Equation (2.15) in Box 2.4) and the
expression for (E.∇)E deduced from Table 3.2. Tsoneva
et al. [101] also reported the interesting observation that
the DEP coefficient of proportionality depended on the
human donor of the erythrocytes, further commenting
that this might be used for diagnostic purposes. These
words were endorsed (the echo taking 22 years in its
journey) by Srivastava et al. [102] who quantified the
DEP responses of different positive blood types (A+,
B+, AB+ and O+) at 1MHz in a pin-plate electrode
arrangement. The whole blood samples were diluted
60-fold using isotonic, physiological strength, phosphate
buffered saline (PBS). Thus, although not cited, we can
assume a conductivity of ∼1.5 S/m for the cell suspend-
ing medium. From Equations (10.36) and (10.39) and
assuming a radius of 7μm and membrane capacitance
of 8mF/m2 for an erythrocyte, the DEP crossover (fx01)
frequency can be estimated as ∼5MHz. The DEP char-
acteristics were thus obtained at an operating frequency
(1MHz) close to but below fx01. From Equation (10.37)
a negative DEP response is expected, in agreement with
that reported by Srivastava et al. [102]. At an operating
frequency close to fx01 the DEP response can also be
expected to be sensitive to subtle differences in themem-
brane capacitance of the erythrocytes. Cells of O+ type
exhibited a relatively attenuated DEP response and could
be distinguished with greater than 95% confidence from
all the other three blood types.The practical significance
of this is that O-type blood can be universally used in
blood transfusions. AB+ cell responses differed from A+
and B+ blood types, a result considered to arise because
AB+ erythrocytes express both the A and B glycoforms
on their membrane. Srivastava et al. [102] suggested that
from these findings the DEP of untreated erythrocytes
beyond simple dilution could be used in portable blood
typing devices. In later work Leonard andMinerick [103]
compared the lower (fx01) and upper (fx02) crossover fre-
quencies of erythrocytes with known ABO-Rh antigen
expression against the same erythrocytes modified to
remove sugar units from the A, B and O antigens. The
presence of the transmembrane Rhesus factor (i.e., posi-
tive blood types) increased the value of fx02 by∼9MHz in
the 70–80MHz range. The Rhesus factor is a transmem-
brane protein that likely functions as an ion channel,
thus affecting the membrane permeability, supporting

the view that the value of fx02 is associated with cytosolic
properties [103]. The lower fx02 values observed in the
40–45MHz range implied that DEP could be exploited
to distinguish ABO blood types. Erythrocytes with both
A and B antigens displayed unique concurrent negative
and positive DEP signatures over a wide frequency
range. There was also good reproducibility between
donors, suggesting the potential for determining the
ABO-Rh blood type of an unknown sample using
multistep DEP comparisons. Srivastava et al. [104] have
also investigated the potential of being able to separate
erythrocytes, based on their ABO-Rh blood group,
through their deflection across the inlet and outlet
fluidic channel of a DC insulator-based DEP device.
Under optimized conductivity (in the range 52mS/m
– 0.91 S/m) and field conditions (1.71–6.85 kV/m), A+
blood could be discerned with >99% confidence from all
other blood types. B− exhibited a 99.4% discernability
in this test. An unexpected finding was that similar
channel fractions were observed with B+, A−, O+ and
AB− cells, even though they represent dissimilar antigen
expressions.
The different patterns of cell collection at castellated

interdigitated electrodes (pearl chaining or triangular
depending on positive or negative DEP, respectively)
observed by Wang et al. [35] for erythrocytes was
confirmed by Xu et al. [105] – with the added obser-
vation that at 2MHz and in a medium of conductivity
23.5mS/m a fraction of the cells collected by positive
DEP could be released with gentle fluid flow. This
implied that subpopulations of the cells exhibited differ-
ent dielectric properties. Aceti et al. [106] measured the
electrical conductivity of trophozoite-infected erythro-
cytes obtained from a patient suffering from cerebral
malaria, with a very high level of parasitaemia (27%),
before and after starting chemotherapy with quinine
hydrochloride. Before starting therapy, the membrane
conductivity of infected red blood cells was significantly
higher than that of normal erythrocytes, which suggests
that the ionic transport and permeation processes
occurring in the membrane were enhanced by the pres-
ence of the parasite, possibly due to structural disorder
induced by Plasmodium falciparum in the phospholipid
bilayer. After initiation of antimalarial chemotherapy,
a marked reduction of electrical conductivity of the
parasitized cell, to values below those of normal cells,
was observed. This reduction appeared to be related to
the number of infected erythrocytes, since there was a
direct correlation between the parasite density and the
conductivity value, which reached normal levels after the
clearance of parasitaemia. To demonstrate that quinine
alone was not responsible for any possible alteration in
the membrane structure and function, the in vitro effect
of this drug on the conductivity of normal erythrocytes



 Dielectrophoresis

was investigated.The membrane conductivity was found
to be ∼1.1 × 10−4 S/m, in good agreement with the value
estimated in normal conditions. The markedly reduced
conductivity following quinine therapy suggests that the
drug can significantly decrease ion transport across the
infected membrane. Thus, it appears that quinine makes
the cellular environment unfavourable for P. falciparum
replication, by blocking the transport of substances phys-
iologically relevant for the rapidly growing parasite. The
drug does not kill the parasite directly, but its toxic effect
may be a consequence of the erythrocyte’s membrane
modification. Furthermore, the membrane conductivity
of P. fulciparum infected erythrocytes, after the initiation
of chemotherapy, became similar to that of effete and
senescent red cells, which are susceptible to filtration
by the spleen. Therefore, it seems that quinine has an
‘ageing’ effect on parasitized erythrocytes, at least with
respect to the electrical properties of the membrane.
These cells may be removed from the circulation because
they are susceptible to the culling process within the
spleen.The sudden increase of splenic filtration observed
in patients with acute falciparum malaria after starting
quinine therapy had been thought to be the result of a
direct effect of the drug on splenic function.The study by
Aceti et al. [106] indicated that it may be a consequence
of alterations of the infected erythrocyte membrane
induced by quinine treatment. From measurements of
the crossover frequency (fx01) values of 11.8mF/m2 and
271 S/m2 were derived for the membrane capacitance
and membrane conductivity, respectively, of normal ery-
throcytes [107].The value for fx01 depended linearly with
the value of the medium conductivity, in accordance
with Equation (10.39). However, for the parasitized
cells the value for fx01 exhibited a superlinear depen-
dence on medium conductivity above 20mS/m. The
parasitized cells exhibited a membrane capacitance of
∼9mF/m2, with a membrane conductance of 1130 S/m2

that increased steadily as the medium conductivity
was increased above 20mS/m [107]. This increase
was considered to result from the known presence of
parasite-associated membrane pores in parasitized cells.
The large differences between the fx01 values of normal
and parasitized cells was considered to provide straight-
forward sorting of these cell types by DEP, with a partic-
ular application of providing presample enrichment of
clinical blood samples for PCR analysis [108, 109].
Piacentini et al. [110] have described a microfluidic

device that is capable of separating platelets to a purity of
98.8% from other blood cells, with less than 2% cell loss.
The device combines hydrodynamic focusing in combi-
nation with DEP field flow fractionation, using the so-
called ‘liquid electrodes’ design described in Chapter 10,
section 10.4.3.Whole bloodwas centrifuged for fivemin-
utes at 1000 rpm and the sample on the top of the tube

(containing mostly platelets) was remixed with the sam-
ple at the bottom at the tube (containing erythrocytes
and leucocytes) was diluted to obtain a concentration
of 1∼2×108 cells and platelets per ml. The suspending
medium was phosphate buffer saline, diluted in sucrose
solution to give a conductivity of 55mS/m, while keep-
ing an osmolarity of 300mOsm/l. The addition of 1%
w/v bovine serum albumin reduced the adhesion of cells
on the microchannel walls. At this conductivity both the
platelets and other blood cells exhibited the required
magnitude of negative DEP at 100 kHz using a mod-
est applied voltage of 10Vpk−pk. Pethig et al. [111] val-
idated a DEP cell profiler by following changes in the
dielectric properties of human T lymphocytes (Jurkat
E6-1 cells) after their mitogenic stimulation with phor-
bol myristate acetate (PMA) and ionomycin. B lympho-
cytes are activated to commence cell division (mitosis)
when they encounter an antigen matching their specific
immunoglobulin, whereas T cells undergo mitosis when
stimulated by mitogens to produce small lymphocytes
that produce lymphokines for bolstering the host organ-
ism’s immunity. The cell profiler automatically applied
a sequence of AC voltages to the microelectrodes and
images of theDEP-inducedmotions of the cells were cap-
tured at 30 frames per second. The location of each cell
was continuously tracked and a value for the diameter of
each cell was obtained from the average obtained from
the images collected over time, to an estimated accu-
racy of ±0.25μm. The velocities of the cells were com-
puted to an accuracy of±0.1μm/s or better and these val-
ues were normalized with respect to the variation of the
electric field strength and gradient between the electrode
edges. The data for each cell was fitted to the idealized
DEP response curve, corresponding to the single shell
model of a cell, for the purpose of computing the cell’s
crossover frequency (fxo1). With a suspending medium
conductivity of 40mS/m, membrane capacitance values
in the range 9.0–16.9mF/m2 were obtained for the con-
trol Jurkat cells, whilst the corresponding range for acti-
vated cells was 7.0–13.8mF/m2. This reduction of the
mean membrane capacitance of the cells was the main
dielectric effect found to occur 24 h following PMA and
ionomycin treatment, indicating a reduction in the com-
plexity of the membrane topography that was related
to the observed reduction in the percentage of S phase
cells [111]. These results are consistent with the find-
ings of electrorotation studies of human T lymphocytes
[112, 113]. Mitogenic stimulation of resting T lympho-
cytes resulted in an increase of membrane capacitance
as the cells moved from their normally resting G0 phase
into the cell division cycle. Huang et al. [112] found the
largest increase (77%) in membrane capacitance to occur
as the cells progressed from the G1 phase through the S
phase of the cell cycle.
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11.3.2 Cancer Cells

Simply stated, cancer cells can multiply rapidly and pro-
liferate independently of both internal and external sig-
nals that normally restrain cell growth.The DNA of their
genes that regulate normal cell division is altered or dam-
aged in someway, either bymultiplemutations that accu-
mulate over time or through exposure to toxic chemi-
cals, radiation and other environmental sources. When
a cell transforms into a cancer cell certain changes of its
behaviour occur, such as loss of contact inhibition and
anchorage independence. With loss of contact inhibition
the dividing cells are not restricted by cell-cell contact
and can grow over one another. With anchorage inde-
pendence the cells, instead of having to attach to a solid
surface before they are able to divide, can form colonies
in a viscous fluid or soft agar gel. The number of cancer
cells growing in a culture dish is commonly determined
qualitatively by estimating their confluence– a term refer-
ring to the proportion of the surface area of the dish sub-
strate covered by the cells. Thus, 80% confluence (a typ-
ical value for cell removal) corresponds to ∼80% of the
dish surface being covered by the growing cells. Adherent
cells in culture are typically detached and dispersed into
solution for DEP study using a combination of trypsin
and ethylenediamine-tetra-acetic acid (EDTA). Trypsin
is a proteolytic enzyme that breaks down proteins, whilst
EDTAchelates divalent ions (such asCa2+), so that acting
together they weaken cell-cell and cell-substrate interac-
tions. The extent to which this procedure might mod-
ify the cell’s DEP properties has not been quantified (to
the author’s knowledge), but it is generally considered to
have a minimal effect.
Burt et al. [114] investigated the DEP properties of

three lines (DS19, R1 and DR10) of Friend murine ery-
throleukaemic (MEL) cells.These cells, derived from a B-
cell lymphoma, are rapidly dividing mouse cell lines that
are maintained in suspension cultures and grow as loose
clumps at a density between 105 and 106 cells/ml. They
should be split roughly tenfold every two days or so to
maintain this concentration. MEL cells are transformed
precursors of erythrocytes that have not differentiated
beyond the stage of colony-forming cells. They are well
established as a model for the study of cell differentiation
because of their susceptibility to a variety of chemical
agents that can, in some clones, induce varying degrees of
differentiation up to an advanced step of erythroid differ-
entiation, which has much in common with the late steps
of erythropoiesis and the normal nuclear extrusion pro-
cess (a fully formed erythrocyte does not have a nucleus).
Cell line DS19 progresses beyond the colony-forming
stage to the stage of terminal differentiation in response
to treatment with hexamethylene bisacetamide (HMBA),
evidenced by haemoglobin production and loss of the

ability of the cells to grow in soft agar. The R1 cell line,
cloned from DS19, is characterized by its inability to ter-
minally differentiate and produce haemoglobin following
treatment with HMBA or dimethylsulphoxide (DMSO).
R1 is thus classified as being noninducible, whilst DR10
is characterized by a differential response to HMBA and
DMSO. Whereas DR10 responds to HMBA treatment
by producing haemoglobin and losing its ability to grow
in soft agar, it is resistant to DMSO, which is a strong
inducing agent for DS19. Treatment of the three cell lines
with HMBA was already known to decrease their aver-
age cell diameters by ∼12% and their plasma membrane
surface charge densities by ∼14%. The DEP characteri-
zation [114] of the MEL cells used an optical technique
capable of performing measurements in the frequency
range 1Hz to 4MHz [115]. To investigate the influence
of surface charge, human erythrocytes were also inves-
tigated before and after treatment with neuraminidase
(an enzyme that cleaves sialic acid from cell surfaces).
This investigation revealed that a reduction of cell sur-
face charge significantly reduced the magnitude of the
DEP response for erythrocytes in the frequency range 1–
30Hz, but had a negligible effect at higher frequencies
[114]. HMBA-treatment reduced the low-frequency (1–
200Hz) DEP response of the inducible DS19 cells as well
as the noninducible R1 cells, reflecting a loss of surface
charge for both cell types. However, HMBA-treatment
increased the DEP response of the DS19 cells in the fre-
quency range 200Hz–10 kHz, but had no effect on the
R1 cells. This result was mirrored in the results obtained
for theDR10 cells, whereHMBA-treatment increased the
DEP response in the frequency range 200Hz–10 kHz, but
was not altered by exposure to DMSO. An increase in
DEP response in this frequency range implied an increase
of effective cell conductivity. These results were taken to
confirm that DEP can distinguish between cell surface
charge and cell membrane polarizability parameters.
The DEP characteristics of clone DS19 of the MEL

cell line, together with the effect of treatment with the
inducing agent HMBA, were later studied in more detail
by Gascoyne et al. [116]. In this work a method was
devised in which the DEP properties of 200–300 cells
could be observed simultaneously on an interdigitated,
castellated, electrode array and the results quantified
using computerized image analysis. This electrode
design (see Figure 10.35) had been shown to collect cells
in aggregation patterns that can clearly be interpreted in
terms of positive and negative DEP [117]. Software was
used either to measure the averaged behaviour of all the
cells, to distinguish cell subpopulations by identifying
their morphological differences or to track individual
cells of interest. This method thus retained the ability
to discriminate individual cells and cell subpopulations,
while permitting observation of sufficient numbers to
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Figure . DEP collection spectra for normal murine
erythrocytes (ME); murine erythroleukemia (MEL) cells; and MEL
cells treated with the inducing agent hexamethylene
bisacetamide (HMBA). The conductivity of the isotonic cell
suspension (107 cells/ml) was 2 mS/m (based on Gascoyne et al.
[116]).

allow meaningful statistical analyses. After growth and
harvesting, the cells were washed three times in 320mM
sucrose solution containing 2mg/ml dextrose, finally
being suspended at 107 cells/ml in the same solution.
The cell suspension was adjusted to a conductivity of
2mS/m by titration with NaC1, kept on ice until DEP
characterization, which was typically completed within
45min. The frequency-dependencies of the rates at
which normal murine erythrocytes, untreated MEL
cells and those treated with HMBA, collected by either
positive or negative DEP at the castellated electrodes are
shown in Figure 11.21.
From Figure 11.21 it can be seen that at a frequency

of 22 kHz the HMBA-treated leukemic cells displayed
positive DEP collection, whilst untreated leukemic cells
exhibited negative DEP. It follows that a mixture of these
different cell types could in principle be separated to
different regions of the electrode array at this frequency.
Likewise, a mixture of leukemic and healthy mouse ery-
throcytes should be capable of such separation at 30 kHz.
To demonstrate that this prediction could be realized
in practice, leukemic and normal erythrocytes were
mixed, injected onto the electrode array and subjected
to a 30 kHz field [118]. Good local separation of the
leukemic and normal cells occurred within one minute,
the different cell types being readily distinguished by
their different sizes. Normal erythrocytes are smaller
than erythroleukaemic cells, so that a simple size dis-
crimination algorithm allowed the image of all cells to be
split into separate images containing only erythrocytes

or only leukemic cells. Because the normal erythrocytes
were so much smaller than erythroleukemia cells (less
than 1

4 of the area) cells were correctly identified by the
image processor to >99% accuracy.
The image processing also allowed quantitative mea-

surements to be made of the DEP-induced motions of
the cells, so that any changes could be determined of
the membrane dielectric properties of the MEL clones
during the process of cell differentiation induced by
HMBA or DMSO [118]. The results of this investiga-
tion are shown in Table 11.2. From this Table, it is
clear that HMBA induced at least a sixfold decrease in
cell membrane conductivity and a decrease of approx-
imately 30% in membrane permittivity in DS19 cells.
DMSO was found to induce similar effects. The mem-
brane changes developed over four days of treatment
with HMBA or DMSO and paralleled morphological
alterations in the cells and the expression of haemoglobin
as the cells differentiated [119]. Table 11.2 also shows
that the DEP properties of the noninducible R1 exhibited
almost no response following exposure to these agents.
Decreases in membrane conductance and permittivity,
which occurred for DS19 but not for R1 following treat-
ment by HMBA or DMSO, therefore appeared to be cor-
related with cell differentiation – as judged by the expres-
sion of haemoglobin and morphological changes that
included a reduction of cell volume and a shrinkage of
the cell nucleus during erythropoiesis.
The earlier investigations [116, 117] had achieved

DEP-assisted separations of different cell types at a
localized level on the microelectrode array. For most
practical applications of cell separation, however, the
objective is to physically isolate and collect target cells
from a cell mixture for further study. Becker et al. [120]
described a DEP device with interdigitated, castellated,
electrodes that they referred to as an ‘electroaffinity’
column. A demonstration of this technology was given
through the practical example of removing leukemic
cells from human blood. The cell mixture consisted
of blood cells (collected by venipuncture from healthy
volunteers and diluted with 90 parts Ca2+/Mg2+-free
PBS containing 5mM hemisodium EDTA) mixed in a
ratio of 3 : 2 with HL-60 leukaemia cells that had been
cultured under standard conditions and harvested by
centrifugation. The mixed cells were then washed twice

Table . Dielectric properties of the plasma membranes of responsive (DS19) and nonresponsive
(R1) murine erythroleukaemic (MEL) cells [118].

DS Cells R Cells

Membrane property No treatment HMBA treated No treatment HMBA treated

Conductivity (S/m) 5.4 × 10−7 <1 × 10−7 7.7 × 10−7 5.1 × 10−7

Permittivity (F/m) 6.39 𝜀o 4.49 𝜀o 6.86 𝜀o 6.67 𝜀o
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in isotonic (8.5%) sucrose containing 3mg/ml dextrose
and resuspended at a final concentration of 2 × 107
malignant cells and 3 × 107 normal blood cells/ml in
this same solution. The suspension conductivity was
adjusted to 10mS/m by addition of hemisodium EDTA
to a final concentration of approximately 0.7mM. The
DEP separation chamber was operated under conditions
where the DEP force for one cell type was strong enough
to prevail against the horizontal fluid drag force and
the hydrodynamic lift force, causing this cell type to be
retained on the electrode tips while other cell types were
eluted by the combined influences of the hydrodynamic
forces. Thus, the DEP chamber was considered to oper-
ate as an electroaffinity column having affinity for only
one cell type. Electrorotation measurements were also
performed on the erythrocytes and HL-60 cells. Based
on the values of the cellular dielectric parameters derived
(e.g., membrane capacitances of 15 and 9mF/m2 for the
HL-60 and erythrocytes, respectively) from an analysis of
this electrorotation data, it was calculated that at 80 kHz
the HL-60 and erythrocytes would exhibit Clausius–
Mossotti factors of +0.6 and −0.1, respectively. The DEP
force acting on the HL-60 cells would thus be strongly
positive and exceed the horizontal drag force by a factor
of three at 80 kHz, whilst erythrocytes would be repelled
from the electrodes by a negative DEP force.This predic-
tion, that the HL-60 cells would be retained in the cham-
ber and the erythrocytes eluted, was observed in practice
[120]. The HL-60 cancer cells were retained at the tips of
the electrode castellations, while the normal blood cells
were eluted with the fluid flow from the chamber, when
the applied voltage signal was repetitively swept between
20 and 80 kHz.This procedure loosened the packing den-
sity of the collected cells and helped to repel any blood
cells that had become entrapped with the cancer cells.
After 20min the cancer cells were retained at a purity of
∼80%. It was also noted that because the cells had been
sorted at a rate of ∼103/s, thus faster than conventional
fluorescent activated and other refined cell sorters, it
should be feasible to increase this rate by at least two
orders of magnitude using a larger device, making the
technology applicable to practical large-scale cell sorting
problems. Furthermore, the technique is noninvasive to
the cells and does not depend on tagging or labelling the
cell surface with potentially disruptive antibodies.
The knowledge gained from these studies [114, 116,

118, 120] to investigate the DEP characteristics of can-
cer and normal blood cells have been directed towards
the development of DEP-based technologies for detect-
ing and isolating circulating cancer cells (CTCs) from
the peripheral blood of cancer patients. The potential
impacts and technical challenges of achieving this aim
are significant. The prognosis and treatment of various
cancers (e.g., breast, prostate, ovarian, colon) is aided

by knowledge of the concentration of CTCs. At any
time during therapy the detection of elevated CTCs pro-
vides an accurate indication of subsequent rapid dis-
ease progression and mortality for a patient. However,
CTC concentrations are extremely low compared to the
background count of normal blood cells. For example,
detection of more than five CTCs per 7.5ml peripheral
blood is indicative of a worsening outcome for breast
cancer patients [121]. From the composition of human
blood detailed in Appendix K, the challenge for a DEP-
device is thus equivalent to isolating from (say) 15ml
of whole blood at least ten cancer cells from amongst
∼8 × 1010 erythrocytes and other blood cells! If, and not
an insignificant ‘if ’, the vast majority of the erythrocytes
can be removed by lysis or density-gradient separation
without loss of any of the cancer cells, the problem is
reduced to isolating ten cancer cells from ∼108 periph-
eral blood mononuclear cells (leucocytes) of an original
15ml blood sample.This simple analysis provides an idea
of the scale of the challenge in terms of cell density and
fluid volume throughput for 100% efficiency and purity
of target cancer cell capture. Progress has been made
through the use of larger electrode arrays and DEP field-
flow-fractionation (DEP-FFF), together with an evalua-
tion of how processing time, fluid flow rate and cell con-
centration influences the efficiency of target cancer cell
separation. In initial tests using the batch-mode form
of DEP-FFF, mixtures of peripheral blood mononuclear
cells (PBMNs) and three cultured cancer cell lines, with a
ratio of 1 : 1000 for cancer-to-PBMNcell content, the effi-
ciency of cancer cell recovery was 92% for a chamber cell
load of 105 cells, falling to 10% efficiency at a cell load-
ing of 2.25 × 107 cells [122]. After isolation, the cancer
cells were successfully returned to growth in culture to
demonstrate functional integrity and viability. Shim et al.
[123] describe the continuous-flow form ofDEP-FFF that
can process larger sample volumes at processing rates of
106 PBMN cells /minute.The peripheral bloodmononu-
clear cell fraction of a clinical specimen is slowly injected,
deionized by diffusion and then subjected to a balance of
DEP, sedimentation and hydrodynamic lift forces. These
forces cause cancer cells to be transported close to the
floor of the chamber, while blood cells are carried about
three cell diameters above them.The cancer cells are iso-
lated by skimming them from the bottom of the chamber
while the blood cells flow to waste. To illustrate opera-
tion of the technology, the isolation of circulating colon
cancer cells from clinical specimens was achieved, with
the tumour origin of these cells verified by molecular
analysis [123]. A commercial form of this instrumenta-
tion is described by Gupta et al. [124]. To investigate the
potential applicability of this technology to different can-
cer types, Shim et al. [125] measured the DEP and spe-
cific density properties of the NCI-60 panel of cancer cell
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types (54 types in total), whilst comparing these proper-
ties to those exhibited by the subpopulations (e.g., lym-
phocytes, monocytes, basophils, neutrophils) of normal
peripheral blood cells. Apart from one of the five breast
cancers and one of the nine nonsmall cell lung cancers,
all of the NCI-60 cell types had densities in the range
1048 to 1068 kg/m3. It was also found that the NCI-60
cell types, regardless of tissue of origin, exhibited DEP
properties that facilitate their isolation from blood. Cell
types derived from solid tumours that grew in adher-
ent cultures exhibited DEP crossover frequencies (fxo1 =
20∼65 kHz ) in a 30mS/m medium that were strikingly
different from those of peripheral nucleated blood cells
(80∼220 kHz), while leukemia-derived lines that grew in
nonadherent cultures exhibited fxo1 (55∼110 kHz) values
that approached or overlapped those of peripheral blood
cell types (monocytes and CD34+ haemopoietic cells). A
cautionary remarkmay be appropriate here regarding the
DEP properties of the NCI-60 panel of cancer cells that
are cultured in vitro. The important DEP data obtained
by Shim et al. [125] may have to be taken as useful rather
than precise guidelines for devising DEP separation pro-
tocols, because the DEP properties of the cultured cell
lines may not exactly mirror the corresponding proper-
ties exhibited by cancer cells that have metastasized into
peripheral blood.
Other approaches to the DEP separation of cancer

cells include that by An et al. [126] who used fan-
shaped, asymmetric, electrodes to direct different cell
types into two outlet fluid channels. Malignant human
breast cancer epithelial cells were successfully separated
from healthy breast cells of similar size, based on subtle
differences in their dielectric properties. Yang et al. [127]
separated colorectal cancer cells from human embryonic
cells and E. coli using opposing wedge-shaped electrodes
in a fluidic channel. Moon et al. [128] combined a multi-
orifice fractionation in series with slanted, interdigitated,
DEP electrodes to separate human breast cancer cells
from a spiked blood cell sample. A 162-fold enrichment
of the cancer cells was obtained for a sample flow rate
of 126ml/minute, whilst the erythrocytes and leukocytes
were removed with separation efficiencies of 99.24% and
94.23%, respectively. In a series of publications Salman-
zadeh and co-workers used contactless-DEP to isolate
prostate tumour initiating cells from noninitiating cells
[129] and to investigate the DEP responses of progres-
sive stages of mouse ovarian epithelial cells [130, 131].
The crossover frequencies (fxo1) were determined for the
four different stages of malignancy of the epithelial cells,
finding that the plasmamembrane capacitance advanced
from a value of 15.39 ± 1.54mF/m2 for a nonmalignant
benign stage to 26.42 ± 1.22mF/m2 for the most aggres-
sive stage [131]. These differences were postulated to be
the result of morphological variations due to changes

in the cytoskeleton structure, specifically the decrease
of the level of actin filaments in the cytoskeleton struc-
ture of the transformed epithelial cells [131]. Finally,Mul-
hall et al. [132] employed their DEP-microwell system
to show that the cytoplasmic conductivity and plasma
membrane capacitance of normal, precancerous and can-
cerous oral keratinocytes are distinct. The mean mem-
brane capacitance values of dysplastic (DOK) and can-
cerous (H357 and H157) oral keratinocytes were higher
than those for primary normal oral keratinocytes (HOK).

11.3.3 Stem Cells

In brief, stem cells are unspecialized cells that can differ-
entiate to one or more specialized types of cell.Through-
out its life a stem cell can replicate indefinitely through
mitosis to generate more stem cells or progenitor cells
that become highly specialized (e.g., a blood cell, muscle
cell, neuron) andmaintain the normal turnover of regen-
erative organs, such as blood, skin, or intestinal tissues.
All of the cells in blood are derived from haematopoi-
etoc stem cells, which reside in bonemarrow, in a process
known as haematopoiesis. Unlike stem cells, progenitor
cells can divide a limited number of times only – they are
said to exhibit oligopotency in that they can differentiate
into only a few cell types. Examples are progenitor vascu-
lar cells that can become smoothmuscle cells or endothe-
lial cells, as well as a progenitor lymphoid cell that can
give rise to a B or T blood cell (but not an erythrocyte,
which is derived from a myeloid progenitor). Another
term commonly used by stem cell biologists is precurser
cell, which implies that it can differentiate into only one
cell type. Adult stem cells (also known as somatic stem
cells) and progenitor cells can be found in various tis-
sues of young or adult animals and humans and act to
either replenish or repair tissues. Embryonic stem cells
can be isolated from the inner cell mass of blastocysts –
in a developing embryo (or laboratory) they can differ-
entiate into all the specialized cells of the body. For the
purpose of stem cell therapy, human mesenchymal stem
cells (hMSCs) have attracted particular attention because
they have three important properties – they have a high
differentiation capacity (being able to produce bone cells,
cartilage cells,muscle cells and fat cells, for example) high
growth (trophic) activity, plus the ability to self-renew.
The propensity of pluripotent stem cells (pSCs) to

spontaneously differentiate and their unpredictability to
commit to specific lineages opens up the opportunity
for DEP to contribute to stem cell research and therapy
[133]. For example, it could provide the means to act
as a sensitive and noninvasive method to monitor and
separate stem cell populations. Whether derived from
embryos of varying stages of development, or induced
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by expression of nuclear factors in somatic cells, the iso-
lation and renewal of pSCs are significantly challenged
by the absence of noninvasive methods to discriminate
and specifically promote the growth of this cell type,
either from limiting quantities of tissue (e.g., embryos)
or amidst competing unreprogrammed somatic cells dur-
ing induction protocols.This affects the efficiency of their
isolation and interferes with the ability to achieve clonal
cell lines. This is especially the case when co-culturing
these cells with other cell types (e.g., feeders) that sup-
port self-renewal and / or differentiation. Alternatively,
in a therapeutic context, DEP may provide a simple and
noninvasive way to positively or negatively select for tar-
get or contaminating cell types prior to transplantation.
There are comparatively few publications that describe
the DEP characterization or manipulate of stem cells and
the following citations hopefully cover most of them up
to early 2016.
The CD34+ antigen is a marker that has been used to

identify haematopoietic precurser cells and is progres-
sively lost as the cells differentiate. It is thought to have a
role in early haematopoiesis bymediating the attachment
of stem cells to the bone marrow extracellular matrix or
directly to connective tissue (stromal) cells. Talary et al.
[134] demonstrated that enrichment of CD34+ cells that
contain the stem cell subpopulations in bone marrow
and peripheral blood can be achieved using DEP.The cell
samples were prepared by taking 0.5ml and 0.25ml of
peripheral blood from stem cell harvests and bone mar-
row, respectively and making the solution up to 20ml
with phosphate buffered saline. The erythrocytes were
removed in a lymphocyte density gradient separator.The
remaining leucocytes were washed and resuspended in
320mM sucrose solution containing 3mg/ml glucose
(conductivity 1mS/m) and labelled with a fluorescent
antibody against the CD34+ antigen. The cell sus-
pensions were then pumped through a DEP chamber
containing interdigitated, castellated, microelectrodes
and subjected to a batch-mode form of DEP-FFF. At
500 kHz the majority of cells exhibited positive DEP and
were retained in the chamber after flushing with the cell
suspension medium. Cell fractions exhibiting negative
DEP and eluted from the chamber were obtained by low-
ering the voltage in steps from 500 kHz down to 1 kHz.
To test the efficacy of the DEP force the cell suspensions
were passed through the DEP chamber, with and without
an applied voltage signal, so that the relative concentra-
tions of the CD34+ stem cells in the bone marrow and
peripheral blood could be determined using standard
FACS analysis. The sample fraction collected from the
eluate at 5 kHz displayed the presence of a 4.97% popula-
tion of CD34+ cells, representing a 5.9-fold enrichment
of stem cells [134]. In later work Stephens et al. [135]
increased the number of applied voltage frequencies and

also demonstrated that the collected CD34+ stem cells
grew when plated in colony assay cultures. This showed
that the collected stem cells remained normal, viable
and capable of colony formation when cultured for two
weeks. The quantity of colonies formed correlated with
the percentage of CD34+ cells in each fraction collected.
The number of myeloid and erythroid colonies produced
varied with each fraction, with the highest concentration
in the 10 kHz fraction. Between samples collected from
different donor patients there was a spread of frequencies
in which enrichment occurred, but the peak enrichment
was consistently obtained at 5 kHz.
Vykoukal et al. [136] later used a DEP-FFF device

to enrich putative stem cells from adipose tissue. This
device incorporated an electrode structure fabricated
using a flex-circuit strip of gold microelectrodes on poly-
imide substrate (to anticipate scalable and low-cost vol-
ume manufacturing) later employed in the devices for
isolating circulating tumour cells from peripheral blood
[123–125]. Adipose tissue was manually minced and
collagenase-digested; centrifuged to remove adipocytes
and liquid fat; the resultant cellular fraction filtered; the
erythrocyte quantity reduced by standard density gradi-
ent centrifugation. The adipose-derived cells were then
labeled with various fluorescent antibodies, washed and
suspended in iso-osmotic buffer (9.5% sucrose, 0.3% dex-
trose, conductivity adjusted to 30mS/m with PBS) and
resuspended at a concentration of 2×106 cells/ml. The
frequency of the applied AC electric field was decreased
linearly from 200 kHz to 60 kHz over 40min, the eluted
fractions being analysed by flow cytometry to track the
elution by negative DEP of the various cell populations
from the chamber. The elution profiles as a function of
voltage frequency were similar in distribution to those
obtained for CD34+ cells [134, 135]. Independent DEP-
FFF runs yielded nearly identical elution profiles for
cells labeled with FITC-conjugated antibodies against
two putative stem cell markers, NG2 and nestin. Fur-
thermore, the elution peaks for the putative stem cells
were shifted from the peak containing the CD45+ leuko-
cytes. Overall, the relatively rare (<2% in the starting
mixture) NG2-positive cells were enriched up to four-
teenfold. (The clinical use of adipose stem cells, isolated
from fat by DEP, for the treatment of hand astrophy has
been reported [137]. However, at the time of reading this
paper it carried the editor’s note that concerns have been
raised over the reliability of the data presented!)
Flanagan et al. [138] found that populations of mouse

neural stem / precursor cells (NSPCs), differentiated
neurons and differentiated astrocytes exhibited different
DEP-frequency profiles. This not only gave an indication
that the different stem cell types had different dielectric
parameters, but also that they exhibited different levels of
heterogeneity. By isolating NSPCs from developmental



 Dielectrophoresis

ages at which they were more likely to generate neurons,
or astrocytes, they also obtained evidence to support the
very interesting conclusion that a shift in DEP-frequency
profile reflected their fate bias before detectable marker
expression in these cells. Measurements of the DEP
crossover frequency (fxo1) and cell radius were not made
in this study, but these aspects were addressed in later
work [139]. NSPCs of similar size and morphology but
different in their ability to form neurons and astrocytes
were investigated. From the single-shell analysis of
the DEP data, it was concluded that plasma membrane
capacitance, but notmembrane conductance, is a specific
and dynamic indicator of NSPC fate potential. Further-
more, NSPCs that differ in fate potential have distinct
fxo1 values, suggesting that DEP may be used to isolate
undifferentiated NSPCs based on their propensity to
form either neurons or glia. It was further hypothesized
by Nourse et al. [140] that inherent electrophysiological
properties, as expressed by their DEP properties, are
sufficient to define neorogenic progenitors (NPs) and
astrogenic progenitors (APs) and that this could be
tested by determining whether isolation of cells solely
by these properties specifically separates NPs and APs.
Nourse et al. found NPs and APs could be enriched in
distinct fractions after separation by DEP. A single round
of DEP isolation provided greater NP enrichment than
sorting with PSA-NCAM, which is considered an NP
marker. Additionally, cell surface N-linked glycosylation
was found to significantly affect cell fate-specific electro-
physiological (DEP) properties, providing a molecular
basis for the cell membrane characteristics. Inherent
plasma membrane biophysical properties that influence
their DEP properties were thus thought sufficient to
define progenitor cells of differing fate potential in the
neural lineage [140]. Furthermore, these properties can
be used to specifically isolate these cells and are linked
to patterns of glycosylation on the cell surface.
Assessment of the DEP crossover frequency (fxo1) val-

ues, cell diameter and plasma membrane capacitance
(Cm) values have been reported by Velugotla et al. [141]
for a group of human embryonic stem cell (hESC) lines.
Undifferentiated hESC lines (H1, H9, RCM1, RH1) and
a transgenic subclone of H1 (T8) exhibited similar fxo1
and Cm values (14 ∼ 20mF/m2) that did not allow for
their clear discrimination by DEP. However, the differ-
entiation of H1 and H9 to a mesenchymal stem cell-like
phenotype resulted in significant increases in their mean
Cm values to 41∼49mF/m2 in both lines (p < 0.0001).
BMP4-induced differentiation of RCM1 to a trophoblast
cell-like phenotype also resulted in a distinct and signifi-
cant increase inmeanCm value to 28mF/m2 (p< 0.0001).
The progressive transition to a higher membrane capac-
itance was also evident after each passage of cell culture
as H9 cells transitioned to a mesenchymal stem cell-like

state induced by growth on a substrate of hyaluronan. It
was concluded that these findings confirm the existence
of distinctive parameters between undifferentiated and
differentiating cells on which future application of DEP
in the context of hESC manufacturing can be based.
Adams et al. [142] characterized the DEP frequency-

responses of native human mesenchymal stem cells
(hMSCs) using quadrupole electrodes (see Figure 10.4)
for electrical frequencies in the range 10 kHz to 35MHz.
Measurements were performed for two dextrose buffer
solutions of conductivities 30mS/m and 100mS/m. The
data obtained for the native cells was compared with
those obtained for hMSCs that had beenmorphologically
standardized to a spheroidal shape using an elastinlike
polypeptide-polyethyleneimine copolymer. Computer-
aided image analysis was employed to identify the DEP
crossover frequency (fxo1) by interpolation. Estimated
values for fxo1 of 0.62MHz and 1.3MHz were obtained
for the native cells at conductivities of 30mS/m and
100mS/m, respectively. With all other factors (e.g., cell
size and shape, plasma membrane capacitance) remain-
ing constant, then according to ‘standard’ DEP theory
given by Equation (10.39) the value of fxo1 should vary
in direct proportion to the medium conductivity. Based
on this assumption the 100mS/m value of fxo1 should
have been ∼2MHz (rather than 1.3MHz), implying that
the product RCm in Equation (10.39) increased when
the medium conductivity was raised from 30mS/m to
100mS/m. Adams et al. [142] obtained best fit values a
plasma membrane permittivity factor 𝜀mem of 0.79 and
1.1 at 30mS/m and 100mS/m, respectively, indicating
that indeed the membrane capacitance had increased.
This permittivity factor is given by the relationship [141]:

𝜀mem =
Cmemd
4𝜋R2𝜀o

(11.4)

and so mirrors Equation (11.3) but with Cmem repre-
senting the total capacitance (farads) of the cell, rather
than the specific capacitance (F/m2). The correspond-
ing values derived [142] for Cmem are 2.2 pF and 4.5 pF
for medium conductivities of 30mS/m and 100mS/m,
respectively. Adams et al. [142] do not cite the sizes of
their cells, but assuming amembrane thickness d of 7 nm
(see Table 9.2) and using the 30mS/m values 𝜀mem =
0.79, Cmem = 2.2 pF, from Equation (11.4) the mean cell
radius R is calculated to be 13.2μm. This is a cell size
twice that of the mesenchymal-like stem cells studied
by Velugotla et al. [141]. The specific membrane capac-
itance (assuming a spherical shape) corresponding to a
total cell capacitance of 2.2 pF can thus be estimated as
(2.2 × 10−12)/(4𝜋R2) = 1mF/m2.This is a very low value,
well below that of ∼5mF/m2 estimated for a spherical
cell with a perfectly smooth membrane [143]. A value
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of 𝜀mem = 0.050 was obtained for the copolymer-treated
hMSCs of spherical shape, which leads to an even lower
specific membrane capacitance. Taken as they stand, the
DEP-frequency characteristics obtained by Adams et al.
[142] are of value and interest. Images provided of the
cells undergoingDEP between the quadrupole electrodes
indicate a high cell packing density, with many cells in
contact. So, as a cautionary note, it is possible that cell-
cell interactions may have influenced the DEP behaviour
of the cells, as well as the determination of their sizes.
Muratore et al. [144] have demonstrated that DEP

can be used to discriminate cells between stages of
differentiation in the C2C12 myoblast multipotent
mouse model. Terminally differentiated myotubes
were separated from C2C12 myoblasts to better than
96% purity, a result validated by flow cytometry and
Western blotting. To determine the extent to which cell
membrane capacitance, rather than cell size, determined
the DEP response of a cell, C2C12 myoblasts were
co-cultured with GFP-expressing MRC-5 fibroblasts of
comparable size distributions (mean diameter ∼10μm).
A DEP sorting efficiency greater than 98% was achieved
for these two cell types, a result concluded to arise from
the fibroblasts possessing a larger membrane capaci-
tance (∼11.5mF/m2 ) than the myoblasts (∼7.3mF/m2).
The finding by Raman spectroscopy that the fibroblast
membranes contained a smaller proportion of saturated
lipids than those of themyoblasts was taken to imply that
changes in membrane chemistry, as well as surface mor-
phology, should be taken into account when considering
changes of the plasma membrane capacitance. In further
work [145] analysis of the cell size and ‘smoothness’ by
light microscopy and scanning electron microscopy,
respectively, showed that there were differences between
the cell types. C2C12 myoblasts and induced myotubes
mainly differed in size, whereas fibroblasts and C2C12
were found to have very different plasma membrane
microvilli arrangements, with fibroblasts having appar-
ently many more microvilli. This difference in the cell
surface could have been responsible for the observed
changes in membrane capacitance and crossover fre-
quency. No statistical differences were found between
the stage of the cell cycle before and after DEP sorting.
If there had been a change in size during stages of cell
cycle, it was considered insufficient to account for the
high-efficiency of cell separations reported earlier [144].

11.3.4 Neurons

The first investigations of the DEP behaviour of isolated
neurons appear to be those reported by Heida et al.
[146]. Cortical neurons isolated from rat fetuses were
suspended at 106 neurons/ml in a medium of conduc-
tivity 1.6 S/m. 20μl of this cell suspension was pipetted

into a 4mm ring placed around the centre of quadrupole
electrodes that had a gap of 100μm between opposing
electrodes. The number of neurons ‘trapped’ by negative
DEP within the central region of the quadrupole micro-
electrode structure was determined for two different
amplitudes (3V and 5V) and six different frequencies in
the range from 1MHz to 18MHz. This yield of trapped
cells was taken to give a measure of the DEP force as a
function of the amplitude and frequency of the applied
field. The experiments were time lapse recorded by
taking an image every 10 s for a time period of 30min.
However, a contradictory trend was considered to be
found for the yield of trapped neurons for the two voltage
amplitudes as a function of frequency. Increasing the
frequency resulted in a decrease in the number of cells
trapped at an amplitude of 3V, whereas with an ampli-
tude of 5V an increase in the number of cells trapped
was observed as the frequency was increased. Some
mechanism was considered to be present that inverted
the behaviour of the cells and / or the medium when
the voltage amplitude was increased. It was suggested
that their calculation of the Clausius–Mossotti factor
might not give ‘a good representation of reality due to
the incomplete knowledge of the electric properties of
neurons’. On the basis of the single-shell model of a cell
and a calculation of the complex form of the Clausius–
Mossotti factor given by Equation (6.1), the neurons
were predicted [146] to exhibit negative DEP throughout
the frequency range investigated. The following param-
eter values were assumed for the neuron: radius 5μm;
cytoplasm conductivity 0.75 S/m; cytoplasm relative
permittivity 80; membrane capacitance 1.8mF/m2.
With this very low value of membrane capacitance,
Equation (10.39) predicts the DEP crossover frequency
(fxo1) to be 40MHz. However, assigning a more realistic
membrane capacitance value of (say) 18mF/m2 gives
fxo1 = 4MHz. Heida et al. [146] were probably operating
just below fxo1 where the negative DEP force would
be weak and also decrease with a small increase of
frequency. Coupled with thermally induced fluid flow
effects in their high conductivity medium, this may have
influenced the observed motions of the cells. In fact,
in later work where measurements were made between
10 kHz and 50MHz, Heida et al. [147] concluded that the
amplitude-dependent frequency behaviour and unex-
pected DEP-spectra peaks above 1MHz were induced
by heating of the medium, especially for larger voltage
amplitudes and higher frequencies. Thermal effects are
commonly observed in DEP studies, but not so common
is such honest reporting of them. Heida et al. [148]
also investigated the viability of postnatal cortical rat
cells that were trapped within quadrupole electrodes by
DEP using a 14MHz, 3V voltage signal. Morphological
characteristics as well as the ratio of the number of
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outgrowing to nonoutgrowing cortical cells were used to
compare the viability of trapped cells to that of cells in the
same environment but without the imposed nonuniform
electric field.Themorphological characteristics included
the area of the cell, representing adhesive properties and
the number and length of the outgrowing processes,
as a measure for functional recovery. It was concluded
that no difference could be detected in the viable state
of DEP-trapped postnatal cortical rat cells and those not
exposed to the electric field.
To facilitate the in vitro extracellular recording of the

electrical activity of individual neurons and as the first
stage in forming a neuronal network, Prasad et al. [149]
separated neurons from glial cells and positioned them
into DEP traps in a 4 × 4 microelectrode array. To
estimate the final locations of the cells over the elec-
trode array, the electric field distribution was determined
using three-dimensional finite elementmodelling. Disso-
ciated neurons and glial cells from hippocampi were sus-
pended at 2500 cells/ml into DEP separation media suit-
able for achieving long term cell viability. This medium
comprised minimum essential medium, 10% fetal bovine
serum and 5% PBS, with a conductivity of 248mS/m and
pH of 7.4. Positive DEP forces were used to trap the
cells over the electrodes. Electrical signals of 8Vpk–pk,
4.6MHz were employed for the neurons and 152 kHz,
2Vpk–pk for the glial cells.
For the purposes of recording spontaneous and evoked

electrical potential signals from isolated neurons located
in a multielectrode array, Zhou et al. [150] also describe
the DEP separation of embryonic mouse hippocam-
pal neurons from glial cells. Glial cells serve important
supporting roles for neuronal networks and are always
present in dissociated neural cultures. For their spe-
cific application, the goal was to actively and exclusively
recruit neurons over the stimulation and recording sites.
Each multielectrode array consisted of 16 electrodes of
diameter 25μm. Amathematical simulation and analysis
was performed, for a range of suspending medium con-
ductivities, to anticipate the DEP frequency at which the
neurons and glial cells could be separated. These sim-
ulations revealed that positive DEP was not possible in
pure cellmedia (conductivity 1.1 S/M) and so sucrosewas
added to reduce its conductivity. A 20% cell media com-
position (212mS/m) resulted in a measured crossover
frequency (using quadrupole electrodes) of 750 kHz for
the neurons and 500 kHz for the glial cells. The dielec-
tric parameters employed in the single-shell modelling of
the DEP behaviour of neurons and glial cells are shown in
Table 11.3. The simulations agreed well with the experi-
mental observations, especially with respect to predict-
ing the DEP crossover frequency. It is of interest to note
that the dielectric parameters for the glial cells required
significant modification from those previously reported

Table . Dielectric parameters employed by Zhou et al. [150] in
their single-shell model of the measured DEP characteristics of
hippocampal neurons and glial cells.

Parameter Neurons Glial cells

Radius 4 μm 6 μm
Cytoplasm conductivity (S/m) 0.65 0.35
Cytoplasm permittivity (F/m) 80𝜀o 80𝜀o
Membrane capacitance (mF/m2) 8.0 12.0

in the literature, especially regarding the effective con-
ductivity of the cytoplasm and the capacitance of the
plasma membrane. From their patch-clamp measure-
ments of cortical pyramidal neurons, spinal cord neurons
and hippocampal neurons, Gentet et al. [151] obtained a
membrane capacitance value of 9mF/m2 for each class
of neuron. The value required to accurately model their
observed DEP experiments is 12mF/m2.This can be rec-
onciled by the fact that a patch-clamp determination cor-
responds to that of a small selected area of themembrane,
whilst aDEP experiment is sensitive to the average capac-
itance over the whole cell area and to the contributions
made by the presence of morphological features such s
membrane folds and blebs.

11.3.5 Spermatozoa

Fuhr et al. [152] have described a method for bringing
individual spermatozoa to a defined position for char-
acterization followed by sampling with capillaries. The
sperm cells were suspended in standard in vitro fertil-
ization (IVF) medium, in either a planar four microelec-
trode ‘field funnel’, or within a three-dimensional cage
created by an octopole electrode system. In these elec-
trode systems, rapidly swimming spermatozoa could be
trapped under the action of a negative DEP force at MHz
frequencies for just a few seconds, but some spermato-
zoa stopped moving if exposed to field strengths exceed-
ing 50 kV/m. However, in stripwise and interdigitated
structures with electrode gaps of less than 40μm, rapidly
swimming sperm cells could be positioned quite accu-
rately in front of a so-called ‘break electrode’ by a com-
bination of electric field trapping and field induced fluid
streaming.
Boon and Marcos [153] have theoretically explored

the use of DEP to sort and select spermatozoa for male
and female gender preselection in artificial fertilization
techniques. Techniques already developed include flow
cytometry where X- and Y-spermatozoa can be differen-
tiated by virtue of their difference in chromosome com-
position. It is also possible to separate the X- and Y-
spermatozoa into two different layers, when then are
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passed through human serum albumin solution. Theo-
retical modeling was performed of the variation in the
time-averaged velocity of spermatozoa when located in
a field gradient [152]. It was found that the velocity can
be increased or decreased significantly.More notably, the
X- and Y-spermatozoa respond to theDEP force to differ-
ent extents because of their size variations. Therefore, a
high-gradient electric field should result in a notable dif-
ference between the swimming velocities of the X- and
Y-spermatozoa. It was suggested that the medical field
could use this technique to increase the chances of select-
ing spermatozoa containing chromosomes for a particu-
lar gender, thereby advancing gender selection in artifi-
cial fertilization techniques.

11.3.6 Bio-Mechanical Properties

Although the ways in which a cell responds to an exter-
nally applied physical force may depend on its type and
physiological state, it is the cell’s cytoskeleton thatmainly
determines the extent of this response. The cytoskele-
ton spans almost the entire cell and is built of protein
filaments of three main types, namely actin, interme-
diate filaments and microtubules. Depending on their
organization and density these filaments determine the
shape and the rigidity of the cell and are also actively
involved in cellular processes such as intracellular trans-
port of organelles and cytokinesis. It is intimately con-
nected to the global physiological status of the cell, unlike
molecular markers, which are linked to a particular bio-
chemical process. The screening of cells based on both
their expression of molecular markers and mechanical
response to an external force may have useful application
in various areas of biomedical research, drug discovery
and diagnostics. The possibility that DEP forces can be
employed in this manner is worthy of investigation.
Early studies to demonstrate that DEP forces, gen-

erated within a microelectrode device, are capable of
characterizing the mechanical properties of cells were
described by MacQueen et al. [154]. They used the
‘fringing’ fields between adjacent planar electrodes in
a microelectrode array, which penetrated into a cell
suspension dispensed as droplets over the electrodes.
Electrical stresses (i.e., DEP forces) generated by the
planar microelectrodes were used to trap and stretch
cells, while cell deformation was observed using opti-
cal microscopy. The strain and relaxation of two distinct
cell types were investigated, namely Chinese hamster
ovary (CHO) cells, which are adherent epithelial cells;
and U937 human promonocytes, which are nonadher-
ent. The mechanical properties of these cell types are
relevant to their use in suspension cultures since CHO
cells are used in large-scale bioreactors for the produc-
tion of recombinant proteins and U937 cells are used to

study differentiation along the monocyte–macrophage
pathway. To demonstrate the potential use of electro-
deformation for themechanical characterization of these
two cell types, strain and relaxation data were fitted
with a three-parameter ‘standard linear solid’ model of
visco-elasticity, as well as with a two-parameter power-
law method. The CHO cells were found to be approxi-
mately twice as stiff as U937 human promonocytes. The
CHO cells also displayed an elastic behaviour with recov-
ery of initial shape, while U937 strain data exhibited
plastic deformation. Chen et al. [155] performed similar
experiments to characterize the mechanical properties
of SiHa and ME180 cells (two cervical cancer cell lines).
The cells were placed between two microelectrodes fab-
ricated on ITO coated glass slides, with rectangular
voltage waveforms applied at one of three frequencies
(500 kHz, 1MHz and 5MHz) and voltage magnitudes
between 4V and 24V. Cell deformation was recorded
using computer-aided image analysis. Numerical simula-
tions were performed to model cell electro deformation
based on theMaxwell stress tensor formulation. Because
exact electrical properties of SiHa and ME180 cells were
not known, these simulations explored the theoretical
effects on the cell’s electro-deformed behaviour across
the wide range of cell dielectric parameters reported
in the literature. The ranges of cell electrical proper-
ties tested were as follows: membrane relative permit-
tivity 10, 20 and 30; cytoplasm relative permittivity 40,
80 and 120; cytoplasm conductivity 0.1, 0.4 and 0.7 S/m.
By comparing themeasuredmorphological changes with
those obtained from numerical simulations, Chen et al.
[155] were able to quantify Young’s modulus of SiHa
cells (601 ± 183 Pa) and ME180 cells (1463 ± 649 Pa).
These values were consistent with Young’s modulus val-
ues (SiHa: 400 ± 290 Pa and ME180: 1070 ± 580 Pa)
obtained from their own determinations using conven-
tional micropipette aspiration.
Guido et al. [156] stretched cells through the applica-

tion of DEP forces. The cells tested were of two types,
namely human breast adenocarcinoma cells (MCF-7)
and human nontumorigenic epithelial cells (MCF-10A)
derived from benign breast tissue with fibrocystic dis-
ease. For the DEP stretching experiments the cells were
suspended in an isotonic, commercially available aque-
ous polymer solution that effectively reduced undesir-
able nonspecific adhesion of the cells to the microchip
surfaces. The electrical conductivity of this solution
was adjusted to 5mS/m, without altering its isotonicity,
by mixing with 0.3M inositol solution and phosphate-
buffered saline.The DEP force was produced using a pla-
nar arrangement of two microelectrodes, each of width
250μm and separated by a gap of 20μm, fabricated by
structuring indium tin oxide-plated glass slides using
pulsed laser ablation. Fluidic access was achieved by
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mounting a silicone trough onto the processed slides,
forming a sample volume of roughly 200μl. The cell
stretching experiments were performed by first applying
a square waveform signal (15MHz) at 2Vrms to the elec-
trodes.The cells were trapped by positiveDEP at the elec-
trodes – but this voltage was too low to induce any visible
deformation. Visible stress was generated by increas-
ing the voltage to 6V for 60 s and the relaxation pro-
cess was recorded for another 60 s. The DEP force acting
on the cells was calculated to be ∼56 Pa. The response
curves indicated the strain response of the noncancerous
(MCF-10A) cells was approximately two and a half times
stronger than that of the cancerous (MCF-7) cells derived
from a human adenocarcinoma. The noncancerous cells
appeared considerably softer than the related cells from
the cancer cell line. The mean volume of MCF-7 cells
(1920μm3) was 47.4% larger than that of the MCF-10A
cells (1303μm3).Therefore, theMCF-7 cells experienced
the larger DEP force, but were stretched less. This indi-
cated that the observed difference in strainwas not due to
the difference in cell size.The differences in the deforma-
tion response between the cancerous and noncancerous
cell types were considered to be caused by the structural
architecture of their cytoskeletons. To discover which
partwasmainly responsible,Guido et al. [154] performed
stretching experiments in the presence of cytoskeleton-
active toxins. Both cell types were treated with either
latrunculin A or colchicine, which are inhibitors of actin
and microtubule polymerization, respectively. After the
latrunculinA treatment, bothMCF-7 andMCF-10Acells
appeared considerably softer (i.e., the strain increased.
Although the strain of MCF-7 cells increased by approx-
imately 110% and that of MCF-10A cells by 65%, the
MCF-7 cells still remained stiffer than the MCF-10A
cells. In contrast, the colchicine treatment resulted in a
softening of both cell types, such that the responses of
MCF-7 and MCF-10A cells to stretching became indis-
tinguishable. Their interpretation of these results was
that differences in microtubule structures between the
two cell types were primarily responsible for the differ-
ent deformation responses of the two cell types.
Artificial tissues or organs for implant as a repair

or replacement involves the initial seeding of appropri-
ate cells onto a biocompatible scaffold. The outcome
of this procedure relies on successful in vitro cell pro-
liferation and differentiation and in turn this requires
that the cultured cells adhere well to the scaffold. An
improved understanding of cell adhesion will not only
benefit tissue engineering, but also aspects of cell migra-
tion, tumour growth and metastasis. Lin et al. [157] used
DEP forces to determine the adhesion characteristics
of bovine endothelial cells that had been seeded onto
polydimethylsiloxane (PDMS) and polylactide (PLA)
substrates. The cultured cells on their substrate were

removed from the incubator, the culture medium was
replaced with the selected DEP medium and the cell cul-
turing substrate was overturned and placed on top of
DEP electrodes.The electrodes took the form of two par-
allel strips, one with a flat surface and the other with
triangular- or rectangular-shaped features for producing
the nonuniform field. The spatial characteristics of the
electric field were simulated using commercial finite ele-
ment analysis software (COMSOL). The closest distance
apart of the electrodes was 40μm, chosen because the
initial diameter of the endothelial cells was 10∼15μm,
increasing to 35∼40μm after 24 h of seeding. Voltage
potential differences at 200 kHz were applied, scanning
from 400mV to 50V, whilst examining the deforma-
tion and further detachment of cells due to the effects
of DEP. (The term ‘electrophoresis’ rather than ‘dielec-
trophoresis’ is employed in parts of this paper, but DEP
is implied throughout.) Contact angle determinations of
hydrophilicity indicated that PLA is more hydrophilic
than PDMS, suggesting that the endothelial cells should
have better adhesion on PLA than on PDMA. However,
the cell detachment results did not fully agree with this
inference. An applied DEP force was not able to detach
the adhered cells from a PDMS substrate when the seed-
ing time was longer than 4 h. However, the DEP force
produced by a 6V applied potential was enough to lift
endothelial cells cultured on the PLA substrate after four
and six hours of culture. When the culture time was
increased to 8 h, the cells apparently stretched out and a
higher voltage was required to lift and move them.These
results indicated that the adherence of bovine endothe-
lial cell to PLAwasmore stable after 8 h of seeding. It was
concluded that other features of the substrate were con-
sidered to be more crucial for the adhesion of the cells
than its hydrophilicity.
Haque et al. [158] describe a combined application

of a DEP force and a single-beam optical tweezer for
determining the stretching stiffness of single human ery-
throcytes. A particular advantage of this approach is the
lack of mechanical contact with the cells. When cells are
trapped in a medium of conductivity 124mS/m at pH
7.3 by the combination of DEP and laser-tweezer forces,
the two gradient forces keep balance with each other and
deform the trapped cells. From this the elastic shearmod-
ulus of the cell membrane can be determined. The DEP
force was applied between electrodes of triangular shape
at 10MHz, a frequency high enough to avoid conduc-
tivity losses, but below the second DEP crossover fre-
quency (fxo2).With assumed dielectric parameters for the
erythrocytes (cytoplasm conductivity 0.312 S/m, mem-
brane thickness 8 nm, medium and cytosol relative per-
mittivities of 80 and 60, respectively) the real part of the
Clausius–Mossotti factor was calculated to be +0.8. By
measuring the geometrical parameters of single healthy
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human erythrocytes as a function of the applied volt-
age, the elastic modulus of the erythrocytes was deter-
mined to be 1.80 ± 0.5μN/m. This result is within the
range (1∼10μN/m) reported from dynamic membrane
fluctuationmeasurements and also for values of the shear
modulus of the membrane and the underlying spectrin
skeleton (1.4–2.5μN/m) reported by independent laser
tweezers experiments using silica microbeads attached
to the cell membrane. Given its sensitivity and the lack
of mechanical contact with the cells, Haque et al. [158]
considered the method an easy-to-use tool for determin-
ing themechano-elastic properties of living cells. It could
prove useful in distinguishing between healthy and dis-
eased cells, or monitoring the effects of aging, both of
which are crucial for the preservation of blood for medi-
cal use and forensic applications.
Finally, Zhang et al. [159] investigated the stretch-

ing by a DEP force of human acute promyelocytic
leukemia (NB4) cells before and after treatment with
all-trans retinoic acid, a drug used in the treatment of
acute promyelocytic leukaemia. The cells were trapped
between parallel electrodes, spaced 20μm apart, pat-
terned onto an ITO layer in a PDMS microfluidic chip.
A low voltage was used to first immobilize the cells at
an electrode edge, followed by an increase of the voltage
to stretch the cell. Elongation of the cell was observed
using an optical microscope and the results showed that
the untreated and treated cells were both deformed by
the induced DEP force. After 180 s of applied DEP force,
the strain of the untreated NB4 cells was recorded to be
∼0.08, compared to that of ∼0.21 for the treated cells.
This indicated that a decrease in the stiffness of the cell
occurred after drug treatment. The elastic modulus of
the cell was also evaluated and the modulus changed
from 140 Pa to 41 Pa after drug treatment. Zhang et al.
[159] point out that the DEP force acting on the cells is
correlated to unique properties, such as cell size and the
dielectric properties of the cells and the medium and so
it is difficult to perform force calibration with other spec-
imens. They employed the standard linear solid model
to estimate the modulus of the cell and the cell was
assumed to be a viscoelastic solid body under the DEP
stretching force. This model is considered to accurately
estimate the biomechanical properties of leukocytes,
for example [160]. Nevertheless, other reports have
also indicated that the liquid droplet model can better
characterize the plasma membrane and the cytoplasmic
viscosity of leukocytes under persistent tension [e.g.,
161]. Although several models have been proposed
and examined, these models are mostly derived based
on the assumptions or experimental conditions for a
particular cell deformation technique, which may not be
applicable to other cell deformation techniques. Zhang
et al. [159] suggest that further investigation should be

conducted to examine the elastic modulus for the same
cell type with different techniques in order to obtain
a more comprehensive data for comparison. They also
provide a useful table of the biomechanical properties of
different cell types derived using different experimental
methods (micropipette, atomic force microscopy, optical
indentation, optical stretching, magnetic cytometry)
including DEP [154,155].

. Bacteria

Representative citations of the literature on the DEP
properties of bacteria are given in section 11.2.4 of this
chapter.The following citations describe works that were
not specifically directed towards identifying the differ-
ences between live and dead bacteria.
Markx et al. [162] investigated the DEP behaviour of

various bacteria when suspended between polynomial,
quadrupole, electrodes at various values of the medium
conductivity, over the frequency range 1 kHz to 10MHz.
The DEP-frequency responses for all the bacteria types
investigated exhibited a ‘plateau’ commencing at fre-
quency between 10 ∼ 100 kHz, which extended up to
∼10MHz where the electric field was assumed to begin
to penetrate into cytosol. In this plateau range of frequen-
cies the conductivity parameters (rather than the per-
mittivity parameters) of the cell wall and membrane(s)
were assumed to dominate the complex expression for
the Clausius–Mossotti factor. The effective conductivi-
ties derived for the bacteria are given in Table 11.4 at
a frequency that marked the lower end of the DEP-
frequency plateau.
Inspection of Table 11.4 indicates that the effective

particle conductivities of the various bacteria that were
investigated covered a broad range. There is a slight ten-
dency among the 14 species investigated for the Gram
positive bacteria to exhibit the larger conductivity, but
manymore bacterial types need to be investigated before
such a trend can be confirmed. However, in many cases
the separation of many bacteria types from each other
by DEP should be possible. The essential requirements
are a suspending medium of conductivity value between
the effective conductivities of the two species, with an
applied voltage frequency intermediate between those
used to determine the effective particle conductivity.
An example of this is shown in Figure 11.22, for the
DEP separation of E. coli (experiencing negative DEP
and ‘caged’ at the centre of a polynomial electrode
system) from M. lysodeikticus collected at the electrode
edges by positive DEP. The suspending medium was
280mMmannitol adjusted to a conductivity of 55mS/m
with NaCl and a 4Vpk–pk voltage signal at 100 kHz was
employed. Separations of different bacteria types were
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Table . Effective conductivity of some Gram-positive and
Gram-negative bacteria derived from measurements at a
frequency where the dielectric properties of the cell wall and
membrane(s) are considered to dominate their DEP responses
(Markx et al. [162]). Yeast (S. cerevisiae) is added for comparison.

Gram Conductivity Frequency

Species stain (mS/m) (kHz)

Acinetobacter calcoaceticus Negative < 2.0 25
Erwinia carotovore Negative 2.0 ± 0.9 10
Lactobacillus brevis Positive 15.3 ± 1.8 25
Pseudomonus putida Negative 19.5 ± 1.4 10
Enterococcus faecalis Positive 23.0 ± 2.1 10
Escherichia coli Negative 41.2 ± 2.5 100
Lactococcus lactis Positive 41.6 ± 4.6 25
Agrobacterium tumefaciens Negative 45.2 ± 5.0 100
Klebsiela rubiacearum Negative 51.3 ± 10.2 10
Bacillus megaterium Positive 88.8 ± 3.9 10
Bacillus subtilis Positive 93.5 ± 9.6 10
Rhodobacter sphaeroides Negative 96.7 ± 5.3 15
Pediococcus damnosus Positive 101.8 ± 6.8 10
Micrococcus lysodeikticus Positive 155.7 ± 11.6 15
(Saccharomyces cerevisiae) 1.6 10

also [performed using other electrode designs, including
interdigitated, castellated, microelectrode arrays [162].
A bacterial enumeration system is described by Brown

et al. [163] that is based on the fact that the amount of
particles collected by positive DEP on an array of micro-
electrodes is influenced by the number of those parti-
cles passing near the electrodes in a given time period.

Figure . Separation of E. coli (collected in the centre by
negative DEP) from Micrococcus luteus that are collecting at the
edges of quadrupole electrodes (unpublished image from Markx
et al. [162]).

Increasing the cell concentration in a particle suspen-
sion should result in increased levels of collection at elec-
trode surfaces. Consequently, the relationship between
DEP collection and concentration determined for a range
of microbiological particles should be useful in the rapid
evaluation of a comparable suspension of unknown par-
ticle concentration. Such relationships were observed
between suspension concentrations and the extent of
DEP collection for polystyrene latex beads, pure bacterial
samples, as well as mixtures of bacterial species includ-
ing Escherichia coli, Serratia marcescens, Pseudomonas
aeruginosa and Bacillus subtilis. A similar relationship
was used for polystyrene latex as a calibration line to
enable the concentration of particles in a suspension to
be determined according to the level of DEP collection.
The particle concentration of an unknown test sample
was found to lie within the predicted concentration range
determined on the basis of DEP collection. In addition,
the predicted limits were found only to deviate between
−6.2 and +6.9% from the mean particle concentration.
Castellarnau et al. [164] report on an experimental

method based on dielectrophoretic analysis to identify
changes in four E. coli isogenic strains that differed exclu-
sively in one mutant allele. The DEP properties of wild-
type cells were compared to those of hns, hha and hha hns
mutant derivatives. The hns and hha genes code respec-
tively for the global regulators Hha and H-NS. The Hha
and H-NS proteins modulate gene expression in E. coli
and other Gram negative bacteria. Mutations in either
hha or hns genes result in a pleiotropic phenotype. A two-
shell prolate ellipsoidal model was used to fit the exper-
imental data, obtained from DEP measurements and to
study the differences in the dielectric properties of the
bacterial strains. The experimental results indicated that
the mutant genotype can be predicted from the DEP
analysis of the corresponding cultures, opening the way
to the development of microdevices for specific bacteria
identification.
Following on from their previous descriptions of a

DEP-based bacteria detection system [76, 77] Suehiro
et al. [165] have described a selective detection method
for specific bacteria by using a DEP impedance measure-
ment method in conjunction with an antigen–antibody
reaction. Antibody molecules were immobilized on the
electrodes, so that the bacteria were attracted to the elec-
trode gap under the action of positive DEP and finally
brought into contact with the glass surface to be bound
with the immobilized antibody. By appropriately adjust-
ing the balance between the DEP force and the drag
force caused by liquid flow, the target bacteria (E. coli)
could be selectively retained on the chip surface, so avoid-
ing undesired nonspecific binding. The retained bacteria
were electrically detected by their impedance system. It
was also confirmed that the proposed method was able
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Figure . DEP collection spectra for Gram negative Escherichia
coli and Gram positive Staphylococcus aureus (based on Sanchis
et al. [166]).

to selectively detect the target bacteria from amixed sus-
pension of different bacteria types.
Automated measurements of DEP collection spectra

of E. coli and Staphylococcus aureus suspensions were
used by Sanchis et al. [166] to characterize the dielectric
properties of these two quite different bacteria. E. coli,
a Gram negative bacteria, was modeled as a three-shell
rodlike particle with length 3.33μm and width 0.82μm,
composed of cytoplasm, a plasma membrane of thick-
ness 8 nm, a wall of thickness 15 nm and an outer mem-
brane of thickness 8 nm. S. aureusis (Gram positive) was
modelled as a spherical particle of radius 0.6μmwith two
shells – a plasma membrane of thickness 8 nm and a wall
of thickness 20 nm.The results of the modelling matched
closely their experimentally obtained DEP-frequency
spectra and these results are shown in Table 11.5. The
effect of the extra outer membrane for the Gram negative
E. coli in giving rise to the high-frequency ‘shoulder’ is
clearly seen in the schematics of the DEP collection spec-
tra shown in Figure 11.23,mirroring the profile shown for
the Gram negativeK. pneumoniae shown in Figure 11.11.
In Table 11.5 the dielectric parameters obtained by San-
chis et al. are compared to those previously reported in

the literature. Close agreement is found with the results
of Suehiro et al. [77]. but not so closely with those of
Johari et al. [167] – particularly regarding the derived val-
ues for the permittivity of the plasma membrane and the
conductivity of the cell wall for the closely related species
S. aureusis (𝜀r = 4.5, 𝜎w = 0.3 S/m [166]) and S. epider-
midis (𝜀r = 16, 𝜎w = 0.01 S/m [167]), respectively.

. Other Cell Types (Plant, Algae,
Oocytes, Oocysts) and Worms

Kaler et al. [168–170] developed a dual-frequency exci-
tation technique that uses feedback-control of a DEP
force to levitate particles and to investigate both posi-
tive and negative DEP characteristics in the frequency
range from ∼1Hz to ∼ 50MHz. Rapeseed (canola) and
tobacco plant protoplasts, obtained from 6 to 8 weeks
old plant tissue subjected to enzymatic digestion were
investigated using this method. The upper and interme-
diate DEP force frequency spectra obtained were gen-
erally consistent with the conventional understanding of
DEP, but below a certain frequency the protoplasts exhib-
ited an anomalous positive DEP response. Examples of
this for a single tobacco protoplast [170], the DS19 clone
of Friend murine erythroleukaemic cells [114] and a sus-
pension of M. lysodeikticus protoplasts [171] are shown
in Figure 11.24.The low-frequency DEP response is con-
sidered anomalous because theClausius–Mossotti factor
is not permitted to decrease and then increase again as
the frequency of the electric field is changed [172]. The
frequency at which this anomalous crossover occurred
was found to be: linearly related to suspension conductiv-
ity; virtually independent of the suspension pH; inversely
proportional to the square of the cell radius. This
behaviour had already been observed for mammalian
cells and bacteria using conventional DEP studies, having
been attributed to surface charge effects (e.g. [114, 117,
171]). Examination of the complex Clausius–Mossotti

Table . Dielectric parameters determined by Sanchis et al. [166] for E. coli and Staphylococcus aureus by fitting DEP
collection spectra to compartmented spherical or rodlike particles. Their results are compared with values reported by
Suehiro et al. [77] and Johari et al. [167].

E. coli S. aureus

Suehiro [] Sanchis [] Johari [] Sanchis []

Compartment 𝜺/𝜺o 𝝈 (S/m) 𝜺/𝜺o 𝝈 (S/m) 𝜺/𝜺o 𝝈 (S/m) 𝜺/𝜺o 𝝈 (S/m)

Cytoplasm 60 0.1 70 ± 10 0.07± 0.01 – 0.2 70±10 0.8 ± 0.05
Plasma membrane 10 5E-8 10 ± 5 <5E-6 4.5 5E-8 16 ± 0.5 <1.5E-6
Cell wall 60 0.5 60 0.5 ± 0.01 – 0.3 60 ± 5 0.01
Outer membrane – – 10 ± 1 (2 ± 1)E-6 – – – –
Suspending medium 80 2E-4 80 2.7E-3 80 1E-3 80 2.5E-3
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Figure . (a) DEP spectrum of a single tobacco plant
protoplast. The anomalous positive DEP response occurs below
∼ 1 kHz [170]. (b) Predicted DEP response of the tobacco protoplast
based on the standard multishell model of a cell [170]. (c) DEP
spectrum of erythroleukaemia cells [114]. (d) DEP spectrum of
Micrococcus luteus protoplasts [171].

polarization coefficient revealed that the observed posi-
tive DEP response could not be accounted for in terms of
Maxwell–Wagner polarization associated with a conven-
tional multishell model for the protoplast [170]. The fail-
ure of straightforward enhancements to the protoplast
model in explaining the low frequency behaviour was
considered to indicate the presence of an electrophoretic
contribution to the net observable force on the particle
and hence upon the net particle charge [173]. A hys-
teresis effect was also observed in the low-frequency
response of levitated cells. During experiments on
tobacco protoplasts the direction of the frequency scan
was reversed, with the result that the Clausius–Mossotti
factor appeared to be double valued for each value of fre-
quency.This effect was analysed analytically by Paddison
et al. [174] by introducing a nonlinear dielectric displace-
ment vector at the interface of the cell surface and the
surrounding medium. A possible cause of the hysteresis
effect was suggested in terms of the motion and relax-
ation of transmembrane proteins under the influence of
the local electrical field at the cell surface [174].
The electrokinetic characteristics of single cells derived

fromNeurospora slimewere studied byGimsa et al. [175]
using a technique that enabled simultaneous measure-
ments of their DEP and electrorotation properties in the
same fluidic chamber. The membrane conductivity and
capacitance of these cells was determined to be 500 S/m2
and 8.1mF/m2, respectively.
Based on its biochemical conversion sustainability,

social and ecological costs, the use of the lipid content
of microalgae cells as a biofuel is becoming increas-
ingly important [176, 177]. Marine microalgal species
are highly efficient in transferring solar energy into
energy-rich compounds and their cultivation has a
low requirement in arable land and freshwater. When
microalgae are cultured under suboptimal conditions, as
for example under high intensity light, low temperature

and limited carbon in their nutrients, they accumulate
neutral lipids in their cytoplasm as an energy store. Deng
et al. [178] have investigated the influence of the solution
conductivity on the DEP crossover frequency of microal-
gal cells (Chlorella vulgaris) with different lipid contents.
This species has a single spherical cell, with a diameter
in the range 2–10μm and no flagella. The conductivity
of the suspending medium was adjusted using different
concentrations of KH2PO4 buffer solution. Algal cells
with 11wt% and 45wt% lipid content were obtained by
varying the light exposure and carbon source during their
culture. To distinguish the cells of different lipid content,
Nile Red fluorescence dye was used to label only the
microalgae with 45wt% lipid content. For algal cells with
11wt% lipid, on increasing the suspension medium con-
ductivity from 140 to 295mS/m, the value for the DEP
crossover frequency presumably (fxo1) increased from
∼2 to ∼10MHz. Cells with 45wt% lipid content exhib-
ited negative DEP at frequencies below 20MHz when
the solution conductivity was within the range 206–
295mS/m. However, positive DEP was observed when
the solution conductivity was lowered to 140mS/m. Suc-
cessful local separation by DEP of a mixture of algal cells
of these two different lipid contents was achieved using
an array of parallel gold microelectrodes, a medium con-
ductivity of 295mS/m and frequency of 20MHz [178].
Hadady et al. [179] monitored the DEP response of the

microalgae Chlamydomonas reinhartii in the frequency
range 20–80MHz and different cell suspension media
over time. This species of microalgae is a green single
cell, about 10μm in diameter with a cell wall, two flag-
ella and an eyespot that senses light. It is widely studied
for its potential in producing biopharmaceuticals, bio-
fuel and hydrogen. The rationale for studying the DEP
response at high frequencies (i.e., above the crossover fre-
quency fxo1) was the expectation that the lipid content
in the cytosol would influence the DEP behaviour and
especially the value of the second DEP crossover at fxo2.
C. reinhardtiiwas cultured in regular medium and under
nitrogen-depleted conditions, respectively, in order to
produce populations of cells with low and high lipid con-
tent, respectively. Relative lipid content was estimated
with a fluorescent dye by calculating the area-weighted
intensity average of fluorescent images. The microalgal
cells grown in nitrogen-deficient medium exhibited an
increase in fluorescent intensity average that correlated
with increasing lipid concentrations. The value of fxo2
of the nitrogen-deficient (i.e., lipid-rich) cells decreased
from ∼55MHz at day 5 to ∼40MHz at day 16. In con-
trast, the cells grown in a nitrogen-rich medium did
not exhibit fluorescence when stained, indicating negli-
gible lipid accumulation. The value of fxo2 also shifted to
lower frequencies over time, but to a lesser extent than
the nitrogen-deficient cells (from ∼60MHz at day 5 to
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∼52MHz at day 16). Since fxo2 is primarily a function of
the dielectric properties of the cytoplasm, it was inferred
that the cytoplasm of the cells cultured in both the
nitrogen-rich and nitrogen-poor media changed during
the cultivation period.The cells cultured in the nitrogen-
deficient medium were observed to have an fxo2 value
approximately 13MHz lower than the nitrogen-rich cells
at the end of the experiment, due to the difference in their
lipid content.The high-lipid content cells were calculated
to have a cytoplasm conductivity of 95mS/m, compared
to 227mS/m for the high-lipid cells. The conductivity
of the suspending medium for these DEP experiments
was 10.6mS/m. To demonstrate the ability to separate
microalgal cells on the basis of lipid content,Hadady et al.
[179] mixed portions of the nitrogen-rich and nitrogen-
poor cultures together in the DEP medium. The high
frequency DEP response was observed by suspending
the cells above chromium-gold sputtered electrodes pat-
terned using standard photolithography into a needle
pattern with 100μm spacing. As expected, at frequen-
cies lower than fxo2 for both cell types, the cells exhibited
positive DEP. Likewise, at frequencies above fxo2 for both
cells, they exhibited negative DEP. At intermediate fre-
quencies (i.e., frequencies above the nitrogen-deficient
cell crossover and below the nitrogen-rich cell crossover)
the two cell types could be spatially separated. To quan-
tify the efficiency of the separation, a region of interest
was defined around the electrode. Using UV excitation,
high- and low-lipid cells were distinguished by their flu-
orescence intensity. Image analysis was used to quantify
the amount of each type of cell in the region of interest
and the ratio of low- to high-lipid cells was used as a fig-
ure of merit for the separation efficiency. The separation
efficiency exhibited a peak at a figure of merit ∼15 for an
applied voltage frequency of 41MHz.
It is of value to note the experimental differences in the

separations of the lipid-rich and lipid-poor cells reported
by Deng et al., [178] and Hadady et al. [179]. Deng et al.
were not able to generate the high frequencies required to
reach the fxo2 value reported by Hadady et al. They also
operated with a medium conductivity (206–295mS/m)
that probably lay between that of the cytoplasmic con-
ductivity of the two cell types. The lipid-rich cells would
thus have exhibited negative DEP throughout the whole
frequency range, whereas the lipid-poor cells would have
exhibited positive DEP at their operating frequency of
20MHz, which would have been below fxo2. On the other
hand, Hadady et al. [179] used a suspending medium
conductivity that was lower than that of the cytoplasmic
conductivity of the lipid-rich cells. Their cell separation
depended on the difference between the fxo2 values for
the two cell types.
The transplantation of insulin secreting islets of

Langerhans into the liver circulation of patients affected

by type I diabetes offers benefits for their quality of life
andmay decrease the number of hypoglycaemic episodes
[180]. Islets are composed of pancreas cellular aggregates
consisting of different cell types, each of them produc-
ing particular hormones. The vast majority (∼75%) of
these cell types are the insulin-producing cells – the beta-
type cells. Membrane capacitance and conductance val-
ues have been determined for primary 𝛽-cells and INS-1
insulinoma cells using DEP and electrorotation with the
polynomial and ‘bone’ design electrodes shown in Fig-
ures 10.4 and 10.23 [181].Thesemeasurements were per-
formed in isotonic media of conductivity ranging from
11.5 to 101.4mS/m and analysed using data plots of
the form shown in Figure 10.26. The membrane capac-
itance value of 12.57 (± 1.46)mF/m2, obtained for 𝛽-
cells and the values from 9.96 (± 1.89) to 10.65 (± 2.1)
mF/m2, obtained for INS-1 cells, fall within the range
expected for mammalian cells (e.g., see Tables 9.1–9.3).
The electrorotation results for the INS-1 cells lead to a
value of 36 (± 22) S/m2 for the membrane conductance
associated with ion channels, if values in the range 2–
3 nS are assumed for the membrane surface conductance
parameter Ks given in Equation (10.64). This Ks value
falls within the range reported for INS cells obtained
using the whole-cell patch-clamp technique. However,
the total ‘effective’ membrane conductance value of 601
(± 182) S/m2 obtained for the INS-1 cells by DEP is sig-
nificantly larger (by a factor of around three) than the val-
ues obtained by electrorotation.This could have resulted
from an increased membrane surface conductance, or
increased passive conduction of ions through membrane
pores, induced by the larger electric field stresses experi-
enced by cells in the DEP experiments.
Negative DEP forces, generated by 10 kHz, 4Vpk–pk,

voltages applied to micromachined, transparent, indium
tin oxide electrodes, were used to condense suspen-
sions of 𝛽-cells and insulinoma cells (BETA-TC-6 and
INS-1) into a 10 × 10 array of three-dimensional cell
constructs [182]. The suspending medium conductivity
was 55mS/m and the nonuniform field was generated
between two ITO-coated glass slides placed one above
the other. In the upper slide an array of 200μm diame-
ter holes had been produced by laser ablation of the ITO.
Some of the cell constructs,measuring∼150μm in diam-
eter, 120μm in height and containing around 1000 cells,
were of the same size and cell density as a typical islet of
Langerhans. With the DEP force maintained, these engi-
neered cell constructs were able to withstandmechanical
shock andfluid flow forces. Reproducibility of the process
required knowledge of cellular dielectric properties, in
terms of membrane capacitance and membrane conduc-
tance, which were obtained from previous results [181]
and additional electrorotation measurements. Fluores-
cent nanosensors were incorporated into these ‘pseudo
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Figure . (a) BETA-TC-6 insulinoma cells
(∼108 cells/ml) directed by negative DEP into a
densely packed assembly within the perimeter
of a 100 μm laser-machined hole on an
ITO-coated glass slide. (b) Confocal microscope
image, taken at a plane 60 μm below the top of
an assembly of INS-1 insulinoma cells in which
are embedded PEBBLE nanosensors for
monitoring pH and oxygen levels (from Pethig
et al. [182], reproduced with permission).

islets’ as probes of cellular oxygen and pH levels as a
function of glucose concentration. Examples are given in
Figure 11.25. The footprint of the 10 × 10 array of cell
constructs was compatible with that of a 1536 microtitre
plate and thus amenable to optical interrogation using
automated plate reading equipment.
The purification of islets from fragments of pancre-

atic exocrine tissue is a critical stage in the transplanta-
tion of insulin secreting islets. Burgarella et al. [183] have
evaluated the potential of DEP as a contactless method
for the isolation of islets. Using the dielectric param-
eters reported for 𝛽-cells by Pethig et al. [181], Bur-
garella et al. performed numerical simulations to opti-
mize the exact shape and size of a quadrupole microelec-
trode configuration suitable for DEP measurements on
islets obtained from the pancreas of rats. A Langerhans
islet was modeled as an approximately spherical aggre-
gate of hexaogonal close-packed, 10μmdiameter, 𝛽-cells
with an overall diameter in the range between 50μm
and 250μm. Using finite element modeling software the
effective permittivity 𝜀p and conductivity 𝜎p of the islet
was determined by considering it as a single body com-
posed of different elements, namely cells and intercellu-
lar spaces. The computation was performed by integra-
tion over the volume taken up by the aggregate. The real
part of theClausius–Mossotti (CM) factorwas calculated
to have a near constant negative value in the frequency
range 200 kHz–1MHz for a suspending medium con-
ductivity of 130mS/m. The real component of the CM
value at 1MHz was −0.2388 (with an imaginary compo-
nent of +0.0016).This prediction of a negative DEP force
at 1MHz was confirmed by experiments for islets sus-
pended in a serum medium of conductivity 130mS/m,
using an applied voltage of 50 Vpk–pk with a gap of 0.5mm
between the quadrupole electrode tips.This was taken as
confirmation that Langerhans islets can be manipulated
without physical contact by DEP.
Oocytes are diploid cells that develop by meiosis, a

process where a single cell divides twice to produce
four cells containing half the chromosomes of the par-
ent cell. They are the sex cells – eggs in females and

sperm in males. A zygote is a cell that is formed when
an egg and sperm combine after successful fertilization
of the egg. Oocytes are retrieved from cattle ovaries as
a source for embryo in vitro production. Influenced by
their opinion that the selection of developmentally com-
petent oocytes and zygotes based on their morphology is
more often influenced by personal judgments and lacks
universal standards, Dessie et al. [184] investigated the
rate of development and mRNA level of DEP-separated
oocytes and zygotes to validate if this offered a nonin-
vasive option for their selection. Experiments were con-
ducted to: (i) evaluate the DEP behaviour of oocytes and
zygotes obtained from cows; (ii) investigate the relation-
ship between the DEP mobility of metaphase II (MII)
oocytes and zygotes and their developmental compe-
tence; (iii) evaluate the size of the blastocyst derived
from DEP-separated zygotes; (iv) investigate the DEP
behaviour of MII oocytes and zygotes in relation to the
mRNA expression to generate candidate genes related to
the developmental competence. A single cell at a time
was positionedmidway between two electrodes of a DEP
chamber, inwhich the suspendingmediumhad a conduc-
tivity of 8mS/m.Depending on the time taken to reach an
electrode under the influence of a positive DEP force, the
oocytes and zygotes were classified into four DEP mobil-
ity categories, namely: very fast, fast, slow and very slow.
The low standard error mean revealed the repeatability
of measurements of a single cell in all the four DEP cat-
egories, with the DEP mobility directly relating to the
effective dielectric polarizabiity of a cell. A correlation
analysis performed between the diameter of the cell and
its DEP mobility revealed there was no such correlation
for the oocytes, but for the zygotes there was a tendency
(but not statistically significant) to show a negative cor-
relation. At 6 and 7 days of postinsemination, the blasto-
cyst rate of the ‘very slow’ oocytes was significantly lower
than for the other groups. Similarly, for zygotes, the blas-
tocyst rate at 7 days postinsemination was higher in the
‘very fast’ category when compared with the ‘slow’ and
‘very slow’ categories. The mRNA level was analysed for
the ‘very fast’ and ‘very slow’ oocytes and zygotes, using
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the bovine cDNA microarray. The result showed that 36
and 42 transcripts were differentially regulated between
the ‘very fast’ and ‘very slow’ DEP mobility categories of
oocytes and zygotes, respectively. It was concluded [184]
that DEP-separated oocytes and zygotes exhibited differ-
ence in the rate of blastocyst development accompanied
by differences in transcriptional abundances, in direct
proportion to their effective dielectric polarizabilities.
The fact that travelling wave DEP (TWD) and elec-

trotation can be induced using similar electrical signals
implies that they should be capable of integration into
a single microelectrode structure. Goater et al. [185]
described such a device consisting of four spiral elec-
trode elements (see Figure 10.30) and demonstrated that
it can be used to concentrate and determine the viability
of relatively dilute concentrations of microorganisms.
The model microorganism used in this study was the
oocyst of Cryptosporidium parvum. The presence, even
at very low concentrations, of these oocysts in drinking
water has led to outbreaks of human infection (cryp-
tosporidiosis), which occurs as self-limiting diarrhoea
in healthy adults but may lead to death in infants and
immunocompromised people. Because the oocysts do
not multiply outside their hosts they cannot be cultured
in vitro. Current diagnostic techniques are based on the
filtration of large quantities of water followed by fluo-
rescence microscopy and can be inaccurate. C. parvum
oocysts of human origin were washed twice in ultra-pure
water, centrifuged and then suspended at various diluted
concentrations in phosphate buffered saline solutions.
When the four spiral electrode elements were energized
with sinusoidal voltages of appropriate phase differences,
a travelling electric field was generated that traveled radi-
ally from the centre towards the periphery of the spiral
array. A rotating electric field was also generated at the
same time in the central free-space region between the
ends of each spiral electrode element. In the frequency
range where a particle exhibited induced TWD motion
in the direction of propagation of the travelling field (i.e.,
was nonviable) it also exhibited co-field electrorotation.
Viable oocysts exhibited the opposite behaviour. The
TWD and electrorotation behaviour of the C. parvum
oocysts observed on the spiral electrode structure corre-
lated very well with morphological and fluorogenic vital
dye examinations [185]. The device used in these inves-
tigations had an effective sample capture area of around
0.1 cm2, for samples of 104 oocysts/ml suspended in a
sample volume of 1.45μl, corresponding to an average 55
± 1 oocysts being suspended within the field of influence
of the spiral microelectrodes. The laser machining pro-
cedure for producing the electrodes is capable of high-
resolution patterning over large areas, to accuracies of
1μm over 20 cm. In principle at least, an electrode array
capable of handling sample volumes 10/ml is possible.

Finally, the first demonstration that the DEP trapping
and manipulation of a whole animal can be achieved was
reported by Chuang et al. [186] for the case of the nema-
tode Caenorhabditis elegans. This transparent round-
worm, of length∼1mm,was the firstmulticellular organ-
ism to have its whole genome sequenced and to have
its complete neuronal ‘wiring diagram’ (connectome)
described. It has a relatively short life cycle of 2.5 days
and remains a much investigated animal for biomedical
research. In many studies, it is necessary to selectively
sort theworms and immobilize them for observations, by
manually picking up an individual and gluing it to a sur-
face. They can also be immobilized in microfluidic chan-
nels and their location controlled pneumatically. The
ability to manipulate C. elegans with a noncontact force
such as DEP could be useful. Chuang et al. [186] stud-
ied the effect of a nonuniform electric field on C. elegans
as a function of field intensity and frequency. They iden-
tified a range of electric field intensities and frequencies
that trap them without apparent adverse effect on their
viability. It has been known for some time that C. ele-
gans exhibits electrotaxis and crawls or swims towards
the negative electrode in a DC electric field [e.g., 187]. At
frequencies from1Hz to∼3 kHz theworms tend to local-
ize in a small region, probably due to frequent changes in
the direction of electrotaxis. Chuang et al. investigated
the effect of relatively high frequency electric fields up
to 800 kHz. In contrast to electrotaxis, the worms were
trapped at the location of the maximum electric field
intensity and were thus insensitive to the field’s polarity.
The DEP force acting on live and dead worms was mod-
elled as multishell ellipsoids with and without a mem-
brane, respectively. The live worm was modelled with a
biological membrane between the cuticle and internal
milieu of the worm, which was considered to filter low
frequency electric fields from theworm’s interior. In con-
trast, the deadworm’smembranewas inactive in this way
due to irreversible permeation. To trap a live worm by
DEP, the electrostatic forces must overcome the worm’s
muscular force. As a result, dead worms were trapped
muchmore readily than live ones, thus enabling DEP as a
tool to remove dead worms from the suspension.Worms
tethered by DEP exhibited behavioural responses to blue
light, indicating that at least some of the nervous system
functions were unimpaired by the field. Thus, Chuang
et al. [186] have demonstrated that DEP is a useful tool
to dynamically tether nematodes, sort them according to
size and to separate dead from live ones.

. Virions

A virus is a small infectious particle that replicates only
inside a viable cell of an animal, plant or microrganism.
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Box . DEP Acting against Randomizing Thermal (Brownian) Motion

Particles collected at an electrode by DEP diffuse away
down their number concentration gradient ∇N when the
applied field is removed. This diffusive pressure gradient
∇Π can be expressed using the derivative of the Van’t Hoff
equation:

∇Π = kT∇N

with k the Boltzmann constant (1.38× 10−23 Nm/K) and T the
absolute temperature. As pointed out by Pohl [22, p. 86] this
may be regarded as the negative of the average osmotic
force (Fos) per unit volume of particles, expressed per parti-
cle as:

Fos =
−1
N
∇Π = −kT

(∇N
N

)
⋅
( 1
Δr

)
⌢

r o (11.5)

where∇N/N is the fractional change in concentration along
any direction r and ∇r is the change in ordinate along r. The
maximum relative change of ∇N/N is unity, correspond-
ing to the presence versus absence of a particle. The cor-
responding minimum change in radial distance ∇r is the
diameter 2R of the particle. From Equation (11.5) the maxi-
mum diffusional force per particle is thus given by:

Fos[max] = −kT
2R

(11.6)

For a particle of diameter 100 nm at T = 300 K, Fos[max] =
4.14 × 10−14 N per particle. For a particle to exhibit DEP it

must oppose this diffusional force, which from Equation
(10.9) implies that the following relationship must hold:

2𝜋R3𝜀o𝜀m[CM]∇E2 > 4.14 × 10−14 N (11.7)

For the case of a 100 nm diameter particle suspended
in an aqueous medium and assuming a modest value of
0.5 for the Clausius–Mossotti factor [CM], this gives the con-
dition that ∇E2 should exceed 1.5 × 1017 V2/m3. An alter-
native approach is to employ Equations (4.40) and (4.41),
which give the time-averaged potential energy, per unit
volume, of a polarized particle as U = −(𝛼E2)/2. The rate of
thermal-assisted escape from this potential energy well is
proportional to exp(−U/kT). To be trapped by DEP the par-
ticle must compete against the thermal energy (3kT)/2 asso-
ciated with Brownian motion, so we require U≥ (3kT)/2. The
condition for this is:

(𝛼E2)∕2 = 2𝜋R3𝜀o𝜀m[CM]E2
≥ (3kT)∕2 (11.8)

For a 100 nm diameter particle suspended in an aqueous
medium at room temperature, with CM = 0.5, this requires
E≥ 1.8× 105 V/m. As an approximation for the local field gra-
dient we take ∇E = E/R, to give ∇E ≥ 3.6 × 1012 V/m2 and
(E⋅∇)E ≥ 6.5 × 1017 V2/m3. This condition is readily achieved
using microelectrodes.

A complete virus particle is called a virion. The simplest
virion consists of two basic components, namely nucleic
acid, in the form of either DNA or RNA and a protective
coat called the capsid, which protects these nucleic acids
from digestion by enzymes (nucleases). The capsid also
facilitates the process of infection by attaching to specific
sites on the surface of the host cell. Once it has entered its
host the virion can also envelope itself with a lipid bilayer,
derived from the plasma membrane of the infected cell.
Pohl suggested that ‘particles with sizes in the range

of perhaps 10 nm to 100 nm might be expected to
be the smallest ones readily controllable by DEP’ [22,
p. 89]. Virions range in size from a diameter of ∼20 nm
to 300 nm and so they just fit into this minimal size cate-
gory. Pohl’s estimate was based on the maximum value
of the field gradient factor (E⋅∇)E that may reasonably
be generated with the macroscopic electrode geometries
he was familiar with at that time (see Figure 2.10). As
shown in Box 11.3, if (E⋅∇)E is not large enough the DEP
force acting on a particle is unable to compete against
Brownian motion (a defeat over thermal scrambling, as
Pohl would express it). On the other hand, the upper
limit on the value for E is determined by the electri-
cal breakdown strength of the medium. However, Pohl
may well have had in mind the limitation presented by

macroscopic electrodes, because he proceeds to write:
‘The present estimate has been particularized by various
choices of experimental parameters and hence should
only be regarded as suggestive.’
To summarize the content of Box 11.3, a particle sub-

jected to an imposed electric field and Brownian motion
will have a total potential energy comprised a deter-
ministic electrical polarization potential energy (−𝛼E2)/2
and a randomizing (stochastic) thermal potential energy
(3kT)/2. The threshold for DEP capture at an electrode
corresponds to the situation where these two energies
balance. For a spherical particle of radius R the particle
will be trapped for a finite time period if the condition
given by Equation (11.8) holds, namely:

(𝛼E2)∕2 = 2𝜋R3𝜀o𝜀m[CM]E2 ≥ (3kT)∕2

The total potential energyU(r) of the particle at a location
r is given by the sum of the Brownian thermal energy and
the DEP electrical potential energy:

U(r) = Uth + UDEP = 3
2
kT − 1

2
𝛼E(r)2 (11.9)

For the particle to be trapped, U(r) must have a negative
value – it should represent a deep potential energy
well for the particle, rather like a small rubber ball at
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the bottom of a cup. The randomizing thermal energy
has the same action as shaking the cup – every now
and then the ball will bounce out of it. The probability
that randomizing thermal fluctuations will dislodge the
particle from its DEP trap is governed by the Boltzmann
factor exp(−UDEP/kT). Expressed another way, if we can
view the particle for a sufficient period of time to witness
it being trapped and released a large number of times,
the average dwell time (𝜏) spent by the particle in the
trap is given by the inverse of its probability to escape
and so is proportional to exp(UDEP/kT). Large values
(compared to kT) for the factor −(𝛼E2)/2 lead to the
particle being strongly trapped. The particle will at some
point be released by thermal agitation, but this may take
a long time. When the external nonuniform field E is
switched on, the polarized particles begin migrating
towards the electrode at a velocity (u) determined by
the balancing of the DEP force and the Stokes fluid
frictional force (6𝜋𝜂uR). The concentration of particles
will increase near to the electrode and an equilibrium
distribution of the particles will be reached when their
diffusion down their concentration gradient is equal
to the rate at which the particles are brought to the
electrode by the DEP force.The concentration n(r) of the
particles at a distance r from the electrode is given by:

n(r) = Noexp(UDEP∕kT) (11.10)

where No is the initial uniform concentration of the par-
ticles in the medium. When the field is switched off, the
particles return to their initial uniform distribution by
diffusion, often at a rate that differs to that of their col-
lection under the action of the DEP force. The interplay
of the potential energy factors in Equation (11.9) is shown
schematically in Figure 11.26.
Before proceeding to an overview of DEP studies

involving viruses, it is of value to review and expand on
the brief discussion given in section 10.3.6 of Chapter
10 regarding the influence of surface conductance Ks on
the effective conductivity 𝜎p of a particle. A quantitative
analysis of this can be approached using a modified form
of Equation (10.64):

𝜎p = 𝜎bulk +
2(KStern + Kdiff )

R
(11.11)

where 𝜎p is the bulk conductivity of the particle and R
is its radius, with KStern and Kdiff the individual contri-
butions to Ks arising from field-induced charge move-
ments in the Stern layer and the diffuse part of the elec-
trical double layer, respectively. The value of KStern is
given by the product of the surface charge density (deter-
mined by the zeta potential) and the counterion mobil-
ity in the Stern layer. Equation (11.11) predicts that as a
particle becomes smaller the influence of the surface con-
ductance increases. It is therefore instructive to employ

0 rrthr

3kT/2 (J)

E (V/m)

(-αE2)/2 (J) 

Trapping 
regime

UDEP (J)

0

Figure . The solid line represents the potential energy (UDEP)
of a particle, polarized in an external nonuniform field, as a
function of distance r from a surface. At a threshold distance rthr
the value of UDEP is exactly balanced by the randomizing thermal
energy (3kT/2). Nearer to the surface the DEP potential energy
‘well’ is deeper and the probability (proportional to exp[UDEP/kT])
that it will be trapped at the surface increases. The influence of a
field associated with an electrical double layer at the surface is
ignored in this description – but can be included in the model.

Equation (11.11) to model the DEP response of a par-
ticle of size comparable to that of a virus. The results
of such modelling (using MATLAB) are shown in Fig-
ure 11.27. The DEP response of a particle of diameter
40 nm, bulk conductivity 1mS/m and permittivity 10𝜀o
was determined by calculating the real component of the
Clausius–Mossotti factor (CM∗), given by:

CM∗ =

(
𝜎∗
p − 𝜎∗

m

𝜎∗
p + 2𝜎∗

m

)
as a function of frequency. The particle is assigned a sur-
face conductance Ks = 2 nS and is taken to be suspended
in an aqueous medium (permittivity 79𝜀o) whose con-
ductivity can be increased from 1mS/m up to 250mS/m.
From Figure 11.27(a) it is clear that for a medium con-

ductivity up to 100mS/m the particle exhibits positive
DEP, with a transition to negative DEP at ∼34MHz. For
medium conductivities larger than 200mS/m the par-
ticle exhibits negative DEP across the whole frequency
range.This transition of DEP polarity can be depicted, as
shown in Figure 11.27(b), in the form of a plot of the DEP
crossover frequency (fxo) as a function of medium con-
ductivity.The results shown in Figure 11.27 are relatively
insensitive to values below 1mS/m chosen for the bulk
conductivity of the particle.
The first DEP manipulation of a virus appears to be

that reported for the tobacco mosaic virus (TMV) by
Morgan and Green [188]. TMV is a cylindrical, nonen-
veloped virion of length 280 nm, diameter 18 nm, with
a capsid that surrounds RNA. The TMV (strain U1) was
raised inNicotiana tabacum, purified by differential cen-
trifugation and fluorescently labelled with Rhodamine
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Figure . (a) The DEP-frequency response modelled for a particle of diameter 40 nm, surface conductance 2 nS, bulk conductivity
1 mS/m and bulk permittivity 10𝜀o, suspended in an aqueous medium of conductivity ranging from 1 mS/m to 250 mS/m. (b) The transition
from positive to negative DEP is shown more dramatically as a plot of the DEP crossover frequency (fxo) as a function of medium
conductivity.

B [189]. For the DEP experiments, TMV samples were
suspended in various strengths of potassium phosphate
buffer to provide a range of medium conductivities.
The virions were exposed to field gradients generated
by an array of ‘sawtooth’ gold electrodes with 4μm
gaps, fabricated onto glass slides using standard photo-
and electron-beam lithography. The value for (E⋅∇)E
generated at the tips of the electrode teeth was calculated
by finite element analysis to be ∼5 × 1020 V2/m3 for an
applied voltage of 2Vpk–pk [188]. Positive DEP of TMV
was observed over the frequency range 1 kHz to 1.5MHz
for medium conductivities in the range 170 ∼mS/m to
1.4 S/m. It was not possible to observe single virions, only
a faint fluorescent ‘haze’, which continually increased in
brightness as more virions became trapped by positive
DEP. The initial movement of TMV by DEP was seen
to occur at a distance of ∼1μm from an electrode tip,
corresponding to a value for (E⋅∇)E of ∼ 5 × 1016 V2/m3.
Above 1.5MHz the virus did not collect at the electrode
tips. At frequencies above approximately 20MHz and for
all conductivities examined the TMVwere repelled from
the electrodes under the action of negative DEP. The
observation of the negative DEP was facilitated by using
positive DEP to collect particles at the electrode edges
before switching the voltage frequency to the negative
DEP region. The experimentally determined values of
the DEP crossover frequency (fxo1), as a function of
medium conductivity, are shown in Figure 11.28. On
the logarithmic scales a linear increase in DEP crossover
frequency (fxo1) with medium conductivity was found,
before an abrupt change at just below 0.1 S/m, beyond
which conductivity value the DEP response of the virus
was negative at all frequencies. To model this behaviour,
TMV was considered to be a homogeneous prolate
spheroid, with the appropriate depolarization factors

along the major and minor axis, with a single value of
permittivity and conductivity. The best fit curve shown
in Figure 11.28 for TMV was obtained by assigning a
permittivity value of (55 ± 2)𝜀o and 85 ± 2mS/m for
the conductivity [188]. These values compare favourably
to those (60𝜀o and 100mS/m) obtained from dielectric
studies of suspensions of the alfalfa mosaic virus [190].
The frequency-dependent DEP behaviour of the

enveloped herpes simplex virus (HSV-1) was the next
to be described [191]. Over the frequency range 10 kHz
to 20MHz and when suspended in an iso-osmotic
EDTA/mannitol medium of conductivity 5mS/m above
quadrupole electrodes, both positive and negative DEP
responses were observed. The transition between these
two types of behaviour at a frequency ∼4.5MHz was in
qualitative agreement with a simple model of the virus
as a conducting particle surrounded by an insulating
membrane. The positive DEP response, observed at
low frequencies, was considered to arise from a surface

Medium conductivity (mS)

10

20

2

4
5

100101

f x
o

(M
H

z)

0.1

TMV

CPMV

Figure . Values of the DEP crossover frequency (fxo)
determined for the tobacco mosaic virus (TMV) and the cow pea
mosaic virus (CPMV) as a function of the conductivity of the
suspending medium. The solid line represents the best fit for the
TMV data, calculated by assigning to the virion an effective relative
permittivity and conductivity of 55 and 85 mS, respectively (based
on Morgan and Green [188] and Ermolina et al. [193]).
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conductance arising from polarization of the diffuse
double-layer surrounding the virus. The DEP character-
istics of the HSV-1 capsid were also investigated [192].
In KCl solutions of low conductivity (below 0.5mS/m)
containing 280mM mannitol, the capsids exhibited
positive DEP at low frequencies and negative DEP
at high frequencies. The DEP crossover occurred at
∼3.5MHz. As the medium conductivity was increased,
the crossover frequency also increased. This behaviour
could be modelled with the capsid comprising an outer
protein shell, on average 15 nm thick (inner radius
47.5 nm), consisting of a structured network of protein
molecules with channels of up to 5 nm in diameter.
These channels connect the interior and exterior of
the capsid, so that the internal space is equivalent to a
chamber full of suspending fluid. At the centre of the
capsid are the scaffolding proteins, treated as a solid
protein sphere of diameter 60 nm. Using this multishell
model the best fit to the experimental data was obtained
by assigning: a particle permittivity of 30𝜀o; an internal
conductivity of 30mS/m; a shell permittivity of 30𝜀o; a
Stern layer conductance (KStern) of 0.15 nS; and a zeta
potential of 9.5mV. The behaviour of capsids suspended
in KCl combined with 280mM mannitol exhibited
very different DEP behaviour to those in KCl without
mannitol. It was postulated that the effect of mannitol
was to reduce the surface charge density of the capsid
[192]. In later work, Ermolina et al. [193] investigated
further the DEP characteristics of TMV and compared
this to the DEP behaviour obtained for cow pea mosaic
virus (CPMV), which is of similar size but different
shape. Rather than being rod-shaped like TMV, CPMV
is a spherical, isometric, unenveloped virus with a
diameter of approximately 28 nm and an angular profile.
In previous work [188, 191] the DEP crossover frequency
(fxo1) was determined by observation of the behaviour
of single particles using fluorescence microscopy. In
this later work [193] the value of fxo1 was determined
by analysing the behaviour of an ensemble of particles
using image processing. From an evaluation of the DEP
data, the Stern layer conductance was determined to
be 0.3 nS for CPMV, 0.38 nS for TMV and 0.52 nS for
27 nm diameter carboxy-latex beads that were also
studied. It was concluded that the optimal condition
for separation of TMV and CPMV is in a suspending
medium of conductivity 1mS/m or lower.The reason for
this can be seen from Figure 11.28, where the fxo1 versus
medium conductivity results obtained for CPMV have
been added to those obtained for TMV. At a frequency
of ∼7MHz, for example, CPMV should exhibit positive
DEP and be trapped at the electrodes, whilst TMV
should be repelled by negative DEP. It is also of interest
to note that the spherical CPMV exhibited a similar
variation of fxo1 versus medium conductivity to that

of the spherical particle shown in Figure 11.27(b). The
different behaviour exhibited by TMV could thus be
related to its having a rodlike, rather than spherical,
shape. It was assumed [188] that the TMV was always
in an equilibrium orientation with its major axis along
the field direction. However, this might not have been
the case for medium conductivities less than ∼3mS/m.
With a minor axes oriented along the field direction at
low medium conductivities, the corresponding depolar-
ization factor would have been larger (see Figure 7.11)
and so alter its DEP-frequency response.
Other DEP studies involving viruses have largely been

concerned with improving their capture and detection in
microfluidic devices. Grom et al. [194] successfully accu-
mulated and trapped hepatitis-A virus particles (27 nm
diameter) in a microfluidic system by means of a com-
bination of electrohydrodynamic (EHD) flow and DEP
forces, within a field cage consisting of eight microelec-
trodes. The use of a suspending medium of high con-
ductivity (0.3 S/m) resulted in sufficient Joule heating and
the corresponding spatial variation of temperature, den-
sity and permittivity to induce EHD flow in the vicinity
of this field cage. EHD-induced fluid flow vortices trans-
ported the viruses towards the center of the field cage,
where theywere then retained and aggregated by theDEP
force. The results of numerical modeling of the spatial
distribution of temperature, density and permittivity, as
well as resulting EHD flow patterns, were in good agree-
ment with the experimental observations. EHD fluid
flow, rather than DEP, was also found by Docoslis et al.
[195] to constitute the major mechanism for the trans-
port of the vesicular stomatitis virus (VSV)when they are
suspended in aqueous suspensions of physiological ionic
strength and far from an electrode.The influence of DEP
was calculated to be confined to within a few microns
from the electrodes. The modeled collection patterns of
both virus and fluorescently labelled particles near the
electrodes were found to be in qualitative agreement
with experiment observations. The simultaneous action
of EHD andDEP forces led to the detection of 105 pfu/ml
of VSV in twominutes.This can be compared to the find-
ing that passive diffusion did not lead to detectable levels
of virus captured on a surface when using titers of VSV
as high as 107 pfu/ml [195]. Madiyar et al. [196] describe
manipulation of bacteriophage virus particles using a
nanostructured DEP device. The required nonuniform
field for DEP was created using a ‘point-plane’ design
where a nanoelectrode array of vertically aligned carbon
nanofibres faced a macroscopic indium tin oxide elec-
trode. At a concentration of 8.9 × 104 pfu/ml, the flu-
orescently stained virus particles were observed to col-
lect one-by-one and to accumulate linearly with time
over 30 s at the carbon fibre tips. Capture efficiencies of
up to 60% were obtained. On switching off the voltage
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signal the captured virus particles were released imme-
diately. Ding et al. [197] have optimized a sawtooth-
gradient, DC-insulator-based DEP device to concentrate
the Sindbis virus. This enveloped virus is transmitted by
mosquitoes andhas an icosahedral structurewith a diam-
eter of 68 nm. The concentration of the Sindbis virus
was increased by two to six times within seconds in an
open fluidic channel (length 4 cm, width 500μm, depth
20μm) with a DC voltage as low as 70V applied along
the channel. The group led by Suehiro have advanced
their DEP impedance measurement device [76,77], orig-
inally designed to detect bacteria in aqueous solutions,
for the detection of pathogenic viruses [198]. Although
the dielectric properties of the viruses were estimated to
be different from those of bacteria, the impedance detec-
tion of their collection at the microelectrodes was sim-
ilar to that obtained for bacteria. Nakano et al. [198]
detected concentrations as low as 70 ng/ml for aden-
ovirus and 50 ng/ml for rotavirus, within 60 s. The DEP-
frequency responses obtained for these two inactivated,
nonenveloped, virus types are shown in Figure 11.29,
whilst their estimated dielectric properties are given in
Table 11.6.

Table . Dielectric properties derived for: the adenovirus and
rotavirus (Nakano et al. [198]; the herpes simplex virus-1 capsid
(Hughes et al. [192]); the tobacco mosaic virus (Morgan and Green
[188]); the cow pea mosaic virus (Ermolina et al. [193]).

Virus
Diameter

(nm)

Surface
conductance

KStern (nS)

Zeta
potential
𝜻 (mV)

Relative
permittivity

Adenovirus 90 1.74 ± 0.24 58.3 68.15 ±
1.90

Rotavirus 100 1.65 ± 0.73 83.5 73.21 ±
3.34

HSV-1 125 0.2 75 70
TMV 280 × 18 0.38 40 55 ± 2
CPMV 30 0.3 0–25 –

Finally, DEP studies of cells infected by viruses are of
value because they can potentially aid the ability to detect
and then separate them from noninfected cells. The
Human Immunodeficiency Virus (HIV) is an example
of a virus that can establish a long-term latent infection
in B cells and T cells, for example. Even after effective
antiretroviral therapy, these viral reservoirs persist in
an HIV-infected person and are not detected by their
immune system. Being able to selectively detect and iso-
late such latently infected cells could therefore result in a
more effective therapy. The Kaposi’s sarcoma-associated
herpes virus (KSHV) is another example of a virus that
can establish a persistent presence. Safavieh et al. [199]
investigated the DEP responses and capture efficiency
of latently KSHV-infected and uninfected B lymphoma
cells in a microfluidic device. For the DEP studies the
cells were suspended in buffers of conductivity 0.1, 0.16
and 10mS/m.They observed sufficient differences in the
DEP responses of the infected and uninfected cells, to
the extent that with operating parameters of 1V, 50 kHz
and 0.02μl/minute fluid flow ∼37% of latently infected
could be captured by positive DEP from a prepared
mixture with uninfected cells. 55% of the captured
cells remained viable after this 15min procedure. The
operating medium conductivity was not specified, but
was probably 10mS/m. An understanding of the factors
dictating this cell separation is not at present possible,
because specific differences in dielectric parameters
(e.g., fxo1 and membrane capacitance) of the infected
and uninfected B lymphoma cells were not obtained by
Safavieh et al. [199]. This is a line of study worthy of
further pursuit.

. Nucleic Acids and Proteins

11.7.1 DNA

Most of the DEP studies described in this section
were performed on double-stranded fragments or whole
molecules of DNA (see Figure 8.22). With its two inter-
twined single strands of DNA running in opposing direc-
tions and the base pairs stacked with their molecu-
lar plane perpendicular to the helical axis, the dipole
moments of paired nucleotides and dipoles in the main
strands should all cancel out. In its double-stranded (ds)
form the DNA molecule should therefore not possess a
permanent dipole moment.The polarizability factor 𝛼 in
the term (−𝛼E2)/2 describing theDEP potential energy of
a polarized particle thus arises from electric field induced
fluctuations of counterions surrounding the negatively
charged phosphate groups of the DNA.Thismodel of the
dielectric behaviour of DNA in solution is described in
section 8.5.1 of Chapter 8. Also, from Figure 8.26, the
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magnitude of the polarizability parameter 𝛼 for DNA
should exhibit a frequency dependence associated with
the 𝛼- and 𝛽-dispersions. The DEP behaviour of DNA
should therefore be expected to vary as a function of the
frequency of an applied AC field.
The first submitted (July 1988) report of the studies

of the DEP behaviour of DNA appears to be that of
Washizu [200], who suspendedDNAmolecules in deion-
ized water and introduced them into the gap between
a planar pin-strip electrode arrangement (referred to as
an edge-to-strip electrode geometry by Washizu). The
DNA was obtained from the lambda phage virus (bacte-
riophage) that infects E. coli and visualization of individ-
ualmolecules was achieved by fluorescently stainingwith
the DNA-binding probe known as DAPI. To minimize
heat dissipation and induced fluid flow, the 𝜆-DNA was
suspended in deionized water of conductivity 0.2mS/m.
With no voltage applied between the electrodes, uni-
form luminescence was observed in the entire electrode
gap, indicating that the molecules were randomly dis-
persed. Upon application of a 1MHz voltage signal the
𝜆-DNA exhibited positive DEP, being attracted to the
high-field region of the ‘edge’ electrode, with the long
molecular axis directed along the field lines. This obser-
vation was confirmed in a follow-up paper by Washizu
and Kurosawa [201], who supplied added information
that orientation perpendicular to the field was observed
at 40 kHz and that the DNA molecules appeared to have
a random coil formation. With low DNA concentrations
the stretching and alignment of single molecules was
observed. Experiments with 𝜆-DNA were also described
[200, 201] using electrodes of the ‘fluid intergrated cir-
cuit’ design described by Masuda et al. [202]. This is the
device described in Chapter 10 that employs insulating
electrode structures in a microfluidic channel to distort
an imposed electric field sufficiently enough to generate
a DEP force on cells. This is now referred to as insulator-
based DEP (iDEP).
From the comprehensive review by Hölzel [203] of the

status in December 2008 of work on the dielectric and
DEP properties of DNA, we find that for the preceding
10 years Washizu and his colleagues contributed signifi-
cantly to our knowledge of electric field and DEP manip-
ulation of DNA, with some proposed exciting applica-
tions [204–209]. Suzuki et al. [204] measured the field-
intensity dependence of fluorescence anisotropy for 𝜆-
DNA and plasmid DNA, using interdigitated, sinusoidal
shaped, microelectrodes. Comparing the results with an
analytical model, the measured polarization factor was
found to be several orders of magnitude larger than that
of a conducting ellipsoid with the same dimension. This
was explained by assuming a ‘swelling’ of the electrical
equivalent diameter of DNA by 20 nm, comparable to the
characteristic Debye length of the counterion cloud in

the electrical double layer.The counterion concentration
was varied by changing the pH of the medium, whilst
keeping its conductivity constant. With increasing pH
an increase in the anisotropy was observed, particularly
between pH 5 and 6.This was attributed to an increase of
the negative charge density on the DNA backbone, aris-
ing from dissociation of the phosphate groups. In a series
of papers [205–207] that exploited the ability to stretch
DNA by DEP, it was demonstrated that spatial informa-
tion on the positions of specific base sequences could be
achieved. Fluorescence-labeled restriction endonuclease
(EcoRI) was observed at certain positions on 𝜆-DNA,
corresponding to the sequence (GAATTC) to which
EcoRI binds. In a flowing fluid stream, EcoRI molecules
were observed [207] to move along stretched DNA and
were trapped at putative GAATTC sequences, providing
evidence of sliding as a mechanism for relocation of Eco
RI on DNA. It was suggested that this single-molecule-
based, DEP-assisted method could take the form of a
lab-on-a-chip device for mapping genomic DNA and
analysing the motility of DNA-binding ‘nanomachines’
such as the EcoRI enzyme. Yamamoto et al. [207] created
an array of immobilized, fully stretched DNA molecules
between two electrode edges. Two enzymes that cut
DNA strands were attached to latex beads and an optical
tweezer was used to hold a bead and to press it against
the strectched and immobilized DNA.The two enzymes
chosen were DNaseI, which cuts DNA regardless of
the base sequence, and the restriction enzyme HindIII,
which cuts DNA at a specific base sequence. When a
DNaseI-labeled bead was brought into contact with the
immobilized DNA, its strand was cut instantaneously.
On the other hand, when the restriction enzyme was
used, the bead had to bemoved along the DNA strand for
a certain distance until it was finally cut. The interpreta-
tion of this enzyme dependence was that the restriction
enzyme had to enter into the grooves of DNA to find
the restriction sites, so the condition for the molecular
contour fitting of the DNA and the enzyme were stricter
compared to the case of the simple backbone-cutting
enzyme DNaseI. It was proposed that this technique
could be used for space-resolved molecular surgical
operations, not just limited to dissections, but also for
chemical modifications or insertion of genes.
Kawabata and Washizu [208, 209] describe a DEP-

chromatography-based separation method for DNA and
proteins, which they compared to the DEP-FFF concept
introduced a few years before by others [210, 211]. The
bioparticles are suspended in a fluid that passes at a con-
stant rate over an array of planar electrodes, located at
the bottom of a meandering channel (to minimize the
substrate area). A 1MHz voltage signal was applied to
the electrodes, which was a compromise between the
larger polarization of the molecules at lower frequencies
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and lower voltage drop at the insulator layer between
electrodes at higher frequencies. The voltage level was
adjusted so that theDEP forcewas not so strong as to per-
fectly trap the particles, as its function is just to increase
the chance of them being trapped transiently. The par-
ticles experience a series of field gradients generated by
the electrode array and so repeat their processes of trap-
ping and release. The bioparticles of larger polarizability
experience a strongerDEP force, so that the total time the
particle is trapped becomes longer and as an average, the
particle is retained on the electrode. We can view each
electrode as a potential energy well of depth U = (𝛼E2)/2
(see Box 11.3) with a particle attempting to escape from
it at a rate proportional to exp(−U/kT). The deeper the
energy well, in terms of multiples of kT, the less chance
the particle has of a thermally assisted escape from an
electrode. The mean escape, or trapped, time 𝜏 is given
by the reciprocal of this attempt to escape rate, so that 𝜏

∝ exp(U/kT). By increasing the number of electrodes in
the array, one can trap every particle with equal proba-
bility as an average, which is not attained by having a sin-
gle pair of electrodes. An increased number of electrodes
also represents more theoretical separation ‘plates’ in the
DEP-chromatography ‘column’, which enhances the res-
olution of particle separation. The DEP chromatograms
were obtained for fluorescence-labelled DNA and pro-
teins by monitoring the time course of the total fluores-
cence intensity at the outlet of the fluidic channel as the
voltage signal was applied and then switched off.The per-
centage reduction of the fluorescence intensity was taken
as ameasure of the DEP trapping of the particles.The rel-
ative rates of DEP collection for various DNA and pro-
tein types are shown in Figure 11.30. For the same type
of biomolecules (i.e., DNA or protein), it is seen that the
larger their size themore readily they are trapped byDEP.
This agrees with the standard theory for this pondero-
motive (i.e., particle volume-dependent) effect and our
understanding (see Chapter 8) of the factors that control
the dielectric polarizability of DNA molecules. The fact
that DNA appears to bemore easily trapped by DEP than

protein molecules was attributed [209] to the following
reasons:

1. DNA has many polar groups (phosphates) that attract
positive counterions and thus has larger polarizability
due to the motion of the counter-ions [204].

2. As a result of the electrostatic repulsion between the
negatively charged phosphate groups, DNA in solu-
tion is not compactly folded, but occupies a cer-
tain volume of larger equivalent diameter than closely
packed molecules such as proteins.

3. DNA is stretched by the high-intensity field [201] so
that it becomes more polarizable than that predicted
for a closely packed model of a particle.

Figure 11.30 also reveals that separation of protein and
DNA can readily be achieved by a proper choice of the
field strength (e.g., 1.4MV/m) and that separation of dif-
ferently sized proteins or DNA should also be possi-
ble. Kawabata and Washizu also demonstrated the abil-
ity of DEP chromatography to detect molecular binding.
This was accomplished bymixing a fluorescence-labelled
probe with the sample. If the probe binds with a target
molecule, its size becomes larger and so is more likely to
be trapped by the DEP force. By monitoring the fluores-
cent intensity downstream of the channel, such molec-
ular binding was detected by a decrease of the fluores-
cence signal. Separations of 𝜆-DNA (48.5 thousand base
pairs) and an oligonucleotide consisting of 22 bases were
demonstrated in this manner [209].
Dalir et al. [212] have also investigated the electri-

cal stretching of DNA molecules, finding that they were
elongated from a compact random coil into an extended
conformation orientated along the electric field lines. By
trapping the DNA molecules onto an electrode using a
1 kHz field, the contributions of the applied voltage and
frequency to the elongation of the DNA molecules were
studied.Maximum elongationwas found at∼100 kHz for
two different-sized DNA fragments (25 kbp and 48 kbp)
that increased with an increase of applied field strength,
attaining full elongation at 1.9MV/m. The DNA length
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then decreased with increasing frequency up to 1MHz.
In an elastic model for double-stranded DNA, which
quantitatively took into account the bending deforma-
tions of the backbone and the base-stacking interactions
between adjacent DNA base pairs, an underlying scaling
relation (𝛿) between the DNA extension and the applied
voltage of the form 𝛿 ∼ V1–1.5 was obtained.
Asbury and van den Engh [213] adopted a different

approach to that of Washizu and co-workers regarding
electrical manipulation of DNA. They did not stretch
the DNA or attach it to an electrode, but instead aimed
to manipulate DNA molecules by their inducible dipole
moments (i.e., DEP) in conjunction with electrophoresis.
A dilute sample of fluorescently stained DNA in deion-
ized water of conductivity 0.18mS/m was placed in a
chamber formed of a quartz chip and a cover slip. One
hundred parallel gold strips, spaced 30μm apart, had
been fabricated by lithography onto the top surface of the
quartz chip. No electrical signals were applied directly
to these gold strips – they acted in the opposite sense
to the insulative (electrodeless) structures described by
Washizu [200], in that they concentrated (rather than
repelled) an electric field. The electric field was gener-
ated using two parallel platinum wires located on either
side of the DNA sample in its chamber. Voltages were
generated by a function generator and could be mixed
with a DC voltage before amplification. Typically, a sinu-
soidal voltage of 200Vpk–pk was applied between the plat-
inum wires over the frequency range 1Hz to 10 kHz.
This applied voltage was divided among the 99 nar-
row (30μm) gaps between adjacent gold strips and the
4mm separation between the most peripheral strips and
the platinum wires. For a 200Vpk–pk sinusoid applied to
the platinum wires, the voltage drop across each 30μm
gap was only ∼0.5Vpk–pk. Because the gold-film strips
were very thin (6 nm), the electric field was highly con-
centrated near their edges, giving the large field gradi-
ent required for the desired DEP trapping of the DNA
molecules at these metal edges. Movement of the DNA
molecules was observed in an epifluorescence micro-
scope and recorded with a sensitive video camera, while
the voltage was turned on and then off. By integrating
the digital images parallel to the gold-film strips, bright-
ness profiles perpendicular to the strips were obtained.
When the trapping field was switched on, narrow peaks
of fluorescence (∼5μm in width) grew rapidly in the pro-
files, where the DNA molecules became concentrated
at the high field gradient regions over the edges of the
gold strips. When the field was switched off the fluo-
rescence peaks broadened and shortened as the DNA
molecules dispersed down their concentration gradient.
The voltage required for DNA trapping increased with
frequency in the range of 1Hz to 10 kHz. At low fre-
quencies (1–10Hz) trapping could occur at voltages as

low as 30Vpk–pk applied to the platinum wires. Trap-
ping at 1 kHz required 200Vpk–pk across the platinum
wires. For the applied voltage signal of 30Hz, 200Vpk–pk,
used most often by Asbury and van den Engh [213], 𝜆-
DNAmolecules (48.5 kb) were trapped rapidly and effec-
tively. The field and field gradient intensity at the edges
of the thin gold-film strips was estimated by solving the
Laplace equation using a two-dimensional finite element
model of a cross section through the fluid layer, near the
edge of a gold-film strip [213]. This calculation indicated
that field strengths as high as 190 kV/m and field gra-
dients of 10MV/m2, occurred at the edges of the gold-
film strips. This gives the value for the field factor ∇E2
in the DEP force equation as ∇E2 = 2(E⋅∇)E = 3.8 ×
1012 V2/m3. This is very small compared with the value
for∇E2 of∼1018 V2/m3 at the tips of the DEP cell manip-
ulator (tweezer) described by Menachery et al. [214] and
especially so when compared with that of ∼1021 V2/m3

generated by a 2Vpk–pk signal to the ‘sawtooth’ gold elec-
trodes described by Morgan and Green [188]. To place
this into context regarding the putative DEP manipula-
tion of a 𝜆-DNA molecule, according to the treatment
given in Box 11.3 the following relationshipmust hold for
the DEP force (FDEP) to be large enough to overcome the
randomizing action of Brownian motion:

FDEP = 2𝜋R3𝜀o𝜀m[CM]∇E2 > 4.14 × 10−14 N

where R is the radius of the particle and [CM] is the
Clausius–Mossotti factor. Assigning a reasonable value
for [CM] of 0.5, substituting the values for 𝜀o (8.85 ×
10−12 F/m), 𝜀m (80), as well as the radius of gyration
(∼0.5μm) determined for 𝜆-DNA [213], then for ∇E2 =
3.8× 1012 V2/m3 the corresponding value determined for
the DEP force is ∼2 × 10−15 N. This is some 20-times
smaller than that required to overcome the randomiz-
ing thermal energy 3kT/2. Unless the value derived for
the factor ∇E2 was greatly underestimated, this implies
that the DEP force acting on the single DNA molecules
may not have been the major one causing their collec-
tion at the gold strip edges. One possibility is that the
DNA molecules aggregated into larger, more polariz-
able, entities. Electroosmotic fluid flow induced by the
applied DC field may also have been a contributory fac-
tor. Support for this suggestion is given by the observa-
tion [213] that trappedDNAmolecules ‘wiggled’ near the
edge of the gold strips, at a wiggle rate equal to the fre-
quency of the applied voltage and giving the fluorescence
images a streaked appearance. Asbury and van den Engh
attributed this effect to electrophoreticmotion caused by
the net charge of the DNA, but the possible contribution
of electroosmotic motion of the fluid was also suggested
by them.
In other groundbreaking work, Chou et al. [215]

demonstrated that ‘electrodeless’ DEP (also known as
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Table . DNA polarizabilities (𝛼) and diffusion coefficients (D) for various sizes of linear
and supercoiled DNA fragments (derived from Regtmeier et al. [216, 217]).

Linear Supercoiled

DNA (kbp) 𝜶 (− Fm) D (μm/s) DNA (kbp) 𝜶 (− Fm) D (μm/s)

6 1.5 ± 0.1 1.71 ± 0.11 7 0.5 ± 0.1 2.80 ± 0.15
12 2.5 ± 0.2 1.36 ± 0.10 10.3 1.7 ± 0.2 1.32 ± 0.05
12.2 2.8 ± 0.6 1.09 ± 0.07 12.2 2.3 ± 0.7 1.08 ± 0.04
48.5 3.1 ± 0.3 0.68 ± 0.09 15.5 2.8 ± 0.1 0.83 ± 0.03
|164 5.8 ± 0.5 0.39 ± 0.05 21 2.9 ± 0.2 1.05 ± 0.06

insulator-based DEP (iDEP) and described in section
10.4.2 of Chapter 10) can be used for the concentration
and patterning of both single-strand and double-strand
DNA.They recognized that a combination of both a DEP
and electrophoretic force would act on their DNA parti-
cles. By reversing the field direction and hence the elec-
trophoretic force, they found evidence for the strongDEP
response of the DNA in the frequency range 200Hz to
1 kHz. On measuring the DEP force under different sol-
vent viscosity conditions and relating this to the dielectric
relaxation times obtained from the frequency responses,
Chou et al. [215] determined that field-induced mobil-
ity of counterions in the electrical double layers around
the DNA molecules were responsible for their observed
DEP responses. Furthermore, for a given applied voltage
the DEP force exhibited a significant size-dependent fre-
quency response as the length of the DNA fragments was
increased from 368 bp to 39.9 kbp. As a result of this
finding it was proposed that by an appropriate choice of
experimental parameters it would be possible to selec-
tively trap one range of DNA molecules while removing
others. Regtmeier et al. [216, 217] proceeded to demon-
strate just this by manipulating DNA by electrophore-
sis and insulator-based DEP in an array of microinsula-
tor posts. By maintaining a fixed DC component of an
applied field (hence fixed electrophoretic force) and sys-
tematically increasing the magnitude of the AC field to
increase the strength of the DEP traps, Regtmeier et al.
[216] were able to perform efficient and fast DNA separa-
tion according tomolecular length for two different DNA
conformations, namely linear 𝜆-DNA (48.5 kbp) and lin-
ear T2-DNA (164 kbp), together with supercoiled, cova-
lently closed, circular plasmid DNA (7 and 14 kbp). With
an applied AC voltage of 140V, the DEP trapping force
estimated for T2-DNA was 1.2 × 10−14 N and so of the
same order as that specified in Box 11.3. The underlying
migration mechanism of the molecules was a thermally
induced escape process out of the DEP traps at the insu-
lator posts in the direction of the electrophoretic force
and was sensitive to different DNA fragments because
of their length-dependent DNA polarizabilities (see

Table 11.7). As long as the DEP trapping force was larger
than the electrophoretic force, the DNA molecules were
still trapped deterministically by the DEP potential and
could escape only due to the thermal excitation. Having
escaped from a trap, the DNA was electrophoretically
driven along the fluidic channel until it was trapped at
the next micropost along its way. For appropriate (not
too large) applied AC field values, the escapes from the
DEP traps were sufficiently fast to yield average migra-
tion velocities of the DNA in theμm/s range. If the DEP
trapping force was smaller than the electrophoretic force
(i.e., small applied AC voltage or large DC voltage) the
traps completely disappeared and the migration velocity
of the DNA was determined by its length-independent
electrophoretic mobility.
Regtmeier et al. [217] extended their work on the DEP

trapping and polarizability of linear DNA, to examine
the roles of size, topology and spatial conformation. In
this work all experiments were performed with a con-
stant DC voltage and a fixed frequency of 60Hz for the
variable AC voltage magnitude. The reason for keeping
the frequency fixed was based on the opinion that the
escape times were the combined result of the molecules’
polarizability and the details of the escape dynamics out
of the traps, which both, in general, depend on the fre-
quency of the applied AC voltage component. By keeping
the frequency fixed these two contributions were consid-
ered to be disentangled. (The frequency dependence of
polarizability is logical, but its influence on the thermally
assisted escape dynamics is not so clear and deserves fur-
ther investigation.) The DEP effects were quantified by
deriving the DNA polarizability from their dwell times in
the potential energy traps.The dwell times were obtained
by recording the fluorescence intensities of the DNA
molecules in a given region of interest (where the DNA
had to pass four spatial periods of trapping to reach it)
for a sequence of time instances. This polarizability data
was combined with information about the spatial exten-
sion and configuration ofDNA,whichwas obtained from
measuring diffusion coefficients and from AFM images.
As can be seen from Table 11.7, the polarizability values
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for linear and supercoiled DNA are of the same order of
magnitude. For linear DNA fragments the results imply
a direct scaling of the polarizability with the radius of
gyration of the molecule (derived from their diffusion
coefficients) consistent with the dipole moment models
for DNA described in Chapter 8. For supercoiled DNA,
the situation was found to be more complex. As deter-
mined with the help of AFM images, the polarizability
as well as the coefficient of diffusion critically depend
on whether the spatial conformation of the supercoiled
DNA fragments take on that of a random coil, or have a
branched, starlike (plectonemic) structure. From atomic
force microscopy the 7, 10.3 and 15.5 kbp supercoiled
DNA fragments listed in Table 11.7 exhibited branched
plectonemic structures, whilst the 21 kbp DNA fragment
was also supercoiled but had a random coil like config-
uration. Regtmeier et al. [217] speculate that the polar-
ization process in this case involves a significant defor-
mation of the plectonemic configuration (e.g., a dipole
may be induced in every plectonemic arm such that they
become aligned with the applied electric field) resulting
in a prolate ‘cigar’-like geometry. So, although the two
12.2 kbp DNA fragments with different conformation
exhibit similar polarizabilities, they were distinguishable
via DEP effects – as demonstrated by their DEP sep-
aration within 3.5min [217]. One of the participating
research groups (Bielefeld University) in this work later
described a continuous-flowmicronanofluidic device for
the rapid and efficient detection or purification of mix-
tures of DNA fragments [218].The separation takes place
in the vicinity of a curved insulating ridge that spans
across the channel, creating in effect a nanoslit. From a
two-dimensional finite element numerical analysis it was
found that the applied electrophoretic field lines do not
cross this ridge at right angles – but at an angle of 15◦
or less. This results in a small tangential electrophoretic
force component that drives the DNA, which is on top of
the ridge, along the curved ridge towards the fluid chan-
nel wall. The time-average velocity of the molecules in
the microchannel and along the ridge is thus determined
by a combination of electrophoretic, electroosmotic and
DEP forces, induced by the application of DC and AC
electric fields. Depending on the relative magnitude of
the DEP force, which will depend on the polarizability
of a DNA molecule, a target molecule can be induced
to travel along the curved ridge and be deflected into a
flow stream further across the channel width. Molecules
of insufficient polarizability pass over the ridge without
being deflected. By this means Viefhues et al. [218] sep-
arated 2.686 kbp and 6.0 kbp linear DNA fragments, as
well as circular parental and minicircle-DNA. The fol-
lowing DNA complexes were also detected: cancer drug-
DNA complexes for three different ratios of drug per
DNAbase pair; protein–DNAcomplexes. All separations

werewith baseline separated resolution that validated the
high sensitivity of the system. To verify and understand
the electrokinetic separation mechanism in more detail
the polarizabilities were also determined for the various
DNAentities. At theAC frequencies used (300 to 550Hz)
the polarizability values scanned the range from 1.4 −
4.3 × 10−30 Fm2.
Using metal nanoelectrode-based DEP and confo-

cal microscopy, Tuukkanen et al. [219] determined the
DEP trapping characteristics of DNA fragments of var-
ious base-pair lengths. A nonuniform field was cre-
ated between two ‘fingertip-type’ electrodes that took
the form of 100 nm wide gold ‘wires’ fabricated by vac-
uum deposition onto a SiO2 coated silicon substrate.
Double-stranded DNA fragments with varying lengths
(27−8416 bp) were fabricated by the three different
methods, namely by the annealing of synthetic oligonu-
cleotides, the polymerase chain reaction and restriction
enzyme digestion of the plasmids multiplied in bacte-
ria. The DNA fragments were fluorescently labelled and
diluted into Hepes/NaOH buffer (3mM Hepes, 1mM
NaOH), which resulted in a suspending medium of pH
6.9 and conductivity 2mS/m. The effect of the DNA
length and the size of the gap between the gold nano-
electrodes on the DEP trapping efficiency of the DNA
fragmentswere investigated from0.2 to 10MHz.To sum-
marize the main experimental results, it was found that
a larger voltage was required to trap the smaller DNA
fragments, which reflected their smaller polarizability
and higher Brownian motion compared to the larger
molecules. It was also observed and explained by means
of electric field simulations, that small changes in the
gap between the nanoelectrodes (e.g., 80 nmcompared to
130 nm) did not affect theDEP trapping efficiency as long
as the gap was smaller than the physical dimension of
the resolved ‘trapping region’. With a fixed voltage across
the electrode gap, although more DNA was trapped at
the lower frequencies, the DNA was better localized
between the electrodes at higher frequencies.This trade-
off between efficiency and accuracy resulted in the opti-
mum frequency for the measurements to be ∼1MHz.
The three-dimensional electric field generated by the fin-
gertip electrode structure inside a 8μm3 cubic region
was obtained using finite element software to solve the
3D Poisson’s equation. Based on this knowledge of the
spatial variation of the field E, the DEP force was then
estimated using the concepts described in Box 11.3 and
Equation (11.9).The fluorescence intensity of the trapped
DNAmolecules was interpreted as being proportional to
the dwell time 𝜏 given by 𝜏 ∝ exp(UDEP/kT). Apart from
the limited accuracy of the measurements performed by
Tuukkanen et al. [219], there will also have been inherent
approximations regarding the spherical shape (or other-
wise) of the DNA particles and neglect of electrostatic
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Figure . The trend in values of the polarizabilities 𝛼 of
different DNA fragments, as a function of their base pair length,
determined by DEP in the frequency range 0.2 to 10 MHz (derived
from Tukkanen et al. [219]).

particle-particle interactions that would have influenced
their effective electrical potential energy. The results
obtained for the polarizability of the DNA fragments as a
function of the base pair length are shown in Figure 11.31.
The frequency dependence of theDNApolarizability was
found to be rather weak and so in this Figure the gen-
eral trend (ignoring the spread of data points) across
the whole range of frequencies is shown. Although the
shorter DNA molecules exhibited smaller polarizability
values than the longer ones, it is evident from the slope of
the trend of values shown in Figure 11.31 that the polar-
izability per base pair was higher for small molecules
than for large ones. This suggests that the longer DNA
molecules did not behave as rod-shaped objects in the
DEP capture process and that the polarization of DNA
is related to counter-ion fluctuations along persistent
lengths (as described in Chapter 8, section 8.5.1.1).
It is of interest to note that the polarizability values

cited for DNA in Chapter 8, derived from other types
of electrical measurements, are generally much smaller
than the range shown in Figure 11.31. An example is the
value of 3 × 10−33 Fm2 obtained by Suzuki et al. (Chapter
8, reference [154]) from studies of field-induced orienta-
tion of 𝜆-DNA and plasmid DNA.On the other hand, the
value of 8 × 10−30 Fm2 derived for plasmid DNA from
time-domain dielectric spectroscopy by Bakewell et al.
(Chapter 8, reference [130]) lies above the range shown
in Figure 11.31.This wide range of values may reflect dif-
ferences in the types and conductivities of the suspen-
sion buffers used and is worthy of further study, as well as
which dielectric relaxation process of the DNAmolecule
was being investigated in the frequency range of mea-
surements.
Other notable examples of where insulator-based DEP

has been investigated for its potential to selectively sort
DNA fragments include the description by Parikesit et al.
[220] of how a DEP force was considered to induce
size-dependent flow trajectories of DNAmolecules.This
was demonstrated for 𝜆-DNA (48.5 kbp) and T4GT7

(165.6 kbp) DNA flowing continuously around a sharp
corner of a glass post inside a fluidic channel of depth
of 0.4μm. The radius of gyration of the 𝜆-DNA and the
T4GT7-DNA was assumed to be 0.74μm and 1.37μm,
respectively and so larger than the channel. Larger DNA
particles were observed to deflect less strongly than
smaller ones. This appears to contradict the fact that the
DEP force should, with all other factors fixed, increase
with particle size (as for example observed by Chou et al.
[215] and Regtmeier et al. [216]). Numerical simulations
of the electrokinetic force distribution inside the chan-
nels, which took into account the fact that the channel
depthwas smaller than the radius of gyration of theDNA,
were in qualitative agreement with the experimentally
observed trajectories. The electrokinetic response of the
DNA particles was considered to have been influenced
mainly by the electric fields in the electrical double lay-
ers of the channel wall andDNAparticles.This was taken
to explain why the observed DEP effects were not signif-
icantly influenced by changing the electric field applied
between the inlet and outlet fluid ports. The appar-
ent anomalous size-dependence was considered to result
from the fact that the larger (T4GT7) DNA particle is
exposed to a larger volume of the field distribution profile
near the sharp corner and hence to regions ofmuch lower
(E⋅∇)E values than that sensed by the 𝜆-DNA particles.
Gallo-Villanueva et al. [221] describe the concentration
of linear DNA particles (pET28b) using a combination of
electroosmotic, electrophoretic and DEP forces, induced
by direct current electric fields, in a glass microchan-
nel containing an array of cylindrical insulating posts.
DNA suspendingmedia with conductivities between 100
and 120mS/cm and pH values between 10.8 and 11.15
were employed, with applied fields between 50 kV/m and
200 kV/m. By varying themagnitude of the applied field it
was possible to control the degree of negative DEP trap-
ping of the DNA particles at the insulating posts, to a
level that could achieve significant sample concentration.
Concentration factors varying from eight to 24 times the
feed concentration were measured at 200 kV/m after a
processing time period of 20–40 s. Li et al. [222] describe
a microchip device, fabricated on a silicon wafer, con-
sisting of two microchannels connected by a series of
wedge-shaped nanoslits. Electro-osmotic fluid flow was
induced through the slits by applying a voltage between
the microchannels, of polarity that depended on which
channel was used for sample injection. As for other
insulator-based DEP particle separators, the whole pro-
cess of DEP trapping involved a combination of elec-
troosmotic, electrophoretic and DEP forces. DNA frag-
ments with length 2 kbp were fluorescently labelled and
their trapping by DEP at the nanoslits was analysed by
fluorescent intensity changes.This showed that the DNA
fragments could be trapped at a nanoslit in both high
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(≥ 1 S/m) and low (∼1mS/m) conductivity media using a
lower applied electric field strength (10V/cm) compared
to the iDEPmethods that had been described previously.
This represented a significant improvement to suppress
Joule heating effects that can occur in insulator-based
DEP devices that operate at high electric field strengths.
As described in Chapter 10, carbon electrodes can

serve as an alternative to metal electrodes and insulator
structures for DEP applications. The first description of
how carbon-electrode DEP can be used for the manip-
ulation and trapping of bioparticles such as DNA was
reported by Martinez-Duarte et al. [223]. An array of
3D carbon electrodes, contained in a microfluidic chan-
nel, was constructed, analysed theoretically and tested
experimentally for theDEPmanipulation ofDNA. In par-
ticular, the DEP response of 𝜆-DNA under various fre-
quencies and fluid flow conditions necessary for its reten-
tion at the carbon electrodes was investigated. Negative
DEP was observed at frequencies above 75 kHz and pos-
itive DEP the range below 75 kHz and down to 5 kHz.
A theoretical model was also implemented to describe
the experimental findings in sufficient detail. Theoreti-
cal considerations, based on reported scaling laws for lin-
ear and supercoiled DNA, implied that carbon electrode
DEP devices can be employed in future analytical appli-
cations such asDNApreconcentration and fractionation.
The DEP properties of DNA have also been deter-

mined by measuring capacitance changes between pla-
nar microelectrodes, for DNA sizes ranging from 100 bp
to 48 kbp and concentrations from below 0.1 to 70μg/ml
[224].The DEP spectra exhibited maximum responses at
∼3 kHz and 3MHz. The strongest response was found
for long DNA fragments above 10 kbp, as well as for
short 100 bp fragments that correspond to the persis-
tence length of DNA. Henning et al. [224] consider
that the combination of impedance measurements with
DEP collection serves at least two important purposes.
First, the concentration of macromolecules can be deter-
mined without any chemical modifications of the ana-
lyte anddetection is improved as compared to impedance
measurements alone. Although electrical sensing only
gives limited information about the type of molecules
detected, specificity can readily be attained in microflu-
idic systems by functionalization of the electrode surface
with binding molecules such as antibodies and oligonu-
cleotides, or by combination with chromatographical
methods, for example. In contrast to optical methods,
there is in principle no lower limit (except signal-to-noise
ratio) in geometrical resolution.Thus, detection of single
nanoparticles and even molecules appears feasible. Sec-
ond, the DEP response of a wide range of nanoparticles
can be investigated rather easily, which should aid fur-
ther insights into the mechanisms controlling this inter-
action. Li et al. [225] describe the combined use of DEP

concentration and capacitive impedance measurement,
using the same electrodes on a microchip, to character-
ize the DEP responses of two types of DNA of differ-
ent and representative molecular conformations, namely
pUC18-DNA in a supercoiled form and 𝜆-DNA in a lin-
ear form. The microchip, a commercial surface acous-
tic wave resonator, contained an array of interdigitated
aluminium electrodes (1.4mm width, 1.1mm gap) on a
quartz substrate as the DEP concentrator of the target
particle. Measurements were taken with a high preci-
sion impedance analyser, which also acted as the electri-
cal excitation source, to induce a DEP response at vari-
ous frequencies from 20 kHz to 5MHz. To verify theDEP
response, fluorescencemicroscope imageswere captured
before and after the electric excitation of the interdig-
itated electrodes. A large change in impedance corre-
sponded to positive DEP collection at the electrodes of
the DNA, while little change corresponded to negative
DEP. The strongest positive DEP effect and the maxi-
mumcollection efficiencywere observed around 300 kHz
for supercoiled pUC18 and 100 kHz for linear 𝜆-DNA. A
significant advantage of the method was the DEP con-
centration of the DNA was achieved using physiological
strength PBS solutions.
Finally, the ability to operate with high conductivity

fluidic media is not just important for the development
of insulator-based or impedance DEP devices, for exam-
ple. A potential application, often suggested by authors
for their DEP devices, is the detection and isolation of
rare target cells or other bioparticles directly fromclinical
samples such as whole blood or plasma. The vast major-
ity of DEP devices described in this chapter only oper-
ate with efficiency for suspending media of conductivity
less than ∼1 S/m. This means that the dilution of blood
and other clinical samples is necessary, which has impli-
cations regarding the volume of sample that needs to be
processed in a short time. One of the groups that have
seriously addressed this issue is led by Heller [226–229].
Krishnan et al. [226] show how a commercially pro-
duced 100-microelectrode array (the NanoChip®100)
can be used for the separation of DNA particles in high
conductivity media. The circular microelectrodes in the
array are 80mm in diameter and made of platinum,
to which has been applied a 10mm thick coating of
porous polyacrylamide hydrogel. AC electric field condi-
tions have been found that allow the separation of DNA
nanoparticles to be achieved under high conductance
(ionic strength) conditions. At frequencies in the 3 kHz–
10 kHz range and 10Vpk–pk applied voltages, the separa-
tion of 10mm polystyrene particles into low electric field
regions and 60 nm DNA-derivatized nanoparticles and
200 nm nanoparticles into high-field regions, was car-
ried out in a buffer of conductivity 1.68 S/m (the conduc-
tivity of plasma). Sonnenberg et al. [227] extended this



 Dielectrophoresis

performance to enable the rapid isolation, concentration
and detection of high molecular weight (hmw) DNA and
nanoparticles directly from human and rat whole blood.
At 20Vpk–pk and 10 kHz a wide range of hmw-DNA and
nanoparticles were concentrated into high-field regions
by positive DEP, while the blood cells were concentrated
into the low-field regions by negative DEP. A simple flu-
idic wash removes the blood cells while the DNA and
nanoparticles remain concentrated in the DEP high-field
regions where they can be detected by fluorescence. The
DNAcould be detected at 260 ng/ml, which is a detection
level suitable for analysis of disease-related cell-free cir-
culating DNA biomarkers. Fluorescent 40 nm nanopar-
ticles could be detected at 9.5 × 109 particles/ml, which
is a level suitable for monitoring drug delivery nanopar-
ticles. Further development of the microelectrode array
has enabled the isolation of hmw-DNA from serum and
its detection at levels as low as 8–16 ng/ml, as well as flu-
orescently tagged T7 bacteriophage virus to be isolated
directly from blood samples and fluorescently stained
mitochondria to be isolated from biological buffer sam-
ples [228]. Heller’s work has also been directed at design-
ing DEP pipette-type formats for dipping into and recov-
ering specific analytes from samples in microtiter plates.
Micropipette tip devices were fabricated that contained a
2% agarose gel plug, a buffer chamber and platinum elec-
trode as the DEP collection device [229]. Using this DEP
pipette, operated at 10 kHz and 160Vpk–pk, 200 nm fluo-
rescent particles could be isolated into high-field regions
of the microelectrode array and separated from 10μm
fluorescent microbeads in high conductance PBS buffer.
The collected nanoparticles could then be transferred to
a new buffer solution. The DEP isolation and separation
of genomic DNA (>50 kbps) from the 10μmmicrobeads
in high conductance PBS buffer was also demonstrated,
with transfer of collected DNA to another solution [229].

11.7.2 RNA

The RNA molecule is a linear polymer in which
nucleotides are linked by phosphodiester units. As for
DNA, RNA carries negative charges along its backbone
associated with ionized phosphate groups and in aque-
ous solutions these charges are screened by counterions.
Generally, RNA has regions that are self-complementary
(A-U or G-C pairing) leading to the presence of loops
and folded motifs. Ribosomes consist of RNA subunits,
which translate mRNA into polypeptides during protein
synthesis. All living organisms contain ribosomal RNA
(rRNA). Consequently, rRNA has been used for evolu-
tionary science and taxonomy and utilized to define and
identify different organism species. The high copy num-
bers of rRNA molecules present in individual cells have
also been used as a naturally amplified biomarker for the

detection of bacteria in environmental and clinical stud-
ies. DEP offers a noninvasive method for efficient con-
centration, trapping and separation of RNA molecules.
The first (and apparently only one to date) investiga-

tion of the DEP behaviour of RNA is that reported by
Giraud et al. [230] for the 16S and 23S subunits of E. coli
rRNA, over the range 3 kHz to 50MHz using interdigi-
tated microelectrodes. Although the DEP properties of
RNA had not been reported before this work, pertinent
dielectric studies of the free RNA subunit of 70S rRNA
had been performed and interpreted to indicate that
counterion fluctuations dominate the dielectric dis-
persions centred around 9MHz at 25 ◦C [231]. For the
DEP measurements the RNA was fluorescently labelled
and suspended in a medium of conductivity 12.8mS/m.
Quantitative measurement using total internal reflection
fluorescence (TIRF) microscopy of the time dependent
collection of the molecules at the electrodes indicated
a positive DEP response, characterized by a plateau
between 3 kHz and 1MHz, followed by a decrease
in response at higher frequencies. Negative DEP was
observed above 9MHz. From finite element analysis of
the electric field generated by the electrodes, the value of
∇E2 was determined as ∼1018 V2/m3 for an applied volt-
age signal of 2Vpk. As a negative control, a solution of the
fluorescently labelled rRNA was placed on the electrode
array with no applied voltage. The background fluores-
cence increased slowly over a period of 30min due to
unspecific adsorption of the RNA molecules on the sur-
face of the gold electrodes and its substrate. However, no
preferential adsorption of the RNA at the electrodes was
observed. This weak background fluorescence was sub-
tracted from the total fluorescence signal during the DEP
collection.
The voltage dependence of rRNA collection at the elec-

trodes revealed three distinct regimes: (i) Between 0 and
2.2Vpk the fluorescence signal intensity remained con-
stant. It was considered that in this range the DEP force
was too weak to overcome Brownian motion. (ii) From
2.2 to 3.8Vpk the fluorescence signal was quadratic in
applied electric field as expected from standard DEP the-
ory. (iii) Above 3.8Vpk the fluorescence intensity still
increased – however, its voltage dependence was sub-
quadratic.
The V2-dependence of the fluorescence intensity ruled

out the possible influence on the DEP measurements of
fluid flow arising from electrothermal effects, because
these were expected to exhibit a V4-dependence. Also,
AC electroosmosis, which does exhibit a V2-dependence,
peaks at a frequency several orders of magnitude smaller
than the charge relaxation frequency (𝜔= 𝜎/𝜀= 2.9MHz
for the experiments) and falls off as a function of 𝜔2

thereafter. Electroosmosis was therefore considered
to exhibit a negligible influence on the DEP collection



11 Dielectrophoretic Studies of Bioparticles 

above 100 kHz, so that the observed V2-dependence of
fluorescence intensity reflected the DEP collection of
the rRNA samples at the electrode edges, with negligible
interference from induced fluid flow effects. The sub-
quadratic dependence on voltage was considered to arise
from the number of collected RNA particles saturating
the volume available to them in the space interrogated
by the TIRF technique. The initial amount of RNA
contained in the volume (1.1 × 10−11 dm3) bounded by
the TIRF depth of field (275 nm) and the electrode array
(area 4 × 10−6 dm2) was 4.2 × 10−19 moles.This is equiv-
alent to 2.5 × 105 RNA particles, which occupy a total
volume of ∼10−15 dm3. From the increase in fluores-
cence intensity above the background observed for the
DEP measurements between 1 kHz and 1MHz, it was
estimated that a 103-fold increase in RNA concentration
occurred after 30 s of an applied 4Vpk signal. At this con-
centration within the ‘TIRF volume’ mutual electrostatic
repulsions between the charged rRNAmolecules, as well
as diffusion down their concentration gradient, began
to counterbalance the DEP force and resulted in the
observed saturation of fluorescence (see Equation 11.10).
Because RNA is single stranded, then unlike the case

for double-stranded DNA there is a possibility for the
rRNA molecule to exhibit a permanent dipole moment.
The standard DEP force equation can be modified to
the following form to accommodate both a permanent
moment (mp) and an induced dipole moment:

FDEP = (mp + pvE) ⋅ ∇E = mp ⋅ ∇E + 1
2
pv∇E2

where p is the polarizability per unit volume and v is
the particle volume. The DEP voltage dependence mea-
sured at 1MHz revealed that a quadratic relationshipwas
dominant, which from the above equation indicates that
any contribution of the permanent dipole moment mp
to the DEP of rRNA was minimal at 1MHz. The stan-
dard, effective dipole moment method for modeling the
DEP response was therefore adopted. In this model it
was assumed that the rRNA molecules maintained their
secondary structures, as well as some aspects of their
tertiary structures, so that as a first approximation the
molecules can be treated as spherical particles. An analy-
sis, in the form of Equation (11.9) of the threshold voltage
required for the positive DEP force to overcome Brown-
ian motion provided an estimate for the induced dipole
moment of 1.1 × 10−26 Cm (∼3300D) and correspond-
ing molecular polarizability of 7.8 × 10−32 F.m2. Anal-
ysis of the negative DEP response that occurred above
9MHz indicated that the rRNAmolecules exhibited a net
negative moment of −8.3 × 10−28 Cm (∼−250D). This
gave the molecule an effective permittivity value 78.5𝜀0,
close to that of the aqueous suspending medium and
a relatively small surface conductance value of ∼0.1 nS.

This suggests that the rRNA samples had a fairly open
structure accessible to the surrounding water molecules,
with counterions strongly bound to the charged phos-
phate groups in the rRNA backbone. On the assumption
that NaCl was the dominant ionic salt remaining in the
extracted sample, the measured value of 12.8mS/m for
the conductivity of the solution leads to an estimate of
∼1mol m−3 for the solutions ionic density. From Equa-
tion (12.30) the Debye screening length (1/𝜅) was esti-
mated to be ∼10 nm, which is similar to the radius of
the rRNA particle. This implies that the derived surface
conductance value of Ks ∼0.1 nS in Equation (11.11) has
contributions arising from chargemovements in both the
Stern layer and the diffuse part of the double layer.

11.7.3 Proteins

Nakano and Ros [232] provide an excellent and exten-
sive review of the advances achieved (up to 2013) of
the DEP manipulation and characterization of pro-
teins. The interests of those working in protein DEP
tend also to cover other types of nanoparticle. There-
fore, some aspects of the review [232] have been cov-
ered in this chapter, an example being the pioneering
steps by Kawabata and Washizu [208, 209] in devis-
ing a DEP-chromatography-based separationmethod for
DNA, proteins and nanobeads. Nakano and Ros’s par-
ticular contribution is the first demonstration of pro-
teinDEP streamingwith insulator-basedDEP [233].They
designed suitable post geometries (triangular and ellip-
tical) of reduced size (smaller than 20μm ) to improve
insulator-based DEP. Numerical simulations were also
performed to calculate the electric field distribution, as
well as the concentration of proteins according to a
convection-diffusion model for both negative and pos-
itive DEP. In phosphate buffer solutions the DEP trap-
ping of immunoglobulin G (IgG) and bovine serum albu-
min (BSA) occurred as protein aggregates, rather than
single molecules. However, when a charged zwitterionic
detergent was added, they observed DEP streamlining of
immunoglobulinG and bovine serum albumin. Although
the DEP force was not strong enough to trap the IgG and
BSA molecules at the insulator posts, the proteins were
concentrated along fluid streamlines under the action
of positive DEP. In later work [234] they extended their
study to include the influence on protein DEP of pH,
surfactant concentration, aggregation, as well as elec-
trophoretic and electroosmotic effects. Tuning of the
DEP behaviour of proteins under DC conditions, from
positive to negative DEP, was demonstrated through ade-
quate choice of surfactants.
A striking feature of the review by Nakano and Ros

[232] is the extent of the types of DEP devices that
have been used to characterize, separate or focus DNA
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Table . Examples of the DEP manipulation of Proteins (in chronological order).

Protein(s) Investigators Notes

Avidin; Concanavalin;
Chymotrypsinogen;
Ribonucease A.

Washizu et al. [235] DEP occurs at much lower field than that
predicted by theory

Actin Asokan et al. [236] Patterned using quadrupole electrodes
R-phycoerythrin Hölzel et al. [237] Trapping of single molecule
Kinesin-microtubules Uppalapati et al. [238] Microtubules collected and aligned
Bovine serum albumin Lapizco-Encinas et al. [239] First protein study using DC iDEP
Amyloid peptide nanotubes Castillo et al. [240] Single nanotubes immobilized
Streptavidin Maruyama et al. [241] Attachment to carbon nanotube
Immunoglobulin G, Bovine
serum albumin

Nakano et al. [233] DEP streamline concentration

Aβ amyloid Staton et al. [242] Used DC insulating gradient DEP
R-phycerythrin, IgG antibodies Otto et al. [243] Biological activity after DEP proven
Bovine serum albumin Laux et al. [244] Confirmed by atomic force microscopy

molecules, as well as the range of protein types stud-
ied. Examples of this are shown in Table 11.8, listed
chronologically rather than in order of novelty or impact.
Nearly a decade spans the time difference (1994–2003)
between the demonstration by Washizu et al. [235] of
their insulator-based DEP device for concentrating pro-
teins by positive DEP and the work of Asokan et al. [236]
in orienting and collecting actin filaments. From 2008 the
field of protein DEP really takes off and only some of this
action is encapsulated in Table 11.8. Read the review by
Nakano and Ros [232] to fill in the gaps.
A particularly interesting entry in Table 11.8 is the ref-

erence to the work of Hölzel et al. [237], which describes
the trapping of freely diffusing protein between two sharp
gold nanoelectrodes spaced 500 nm apart. As a suitable
molecule for this demonstration, R-phycoerythrin from
red algae was chosen because of its intense autofluores-
cence. It is a 240 kDa protein of disklike shape with a
diameter of 11 nm and thickness of 6 nm. Based on finite
element modelling, the highest value for the field gra-
dient factor at the tip of the electrodes was determined
as ∇E2 ≥ 1021 V2/m3, which translated to a DEP hold-
ing force of more than 0.1 pN per protein molecule. The
DEP response of the protein was found to be maximal at
0.1MHz, of similar strength at 1MHz and much lower,
though still positive, at 5MHz.This accomplishment was
significant enough – but what raises the interest level of
this work further is that it was challenged in the literature
by Ying et al. [245]. Their first comments (reproduced
with permission) were as follows:

The authors used R-phycoerythrin (RPE) as the
sample protein and carried out fluorescence
correlation spectroscopy measurements in a free

solution and single molecule fluorescence mea-
surements on a glass surface where RPE molecules
were adsorbed. These two experiments showed
that the RPE was not aggregated before the trap-
ping experiment. However, these experiments
alone cannot rule out the possibility of protein
adsorption onto the gold electrodes, to which the
authors applied alternating voltage to generate a
dielectrophoretic trap and therefore having the
risk of forming aggregates on the electrodes when
a voltage is applied.

Hölzel et al. respond [246] as follows (reproduced with
permission):

Although we were able to detect and quantify sin-
gle molecules adsorbed to a cleaned glass sur-
face, as represented by the fluorescence intensity
histogram, we never found fluorescing spots on
the electrodes without field application. Fluoresc-
ing spots having appeared during field application
immediately vanished after switching off the field.
Thus, under the present experimental conditions,
the proteins clearly did not stick to the gold elec-
trodes or to the silicon surface.

To the following comment made by Ying et al. [245]:

Surprisingly, they attributed the two bright fluo-
rescent spots in Fig. 2 after 10 s field application
to just two single RPE molecules, stating the rea-
son that the fluorescence intensity of the spot is
‘more than fourfold of the detection limit’; no abso-
lute values were given . . . We suspect that the



11 Dielectrophoretic Studies of Bioparticles 

bright spots may be originated from the fluores-
cence of many molecules concentrated in the trap-
ping region rather than from a single molecule.
In conclusion, the authors need to improve

their experiment and provide conclusive evidence
to support the claim of single-molecule trapping.
[245]

Hölzel et al. respond:

Following their recommendation to compare the
fluorescence intensity values of the intensity his-
togram with those of Fig. 2 actually reveals that
each bright spot in Fig. 2 corresponds to not
more than one or two R-phycoerythrin molecules.
Hence, this rough estimation even further supports
our view of single-molecule trapping. Without
additional changes in field conditions or protein
concentration, dielectrophoretic attraction contin-
ues increasing the local protein concentration.
In conclusion, we are very thankful for the

opportunity to discuss our original work in more
detail, resulting in further evidence for the single-
molecule character of the experiments. [246]

Here we have pertinent and great questions, fol-
lowed by thoughtful and informative responses. More
exchanges like this in the peer-reviewed literature are to
be welcomed and would also be of considerable benefit
to the DEP community.
Two other citations to the work from the group of Bier

and Hölzel appear in Table 11.8, namely that of Otto
et al. [243] and Laux et al. [244]. Otto et al. describe a
silicon-based chip device with a regular array of more
than 100 000 cylindrical submicroelectrodes for the DEP
manipulation of nanoparticles andmolecules in solution.
The device was fabricated by a standard complementary
metal oxide semiconductor (CMOS) process. The distri-
bution of the electric field gradient was analysed using
finite element software and the electrically induced
heating was determined microscopically using a tem-
perature sensitive fluorescent dye. Depending on voltage
and frequency, the determined temperature increase
was found to be compatible with protein function.
Successful DEP controlled immobilization from solution
was demonstrated with the autofluorescent protein R-
phycoerythrin (RPE) and with fluorescently labelled IgG
antibodies. Biological activity after this DEP procedure
was proven by immobilization of an anti-RPE antibody
and subsequent binding of RPE. These results demon-
strate that DEP-directed immobilization of proteins onto
microelectrodes can be achieved without the need for
any chemical modification and that protein function is

preserved. Being based on standard lithographical meth-
ods, further miniaturization and on-chip integration of
electronics towards a multiparameter single cell analysis
system is a real possibility. Laux et al. [244] introduced
atomic force microscopy to verify the permanent immo-
bilization of proteins by DEP and to compare this with
results obtained using fluorescence microscopy. Exper-
imental parameters such as the magnitude and duration
of the applied voltage were varied systematically and the
influence on the amount of immobilized proteins was
investigated. A linear correlation to the duration of field
application was found by atomic force microscopy and,
as validation of DEP being the principal effect respon-
sible, both methods yielded a square-law dependence
of the amount of immobilized proteins on the applied
voltage. While fluorescence microscopy allows real-time
imaging, atomic force microscopy revealed immobilized
proteins obscured in fluorescence images due to low
signal-to-noise ratios. In this way the patterning of
the protein molecules was found to agree with the
calculated field gradient distribution. Furthermore, the
higher spatial resolution of the atomic force microscope
permitted the visualization of the protein distribution
on single nanoelectrodes.
Other work from the group of Bier and Hölzel should

also be described. Stanke et al. [247] have developed a
system that allows for the simultaneous observation of
fluid flow above and around energized microelectrodes
in all three directions in space. As well as conventional
microscopic inspection from above, lateral observation
through the same objective was made possible using
two small mirrors placed next to the electrodes. Fluid
flow and movement of fluorescent nanoparticles above
interdigitated electrodes weremonitored by fluorescence
microscopy and digital imaging and was further analysed
by image processing. In contrast to 3D laser scanning
microscopy the method allows much higher frame rates
and can also be combined with phase contrast or inter-
ference techniques, for example. The electrical conduc-
tivity of the fluid wasmonitored in situ in the actual mea-
suring volume. The aim in developing this system was
to investigate AC electrokinetic phenomena over a very
wide frequency range, covering eight frequency decades
from 10Hz to 1GHz at up to 30Vpk–pk. Over this fre-
quency range, severalmechanisms of field–particle inter-
action occur and can be investigated as a function of
applied field and the conductivity of the fluid. To gain
a better insight into the underlying mechanisms of the
voltage dependence on particle velocity, Stanke et al.
[247] tested the systemat four frequencies, namely: 1 kHz
(often associated with AC electroosmosis for insulator-
based DEP), 10 kHz (the transition region to high fre-
quency DEP); 1MHz (used in electrode-based DEP of
cells andmacromolecules); and 500MHz (not previously
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accessible). For all four frequencies, the particle velocity
(up) varied with voltage as a power law of the type up ∝
Vn. At 1 kHz this relationship took the form up ∝ V1.48,
when in fact an exponentn= 2 due toACelectro-osmosis
or n = 4 for electrothermal flow is expected from the-
ory [248]. For the other frequencies the relationship up ∝
V1.88 was obtained at 10 kHz; at 1MHz up ∝ V2.25; whilst
at 500MHz the result was up ∝ V2.23. The general trend
found that the exponent n increased with increasing fre-
quency is consistent with theoretical prediction, since
at lower frequencies electroosmosis should be dominant
(i.e., n = 2), whilst at higher frequencies electrothermal
effects should be the main driving force of fluid motion
(i.e., n= 4) [248]. In the theoretical models [248] the fluid
flow was examined above the electrode plane, within a
layer of thickness of the order of the electrode width or
gap, whereas Stanke et al. [247] measured the particle
velocities at a height of 100 μm height above electrodes
of less than 2μm width. This is probably the cause for
the lower than expected values found for the exponent n.
The geometry of a particularmicroelectrode array should
also be a significant factor in this respect. It is clear that
much work of fundamental importance to understand-
ing and developing the performance of DEP devices can
be accomplished using this innovative system.
Table 11.8 includes an example of where DEP has been

used to pattern a protein on a substrate [236].The impor-
tance of patterning proteins in this way is that it offers
the advantage of permanent immobilization suitable for
binding and recognition events in biosensing. A critical
property for this is that the immobilized proteins retain
their structural integrity as an antibody or enzyme over a
long period. Bier and Hölzel, with their co-workers, have
demonstrated that DEP is able to immobilize horseradish
peroxidase (HRP) molecules while retaining their activ-
ity [249]. This enzyme was immobilized by DEP on a
square array of tungsten nanopins, at a field frequency of
10 kHz to circumvent electrolysis of water at lower fre-
quencies and to minimize fluid flow at high frequencies.
As observed for the case of rRNA by Giraud et al. [230],
it was found for HRP that the expected square depen-
dence on voltage for DEP collection commenced at a
threshold voltage. At 0.35V no immobilization of HRP
was observed, whilst at 1.8 V about 25% of the electrodes
were coveredwith the enzyme, giving a threshold value of
somewhat below 1.8V. Effective immobilization at nearly
all the electrodes was achieved at 3.5 and 7.1V. How-
ever, at 7.1V increased streaming of the fluid and enzyme
aggregation occurred. According to these results, immo-
bilization of HRP was considered to be optimal at a fre-
quency of 10 kHz and a voltage of 3.5 V. A negative con-
trol was conducted to ensure that the HRP enzymes were
immobilized as a consequence of DEP action and not by

adherence of HRP preferentially on the tungsten elec-
trode or tungsten oxide substrate. Preservation of the
enzymatic function of HRP after its DEP immobilization
was demonstrated by oxidizing dihydrorhodamine 123
with hydrogen peroxide as co-oxidant to create its flu-
orescent form, rhodamine 123.
Laux et al. [250] also describe the immobilization

and alignment by DEP at planar nanoelectrodes of the
enhanced green fluorescent protein (eGFP). This protein
is commonly used as a fluorescent label in molecular
biology. Applying fluorescence polarization microscopy,
Laux et al. demonstrated for the first time a purely
field-induced alignment and immobilization of protein
molecules. According to X-ray data of green fluorescent
protein crystals, the protein structure can be approxi-
mated by a cylinder with a diameter of 2.4 nm and a
length of 4.2 nm. A single chromophore is covalently
bound and situated in the center of the so-called 𝛽-barrel
structurewith the chromophore plane at an angle of∼60◦
to the symmetry axis of the cylinder. The chromophore’s
conformation is stabilized by additional hydrogen bonds
and can be assumed as fixed in relation to the barrel. As
a result, the transition dipole moment, which is nearly
identical for absorption and emission, could be used to
determine the orientation of the protein. Alignment was
found to follow the molecule’s geometrical shape with its
longitudinal axes parallel to the electric field. Simultane-
ousDEP attraction andACelectroosmotic flowwas iden-
tified as the dominant forces causing protein movement
and alignment.Molecular orientationwas determined by
fluorescencemicroscopy based on polarized excitation of
the proteins’ chromophores. The orientation found with
respect to the whole molecule was in agreement with the
X-ray crystal data.
Finally, to bring us back full circle to the early days of

DEP, we refer to the studies of the synthetic polyamino
acids, poly-𝛾-benzyl L-glutamate and poly-n-butyl iso-
cyanate, by Eisenstadt and Scheinberg in 1972 [251,
252]. These biopolymers exhibit a permanent dipole
moment and it was the interaction of this moment with
the nonuniform field, rather than an induced moment,
whichwas considered responsible for their observedDEP
migration to a 10 μm diameter platinum wire within a
0.3 cm diameter, 2 cm long, platinum cylinder. The DEP
collection was monitored as a change in capacitance
of this arrangement, the time course of which led to a
determination of the diffusion coefficients of the macro-
molecules to within ± 5% precision and in good agree-
ment with the values obtained by standardmethods.This
capacitance method was adopted from earlier work by
Peter Debye (the father of dielectrics and, as described
in Chapter 6, the formulator of the concept of dipole
moments) in his investigations of the affect of inhomo-
geneous electric fields on polymer solutions [253]. Debye
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and his co-workers also used razor blades as electrodes to
create the large field gradients required to collect poly-
mer particles and to detect this collection by measur-
ing the optical diffraction pattern just above the edge
of the razor blade. Debye also instigated and guided the
work of Prock andMcConkey [254], who used the capac-
itance method of detecting DEP collection to determine
the molecular weight distribution of polymers in a poly-
disperse polymer solution. These early studies [251, 252,
254] of DEP have largely been ignored, but they contain
valuable insights into the dynamics of the DEP collection
of small particles.

. Summary

Fifty years have passed (at the time of writing) since
the first reported use of DEP to collect living cells by
Herb Pohl and Ira Hawk [1]. This was also the first
demonstration of the separation of living from dead cells
((S. cerevisiae) by purely physical means. Twelve years
later (1978), Pohl was in a position to describe in some
detail the DEP characterization of yeast cells and several
types of bacteria [22]. He could also provide preliminary
data for blood platelets, chloroplasts, erythrocytes, green
algae and mitochondria, as well as the continuous DEP
separation of some cell types from cell mixtures and the
use of DEP to form masses of living cells. The prelimi-
nary results were either described in the theses of Pohl’s
MSc students (e.g., Chen [66]) or formed part of work in
progress with Kaler for later publication [2]. This work
with Kaler describes the continuous DEP separation of
yeast from green algae (Netrium digitus), as well as dif-
ferent types of green algae from their mixtures (Chlorella
vulgaris with Netrium digitus; Ankistrodesmus falcatus
with Staurastrum gracile), using a continuous separator
of the form shown in Figure 11.4 (but with an isomo-
tive rather than cylindrical geometry). To maximize the
DEP force the cells were suspended in low conductiv-
ity media. However, with an insightful view of where the
subject would go, it was pointed out that although yeast
and algae could tolerate the low conductivity media used
in their DEP experiments, cellular organisms that require
higher osmolarity should be suspended in nonionic (iso-
tonic) solutes such as sucrose and mannose, for example.
The electrodes used to create large field gradients in

these early studies of DEP were of macroscopic form,
such as razor blade edges or fine metal wires as used in
earlier studies of polymer solutions in inhomogeneous
fields [253, 254] and later by Eisenstadt and Scheinberg
in their determination of the diffusion constant of syn-
thetic polyamino acids by DEP [251, 252]. The introduc-
tion of microfabricated electrodes to the field of DEP
occurred independently around the globe and reported

initially at international conferences between 1987 and
1991 [255–257]. This, together with the development of
microfluidics, led to ‘an explosion of DEP publications’ in
the 1990s [258].
The fallout from this ‘explosion’ has led to a greater

understanding of the physico-chemical and physiolog-
ical cell-state parameters that are involved in the abil-
ity of DEP to distinguish between live and dying / dead
mammalian cells, yeast and bacteria. Whereas Pohl was
able only to provide preliminary data for the DEP charac-
teristics of red blood cells, chloroplasts, green algae and
mitochondria, for example, the contents of sections 11.3
to 11.6 describe in some detail the DEP properties of a
much wider range of cell types (white blood cells, can-
cer and stem cells, neurons, oocytes, plant cells) as well
as spermatozoa, oocysts, virions and even worms. Herb
Pohl would be dually amazed and delighted to learn of
the progress that has been made in the DEP manipula-
tion of nucleic acids and proteins, and of the promise
this brings to the realization of novel diagnostic and assay
techniques, as well as biosensors, for environmental and
biomedical applications. At the time (June 2016) of com-
pleting this chapter, there are at least six commercial
products that incorporate DEP technology. The Pana-
sonic bacteria counter determines the concentration of
bacteria through measurement of the change of electri-
cal impedance between microelectrodes to which bacte-
ria are captured byDEP.This device is based on the earlier
research work of Suehiro et al. [77]. The Shimadzu IG-
1000 nanoparticle analyser exploits the fact that particles
collected by DEP can form an optical grating. By moni-
toring the change in intensity of diffracted laser light as
the particles disassemble on removal of the DEP force,
particle size ranging from 0.5 to 200 nm can be deter-
mined (small particles disperse more rapidly than large
ones).The Silicon BiosystemsDEPArrayTM uses a system
of electrodes to create DEP ‘field cages’ around cells, so
that target cells identified by image analysis can be spa-
tially manipulated and then selectively isolated for fur-
ther characterization. This technology grew out of the
development by Manaresi et al. [259] of a CMOS chip
for manipulating cells by DEP. With the DEPtech-3DEP
system the dielectric properties (e.g., mean membrane
capacitance and cytoplasm conductivity) of cells in sus-
pension is determined, based on changes in the suspen-
sion’s optical density as the cells respond to DEP forces
over a range of applied voltage frequencies [90, 91]. Two
DEP technologies have also been developed for sepa-
rating target cells and bioparticles from blood, namely:
ApoStreamTM technology for isolatingmetastatic cancer
cells [123,124]; andmicroarray devices developed by Bio-
logical Dynamics for isolating nanoparticulate biomark-
ers (e.g., cell-free circulating DNA, RNA, exosomes)
[229]. These six commercial devices share a common
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aspect in using metal-based electrodes to generate the
field factor (E⋅∇)E required to collect bioparticles. To this
author’s knowledge other forms of DEP (i.e., insulator-
, liquid-, photoconductive- or carbon-electrode based)
devices have yet to be commercialized and exploit

some of the other aspects of DEP described in Chap-
ter 10 and this one. Hopefully, some of this work will
soon translate to the development of new tools and sen-
sors to address unmet needs in clinical therapy, stem cell
research and tissue engineering, for example.
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Microfluidic Concepts of Relevance to Dielectrophoresis

. Introduction

The devices described in Chapter 10 incorporate
microfluidic channels along which particles are directed
through and then away from the influence of nonuni-
form electric fields. To qualify as a microfluidic device
it should incorporate fluid flow in structures that have
at least one dimension in the scale between 1μm and
1mm. Electrokinetic and microfluidic phenomena are
therefore co-actors in most DEP devices.
This chapter describes some of the basic physical

properties and hydrodynamic behaviour of fluids in
microchannels. This includes pressure-driven as well as
electrokinetic-driven fluid flow; laminar fluid flow; fluid
flow resistance of channels and DEP chambers; electri-
cal double layers at channel surfaces and electro-osmosis.
An important concept is the characteristic dimension of
a fluidic channel.This length is incorporated into dimen-
sionless parameters such as the Knudson, Reynolds and
Peclet number, which can be used to predict how a fluid
should behave in a particular microchannel. The electri-
cal analogue of fluid flow in channels is the flow of cur-
rent through resistors. Kirchhoff’s rules, as applied to the
analysis of electrical networks, can thus be employed to
analyse fluid flow in simple channel networks.

. Gases and Liquids

Although they respond very differently to changes in
pressure and temperature, the term ‘fluid’ includes both
liquids and gases. They share the common feature that,
unlike solids, they do not resist shearing forces such as
those acting at a solid surface and continue to deform
as long as the force is applied. Gases and liquids assume
the shape of the solid boundary, whereas solids can
resist such shear and maintain an unsupported shape.
Their motion, as shown in Figure 12.1, is controlled
by the interaction and internal shear between fluid
layers.

Gases can be expanded and compressed more eas-
ily than liquids due to the lower density and larger
spacing between molecules. At the molecular scale
(∼10−9 m) the interaction between fluid layers involves
collisions of many molecules, whilst at the macroscale
scale (>10−4 m) the physical properties of a fluid result
from the statistical averages of such molecular interac-
tions. In this case, the effects of individual molecular col-
lisions can be ignored and we can deal with the liquid’s
bulk, or continuum, properties.

12.2.1 Gases

The molecules in a gas are widely spaced and interac-
tions between them (apart from collisions) are weak,
especially at low pressures. An increase of temperature
increases the kinetic energy of themolecules, mass trans-
fer between gas layers increases and viscosity increases.
In gases, except for extremely high pressures, viscosity is
independent of pressure. At a sufficiently low pressure,
where intermolecular interactions are negligible, all gases
obey the Ideal Gas Law:

PV = nRT (12.1)

where P is the pressure, V the volume, n the amount
(moles) of substance of gas molecules and T the absolute
temperature. In this equation R is the gas constant given
by R = kNA, where k is Boltzmann’s constant = 1.38 ×
10−23 J K−1 and NA is Avogadro’s constant = 6.022 ×
1023 mol−1. The Ideal Gas Law follows from experiment
(e.g., Boyle’s Law) and Avogadro’s Hypothesis (formu-
lated in 1810) that: equal volumes of gases at the same
temperature and pressure contain the same number of
molecules.
Thus, a mole of hydrogen (2 g) and a mole of oxy-

gen (32 g) at the same temperature and pressure occupy
the same volume. At standard temperature and pressure
(STP: 273.15K, 100 kPa) this volume is 22.414 l.
Although on average the molecules in a gas are widely

spaced apart, they are in constant motion and often
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Figure . Fluids can be considered as a series of parallel laminas.
Under the action of a shearing force 𝜏 , a fluid laminar transmits
this shear force to its neighbour and is, in turn, sheared by those it
touches. This is the process by which a fluid is deformed under the
action of a shearing force.

collide with each other. As shown in Box 12.1 the mean
free path lengthLmfp between such collisions is given by:

Lmfp = kT√
2𝜋Pd2

(12.2)

Example 12.1 Average Separation Distance and
Mean Free Path Length of Gas Molecules
Estimate 1. the average separation distance and 2.
the mean free path length between collisions of the
molecules in a gas at STP.

Solution 12.1

1. The volume occupied by a mol of any gas at STP
(273.15K, 100 kPa) is 22.414 l. Based on Avogadro’s
constant there are thus 6.022 × 1023/22.4 = 2.7 ×
1022 gas molecules per dm3 at STP. Spheres cannot
be packed together to fill all space and so we will
assume that each molecule occupies a cube of side l.

The average spacing between molecules can thus be
estimated from the relationship:

l3 (2.7 × 1022) = 1, to give l = 3.34 nm.

2. Typical molecular diameters d fall in the range
0.2∼0.3 nm. Assuming d = 0.25 nm, from Equation
(12.2) the mean free path length between collisions of
the molecules in a gas at STP is given by:

Lmfp = kT√
2𝜋Pd2

= 1.38 × 10−23 × 273.15√
2𝜋105(2.5 × 10−10)2

= 136 nm

Thus, the average distance between collisions of a
gas molecule is more than 500 times their molec-
ular diameter (∼0.25 nm) and some 40 times larger
than their average molecular separation distance of
3.34 nm. This demonstrates that molecules in a gas
typically travel in straight paths over significant dis-
tances at the molecular scale before they collide with
another molecule.

12.2.2 Liquids

The average centre-to-centre distance between
molecules in a liquid is just a little more than its
molecular diameter d. Cohesive forces such as those
arising from induced dipole-dipole interactions give rise
to viscous effects. Glass and molten polymers are highly
viscous because their large molecules become entangled.
Water has a higher viscosity than liquids such as benzene

Box . Mean Free Path between Molecular Collisions in a Gas

The frequency of collisions between sets of two molecules
depends on their relative velocity vrel of approach. For two
molecules this is given by the vector difference of their
velocities v1 and v2, so that:

vrel =
√

vrel ⋅ vrel =
√

(v1 − v2) ⋅ (v1 − v2)

=
√

v1 ⋅ v2 − 2v1 ⋅ v2 + v2 ⋅ v1

Velocities v1 and v2 are random and uncorrelated and,
because the same average velocity ⟨vrel⟩ is associated with
each molecule, then:

⟨vrel⟩ = √
v2

1 + v2
2 =

√
2⟨v⟩

Over time t a collision cross section associated with one
molecule moving with an average velocity ⟨v⟩ will travel a
path length ⟨v⟩t. Treating each molecule as a hard sphere
of diameter d the effective collision area for two colliding
molecules can be taken as a circle of diameter 2d. The effec-
tive cross-sectional collision area Ac for a molecule is thus

given by Ac = 𝜋d2. The volume Vc of collision space swept
through during time t is:

Vc = Ac⟨vrel⟩t = 𝜋d2
√

2⟨v⟩t
The mean free path length Lmfp can then be taken as the

path length ⟨v⟩t divided by the number of molecular colli-
sions:

Lmfp =
⟨v⟩t

𝜋d2
√

2⟨v⟩tNv

= 1

𝜋d2
√

2Nv

In this equation Nv is the number of molecules per unit vol-
ume, calculated from Avogadro’s number and the Ideal Gas
Law given by Equation (12.1) as:

Nv =
nNA

V
=

PNA

RT
= P

kT
so that

Lmfp = kT√
2𝜋Pd2
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or alcohols because of its network of cohesive hydrogen
bonds. With increasing pressure, the energy required
for relative movement of molecules is increased, so that
the viscosity increases. As the temperature increases
there is an increase of molecular kinetic energy, which
reduces the cohesive forces and hence also the viscosity.
An increase of molecular kinetic energy also facilitates
an increased molecular interchange between the fluid
layers, which will increase viscosity. However, this pro-
duces a relatively small effect compared to the reduction
of cohesive forces, so the net result is that liquids show a
reduction in viscosity for an increase in temperature.
We can appreciate the difference at the molecular level

between a liquid and a gas by noting that 1 dm3 of liquid
nitrogen weighs ∼800 g, whilst at STP 1 dm3 of gaseous
nitrogenweighs∼1.2 g.This informs us that at themolec-
ular level a nitrogen molecule on average occupies ∼670
times more space than it does as a liquid. To what extent
can we treat a gas in a microfluidic device to have the
properties of a continuum? A dimensionless parameter,
known as the Knudsen number Kn, provides an impor-
tant test of the validity of the continuum approximation.
Kn compares the characteristic dimensions of amicroflu-
idic device to the mean free path between molecular col-
lisions and is defined as:

Kn =
Lmfp

L
with L being the characteristic length of the flow field.
For a microfluidic device, this characteristic length can
be taken as either the hydraulic diameter of a channel,
or the gradient of a bulk fluid property such as density
(𝜌/d𝜌/dx).Thehydraulic diameter, also known as thewet-
ted diameter, DH is defined as:

DH = 4 × Area
Wetted Perimeter

For the case of a channel with circular cross section,
DH is equal to the channel’s diameter. For a channel of
rectangular cross section, width w and height h:

DH = 2wh
(w + h)

The following ranges of the Knudson number provide a
rough guide as to whether a gaseous fluid may be treated
as a continuum or as an assembly of discrete molecular
particles:

� Kn< 0.001: themean free path betweenmolecular col-
lisions is very small compared to the distance between
the fluidic boundaries.The continuummodel and zero
slip of the fluid at boundaries may be assumed.

� 0.001 < Kn < 0.1: the continuum model may be
assumed, but finite fluid slip occurs at boundaries.

� 0.1 < Kn < 10: this defines the mesoscale region
between the continuum approximation and a model
that involves discontinuous dynamics.

� Kn > 10: the molecules bounce off the boundary walls
more often than they do each other. The continuum
approximation is not valid. A particle-based method,
such as a Monte Carlo simulation, should be used.

Therefore, as a rough guide, we can adopt the continuum
model if the characteristic scale of our microfluidic sys-
tem is more than ∼500 times larger than the molecular
mean free path length. From Example 12.1 we can esti-
mate that the characteristic size of a microfluidic system
below which the properties of a gas at STP should not be
modelled as a continuum is ∼500 × 136 nm ≈ 68 μm. At
the other end of the scale, where themolecular mean free
path is ten times larger than the characteristic length of
our system, themolecular particles collide with the phys-
ical boundaries of the system more often than they do
with each other. We cannot treat the gas as a homoge-
neous medium, instead, the dynamic behaviour of each
molecule must be considered.Themesoscale region cov-
ers the change in physics between the continuumapprox-
imation and discontinuous molecular models. The lower
limit of the mesoscale can be taken to be around 100
molecular diameters (i.e., ∼25 nm). The upper limit, cor-
responding to where the continuum approximating laws
are violated, is not so well defined. For example, a rarefied
gas might invalidate the use of continuum physics up to
scales of ∼10μm, whereas for a dense liquid the contin-
uum laws could be valid down to scales below 1μm.
The transition between the continuum and molecu-

lar regions for liquids goes through the same stages as
for gases, but there is no parameter to act as a guide
throughout the transition. The Knudson number cannot
be defined, as there is no concept of mean free path for
liquid flows – themolecules are in a constant state of col-
lision and move over much shorter distances (compara-
ble to the molecular diameter). Travis et al. [1] modelled
the velocity profile and heat flux profile of an atomic liq-
uid in a narrow channel, using molecular dynamics and
the Navier–Stokes equations (to be described later in this
chapter). For a channel width of 5.1 molecular diameters
the two simulations of the velocity profiles differed sig-
nificantly. The heat flux profile did not agree with that
predicted by Navier–Stokes hydrodynamics, but exhib-
ited significant oscillations located about one molecu-
lar diameter from the walls. However, classical Navier–
Stokes behaviour was approached for a channel width
greater than 10 molecular diameters. As an example of
experimental investigations at the boundary between the
continuum and mesoscale, Pfahler et al. [2] constructed
three channels of rectangular cross-section ranging in
area from 80 to 7200 square microns. In the relatively
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large flow channels the experimental observations were
in rough agreement with predictions from the Navier–
Stokes equations but significant deviations were found
for the smallest of the channels. Mala and Li [3] studied
water flow through microtubes with diameters ranging
from 50 to 254μm. Results in rough agreement with con-
ventional continuum theory were obtained for the large
diameters, but not for the smaller diameters.

. Fluids Treated as a Continuum

When treated as a continuum, the properties of a fluid
such as density, pressure and velocity remain constant at
any defined point and changes in these properties due to
molecular motions are taken to be negligible. The physi-
cal properties of fluids can be defined as continuous func-
tions of time and space.

12.3.1 Density

This is defined as the mass contained within a unit vol-
ume and is computed as the product of molecular mass
m and the number of molecules N per unit volume V:

𝜌 = Nm
V

Molecular mass m is the mass of the molecule given by
m =Mwmu, whereMw is the molecular weight (molecu-
lar mass relative to 12C = 12) and mu is the atomic mass
unit (1.6606 × 10−27 kg). The Ideal Gas Law of Equa-
tion (12.1) can be interpreted as stating that pressure is
linearly proportional to the product of temperature and
density.

12.3.2 Temperature

Temperature relates to the translational kinetic energy E
of Nmolecules in a particular volume domain, with each
molecule having velocity vj and massm:

E =
N∑
j=1

1
2
mv2j

The kinetic theory of gases uses statistical mechanics
to relate the average kinetic energy of the atoms to the
temperature of the system. In one dimension we have:

⟨E⟩ = 1
2
m⟨v2x⟩ = kT

2
For a three-dimensional domain:⟨E⟩ = 1

2
m⟨v2x + v2y + v2z⟩ = 3

2
kT

This relationship is important to understanding the
concept of gas pressure, which is the force imparted by

collisions of gas molecules against a unit area of surface.
This can be evaluated in terms of Newton’s Law as the
momentum lost per molecular collision with the surface,
averaged over a large number of molecules. The macro-
scopic pressure of a gas therefore relates directly to the
average kinetic energy per molecule and to the gas den-
sity. This application of the laws of classical physics can
be applied to the particles of a gas, but the molecules or
atoms in the liquid or solid state have to obey the laws
of quantum statistics. In which case only certain energy
values, rather than a continuous distribution of particle
velocities, are permitted.

12.3.3 Viscosity

Viscosity is themeasure of the effort required to deform a
fluid.This can be described in terms of Couette flow, cor-
responding to the situation shown in Figure 12.2 where
a fluid is contained between a moving plate and a paral-
lel stationary plate. The fluid velocity immediately next
to a surface of a plate will equal the velocity of that plate.
This is referred to as zero slip. If the fluid is a Newtonian
fluid, such as water, the fluid velocity changes smoothly
from zero at the stationary surface to the velocity of the
moving surface.Thus, as shown in Figure 12.2, the spatial
gradient of the fluid velocity dv/dy is constant.
The dynamic viscosity 𝜂 is defined as the proportional-

ity constant between the shear stress 𝜏 applied to the fluid
and the resulting rate of shear strain. The shear strain is
defined as the ratio dy/dx of the lateral deformation dy to
the thickness dx of the layer being displaced. The rate of
shear strain is given by (dy/dx)/dt = dv/dx, correspond-
ing to the induced velocity gradient. For a Newtonian
fluid the following relationship exists between stress, rate
of shear strain and the dynamic viscosity:

𝜏 = 𝜂 dv∕dx (12.3)

We can interpret this relationship as indicating that, for
𝜂 = 1 Pa.s and 𝜏 = 1 Pa, the mobile plate moves in one
second a distance equal to the thickness of the fluid layer

Stationary 
surface

Moving 
plate

x
y

dx

dy

Slope = dv/dx

Figure . Couette flow is shown induced in a fluid bounded by a
stationary surface and a moving plate. For the case of a Newtonian
fluid, the fluid velocity changes smoothly from zero at the
stationary surface to the velocity of the moving plate. There is no
slip of the fluid at each surface and the spatial velocity gradient
dv/dx has a constant value.
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Table . Viscosity values of some liquids (293 K, unless
specified).

Liquid Viscosity (Pa s)

Water (liquid) 1.0 × 10−3

Water (vapour, 373 K) 1.3 × 10−5

Blood (whole, 310 K) 3∼4 × 10−3

Blood (plasma, 310 K) 1.5 × 10−3

Ethyl alcohol 1.2 × 10−3

Glycerine 1.49
Oil (light) 0.11
Oil (heavy) 0.66

between the plates. Values of the dynamic viscosity for
some liquids are given in Table 12.1.
The viscosity of a Newtonian fluid depends only on

temperature and concentration (if diluted with another
miscible fluid). For some fluids, particularly molten poly-
mers or biological fluids such as blood, their viscosity
depends also on the internal stress. These are classed
as non-Newtonian fluids. Their viscosity decreases with
an increase of the rate of the applied shear stress d𝜏/dt
applied to a fluid flowing between two parallel surfaces,
one moving at a constant velocity and the other one sta-
tionary and is defined by:

d𝜏∕dt = v∕h

where v is the velocity of the moving surface and h is
the distance between the two parallel surfaces. Non-
Newtonian fluids exhibit viscoelastic behaviour (shear
thinning) and some, such as whole blood, require an ini-
tial shear stress that must be applied before they begin
to flow. Viscoelastic fluids exhibit a relaxation time, typ-
ically ranging from milliseconds to seconds, given by the
reciprocal of the critical shear rate.The critical shear rate
corresponds to the shear threshold at which the viscos-
ity begins to change or, for the case of molten polymers,
where the polymer chains make the transition from a
coiled to a stretched configuration.

. Basic Fluid Statics and Fluid Dynamics

12.4.1 Static Fluid Pressure and Pascal’s Law

The pressure exerted by a static fluid arises from the
weight of that fluid and so depends only upon the fluid
depth h, its density 𝜌 and the acceleration of gravity g:

Pstatic fluid =
weight
area

=
mg
A

=
𝜌Vg
A

= 𝜌gh (12.4)

Because the fluid pressure at a given depth h does not
depend upon the total mass or total volume of the

P

h h

Figure . The static fluid pressure P at a given depth h in a liquid
does not depend on the total volume or shape of the vessel.

liquid, the shape of the fluid container is also not rele-
vant. Examples of this are given in Figure 12.3.
It follows from Equation (12.4) that the change in pres-

sure between two elevations is due to the weight of the
fluid between the elevations regardless of the geometry
of the container.This leads directly to Pascal’s Law, which
states that: the pressure exerted anywhere in an enclosed,
incompressible, static fluid is transmitted equally in all
directions throughout the fluid.
Pascal’s Law can be interpreted to indicate that any

change in pressure applied at any given point of the fluid
is transmitted undiminished throughout the fluid.

12.4.2 Conservation of Mass Principle (Continuity
Equation)

Fluid flowing steadily through a cylindrical channel of
reducing cross-sectional area is shown in Figure 12.4. No
fluid can exit or enter the channel between areas A1 and
A2. Let 𝜌2 be the density of the fluid flowing through A2.
The rate of fluid flowQ through the channel can be deter-
mined as either volumetric flow (dm3/s) or mass flow
(g/s). In terms of mass flow Q = A2𝜌2v2 g/s, where v2 is
the mean velocity of the fluid flow through A2. Because
no fluid exits or enters the channel between areas A1
and A2, then from the conservation of mass principle the
mass of fluid crossing each section of the pipe per unit
time must be the same:

fluid flow rate through A1
= fluid flow rate through A2

A1𝜌1v1 = A2𝜌2v2

v1 v2

Q
A1

A2

Figure . Flow of a liquid through a constriction in a cylindrical
channel, where its cross-sectional area reduces from A1 to A2. As
detailed in the main text, the principle of conservation of mass
dictates that A1v1 = A2v2, where v1 and v2 are the average fluid
velocities through A1 and A2, respectively. Because A1 > A2, then v1
< v2. This is also known as the Venturi effect and is the principle of
operation of a bath showerhead.
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This relationship, which expresses the equation of con-
tinuity, also expresses the Law of Conservation ofMass in
fluid dynamics, namely:

A𝜌v = constant

We will consider only liquids (i.e., not gases), so that
because they are incompressible the density of the fluid
will be constant (i.e., 𝜌1 = 𝜌2). The conservation of mass
principle can thus be written as:

A1v1 = A2v2
or

Av = constant

The reduction in channel area shown in Figure 12.4
(A1 > A2) indicates that v2 > v1.

Example 12.2 Fluid Flow through a Channel of
Reducing Cross Section
Water flows through a channel of circular cross-section
at a rate of 0.1mL per minute. The channel has the same
geometrical profile as that depicted in Figure 12.4, with
the radius constricting down from 100μm to 60μm. Cal-
culate the effective velocity of fluid flow through areas A1
and A2.

Solution 12.2 The volumetric flow is given by:

Qv = 0.1∕60 = 1.67 × 10−3mL s−1

= 1.67 × 10−9m3s−1
Area: A1 = 𝜋(10−4)2 = 3.14 × 10−8m2

Velocity: v1 = Q∕A1
= 1.67× 10−9m3 s−1∕(3.14× 10−8m2)
= 5.3 × 10−2m s−1

From the principle of conservation of mass:

A1v1 = A2v2
∴ v2 = (3.14 × 10−8m2)(5.3 × 10−2 m s−1)∕

(3.14 × (6 × 10−5)2) = 0.15 m s−1

12.4.3 Bernoulli’s Equation (Conservation of Energy)

With reference to Figure 12.4 and Example 12.2, the prin-
ciple of conservation of mass informs us that the fluid
velocity is greatest in that section of the cylindrical chan-
nel having the smaller cross-sectional diameter. On flow-
ing through a constriction to a smaller cross-sectional
area the fluid velocity increases. This corresponds to an
acceleration of the fluid mass, which in turn requires
an unbalanced force in the form of a pressure gradient
exerted on the fluid by the walls of the channel. As shown
in Figure 12.5 the pressure P1 in the large area of the pipe

v1 v2
P1 P2

ΔP

Figure . A pressure drop (P1 − P2 =ΔP) occurs in a fluid flowing
through a constriction in a channel, driving the acceleration of the
fluid mass through the smaller cross-sectional area of the channel.

must be greater than P2 in order to accelerate the fluid.
Likewise, if the fluid flow is reversed, P1 must exceed P2
in order to decelerate the fluid mass.
Bernoulli’s principle states that for viscous free fluid

flow an increase of the fluid velocity occurs simultane-
ously with a decrease in fluid pressure, or with a decrease
in the fluid’s potential energy. This principle can be
applied to various types of fluid flow and quantified using
various forms of what is known as Bernoulli’s equation.
A simple form of this equation is valid for incompressible
fluids and for compressible gases moving at speeds well
below the velocity of sound in a particular gas.This equa-
tion can be derived from the principle of conservation of
energy, which states that along a steady fluid flowpath the
sum of all forms of mechanical energy remains constant.
The fluid possesses kinetic energy due to its motion and,
because of its location in the earth’s gravitational field, it
also possesses potential energy. Work is also being done
on the fluid due to the static pressure acting on it. If there
are no frictional losses we can apply the Law of Conser-
vation of Energy and write Bernoulli’s equation as:

P + 𝜌gh + 1∕2𝜌v2 = constant (12.5)

where P is the static pressure, h the height above some
reference level, v the mean fluid velocity, 𝜌 the fluid den-
sity and g the acceleration due to gravity at any chosen
elemental volume in the fluid flow line. The term (12𝜌v2)
is known as the dynamic pressure and the total pressure
is the sum of the static pressure P and this dynamic pres-
sure. The sum of the elevation h and static pressure head
(P/𝜌g) is known as the hydraulic head.
A consequence of Bernoulli’s principle is demon-

strated in Figure 12.6, which shows an aerofoil-shaped
object in flowing fluid. Because of the differences in path
length, the fluid flows more rapidly over the top surface
than over the lower surface of the aerofoil. Faster fluid
flow implies a lower pressure, so that the pressure will
be greater on the bottom surface of the aerofoil and pro-
duce an upward lift force.This is the principle used in the
design of aircraft wings and propeller blades, for example.
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Figure . The fluid velocity above the upper surface of this
object is greater than that in the shorter path lengths below the
object. According to Bernouilli’s principle the fluid pressure below
the object is greater than that above it, which results in a lift force.

An inverted version of the shape shown in Figure 12.6will
result in a downward force, which is an effect used in rac-
ing car spoilers.

Example 12.3 Pressure Drop across a Fluid Con-
striction
Water flows through a horizontal channel of geometri-
cal profile similar to that shown in Figure 12.5, with the
exit port open to the atmosphere. The mean fluid veloc-
ity v1 before the constriction is 0.1ms−1 and the fluid exit
velocity v2 is 15ms−1. Neglecting frictional losses, calcu-
late the pressure P1 in the main channel and the pres-
sure drop across the constriction. (The density of water
is 1000 kg m−3 and atmospheric pressure is 100 kPa.)

Solution 12.3 Ignoring frictional losses we can employ
Bernoulli’s equation (12.5).The channel is horizontal and
so potential energy differences arising from changes of
fluid height can also be ignored. Equation (12.5) therefore
takes the form:

P1 + 1∕2𝜌v21 = P2 + 1∕2𝜌v22

We are given 𝜌 = 1000 kg m−3, v1 = 0.1ms−1, v2 =
15ms−1, P2 = 100 kPa (105 N m−2).
Pressure P1 is given by:

P1 = P2 + 1∕2𝜌(v22 − v21)
= 105 + 500(225 − 10−2)
= 2.125 × 105 N m−2(∼2.1 atm)

The value for ΔP in Figure 12.5 is given by:

ΔP = P1 − P2 = 1.125 × 105 N m−2(∼1.1 atm)

Example 12.4 Lift Force Acting on an Object in a
Flowing Fluid
Measurements of the flow of fluid around the object
shown in Figure 12.6 give the upper and lower flow veloc-
ities as 0.3m s−1 and 0.25m s−1, respectively. The bot-
tom surface is flat, with a width of 1 cm and length 10 cm.
Calculate the lift force acting on the object.

Solution 12.4 Ignoring any differences in fluid height,
from Equation (12.5):

ΔP = P1 − P2 = 1∕2𝜌(v22 − v21)
= 500(0.09 − 0.0625) = 13.75 N m−2

The lift (upward) force F acting on this object is A.ΔP ,
where A is the lower surface area of the object:

F = (10−2 × 10−1 m2) × 13.75 N m−2 = 0.014 N

12.4.4 Poiseuille’s Law (Flow Resistance)

Bernoulli’s principle assumes the fluid flow is not influ-
enced by viscous forces. In fact, for the case of smooth,
turbulence free, fluid flow the viscous shearing forces
shown in Figure 12.1 determines the fluid velocity profile
across a channel.There is no relativemotion of the fluid at
the surfaces of the channel walls (i.e., zero fluid slip) and
the flow velocity increases towards the centre line of the
channel.The consequence of this is that in order to pump
a viscous fluid along a channel a pressure difference ΔP
must be applied between its inlet and outlet, irrespective
of any changes of the channel diameter.This is equivalent
to the channel having the properties of flow resistance.
In the 1840s Poiseuille experimentally and then theoret-
ically derived the following relationship for fluid flow in
pipes of circular cross section:

ΔP = 8𝜂LQ
𝜋r4

(12.6)

where L is the length of the pipe, r its internal radius and
𝜂 is the dynamic viscosity of the fluid.
The flow resistance Rf of a channel is defined from the

relationship

Rf = ΔP∕Q (12.7)

where Q is the volumetric flow rate. From Equations
(12.6) and (12.7) the flow resistance of a channel of cir-
cular cross section is given as:

Rf =
8𝜂L
𝜋r4

(12.8)

In practice, fluidic channels of either a rectangular or
semicircular cross section are easier to fabricate than
those of circular cross section (e.g., by placing a flat plate
on top of a rectangular or rounded trench). The fluidic
resistance of a rectangular channel with a high aspect
ratio (i.e., width w ≫ height h) can be calculated using
the formula:

Rf =
12𝜂L
wh3

(12.9)
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For a channel of semicircular cross section defined by
a radius of curvature r:

Rf =
64𝜂L
3r4

(12.10)

Thus, for any specified channel geometry, the flow
resistance is directly proportional to the viscosity of
the fluid. The viscosity values for gases are considerably
smaller than those for liquids. For example, the viscos-
ity of air is 1.8 × 10−5 Pa.s (cf. 1 × 10−3 Pa.s for water).
Bernoulli’s approximation that fluid flow is not influ-
enced by viscous forcesmay thus be adequate for the flow
of gases, but should not be adopted when considering
the flow of liquids. The flow resistance of water is about
50 times greater than for the flow of a gas along the same
channel and this difference increases to a factor of ∼105
for the flow of a highly viscous fluid such as glycerine.

Example 12.5 Fluid FlowResistance of aDEPCham-
ber
A chamber of rectangular cross section, width 5mm,
height 200μm and length 2 cm contains a planar elec-
trode array on its floor for the purpose of trapping tar-
get cells by positive DEP. A pump is to be used to flow a
relatively dilute, aqueous, suspension of cells (∼105 cells
per ml) through this chamber at a volumetric flow rate of
5μl/s into a collection vessel open to atmospheric pres-
sure (100 kPa).

1. Calculate the fluid flow resistance of theDEP chamber.
2. What pressure must the pump produce to achieve the

desired flow rate?
3. What is the mean flow velocity of the cell suspension

through the DEP chamber?
4. Calculate the pressure required if the chamber height

is reduced to 25μm.

Solution 12.5

1. The DEP chamber has a relatively high aspect ratio
(width w ≫ height h) so that Equation (12.9) can be
used to estimate its fluid flow resistance. Assuming
that the viscosity of the aqueous cell suspension is
close to that of water (1× 10−3 Pa.s) the flow resistance
is:

Rf =
12𝜂L
wh3

= 12(1 × 10−3)(0.02)
(5 × 10−3)(200 × 10−6)3

= 6 × 109 Pa m−3s

2. The pressure drop ΔP across the DEP chamber for
Q = 5 μl s−1 (5 × 10−9 m3 s−1):

ΔP = QRf = (5 × 10−9 m3s−1)(6 × 109Pa m−3s)
= 30 Pa

Total pressure output required of pump = ΔP +
atmospheric pressure = 100.03 kPa.

3. The mean flow velocity v is given by v = Q/A:

v = Q
A

= 5 × 10−9
(5 × 10−3)(100 × 10−6)

= 10−2 m∕s

4. If theDEP chamber height is reduced (by one-quarter)
from 200 to 25μm, then from Equation (12.9):

Rf ∝ h−3. ∴ new value for
Rf = (6 × 109)∕(1∕4)3 = 3.84 × 1011Pa m−3 s

ΔP = QRf = (5 × 10−9 m3 s−1)
× (3.84× 1011 Pam−3 s)= 1.92 kPa

Total pressure output required of pump = ΔP + atmo-
spheric pressure = 101.92 kPa

12.4.5 Laminar Flow

Figure 12.1 depicts a fluid moving in laminas with suc-
cessively higher velocity. The flow velocity is zero in the
vicinity of a stationary wall and increases away from that
wall. The fluid flow is a function of the x-coordinate and
not of the y- and z-directions. This is termed as lami-
nar flow. The laminar flow in a channel of circular cross-
section is depicted in Figure 12.7 to take the form of
concentric, thin-walled, tubes of fluid whose velocities
increase from zero at the channel wall to a maximum
at the centre line of the channel. The flow is directed
along the channel’s axis and there are no pressure gradi-
ents across the channel diameter. A shear stress 𝜏 exists
between each tube and increases by d𝜏 for each tube.
A pressure drop between the ends of the fluid tube is
required to overcome the shear stress. It is normally
assumed for a channel of constant cross-section that the
pressure declines uniformly with distance down the fluid
stream. The pressure gradient ΔP/ΔL is thus assumed to
be constant.
Consider the elemental fluid tube shown in Figure 12.7,

of lengthΔL, at radius r and thickness dr. If 𝜏 is the shear

r

dr

R
PP + ΔP

ΔL

Figure . Laminar fluid flow in a cylindrical channel can be
depicted as a series of concentric ‘stream tubes’ of length ΔL
whose velocities increase towards the centre of the channel as a
function of the distance (R − r) from the channel wall.
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stress per unit area acting on the surface of this tube, the
shear force Fs is given by

Fs = 2𝜋rΔL𝜏

From Equation (12.3):

𝜏 = 𝜂dv∕dx = −𝜂dv∕dr(x = R − r)

to give

Fs = −2𝜋rΔL𝜂 dv∕dr

At equilibrium this shear force balances the force act-
ing on the ends of the fluid tube as a result of the pressure
difference ΔP, so that:

ΔP𝜋r2 = −2𝜋rΔL𝜂 dv∕dr

to give

dv = − ΔP
2𝜂ΔL

rdr

The velocity v of a fluid tube at any radius r is found by
integrating between the limits v = 0 (r = R) and u = u for
r = r:

∫

v

0
dv = − ΔP

2𝜂ΔL ∫

r

R
rdr

from which

v(r) = − ΔP
2𝜂ΔL

(r2 − R2) = ΔP
2𝜂ΔL

(R2 − r2) (12.11)

This equation describes a parabolic fluid velocity pro-
file across the channel, as shown in Figure 12.8, with zero
velocity at the channel walls and a maximum velocity
along the central axis (at r = 0). The maximum velocity
is given as

⌢v =
ΔpR2

4𝜂ΔL
The mean velocity <v> is the averaged velocity in the
cross section

⟨v⟩ = 1
𝜋R2

∫

R

0
v(r)2𝜋rdr =

ΔpR2

8𝜂ΔL

Figure . In laminar flow the fluid velocity is zero at the channel
wall and reaches a maximum value at the centre axis. The velocity
profile of the fluid layers takes the form of the parabola defined by
Equation (12.11).

which corresponds to half the maximum value. The vol-
umetric flow rate Q is given by the product of the mean
velocity and the cross-sectional area:

Q =
ΔpR2𝜋R2

8𝜂ΔL
=

𝜋R4Δp
8𝜂ΔL

which corresponds to the Poiseuille relationship of Equa-
tion (12.6).
We should note that the Poiseuille relationship is

derived assuming that the walls of the channel are per-
fectly smooth, so that the fluid flow has a unique axial
component and no transverse components. If the walls
are sufficiently rough to induce three-dimensional com-
ponents of fluid flow near the wall surfaces, the pressure
drop will tend to be greater than that predicted by Equa-
tion (12.6) and the fluid flow resistance will also be larger.

12.4.5.1 Reynolds Number: Laminar or Turbulent Flow?
All fluid flow, whether around an object, in channels or
in a river, can be broadly classified as either laminar or
turbulent. These two flow regimes behave markedly dif-
ferently, with significant implications for mass and heat
transport. Whether fluid flow is laminar or turbulent
depends on the relative importance of the inertial forces
(𝜌mv2/L) versus viscous forces (𝜂v/L2) in the flow (i.e.,
ratio of the momentum of the fluid and the friction force
imparted by the channel walls). This ratio is defined as
the Reynolds number (Re):

Re =
(𝜌mv2∕L)
(𝜂v∕L2)

=
𝜌mvL

𝜂
(12.12)

This dimensionless number was originally proposed by
Osborne Reynolds in 1883, where v is the bulk velocity
of the flow, 𝜌m is fluid mass density and 𝜂 is the fluid’s
dynamic viscosity. (An alternative version of Re expresses
it in the form vL/𝜐, where 𝜐 is the kinematic viscosity
(𝜐= 𝜂/𝜌m) with units of m2/s.) The characteristic length
L can be taken as the diameter or wetted perimeter of a
fluid channel, or the diameter of a spherical object in a
fluid stream, for example.
A low Reynolds-number flow is a laminar, or layered,

flow in which fluid streams flow parallel to each other
and mix only through advective and molecular diffusion.
Laminar flow is dominated by viscous forces and has
fluid velocity at all locations invariant with time when
boundary conditions are constant. There is advective
mass transport only in the direction of fluid flow. An
excellent example of laminar flow is shown in Figure 12.9
for a certain brand of tooth paste. Brands such as the one
shown have two or more components, typically varying
in both colour and composition.When such toothpaste is
squeezed out of its tube, the colours do not mix because
the paste’s high viscosity ensures a low Reynolds number
and thus laminar flow.



 Dielectrophoresis

Figure . Some brands of toothpaste contain two or more
components. The high viscosity of the past ensures that when it is
squeezed from its tube it exhibits laminar flow. Mixing of the
components takes place very slowly through molecular diffusion.

In contrast, a high Reynolds-number flow is a turbu-
lent flow in which inertial forces dominate and various
parts of the fluid exhibit motions that are simultane-
ously random in both space and time. Significant advec-
tive mass transport occurs in all directions. This is the
kind of flow we can see in rapidly flowing streams, or
when we vigorously stir cream into coffee, for example.
This difference in the behaviour of laminar and turbu-
lent flow is illustrated schematically in Figure 12.10. The
transition between laminar and turbulent flow typically
occurs above Re ≈ 2000, although some experiments
(e.g., [4]) suggest transition in gas flows inmicrochannels
may occur at Re as low as 400. From Equation (12.12) the
mean flow velocity is given by:

v = 𝜂Re
𝜌mL

The DEP fluidic device described in Example 12.5 has
a hydraulic diameter given by:

DH = 2wh
(w + h)

= 2(5 × 10−3)(2 × 10−4)
5.2 × 10−3

= 3.85 × 10−4 m

The transition from laminar flow to turbulent flow
in this DEP device (taking L = 385μm, 𝜂 = 10−3 Pa s,

Laminar
flow

Turbulent 
flow

Figure . Schematic representations of laminar flow (Re
<∼2000) and turbulent flow (Re >∼2000) along a channel.

𝜌m = 103 kg m−3) would therefore occur at a mean fluid
velocity of ∼5.2m/s. From a practical perspective this
is a difficult flow velocity to achieve in a typical DEP or
lab-on-chip fluidic system. For the device of Example
12.5, a pressure drop of 30 Pa was required to achieve a
flow velocity of 10−2 m/s. To achieve a flow of ∼5.2m/s
would require a pressure drop of ∼15 600 Pa. Apart from
the fact that DEP forces are not able to compete with
viscous drag forces for flow rates much above 10−2 m/s,
a typical DEP device, constructed using polymer or
glass parts, would develop fluid leaks or fall apart well
below sustaining such physical stress. In most situations
it is therefore safe to assume that laminar, rather than
turbulent, flow takes place in a DEP device. Laminar flow
is not established immediately after a fluid is injected
into a channel or chamber, but over a distance known
as the entry length [5]. This distance is of the order of
the characteristic length L, which can be taken as the
hydraulic diameter DH.
From experimental data laminar flow is identified by

a linear proportionality between the log of the pressure
drop in the channel and the volume flow rate, i.e., a
straight line on a log-log plot of pressure loss versus flow
rate. If the flow transitions to turbulence at higher flow
rates, the same linear proportionality no longer holds
and the slope of the line changes at that flow rate, as
depicted in Figure 12.11.Thebalance of the inertial forces
and viscous forces in electrolyte fluid flow can be dis-
turbed by applying an electric field across the channel. If
the inertial and electric forces are balanced and both are
larger than the viscous force, the convective time scale
can be much smaller than the related viscous diffusion
time and lead to chaotic flow [6]. Although the differ-
ence between turbulent flow and chaotic flow is not clear
cut [7], Wang et al. [8] have demonstrated that micro
electrokinetic turbulence, driven by electrokinetic forcing
rather than pressure driven channel macroflows, can be
induced inmicrochannels at lowReynolds numbers.This
is considered to have the potential to control flow and
particle mixing in lab-on-chip devices.

Log (pressure drop)

Laminar 
flow

Turbulent 
flow

Log 
(flow rate)

Figure . The transition to turbulent fluid flow from laminar
flow is identified as a deviation from linearity of a logarithmic plot
of the pressure drop in a channel and the corresponding
volumetric flow rate.
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Fluid flow with high Reynolds number is characterized
by thin boundary layers. This can be understood by con-
sidering what happens when a flat plate at rest receives
a step-function impulse of force, causing it to move in
its own plane at velocity v. A fluid boundary layer will
develop at the plate surface due to the non-slip of fluid
at this boundary. If L is the characteristic length scale,
then the characteristic time 𝜏c for transport of material
by convection down the resulting fluid flow is 𝜏c = L/v.
The boundary layer will widen at a rate proportional to
the fluid viscosity. The kinematic viscosity 𝜐 (𝜐 = 𝜂/𝜌) has
units of m2s−1 so that the characteristic time 𝜏c for a vis-
cosity controlled effect to be transmitted normal to the
fluid flow can be given as 𝜏visc = L2/𝜐. The ratio of vis-
cous to convective time scales is

𝜏visc
𝜏c

=
(L2∕𝜐)
(L∕v)

= 𝜌vL
𝜂

= Re

Thus the Reynolds number is a measure of the vis-
cous and convective time scales. A large Reynolds num-
ber means that viscous effects propagate slowly into the
fluid. This is the reason why boundary layers are thin in
high Reynolds number flows because the fluid is con-
vected along the flow direction at a much faster rate than
the spreading of the boundary layer, which is normal to
the flow direction.

12.4.6 Application of Kirchhoff’s Laws (Electrical
Analogue of Fluid Flow)

Equation (12.8) can be rearranged to give:

ΔP = Q Rf

This takes the same form asOhm’s Law, which relates the
current I generated along an electrical conductor of resis-
tanceRe as a result of the application of a voltage potential
difference ΔV between the two ends of the conductor:

ΔV = I Re
This implies that Kirchhoff’s rules, as applied to the

analysis of electrical networks, can be employed to anal-
yse fluid flow in channel networks. An example now fol-
lows.

Example 12.6 Applying Kirchhoff’s Laws to the Flu-
idics of a DEP Device
A proposed DEP device for capturing dead cells by posi-
tiveDEP is shown in Figure 12.12.The requirement is that
enriched viable cells flow at a volumetric rate J3 into a col-
lection vessel open to atmospheric pressure (100 kPa).

1. Derive an equation for calculating the fluid flow J3 in
terms of the channel fluidic resistances R1, R2 and R3
and the pressures applied by syringe pumps P1 and P2.

J2J1

J3

R3

R2R1

P1 P2

DEP 
chamber

Buffer

Cells

Figure . A suspension of cells is injected at a volumetric rate J1
into a DEP chamber, where it mixes with a buffer solution injected
at a rate J2. The cells and buffer are pressure driven (P1 and P2)
through channels of fluidic resistance R1 and R2, respectively. Fluid
flow J3 through the DEP chamber (fluidic resistance R3,) is
collected into a vessel open to atmospheric pressure.

2. Use this equation to calculate the fluid flow J3 that
would exit into a chamber at atmospheric pressure for
R1= R2 = 2 × 1011 Pa m−3 s; R3 = 2 × 1010 Pa m−3 s
andwhere pumps P1 and P2 exert pressures of 200 kPa
and 250 kPa, respectively.

Solution 12.6

1. We will apply Kirchhoff’s laws to the electrical ana-
logue of the fluidic T-network shown in Figure 12.13.
(a) Current Law (algebraic sum of currents at a junc-

tion is zero)

J3 = J1 + J2 (i)

(b) Voltage Law (Algebraic sum of voltage drops
around a closed circuit is zero)

ΔP1 = J1R1 + J3R3 (ΔP1 = P1 − Patm)

to give

J1 = (ΔP1 − R3J3)∕R1 (ii)

ΔP2 = J2R2 + J3R3 (ΔP2 = P2 − Patm)

to give

J2 = (ΔP2 − R3J3)∕R2 (iii)

J2J1

J3

R3

R2R1

P2P1

Patm

Figure . The electrical circuit analogue for the fluidic system
of the DEP device shown in Figure 12.12.



 Dielectrophoresis

Substitute J1 obtained from (ii) and J2 obtained
from (iii) into (i):

J3 = (ΔP1 − R3J3)∕R1 + (ΔP2 − R3J3)∕R2

Rearranging:

J3 = (ΔP1.R2 + ΔP2.R1)∕
(R1R2 + R2R3 + R1R3) (iv)

2. In equation (iv) we defineΔP1 = P1 − Patm andΔP2 =
P2 − Patm. Therefore

ΔP1 = 200 − 100 = 100 kPa;
ΔP2 = 250 − 100 = 150 kPa

Substituting the given values for R1, R2 andR3 into (iv):

J3 = (5 × 1016 Pa2 m−3 s)∕(4.8 × 1022 Pa2 m−6 s2)
= 1.04 × 10−6 m3 s−1 = 10.4 μl∕s

This example demonstrates how Kirchhoff’s laws,
which are used to analyse current flows in electrical cir-
cuits, can also be used to control and design for liquid
flow in DEP devices.

. Navier–Stokes Equations

TheNavier–Stokes equations are widely used to describe
the behaviour of fluids in terms of continuous functions
of space and time. They encapsulate the three conserva-
tion laws ofmass, energy andmomentum and are consid-
ered in terms of flux rather than changes of their instan-
taneous values. Inmathematical terms this is represented
as partial derivatives of the dependent variables.
The calculation of fluid velocities and pressures at the

macroscopic scale is based on the assumption that the
fluid can be treated as a continuum. Apart from fluid
velocity v and pressure P, for the most general situation
that includes compressible and incompressible fluids we
also require knowledge of the mass density 𝜌m, viscosity
𝜂, specific heat Cp and temperature T of the fluid. Pres-
sure and temperature characterize the energy state and
number of molecules present in a given volume of fluid.
If the pressure and temperature do not vary too greatly
within this volume element, analytical functions can be
derived that relate the density, viscosity and specific heat
to the pressure and temperature. In a three-dimensional
system we are therefore left with five unknowns, namely
P, T, vx, vy and vz. These five unknowns are related by a
system of equations that describe:
� the conservation of mass;
� the conservation of momentum;
� the conservation of energy.

The equations describing these three conservation laws
are often referred to as the Navier–Stokes equations, but

x
y

mu y

xy
y

v
v m

m
)(

mv y

yx
x

u
u m

m
)(

x
y

Figure . Relationships describing the conservation of fluid
mass for flow through a two-dimensional element ΔxΔy.

it is more correct to reserve this description to the equa-
tions that describe conservation of momentum. Conser-
vation of energy usually concerns heat flow in fluid sys-
tems in which a temperature gradient is created by an
energy source or sink, associated with chemical reac-
tions or heating and cooling devices. For most microflu-
idic flows in DEP devices the temperature is constant, in
which case the conservation of energy equation is redun-
dant. We will thus focus on the derivations of the con-
servation of mass and conservation of momentum equa-
tions.

12.5.1 Conservation of Mass Equation

In Chapter 3, Equation (3.57) describes the condition for
the conservation of electrical charge, also known as the
continuity equation of electrical current flow. In simple
terms this states that the sum of all the sources of charge
minus the sinks of charge within a defined region gives
the net charge flow (current) out or into that region.This
is coupled to the fact that charge can neither be instan-
taneously created nor destroyed. This fact also applies to
mass. In terms of a linear, one-dimensional fluid flow, the
corresponding conservation or continuity of mass equa-
tion is:

d𝜌m
dt

+ 𝜌m∇ ⋅ u = 0 (12.13)

The rate of change of mass density along a flow path
is equal to 𝜌mu, where u is the fluid velocity. A two-
dimensional element (Δx, Δy) is shown in Figure 12.14,
with fluid velocities u and v in the x- and y-directions,
respectively. In due course this is generalized to the three-
dimensional case.
For the system of fluid flow shown in Figure 12.14 the

conservation of mass is given by:

𝜕(𝜌mΔxΔy)
𝜕t

= 𝜌muΔy + 𝜌mvΔx

−
[
𝜌mu +

𝜕(𝜌mu)Δx
𝜕x

]
Δy

−
[
𝜌mv +

𝜕(𝜌mv)Δy
𝜕y

]
Δx
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Dividing by ΔxΔy we obtain
𝜕𝜌m
𝜕t

+
𝜕(𝜌mu)

𝜕x
+

𝜕(𝜌mv)
𝜕y

= 0

which can be written as
𝜕𝜌m
𝜕t

+
u𝜕𝜌m

𝜕x
+

𝜕𝜌m
𝜕y

+ 𝜌m

[
𝜕u
𝜕x

+ 𝜕v
𝜕y

]
= 0

(12.14)

Defining the operator D/Dt in three-dimensional Carte-
sian coordinates as

D
Dt

= 𝜕

𝜕t
+ u 𝜕

𝜕x
+ v 𝜕

𝜕y
+ w 𝜕

𝜕z
we canwrite Equation (12.14) in the vector form of Equa-
tion (12.13):

D𝜌m
Dt

+ 𝜌m∇ ⋅ V = 0 (12.15)

where V is the velocity vector (u, v, w). We are dealing
with an incompressible liquid, so terms such as 𝜕𝜌m/𝜕t,
𝜕𝜌m/𝜕x and D𝜌/Dt are zero, with density 𝜌m remaining
constant. Equations (12.14) and (12.15) thus reduce, for
the three-dimensional case, to

𝜕u
𝜕x

+ 𝜕v
𝜕y

+ 𝜕w
𝜕z

= 0 (12.16a)

and

∇.V⃗ = 0 (12.16b)

12.5.2 Conservation of Momentum Equation
(Navier–Stokes Equation)

The change of momentum in a fluid element is given by
the balance between the inlet and outlet fluidmomentum
and the tangential and normal stresses acting on that ele-
ment. These are considered separately in Figures 12.15
and 12.16 for the two-dimensional case.
For Newtonian fluids the tangential stress 𝜏 and nor-

mal stress 𝜎 are given as

𝜏xy = 𝜂

(
𝜕v
𝜕x

+ 𝜕u
𝜕y

)
(12.17a)
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Figure . Inlet and outlet fluid momentum in the x-direction
for a fluid element ΔxΔy.
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Figure . The normal and tangential stresses acting on the
fluid element shown in Figure 12.15.

and

𝜎x = P − 2𝜂 𝜕u
𝜕x

(
𝜕u
𝜕x

+ 𝜕v
𝜕y

)
(12.17b)

Summing the forces shown in Figure 12.16 in the x-
direction and using the mass conservation Equations
(12.16) we obtain

𝜌m
Du
Dt

= −
𝜕𝜎x
𝜕x

+
𝜕𝜏xy

𝜕y
+ Fx

Combining this result with Equation (12.17) gives the
Navier–Stokes equation:

𝜌m

(
𝜕u
𝜕t

+ u𝜕u
𝜕x

+ v𝜕u
𝜕y

+ w𝜕u
𝜕z

)

= −𝜕P
𝜕x

+ 𝜂

(
𝜕2u
𝜕x2

+ 𝜕2u
𝜕y2

+ 𝜕2u
𝜕z2

)
+ Fx

(12.18a)

Extending this to three-dimensions

𝜌m

(
𝜕v
𝜕t

+ u𝜕v
𝜕x

+ v𝜕v
𝜕y

+ w𝜕v
𝜕z

)
= −𝜕P

𝜕y
+ 𝜂

(
𝜕2v
𝜕x2

+ 𝜕2v
𝜕y2

+ 𝜕2v
𝜕z2

)
+ Fy

(12.18b)

𝜌m

(
𝜕w
𝜕t

+ u𝜕w
𝜕x

+ v𝜕w
𝜕y

+ w𝜕w
𝜕z

)
= −𝜕P

𝜕z
+ 𝜂

(
𝜕2w
𝜕x2

+ 𝜕2w
𝜕y2

+ 𝜕2w
𝜕z2

)
+ Fz

(12.18c)

and in vector form:

𝜌m
DV
Dt

= −∇P + 𝜂∇2V + F (12.18d)

where V is the velocity vector (u, v, w) and F is the force
per unit volume acting on the element (Δx, Δy, Δz). If
the fluid is an electrolyte containing ionic solutes and an
external electric field is applied to the fluid element, an
electrical force contributes to the total force F [5, 6]. The
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electrical force (F = qE) acting on each ionic particle in
the electrolyte is transferred to the solvent liquid through
collisions at the molecular level. The free ions individu-
ally transfer theirmomentum to the liquid.This gives rise
to fluid motion induced by electro-osmosis, as described
in section 12.8.

12.5.3 Conservation of Energy Equation

To derive this equation we identify either a source or sink
of heat SH and specify the specific heat Cp and heat con-
ductivity 𝜅 of the liquid. The specific heat is defined as
the amount of heat Q per unit mass required to raise the
temperature of a substance by one degree Celsius:

Q = Cp mΔT

The thermal conductivity of a substance is defined in
terms of the quantity of heat Q conducted per unit time
Δt down a unit temperature gradient ΔT in a direction
normal to a surface of unit area ΔA:

k = QΔT∕(ΔtΔA) = −Q∕(𝜕T𝜕n)

The heat conduction must arise only from the tem-
perature gradient and not from a secondary heat source
or chemical reaction, for example. The specific heat of
water is 4.186 J g−1K−1 and its thermal conductivity is
∼0.6 W m−1K−1.
In three-dimensional Cartesian coordinates the con-

servation of energy equation is:

𝜌mCp

(
𝜕T
𝜕t

+ u𝜕T
𝜕x

+ v𝜕T
𝜕y

+ w𝜕T
𝜕z

)
= 𝜕

𝜕x

(
𝜅

𝜕T
𝜕x

)
+ 𝜕

𝜕y

(
𝜅

𝜕T
𝜕y

)
+ 𝜕

𝜕z

(
𝜅

𝜕T
𝜕z

)
+ SH

. Diffusion

From section 12.3 we learn that a molecule in thermal
equilibrium with a surrounding fluid of absolute temper-
ature T has an average kinetic energy of 3kT/2, with an
average velocity (3kT/m)1/2 associatedwithmotion along
each of the three axes in a three-dimensional volume.
Diffusion is the random migration of molecules or small
particles frommultiple collisions arising from the kinetic
motion of neighbouring molecules. A schematic of this
process is shown in Figure 12.17, where a cluster of gas
molecules is shown occupying the corner of an otherwise
empty container. As a simplification we may assume that
the time 𝜏 and average mean free path length between
collisions remains constant.The rate of randomizing col-
lisions is thus 1/𝜏 . After a sufficiently large number n of
such collisions themolecules are evenly distributed in the
container (after time n𝜏).

t = t(0) t = t(0) +n

Figure . Through a process called diffusion, randomizing
collisions at a rate of 1/𝜏 per second result in the cluster of
molecules shown at time t = 0 being evenly distributed in a
container after n such collisions.

From their independent analyses of Brownian motion
(the buffeting ofmacroscopic particles through collisions
with fluidmolecules) Einstein and Smoluchowski derived
the following expression for the diffusion coefficient D

D =
L2mfp

2𝜏
(12.19)

where Lmfp is the mean free path length given in Equa-
tion (12.2). An excellent discussion of the origins and
validity of this so-called Einstein–Smoluchowski equa-
tion is given by Isla [9]. For nitrogen gas at room tem-
perature and atmospheric pressure we can estimate that
Lmfp = 14.4 × 10−10 m and 𝜏 = 3.1 × 10−10 s. From Equa-
tion (12.19) this provides an estimate for D of 3.3 ×
10−9 m2s−1. Einstein also demonstrated that for macro-
scopic particles exhibiting Brownian motion in a fluid,
the particle’s diffusion coefficient is given as:

D = kT
6𝜋𝜂a

(12.20)

where a is the particle’s effective hydrodynamic radius
and 𝜂 is the fluid viscosity. This is called the Stokes–
Einstein equation, whose origin and validity has also been
discussed by Isla [9]. For particles suspended inwater, the
effective hydrodynamic radius is defined as the radius of
a rigid uncharged sphere, which exhibits the same hydro-
dynamic behaviour as the solvated molecule in solution.
This should therefore include water of hydration, which
is too firmly bound to the particle’s surface to partici-
pate in the viscous shearing process as it moves through
the aqueous medium. Equation (12.20) was derived on
the assumption that the solute molecule is large com-
pared to the solvent. Nevertheless the equation has been
experimentally confirmed for suspended particles with
radii as small as 5 nm and for large colloidal particles with
suspension volume fractions up to 3%. It can also pro-
vide good approximations for the diffusion of molecular
species in water. Thus sucrose (a ≈ 0.5 nm) can be esti-
mated to have a diffusion coefficient in water (𝜂 = 1 ×
10−3 Pa) at 298K of ∼3.9 × 10−10 m2s−1, which can be
favourably compared to the value of 5.2 × 10−10 m2s−1
cited in Table 12.2. Approximate values of diffusion
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Table . Diffusion coefficients for various molecules and
ions in water at 298 K.

Molecule D (− m s−)

Water 2.26
Sucrose 0.52
Methanol (CH3OH) 1.6
Glycine 1.06
NaCl 1.7
H+ 9.3
OH− 5.3
Na+ 1.33
K+ 1.96
Cl− 2.03

coefficients for some biologically relevant particles are
given in Table 12.3.
Adescription of particle diffusion can bemade in terms

of a one-dimensional random walk, often described in
terms of the ‘drunken sailor’ problem outlined in Figures
12.18 and 12.19. At each new step forward, the drunken
sailor is equally likely to stagger one step to the left as he
is to the right. We can use this analogy to describe the
resulting random direction that a molecule follows after
colliding with another molecule.
After a number of random steps the spatial distribution

of particles along a one-dimensional axis takes the form
of a probability distribution described by the factorials
of the binomial coefficients. Applying Stirling’s approx-
imation for these factorials, then for a sufficiently large
number of thermal collisions we can represent the prob-
ability distribution as a Gaussian or normal distribution.
In one-dimension the probability P(x)dx of finding a par-
ticle between x and x + dx at time t is given by Isla [9]
as:

P(x)dx = 1
(4𝜋Dt)1∕2

e−x2∕4Dtdx

Table . Diffusion coefficients for various macromolecules
and particles in water at 293 K, derived using the
Stokes–Einstein relation given by Equation (12.20).

Macromolecule D (m s−)

Ribonuclease 1.2 × 10−10

Lysozyme 1.0 × 10−10

Serum albumin 5.9 × 10−11

Haemoglobin 6.9 × 10−11

Urease 3.5 × 10−11

Collagen 6.9 × 10−12

Viruses, bacteria, cells 10−13 ∼ 10−16

The mean displacement ⟨x2⟩of the particle is thus given
by

⟨x2⟩ = ∫

∞
0 x2dP
∫

∞
0 dP

= 2Dt

An alternative way to derive this relationship is to
employ Equation (12.19) as follows:

⟨x2⟩ = nL2mfp = t
𝜏
L2mfp = 2Dt

to give

⟨x⟩ = √
2Dt (12.21)

We can consider ⟨x⟩ as the mean diffusion length for a
molecule interacting through collisions with neighbour-
ing molecules. Values for this diffusion length are given
in Table 12.4 for times of 1ms and 10 s. We can see that
small sugar molecules like glucose will diffuse a distance
of around 1μm after 1ms and 0.1mm after 10 s. These
can be significant distances in microfluidic systems. For
particles of the size of bacteria, however, the correspond-
ing diffusion lengths are much less at 20 nm and 2μm,
respectively.
Diffusion of molecules and particles tends to occur

down their concentration gradient – also referred to as
diffusion gradients (see Figure 12.20).

0 -4l -3l -2l -l +2l +3l+l +4l +5l-5l

1

1

1

1 1

1

1

2

1

3 3

4 6 4

Figure . The probability distribution for a
one-dimensional random (drunken sailor) walk is given by
the factorials of the binomial coefficients as given by
Pascal’s triangle. The three-dimensional case is given by
Pascal’s pyramid.
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Figure . The probability distribution for a
one-dimensional random walk after time t = 4𝜏 . After a
period of 4𝜏 the probability of the sailor standing straight
ahead of his original location is 6/16 = 0.375.

This diffusion process can be described by Fick’s First
Equation of Diffusion:

Jx = −D𝜕C
𝜕x

which states that the net flux Jx (moles m−2s−1) of
diffusing molecules or particles is proportional to the
concentration gradient and diffusion constant of the
molecule/particle (the negative sign indicates that the
molecules diffuse down the concentration gradient).
Unless the concentration gradient is artificially main-
tained (e.g., with a continuous source and sink of the
molecules or particles) the factor 𝜕C/𝜕x will change as
a function of time. This leads to Fick’s Second Equation:

𝜕C
𝜕t

= D𝜕2C
dx2

This equation can be used (with the appropriate
boundary conditions) to determine how a nonuniform
distribution of molecules or particles will redistribute
itself as a function of time. Diffusion along a microflu-
idic channel is effectively a one-dimensional problem. In
this case the solutions of Fick’s Second Equation are:

𝜕C
𝜕x

=
C0

(4𝜋Dt)1∕2
e−x2∕4Dt and 𝜕C

𝜕t
= − x

2t
𝜕C
𝜕x

12.6.1 The Peclet Number: Transport by Advection or
Diffusion?

The constant motion of molecules in fluids ensures that,
when one fluid is placed adjacent to a second fluid, its
molecules proceed to enter into the bulk of that second
fluid by a process called diffusion. When we employ the
continuum concept, instead of calculating each individ-
ual motion, we calculate the average motion of a statis-
tically significant number of molecules. It then becomes
convenient to separate the actual diffusion process into
two conceptual transport mechanisms: a molecular pro-
cess modelled as a statistical random walk, which is pro-
portional to the degree of kinetic energy in the system;
and an advective process in which molecules are carried
along by the average velocity of the flow. The common
practice is to restrict the word diffusion to describe the
first process and label the second process advection (con-
vection if heat is being transferred). The relative impor-
tance of these two conceptual transport mechanisms is
given by the Peclet Number, the ratio of advection and
diffusion:

Pe = vL∕D

in which v is the fluid velocity, D is the diffusion coeffi-
cient of the solute in the solvent and L is the characteristic

Table . Approximate diffusion coefficients for some biologically relevant particles in water at 293 K. Values for the mean
diffusion distance (diffusion layer thickness), defined by Equation (12.21), are given for time intervals of 1 ms and 10 s.

Diffusion layer thickness (m)
Diffusion coefficient

Particle ms− − s  s

Small ions 2 × 10−9 2 × 10−6 2 × 10−4

Sugar molecules 5 × 10−10 1 × 10−6 1 × 10−4

Small proteins (e.g., lysozyme) 1 × 10−10 4.5 × 10−7 4.5 × 10−5

50-base pair DNA 2.5 × 10−11 2.2 × 10−7 2.2 × 10−5

Large proteins (e.g., collagen) 7 × 10−12 1.2 × 10−7 1.2 × 10−5

Virus 4 × 10−12 9 × 10−8 9 × 10−6

5000-base pair DNA 1 × 10−12 4.5 × 10−8 4.5 × 10−6

Bacteria 2 × 10−13 2 × 10−8 2 × 10−6
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Diffusion gradient

Concentration gradient ∂C/∂x 

Figure . Molecules tend to diffuse down a concentration
gradient – also termed as a diffusion gradient.

dimension of the fluid channel. When L is so small that
the Peclet number is less than 1000, molecular diffusion
becomes an important mechanism for mixing. Stirring
may be appropriate for mixing in a macroscale device,
but a diffusion-based approach should be used in a low
Pe device.
The isodielectric cell separator described in Chapter 10

(section 10.4.6) must operate in an advection-dominated
transport regime to ensure that the conductivity gradi-
ent is preserved along the length of the fluidic channel.
The two length scales of relevance are the channel width
(w) from which the time scale for diffusion is obtained
(∼w2/D) and the channel length (l ), which enters through
the advective time constant (∼l/v). The transport in the
device is best governed in terms of a modified Peclet
number (w2v/Dl), which defines for a given separation a
critical Pe value below which cell separation is no longer
possible. For example, if the cells in the sample exhibit
effective conductivities varying in value by a factor of 5,
it was concluded that the Pe number must be maintained
above ∼18 to accommodate this range.

. Ionic (Electrical) Double Layer

The distribution of ions around a charged particle is
determined by the balance between electrostatic forces
and thermal agitation. A quantitative description of the
distribution of ions in thermal equilibrium in an electro-
static field can be obtained by combining Poisson’s equa-
tion (Equation 3.30) with the Boltzmann distribution.
Poisson’s equation generalizes the electrostatic Coulomb
potential V(r) to a volume distribution of charge density
𝜌(r):

∇2V (r) = − 𝜌(r)
𝜀o𝜀m

(12.22)

Equation (12.22) reduces to the Coulomb potential
described by Equation (4.23) when 𝜌(r) is a point charge
in a uniform dielectric medium. For an arbitrary collec-
tion of ions of number densities (m−3) ci and valences zi
the charge distribution is given by

𝜌(r) = q
∑

i
zici(r)

where q is the charge on an electron. The earliest model,
known as the Helmholtz model, describes the distribu-
tion of ions at the interface between a charged surface and
an electrolyte as a parallel-plate capacitor. One plate of
this capacitor contains the charge on the electrified sur-
face and the other plate (known as the Helmholtz plane)
contains the ions, of opposite charge polarity to that on
the surface, electrostatically attracted to it from the elec-
trolyte. The thickness of this electrical double layer is
taken to be the diameter of the ions attracted to the
charged surface. If we define 𝜎 to be the surface charge
density, it is balanced by an equivalent amount of ionic
charge of opposite polarity in the solution. This balance
can be expressed by the relationship

𝜎 = −

∞

∫

0

𝜌(r)dr (12.23)

In the Helmholtz model the counter ionic charge den-
sity 𝜌(r) takes the form of a layer of charges at the charged
surface. An obvious oversimplification of the Helmholtz
model is that thermal motions of the ions in the elec-
trolyte are ignored.These thermalmotions will cause 𝜌(r)
to form a diffused distribution rather than a layer.
The concentration ci of ions in thermodynamic equilib-

rium with the electrolyte solution, as a function of their
distance r from a charged surface, is related to the elec-
trostatic potential 𝜙(r) using the Boltzmann distribution
as follows:

ci(r) = ci∞ exp
(−qziV (r)

kT

)
(12.24)

The parameter ci∞ is the concentration of ions in the
bulk solution, far enough away from the charged object
that the value of V(r) is zero. If the electrolyte is an
aqueous sodium chloride solution, for example, this cor-
responds to equal concentrations [Na+] and [Cl−] of
the sodium and chloride ions. As we move from the
bulk solution towards a negatively charged surface, for
example, we would find that [Na+] increases and [Cl−]
decreases. Substituting Equation (12.24) into Equation
(3.22) gives

𝜌(r) = q
∑

i
zici∞ exp

(
−qziV (r)

kT

)
(12.25)

Using this result to eliminate 𝜌(r) from Equation
(12.21) we obtain the Poisson–Boltzmann equation:

∇2V (r) = −
q

𝜀o𝜀r

∑
i
zici∞ exp

(
−qziV (r)

kT

)
(12.26)

This equation describes the electrical potential V(r)
at the interface between a charged object and an elec-
trolyte solution, taking into account the screening of this
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potential by counterions. For example, it can, in princi-
ple, describe the spatial composition of the ionic ‘atmo-
sphere’ around an ion or a charged particle. For such situ-
ations, where r is the only relevant coordinate, the appro-
priate form of the vector operator ∇2 involves spherical
coordinates. However, Equation (12.26) cannot be solved
analytically using spherical coordinates. Depending on
the geometry of the system and the boundary conditions,
solving Equation (12.26) may require the use of approx-
imations. One such approximation is to assume that the
electrostatic interactions of the ions in the solution are
weak ones, so that qziV(r)/kT ≪ 1. This allows the linear
form (ex = 1+ x+ x2/2!+ . . .) of the exponential function
to be used in Equation (12.26) to give:

∇2V (r) = −
q

𝜀o𝜀r

∑
i
zici∞

(
1 −

qziV (r)
kT

)
(12.27)

A further simplification can be made by noting that for
a sufficiently large distance r the electrical potential V(r)
is zero and dV(r)/dr is also zero.This corresponds to elec-
trical neutrality of the solution, so that

q
∑

i
zici∞ = 0

Adopting this boundary condition as r tends to infinity,
Equation (12.27) can then be written as:

∇2V (r) =
q2

𝜀o𝜀mkT
∑

i
z2i ci∞V (r) (12.28)

Equation (12.28) is referred to as the linear form of the
Poisson–Boltzmann equation and can be written as

∇2V (r) = 𝜅2V (r) (12.29)

12.7.1 The Debye Screening Length

If the variable V(r) in Equation (12.29) is transformed to
a variable with units of 1/𝜅, this equation will contain no
parameters.This means that 1/𝜅 must represent a funda-
mental unit when considering electrostatic interactions
in ionic solutions. From Equations (12.28) and (12.29)

𝜅2 =
q2

𝜀o𝜀mkT
∑

i
z2i ci∞

From this we can determine that 1/𝜅 has units of
length. It is an important parameter known as the Debye
length. We can interpret its significance by stating that,
for distances r shorter than the Debye length, the elec-
trostatic interactions will be strong, but for much larger
distances the interactions will be weak because of ionic

screening.The factor 1/𝜅 can thus be taken to be the ionic
screening distance. Its value is given by

1∕𝜅 =

√
𝜀o𝜀mkT

2q2INA103
(12.30)

In this equation NA is the Avogadro constant (6.022 ×
1023 mol−1) and we have converted the ionic density c
(m−3) to the ionic strength I (mol l−1) of the solution by
assuming a simple monovalent salt (zi = 1) such as NaCl,
so that∑

i
zi2ci∞ = 2INA103

For an aqueous 10mM solution of NaCl at 298K we
can calculate 1/𝜅 to be 3.07 nm (assuming 𝜀r = 80).
From Equation (12.30) we note that the Debye length is
inversely proportional to the square root of the solution’s
ionic strength, so that for a 1M solution it decreases to
0.31 nm.Wewould expect the ionic screening to increase
as the number of ions per unit volume increases. The
ionic strength also increases as zi2, so that solutions con-
taining multivalent salts (e.g., CaCl2) will be more effec-
tive at screening electrostatic interactions.

12.7.2 The Gouy–Chapman Equation

If we wish to consider the case of a charged membrane
surface, or to approximate the curved surface of a parti-
cle as a planar surface, the only important dimension is
the distance normal to the surface, which we will take to
be the x-direction. In one dimension Equation (12.22) is
written as

d2V (x)
dx2

= − 𝜌(x)
𝜀o𝜀m

(12.31)

so that Equation (12.26) takes the form:

d2V (x)
dx2

= −
q

𝜀o𝜀r

∑
i
zici∞ exp

(
−qziV (x)

kT

)
(12.32)

This form of the Poisson–Boltzmann equation can be
solved analytically without converting it to the linear
form. For a monovalent salt solution such as NaCl (i.e.,
z = ±1) of number density c and noting that, as the dis-
tance x tends to infinity, d𝜙/dx tends to zero, integration
of Equation (12.32) gives:

dV (x)
dx

=

√
2kTc
𝜀o𝜀r

⋅ (exp(−qV (x)∕2kT)

− exp(qV (x)∕2kT)) (12.33)
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Using the relationship between the surface charge den-
sity 𝜎 and the counter charge density 𝜌(r) given by Equa-
tion (12.23), then from Equation (12.31):

𝜎 = 𝜀o𝜀m

∞

∫

0

d2V (x)
dx2

dx = −𝜀o𝜀m
dV (0)
dx

(12.34)

This equation relates the electric field (i.e., the gradi-
ent of the electric potential) at the surface to the surface
charge density, where we can define V(0) to be the sur-
face potential. Substituting Equation (12.33) into Equa-
tion (12.34) we obtain the important Gouy–Chapman
equation [10]:

𝜎 = −
√
2𝜀o𝜀mkTc ⋅ [exp(−qV (0)∕2kT)

− exp(qV (0)∕2kT] (12.35)

Adopting the linear approximation for the exponential
terms and inserting theDebye screening length 1/𝜅 intro-
duced for Equation (12.30), the Gouy–Chapman equa-
tion reduces to the simple form:

𝜎 = 𝜀o𝜀m𝜅V (0) (12.36)

Equation (12.36) describes a proportionality between
the surface charge 𝜎 and the surface potential V(0)
analogous to the relationship q = VC between charge
and applied voltage for a capacitance C. From Equation
(12.36) the term 𝜀o𝜀r𝜅 can be considered to be an effec-
tive capacitance per unit area, with the Debye length
1/𝜅 representing the distance between the two charge-
carrying plates. This further supports the concept of the
charge distribution of ions at the interface between a
charged surface and an electrolyte taking the form of an
electrical double layer.
By integrating Equation (12.33) and adopting the

assumption that qzi𝜙(r)/kT ≪ 1, together with the linear
form of the exponential, we obtain the relationship:

V (x) = V (0) exp(−xk) (12.37)

Equation (12.37) indicates that the electrostatic poten-
tial falls exponentially with distance into the electrolyte,
reaching a value of 0.37V(0) at a distance equal to the
Debye screening length 1/𝜅.

12.7.3 Stern’s Modification of the Gouy–Chapman
Equation

Theassumptions used in deriving Equation (12.35) donot
hold for high surface charge densities and high poten-
tial gradients (fields). The predicted concentrations of
ions attracted to the charged surface can be unrealisti-
cally high, sometimes above the saturation level for a salt.
Multivalent salt ions can also be attracted so strongly to
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Figure . The Gouy–Chapman–Stern treatment of the ionic
(electrical) double layer at a charged surface. (a) Cations are shown
strongly bound in the Stern layer at a negatively charged surface.
Other cations form a diffuse layer within a distance corresponding
to the Debye screening length 1/𝜅. (b) The electrostatic potential
V(r) falls linearly within the Stern layer before following an
exponential fall to zero in the bulk fluid. Beyond the Debye length
the charged surface is effectively screened from the bulk
electrolyte. The zeta potential 𝜁 is shown located at the
hydrodynamic plane of shear.

the surface as to bind to it. Otto Stern introduced two
modifications to the Gouy–Chapman theory, described
in detail in the book by Aveyard and Haydon [11]. The
first modification simply takes account of the fact that
an ion cannot get closer to the charged surface than its
own radius and the second modification is to allow for
specific binding of ions to the charged surface in what
is called the Stern layer. Within a distance of the Debye
length other ions form a diffuse layer and the electro-
static potential falls exponentially as described by Equa-
tion (12.37), with the potential V(0) being replaced with
the valueV(a) at the interface of the Stern and diffuse lay-
ers. These two ion distributions and the corresponding
profile of the electrostatic potential are shown in Figure
12.21. Bedzyk et al. [12] determined the ion distribution
in an electrolyte solution in contact with a charged poly-
merized phospholipid membrane using x-ray standing
waves and found it to qualitatively agree with the Gouy–
Chapman–Stern model.
The ions shown in Figure 12.21 appear as bare charges,

but in fact they interact and attract neighbouring water
molecules. This interaction involves the torques induced
on the water molecules by the electrostatic interactions
of their dipole moments with the electric fields around
the ions. This restricts rotational motions of the water
molecules and creates a ‘hydration shell’ of oriented
watermolecules around an ion, as schematically depicted
in Figure 12.22. This hydration shell is not a solid struc-
ture, but does increase the effective diameter of an ion
and reduces ion-ion electrostatic interactions. It also
contributes to some extent to the effective width of the
Stern layer and more so to the effective width of the dif-
fuse ionic layer.
The charge densities 𝜎St and 𝜎Dl in the Stern layer

and the diffuse layer add up to the total charge 𝜎 on
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+

Figure . Electrostatic interactions between a solvated ion
result in the attraction and alignment of the dipole moments of
surrounding water molecules along the ion’s field lines. This
restricts the rotational motion of the water molecules and creates
a so-called hydration shell.

the surface and together these charged layers act as two
capacitors in series.The total capacitance C is given by:

C =
CStCDl

CSt + CDl
(12.38)

The contribution to the total capacitance of the Stern
layer tends to be unaffected by changes in the ionic
strength of the solution. At low ionic strengths the Debye
screening length 1/𝜅 is relatively large so that the effec-
tive capacitance 𝜀o𝜀r𝜅 of the diffuse layer is low and the
total capacitance C given by Equation (12.38) tends to be
dominated by the diffuse layer. At high ionic strengths
the Debye length is small, CDl is large and now the total
capacitance tends to be dominated by CSt.

12.7.4 Hydrodynamic Plane of Shear and the Zeta
Potential

As described in the discussion of electrophoretic mobil-
ity in Chapter 2, the effective charge interacting with the
external electric field is less than the intrinsic surface
charge of the particle. A proportion of the counterions
and their hydration shells remain attached to the particle,
with the region close to surface of the Stern layer forming
the hydrodynamic plane of shear (the slip plane) with the
surrounding bulk fluid. As given by Equation (2.8) in Box
2.3, the electrophoretic mobility is defined as:

𝜇e =
𝜀o𝜀m𝜍

𝜂

where 𝜂 is the dynamic viscosity of the bulk fluid and 𝜁

is the zeta potential.This potential is less than the poten-
tial V(o) at the surface of the particle and its approximate
location is shown in Figure 12.21.

. Electro-osmosis

Chapter 10 describes how fluid flow in insulator-based
DEP devices is driven by electro-osmosis. This effect is
the bulk motion of an aqueous electrolyte fluid next to a
charged surface as a result of applying an electric field. If
the field is applied along the axis of the channel, a volume
coulombic force (𝜌.E) is exerted on the fluid.This scheme
is shown in Figure 12.23. The net charge density 𝜌 in the
fluid is significantly different from zero only in a thin
annular region, within the Debye length region close to
the channel wall, as shown in Figure 12.21. In the bulk
fluid away from the channel walls the anions balance
the cations in number, so that 𝜌 = 0. Therefore, only
the counterions in the fluid close to the wall experience
a coulombic accelerating force and induce fluid move-
ment, in a direction that depends on the field direction
and polarity of the counterions. Due to the radial veloc-
ity gradient that is formed, the adjacent fluid annuli is
accelerated by themomentum transfer caused by viscous
forces until the velocity gradient approaches zero across
the whole radius of the capillary. A charged fluid layer
effectively ‘drags’ the adjacent fluid layer along, until
finally the entire channel moves at a uniform velocity.
The ‘stationary surface /moving-plate’ scheme outlined
in Figure 12.2 has in effect been created. Numerical sim-
ulations by Dose and Guiochon [13] demonstrated that
this process develops on a time scale between 100μs and
1ms. After that time, the whole fluid inside the channel
moves at a constant velocity, with the resulting flow pro-
file across the capillary being of a rectangular ‘plug’ shape
as shown in Figure 12.23 [14]. This uniform velocity
profile occurs if the channel’s characteristic length (e.g.,
diameter) is at least seven times that of the electric dou-
ble layer thickness (Debye length) and if other sources of
fluid acceleration such as convection due to Joule heating
are absent. For a 10mM solution of NaCl, for example,
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(a) Figure . (a) An external electric field Ez is
shown applied tangentially to the charged
surface of a fluidic channel with its electrical
double layer. (b) The resulting electroosmotic
flow velocity profile across the channel.
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this represents a minimum diameter of ∼22 nm and is
therefore not a practical limitation for the effectiveness
of electroosmotic flow in insulator-based DEP devices.
The pluglike velocity profile of electroosmotic induced
fluid flow is very different from that of pressure-driven
flow, which has the parabolic profile shown in Figure
12.8. As a special characteristic of electroosmotic
pumped systems, fluid zones can be transported without
significant hydrodynamic dispersion.This is of particular
relevance in capillary electrophoresis and other aspects
of microfluidic devices.
The Navier–Stokes Equation (12.18d) can be used to

derive the relationship between the electroosmotic veloc-
ity veo and the applied electric field:

𝜌m
DV
Dt

= −∇P + 𝜂∇2V + F

where V is the velocity vector and F is the coulombic
force (𝜌Ez) per unit volume acting on a fluid element.
We are dealing with a microfluidic channel, so that (as
for laminar flow) the fluid flow is dominated by viscous
effects and not inertial ones.We also donot have pressure
driven flow.The inertial and pressure gradient terms can
therefore be ignored, so that the Navier–Stokes equation
reduces to the form:

𝜂∇2V = −F (12.39)

With the aid of Equation (12.31) the coulombic force is
given by:

F = 𝜌(x)Ez = −𝜀o𝜀m
d2V (x)
dx2

Ez (12.40)

where Ez is the applied uniform field acting along the
channel and V(x) is the potential across the double layer,
normal to the charged surface. The potential does not
vary along the y- and z-axes. The electro-osmotic fluid
flow shown in Figure 12.23(b) is also essentially one-
dimensional, along the z-axis. Taking these considera-
tions into account, from Equations (12.39) and (12.40),
the Navier–Stokes equation takes the form:

𝜂
d2veo
dx2

= 𝜀o𝜀m
d2V (x)
dx2

Ez

The channel width will greatly exceed the width of the
fluid channel. We will also make the approximation that
the slip plane and hence zeta potential 𝜁 , is located at
the channel surface. Integrating this equation twice, from
x= 0 at the slip plane to x=∞ in the bulk fluid, we obtain
the relationship:

vz = −
𝜀o𝜀m𝜍Ez

𝜂

[
1 − V (x)

𝜍

]
The reference value for the potential, V(x) = 0, occurs

in the bulk fluid at x = ∞. Therefore in the bulk fluid

(as x tends to ∞) we obtain the following expression for
the electroosmotic velocity:

veo = −
𝜀o𝜀m𝜍Ez

𝜂
(12.41)

We can define the electroosmotic mobility 𝜇eo as:

𝜇eo =
veo
Ez

= −
𝜀o𝜀m𝜍

𝜂
(12.42)

This is the same expression as that obtained in Box 2.3
for electrophoreticmobility (not a surprising result, since
we have used the same concepts and mathematical pro-
cedure). The velocity vp of a charged particle located in a
channel in which the fluid is driven by electro-osmosis
will be determined by a combination of its own elec-
trophoretic mobility 𝜇ep and the electroosmotic mobility
𝜇eo. The apparent electrokinetic mobility 𝜇ek of the par-
ticle will be vp/E, so that:

𝜇ek = 𝜇ep + 𝜇eo

If the particle carries the same polarity of charge as the
counterions in the electrical double layer of the channel
wall, the particle will exhibit a mobility that is greater
than its true electrophoretic mobility. The opposite will
result if the particle carries the same polarity of charge
as the co-ions. The charge densities (hence zeta poten-
tial) of the channel wall and the particle will be controlled
by the ionization of surface groups, which can be altered
by changing the pH of the fluid in the channel (e.g., see
Example 2.1).
For electro-osmosis to occur, immobilized electric

charges must be present on the inner surface of a chan-
nel wall in contact with the fluid.This surface charge can
arise from ionizable groups that form part of the wall’s
chemical structure, or from the adsorption of charged
species present in the fluid. Away to ensure that the walls
are charged is to fabricate them from glass or fused sil-
ica, where deprotonation of Si-OH silanol groups occurs
above pH 3 to form negatively charged silanoate (Si-O−)
groups. This surface charge induces the formation of an
electric double layer by attracting cations from the bulk
(electrolyte) fluid, as shown in Figures 12.21 and 12.23.
Microfluidic devices made from glass tend to have a well
characterized surface charge that varies predictably as
a function of fluid pH and composition. Under physio-
logical conditions, glass and silica have a negative zeta
potential. With reduction of the local pH, the silanol
groups on the glass surface become protonated and the
zeta potential falls in magnitude. Many different surface
modification techniques have been developed for glass,
which allow the user to change the surface charge or
to alter its biocompatibility (e.g., cell adhesion or non-
fouling coatings). However, with an increasing use of
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Table . Adjustable parameters that can be used to influence electro-osmosis in a fluidic channel, as well as the
value of the electroosmotic mobility (𝜇eo).

Parameter Effect Comments

Electric field 𝜇eo changes proportionately Joule heating may result if too high. Efficiency and
resolution may decrease if lowered too much

Solution pH 𝜇eo decreased at low pH and
increased at high pH

Simple and practical.
May change charge or structure of a solute such
as a protein

Ionic strength of
solution

If increased, the zeta potential
and 𝜇eo decrease

High ionic strength can generate high current and
Joule heating

Temperature Changes fluid viscosity
(2–3% per ◦C)

Can be controlled automatically

Surfactant Adsorbs to channel wall via
hydrophobic and/or ionic
interactions

Anionic surfactants can increase 𝜇eo, whilst
cationic ones can decrease or reverse 𝜇eo

Organic modifier Usually decreases 𝜇eo by changing
zeta potential and viscosity

Often requires experimentation to determine
complex changes. Can significantly alter
selectivity

Covalent coating Bonding of chemicals to channel
wall.

Can alter hydrophilicity and surface charge of wall
May not be stable

Neutral hydrophilic
polymer

Adsorbs to channel wall via
hydrophobic interactions

Decreases 𝜇eo by shielding surface charge and
increasing viscous drag

polymeric components (silicone, Mylar, Teflon) electro-
osmotic behaviour is less predictable. Biological fluids, in
particular, can lead to problems such as protein adsorp-
tion on polymeric surfaces.
Some of the advantages and disadvantages of employ-

ing electro-osmosis to drive fluid flow in microchannels
and DEP devices can be summarized as follows:
Advantages:

� Uniform flow profile.This results in uniform retention
times for all particles in a given section of a fluidic sys-
tem, which can greatly simplify calculations and anal-
ysis. Because fluids move as a bolus, the leading and
trailing edges of materials are minimized.This reduces
the time and material required to change solutions in
a device.

� No moving-part pumps are required.
� A simple fluidic interface. The interface between the
source of pumping (electrodes) can be as simple as
two wires placed into holes at the end of the channel
or chamber. Unlike pressure-driven flow, a leak-tight
interface between the source of the hydraulic force and
the fluid being driven is not required.

Disadvantages:

� Strong dependence on the electrochemical properties
of channel wall and fluid. If a device is expected to pro-
cess a variety of fluids or a fluid of unknown pH and

ionic strength, the electroosmotic mobility value will
be unpredictable.

� Often requires high voltages (typically in the kV range).
This requires isolation of the electrodes from the sam-
ple fluid to avoid the products of electrolysis (bub-
bles, acid or base production) fromentering the sample
fluid, whilst at the same time retaining electrical con-
nectivity.

� Heat produced by the electric field may have to be dis-
sipated.

A summary of the various ways to control electroos-
motic induced fluid flow in microfluidic devices is given
in Table 12.5.
Finally, the electroosmotic effect described so far

here is a DC phenomenon. A reversal of the applied
field reverses the direction of induced fluid flow in the
channel. Application of an AC field should result in no
net fluid flow along the channel. However, localized fluid
motion can be generated when AC voltage signals are
applied to microelectrode structures, such as the inter-
digitated design shown in Figure 10.27. Consider the
situation shown in Figure 12.24, where negative counte-
rions occupy the Stern layer and diffuse layer above the
positively charged electrode and positive counterions
are located above the negatively charged electrode. The
tangential component ET of the field E between the
electrodes exerts a coulombic force on these counteri-
ons, causing them and the fluid to flow along the paths
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Figure . Electroosmotic fluid flow above a pair of
interdigitated planar electrodes. The tangential component ET of
the field E between the electrodes exerts a coulombic force on the
counterions, causing them and the fluid to flow along the paths
indicated.

shown in Figure 12.24. This situation has been analysed
experimentally and analytically by González et al. [15]
to show that this electro-osmotically induced fluid flow
has a strong dependency on the frequency of the applied
voltage signal. The time-averaged fluid flow is small
at low frequencies and above around 1 kHz, typically
peaking at ∼100Hz [15]. This effect, coupled with elec-
trode polarization effects, limits the ability to perform
electrode-based DEP experiments below ∼1 kHz.

. Summary

In the design and performance analysis of a DEP device,
consideration should be made of the nature of fluid flow
through itsmicrochannels and chambers.The term ‘fluid’
includes both liquids and gases. The fluid used in most
bio-DEP devices is a liquid, usually an aqueous elec-
trolyte. The characteristic length of its flow field, which
for a channel of circular cross-section is its diameter, is
normally greater than 1 μm. This greatly simplifies our
task, because the Knudson number is very low (< 0.001)
and we can use the continuum model when dealing with
the fluid. Its physical properties, such as density, pressure,
viscosity and velocity can be defined as continuous func-
tions of time and space. The maximum value of the flow
field’s characteristic length is also usually below 1mm.
Unless the fluidic system can sustain a very high internal
pressure, the volumetric flow velocity will be well below
that required to achieve turbulent (chaotic) flow. We can
usually assume that we have conditions of laminar flow
in a DEP device, characterized by a low Reynolds num-
ber (Re). In such flow we can assume that there is no
fluid slip at the wall of channel. The fluid velocity pro-
file across a channel will be of the parabolic form shown
in Figure 12.8. The transition from laminar to turbulent

flow for water occurs at Re ≈ 2000. So that the DEP force
acting on a particle can compete with viscous fluid fric-
tion, the fluid velocity should not be too high. This leads
to a Reynolds number below 10 – well into the laminar
flow regime.
The continuummodel also allows the behaviour of the

fluid in a DEP device to be treated using the three conser-
vation laws ofmass, energy andmomentum, where prop-
erties such as density, pressure, viscosity andflowvelocity
can be considered in terms of flux rather than changes of
their instantaneous values. In mathematical terms this is
represented as partial derivatives of the dependent vari-
ables. The most important of these is the Navier–Stokes
equation, describing the conservation of fluid momen-
tum, given by Equation (12.18d). This equation was used
to derive the expressions for the electroosmotic velocity
and mobility given by Equations (12.41) and (12.42). The
velocity profile for electro-osmosis driven fluid flow in a
channel is shown in Figure 12.23. This profile takes the
formof a rectangular ‘plug’, rather than the parabolic pro-
file for pressure driven laminar flow.
To understand electrode polarization and electro-

osmosis requires an appreciation of the origin and prop-
erties of ionic (electrical) double layers. An electrical
double layer is formed by the electrostatic attraction of
counterions to a charged surface. Some of these counteri-
ons are strongly bound to the surface in what is called the
Stern layer, whilst the others form a diffuse layer, which
merges into the electrically neutral bulk electrolyte. This
in effect resembles the two charged plates of a very thin
capacitor. An important parameter defining the width of
the electrical double layer is the Debye screening length,
which defines the distance away from the charged sur-
face where the potential decays to 1/e of its value at the
charged surface. For distances beyond the Debye length
the ions in the bulk fluid are effectively screened from
the strong field produced by the charges on the chan-
nel surface. From Equation (12.30) this screening dis-
tance can be calculated as 3.1 nm for the case of an
aqueous 10mM solution of NaCl at 298K. This distance
varies as the inverse of the square root of the solution’s
ionic strength, so that for a 1M solution it decreases to
0.31 nm.
Electrode-based DEP devices are susceptible to elec-

trode polarization effects at frequencies below ∼1 kHz.
At low frequencies, localized fluid motion can also be
generated near electrode surfaces by what we can term
as AC electro-osmosis, the basics of which are shown
in Figure 12.24. This situation offers niche applications
for insulator-based DEP devices, especially for frequen-
cies below ∼1 kHz where electrode-based DEP devices
are compromised by effects associated with the forma-
tion of electrical double layers at the electrodes.



 Dielectrophoresis

. References

 Travis, K. P., Todd, B. D. and Evans, D. J. (1997)
Departure from Navier–Stokes hydrodynamics in
confined liquids. Phys. Rev. E 55, 4288–4295.

 Pfahler, J., Harley, J. and Bau, B. (1989) Liquid transport
in micron and submicron channels. Sensor. Actuator.
22, 431–434.

 Mala Gh. M. and Li, D. (1999) Flow characteristics of
water in microtubes. Int. J. Heat Fluid Flow 20,
142–148.

 Wu, P. and Little, W. A. (1983) Measurement of friction
factors for the flow of gases in very fine channels used
for micro-miniature Joule–Thompson refrigerators.
Cryogenics 23, 272–277.

 Tritton, D. J. (1977) Physical Fluid Dynamics, Van
Nostrand Reinhold, New York, NY, p. 12.

 Baygents, J. C. and Baldessari, F. (1998)
Electrohydrodynamic instability in a thin fluid layer
with an electrical conductivity gradient. Phys. Fluid. 10,
301–311.

 Ottino, J. M. (1990) Mixing, chaotic advection and
turbulence. Ann. Rev. Fluid Mechanics 22, 207–253.

 Wang, G. R., Yang, F. and Zhao, W. (2014) There can be
turbulence in microfluidics at low Reynolds number.
Lab Chip 14, 1452–1458.

 Isla, M. A. (2004) Einstein–Smoluchowski diffusion
equation: a discussion. Physica Scripta 70, 120–
125.

 Grahame, D. C. (1947) The electrical double layer and
the theory of electrocapillarity. Chem. Rev. 41, 441–
501.

 Aveyard, R. and Haydon, D. A. (1973) An Introduction
to the Principles of Surface Chemistry, Cambridge
University Press, Cambridge, p. 231.

 Bedzyk, M. J., Bommarito, G. M., Caffrey, M. and
Penner, T. L. (1990) Diffuse-double layer at a
membrane-aqueous interface measured with X-ray
standing waves. Science 248 (4951), 52–56.

 Dose, E. V. and Guiochon, G. (1993) Timescales of
transient processes in capillary electrophoresis. J.
Chromatog. A 652(1), 263–275.

 Rice, C. L. and Whitehead, R. (1993) Electrokinetic
flow in a narrow cylindrical capillary. J. Phys. Chem.
69(11), 4017–4024.

 González, A., Ramos, A., Green, N. G. et al. (2000)
Fluid flow induced by non-uniform fields in electrolytes
on microelectrodes. II. A linear double-layer analysis.
Phys. Rev. E. 61(4), 4019–4028.





Appendices

Appendix A: Values of Fundamental
Physical Constants

Quantity Symbol Value

Elementary charge e 1.60217(6) × 10−19 C
Electric constant 𝜀o 8.85418(8) × 10−12 F m−1

Magnetic constant 𝜇o 4𝜋 × 10−7 N A−2

Speed of light in vacuum c 2.99792(4) × 108 m s−1

Planck constant h 6.62606(9) × 10−34 J s
Rest mass of electron me 9.10938(2) × 10−31 kg
Rest mass of proton mp 1.67262(2) × 10−27 kg
Boltzmann constant k 1.60217(6) × 10−23 J K−1

Avogadro constant NA 6.02214(2) × 1023 mol−1

Faraday constant F 9.64853(4) × 104 C mol−1

Molar gas constant R 8.31447(2) J K−1 mol−1

Appendix B: SI Prefixes

Prefix Symbol Factor Prefix Symbol Factor

yotta Y 1024 deci d 10−1

zetta Z 1021 centi c 10−2

exa E 1018 milli m 10−3

peta P 1015 micro 𝜇 10−6

tera T 1012 nano n 10−9

giga G 109 pico p 10−12

mega M 106 femto f 10−15

kilo k 103 atto a 10−18

hecto h 102 zepto z 10−21

deca da 101 yacto y 10−24

Appendix C: The Base Quantities in the SI
System of Units

Quantity SI name SI symbol

Length (L) metre m
Time (t) second s
Mass (M) kilogram kg
Temperature (T) kelvin K
Electric current (I) ampere A
Amount of substance mole mol
Luminous intensity candela cd

Appendix D: Derived Physical Quantities,
their Defining Equation or Law and
Dimensions

Quantity

Defining
equation/

law Dimension
Dimension
(SI units) Name

Area
Volume
Velocity
Acceleration
Mass Density
Concentration
Force
Stress/Pressure
Dynamic
Viscosity

Work/Energy
Surface Tension
Power
Frequency
Charge
Electromotive

Force
(Voltage)

Capacitance
Resistance
Conductance

A = ∫ dxdy
V = ∫ dxdydz
v = dx/dt
a = d2x/dt2
𝜌 =M/V
mole/V
F =Ma
p = F/A
𝜂 = p/(dv/dy)

W = ∫ Fdx
T =W/A
P = dW/dt
f = 1/t
Q = ∫ I dt
E = P/I

Q/E
E/I
I/E

L2
L3
Lt−1
Lt−2
ML−3
mol L−3
MLt−2
ML−1 t−2
ML−1 t−1

ML2 t−2
Mt−2
ML2 t−3
t−1
It
ML2 t−3 I−1

M−1L−2t4 I2
ML2t−3 I−2
M−1L−2t3 I2

m2

m3

ms−1
ms−2
kg m−3

mol m−3

kg m s−2
kg m−1 s−2 (Nm−2)
kg m−1 s−1

kg m2 s−2 (N m)
kg s−2 (N m−1)
kg m2 s−3 (J s−1)
s−1
A s
kg m2 s−3 A−1

kg−1 m−2 s4 A2

kg m2 s−3 A−2

kg−1 m−2 s3 A2

newton (N)
pascal (Pa)
poiseuille

joule (J)

watt (W)
hertz (Hz)
coulomb (C)
volt (V)

farad (F)
ohm (Ω)
siemens (S)
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© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
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Appendix E: Diffusion Coefficients for
Molecules and Ions in Water at  K

Molecule D (− m s−)

Water 2.26
Sucrose 0.52
Methanol (CH3OH) 1.6
Glycine 1.06
NaCl 1.7
H+ 9.3
OH− 5.3
Na+ 1.33
K+ 1.96
Cl− 2.03

Appendix F: Diffusion Coefficients for
Bio-Particles in Water at  K

Macromolecule D (m s−)

Ribonuclease 1.2 × 10−10

Lysozyme 1.0 × 10−10

Serum albumin 5.9 × 10−11

Haemoglobin 6.9 × 10−11

Urease 3.5 × 10−11

Collagen 6.9 × 10−12

Viruses, bacteria, cells 10−13 ∼ 10−16

Source: Derived using the Stokes–Einstein relation: D =
kT/(6𝜋𝜂a) where ‘a’ is the hydrodynamic radius of a spher-
ical particle.

Appendix G: Viscosity and Surface Tension
Values for Liquids at  K

Liquid 𝜼 (Pa s) Ts (N m−1)

Water 1.002 × 10−3 7.275 × 10−2

Blood (37 ◦C) 3 ∼ 4 × 10−3 5.5 × 10−2

Ethanol 1.074 × 10−3 2.21 × 10−2

Methanol 5.94 × 10−4 2.27 × 10−2

Mercury 1.55 × 10−3 47.2 × 10−2

Benzene 6.04 × 10−4 2.89 × 10−2

Chloroform 6.96 × 10−4 2.75 × 10−2

Glycerol (100%) 1.41 6.4 × 10−2

Appendix H: Activity Coefficients for
Common Compounds that Dissociate into
Ions in Solution

Substance . M . M . M . M  M

KCl 0.901 0.816 0.768 0.649 0.604
NaCl 0.903 0.822 0.779 0.681 0.657
MgCl2 0.734 0.590 0.535 0.485 0.577
CaCl2 0.727 0.577 0.528 0.444 0.495
HCl 0.905 0.832 0.797 0.759 0.811
H2SO4 0.542 0.325 0.251 0.146 0.125

Source:Derived from theCRCHandbook of Chemistry andPhysics, 87th
edn. CRC Press, Boca Raton, FL, 2006–2007.

Appendix I: Electrical Mobility of Ions at
 ◦C in Dilute Aqueous Solution

Cation
Mobility

(− m/V.s) Anion
Mobility

(− m/V.s)

H+, H3O+ 36.2 OH− 20.6
K+ 7.6 Cl− 7.9
Na+ 5.2 F− 5.7

Source: Atkins, P. W. and De Paula, J. (2002) Physical Chemistry, 7th
edn. W. H. Freeman, Ch. 27.)

Appendix J: Buffering Systems and their pH
Buffering Range

Useful buffering

Buffering system range (pH)

Hydrochloric acid and potassium chloride 1.0–2.2
Hydrochloric acid and glycine 2.2–3.6
Citric acid and sodium citrate 3.0–6.2
Acetic acid and sodium acetate 3.7–5.6
Sodium hydroxide and potassium
dihydrogen phosphate

5.8–8.0

Sodium tetraborate and hydrochloric acid 8.1–9.2
Sodium hydroxide and glycine 8.6–10.6
Sodium hydroxide and sodium
bicarbonate

9.6–11.0

Sodium hydroxide and sodium hydrogen
phosphate

11.0–11.9

Sodium hydroxide and potassium chloride 12.0–13.0
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Appendix K: Composition of  μL of Human
Blood

(Equivalent to a volume of∼1/40th of a droplet of blood.)

Red blood cells 5 ∼ 6 million
(Erythrocytes)
White blood cells ∼7000
(Leukocytes)
Comprising: 4400 granulocytes

400 monocytes
2200 lymphocytes
Comprising: 1500 T-cells

400 NK-cells
300 B-cells

Platelets ∼250 000

Appendix L: Blood Cells, Platelets and
Some Pathogenic Bioparticles

L.1 Blood Fractionation

When a sample of whole blood is centrifuged, the cells
sediment to the bottom of the tube to leave ∼55% of the
sample at the top in the form of a slightly alkaline (pH
7.4) and pale yellow fluid, known as the blood plasma
fraction. This comprises 90% water and 10% solid matter
(nine parts organic and one part mineral). The organics
include amino acids, glucose, hormones, lipids, proteins
and vitamins. The minerals take the form of ions such as
Na+, K+, Ca2+, Mg2+ and Cl−.
About 55% of the sample appears as a deep red fluid

at the bottom half of the tube and contains the erythro-
cytes (red blood cells). A thin band of pale fluid, com-
prising less than 1% of the sample, appears above the ery-
throcyte fraction and below the plasma.This is known as
the buffy coat and consists of the leukocytes (white blood
cells) mixed with platelets.

L.1.1 Erythrocytes
These cells are rich in haemoglobin (∼250 million per
cell), which is a protein able to bind oxygen and thus
responsible for providing oxygen to tissues. Where there
is a high concentration of oxygen in the body, such as
in the alveoli of the lungs, each haemoglobin molecule
binds four oxygen molecules to form oxyhaemoglobin.
When an erythrocyte reaches tissue with low oxygen
concentration the haemoglobin releases these oxygens.
Erythrocytes are also partly responsible for recovering
carbon dioxide produced as waste, but most CO2 is

carried by plasma in the form of soluble carbonates.
The mean lifetime of erythrocytes is about 120 days,
at which time they are retained by the spleen and then
phagocyted (eaten) by macrophages.
In man and in all mammals, erythrocytes are devoid of

a nucleus and have the shape of a biconcave lens, which
allows more room for haemoglobin and raises the cell
surface and cytoplasmic volume ratio.These characteris-
tics maximize the efficiency of oxygen diffusion by these
cells. In fishes, amphibians, reptilians and birds, erythro-
cytes do have a nucleus.

L.1.2 Leukocytes
These cells are responsible for the defence of the organ-
ism, and are of two types, namely granulocytes and lym-
phoid cells.The ratio of white to red blood cells in normal
human blood is ∼ 1 : 700.
Granulocytes contain granules in their cytoplasm,

which have different properties including a different
affinity towards neutral, acid or basic stains. Granulo-
cytes can thus be distinguished as neutrophils, eosinophil
(or acidophils) and basophils;

� Neutrophils: act to phagocyte bacteria and are present
in large numbers in the pus of wounds.They are unable
to renew the lysosomes used in digesting the bacteria
and die after having phagocyted a few of them.

� Eosinophils: attack parasites and phagocyte antigen-
antibody complexes.

� Basophils: possess a phagocytory capability, but also
secrete anticoagulant and vasodilatory substances
such as histamines and serotonin.

Lymphoid cells consist of two types, namely lympho-
cytes and monocytes:

� Lymphocytes are cells, which besides being present in
blood populate the lymphoid tissues and organs (e.g.,
thymus, bone marrow, spleen). They are slightly larger
than erythrocytes, and have a nucleus that occupies
nearly all of the internal cellular volume. They are also
the main constituents of the immune system, which is
the defence against the attack of pathogenic microor-
ganisms such as viruses, bacteria, fungi and protista
(e.g., unicellular organisms). Lymphocytes produce
antibodies, which appear on their outer plasma mem-
brane. An antibody is a molecule able to ‘recognize’
and bind itself to molecules called antigens. As for all
proteins, these antibodies are coded by genes. Based
on a recombination mechanism of some of these
genes, every lymphocyte produces antibodies of a
specific molecular shape. The number of lymphocytes
circulating in the blood is so large that they are able to
recognize practically all the chemicals existing in the
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organism, both its own natural and foreign ones. They
recognize hundreds of millions of different molecules!
The cells of the immune system, chiefly lympho-

cytes, cooperate amongst themselves to activate, boost
or make more precise the immune response. To attain
this scope, there exist different types of lymphocytes,
with different functions, namely B and T lymphocytes.
When the B cells are activated, they quickly multiply
and secrete hosts of antibodies, which on meeting
microorganisms with complementary shape (epitopes)
bind to them and form complexes to immobilize the
microorganisms. Other cells, which are not specific
but able to recognize antibodies, phagocyte these
complexes. In their turn, the T cells are divided into
three categories: Tc (cytotoxic) cells kill infected cells
directly by inducing them to undergo apoptosis (pro-
grammed cell death); Th (helpers) assist in activating
B cells to make antibody responses; Ts (suppressors)
suppress the activity of other T cells and are crucial
for self-tolerance. The immune system also produces
memory cells, which are deactivated lymphocytes
ready to be reactivated on further encounters with the
same antigen.
Another population of lymphocytes in the periph-

eral blood and lymphoid organs does not have
receptors for antigens.These lymphocytes have a non-
specific defence function that is not activated by Th
lymphocytes. These cells represent the more ancient
component of the immune system and they are charac-
terized by their cytotoxic activity. They are called Nat-
ural Killer (NK) cells. Apart from killing viruses, bac-
teria, infected and neoplastic (abnormal) cells, these
lymphocytes also regulate the production of other
haematic cells such as erythrocytes and granulocytes.

� Monocytes are the precursors of macrophages. They
are larger blood cells, which after attaining maturity
in the bone marrow, enter the blood circulation where
they stay for 24–36 hours. Then they migrate into the
connective tissue, where they become macrophages
and move within the tissues. In the presence of an
inflammation site, monocytes quickly migrate from
blood vessels and start an intense phagocytory activity.
Macrophages also cooperate in the immune defence by
exposing molecules of digested bodies on their mem-
brane, presenting them to more specialized cells such
as B and T lymphocytes.

L.1.3 Platelets (Thrombocytes)
The main function of platelets is to prevent the loss of
blood in injured tissues, by aggregating and releasing
chemicals to promote blood coagulation. Released sub-
stances include serotonin, which reduces the diameter of
damaged blood vessels, and fibrin to trap cells and form

a clot.They have a diameter of 2∼3microns and in mam-
malian blood are not considered to be real cells. They do
not have a nucleus and are derived from the cytoplasm of
cells (megakaryocytes) in the bone marrow. In birds and
amphibians, platelets circulate in the blood as mononu-
clear cells.

L.2 Bacteria

Bacteria are prokaryotic cells and are about one-tenth
the size of eukaryotic cells, typically 0.5∼5.0μm in
length. They display a wide range of morphologies. Most
are either spherical (cocci), rod-shaped (bacilli) or spiral
shaped (spirilla). Many bacterial species exist simply
as single cells, but others associate in characteristic
patterns. For example, Streptococcus form chains and
Staphylococcus group together into clusters. Only a small
number of bacterial species cause disease in humans.
Some of those that do so can only replicate inside the
body and are called obligate pathogens. Other bacteria,
called facultative pathogens, replicate in environments
such as water or soil and only cause disease on encoun-
tering a susceptible host. Opportunistic pathogens are
bacteria that are normally harmless but have a latent
ability to cause disease in an injured or immunocom-
promised host. Basic details of their structure, division
into Gram-positive and Gram-negative types, and
pathogenecity are given in Chapter 9, section 9.6.
Bacteria are often grown in solid media, such as agar

plates, to isolate and identify pure cultures of a bac-
terial strain. However, liquid growth media are used
when measurement of growth or large volumes of cells
are required. Growth in stirred liquid media occurs as
an even cell suspension, making the cultures easy to
divide and transfer, although isolating single bacteria
from liquid media is difficult. The use of selective media
(media with specific nutrients or antibiotics added) can
help identify specific organisms. Bacterial growth follows
three phases. When bacteria first enter a high-nutrient
environment that allows growth, the cells need to adapt
to their new environment. The first phase of growth is
the lag phase, a period of slow growth when the cells are
adapting to the high-nutrient environment and preparing
for fast growth.The lag phase has high biosynthesis rates,
as proteins necessary for rapid growth are produced.The
second phase of growth is the logarithmic phase, marked
by rapid exponential growth.The rate at which cells grow
during this phase is known as the growth rate, and the
time it takes the cells to double is known as the dou-
bling time or generation time. During log phase, nutri-
ents are metabolised at maximum speed until one of the
nutrients is depleted and starts limiting growth.The final
phases are the stationary phase, followed by the death
phase, caused by depleted nutrients. The cells reduce
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their metabolic activity, consume nonessential cellular
proteins, and then die.
A practical way to monitor bacterial growth and to

determine the doubling time is to periodically measure
the optical absorbance A of a sample of a bacterial sus-
pension.The size of a typical bacterium is such that it will
scatter light of wavelengths around 450∼600 nm. During
the log phase of growth the number of bacteria n with
time t, commencing with an initial number n0, can be
written as:

n(t) = n0 exp(kt) = n02t∕T

where k is the growth constant and T is the time it takes
for the number of bacteria to double. During the log
growth phase, a plot of log2(A) against time should be a
straight line, the slope of which gives the time for the cul-
ture to double in number density.The doubling times for
bacteria such as M. luteus and E. coli are often given in
texts as 30 and 20 minutes, respectively. However, these
values are valid only for optimum conditions of tempera-
ture, nutrient concentration and cell density andwhen no
growth suppressing substances are present. Many bacte-
ria produce such substances if their cell density becomes
too high. Examples of other typical doubling times are 2
hours and 24 hours, exhibited by B. subtilis andM. tuber-
culosis, respectively.

L.3 Fungal and Protozoal Cells

Fungi include both unicellular yeast cells, such as Sac-
charomyces cerevisiae, and filamentous, multicellular
moulds, such as those found on mouldy fruit or bread.
Most pathogenic fungi exhibit dimorphism, which is the
ability to grow in either yeast or mould form. The yeast-
to-mould ormould-to-yeast transition is frequently asso-
ciated with infection. For example, some fungi grow as a
mould at low temperatures in soil but then change to a
harmful yeast form when inhaled into the lungs.
Protozoan parasites exist as single cells and frequently

require more than one host in a complex life cycle.
The most common protozoal disease is malaria, trans-
mitted to humans by the bite of the female of any of
60 species of Anopheles mosquito. The most intensively
studied of the malaria-causing parasites, Plasmodium
falciparum, exists in eight distinct forms, and requires
both human andmosquito hosts to complete its life cycle.
Because fungi and protozoan parasites are eukaryotes,
their pathogenic varieties are difficult to kill with drugs
without harming the host. The tendency of fungal and
parasitic infecting organisms to switch among several
different forms during their life cycles also makes them
more difficult to treat. A drug that is effective at killing
one form is often ineffective at killing another form,

which therefore survives the treatment. As a result, anti-
fungal and antiparasitic drugs are often less effective and
more toxic than antibiotics.

L.4 Viruses

Viruses are not cells. They are bioparticles that can vary
from simple helical or icosahedral shapes, to more com-
plex structures. They can reproduce only inside a host
cell. They are about 1/100th the size of bacteria, with
diameters ranging from around 10 to 300 nm.Unlike cells
and bacteria which can be viewed using a conventional
lightmicroscope, most viruses can therefore only be seen
using scanning and transmission electron microscopes.
A complete virus particle, known as a virion, consists
of nucleic acid (DNA or RNA) surrounded by a protec-
tive coat of protein called a capsid, made from proteins
encoded by the viral genome. The capsid shape serves as
the basis for morphological distinction (helical, icosahe-
dral, envelope, complex).
Some species of virus surround themselves with a

modified form of one of the host cell membranes, either
the outer membrane of the infected host cell, or inter-
nal membranes such as nuclear membrane or endoplas-
mic reticulum.The virus thus gains an outer lipid bilayer,
known as a viral envelope. This membrane is studded
with proteins coded for by the viral genome and host
genome; the lipid membrane itself and any carbohy-
drates present originate entirely from the host cell. The
influenza virus and HIV use this strategy. Most mem-
brane enveloped viruses are dependent on the envelope
for their infectivity. The complex viruses possess a cap-
sid that is neither purely helical, nor purely icosahedral,
and may possess extra structures such as protein tails or
a complex outer wall. For example, the T4 bacteriophage
has a complex structure consisting of an icosahedral head
bound to a helical tail with protruding protein tail fibres.
This tail structure acts like a molecular syringe, attaching
to the bacterial host and then injecting the viral genome
into the cell.

L.5 Prions

Prions are infectious agents in the form of misfolded
proteins that replicate and propagate in the host cell.
They cause various neurodegenerative diseases in mam-
mals, a well known example being bovine spongiform
encephalopathy (BSE), otherwise known as mad cow dis-
ease.This fatal disease (Creutzfeld–Jacob disease) can be
transmitted to humans who eat infected beef, and can
also be transmitted from human to human via blood
transfusions. The brain tissue develops holes and takes
on a spongelike appearance. The DNA code for making
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prion protein is in a gene that all mammals possess and
is mainly active in nerve cells.
The prion has the identical amino acid sequence to

the normal form of the protein. The only difference
between them is in their folded three-dimensional struc-
ture. The misfolded protein can cause a normal folded
form to unfold and to aggregate with other prions to
produce regular helical structures called amyloid fibres.
The prion is thus able to cause the normal protein form
to adopt its misfolded prion conformation, causing it to
become infectious.This is equivalent to prions being able
to replicate themselves in the host cell. If an amyloid
fibre is broken into smaller pieces, each piece can initi-
ate the prion polymerization process in a new cell. The
prion can therefore propagate as well as replicate. Fur-
thermore, if consumed by another host organism, the

newly formed misfolded prions may transmit the infec-
tion to that organism. How polypeptide chains explore
their conformation-energy space and fall into a global
free energy minimum state corresponding to their cor-
rect three-dimensional folded form is poorly understood.
The linear order of the peptides is reliably given by the
pertinent gene’s DNA sequence but, referring to Fig-
ure 8.14 (p 184), we can appreciate that the number of
possible polypeptide folding possibilities must be enor-
mous (as overheard by the author, Sydney Brenner once
remarked that there are possibly as many folding possi-
bilities as there are proteins!). The chances of misfolded
protein productionmust be high, sowhat special circum-
stances are required to generate the relatively uncommon
prion disease? Finding the answers to such questions is
currently the objective of active research.
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Fröhlich, H.: 3,1; 6,26; 7,23,24; 8,12
Fromme, P.: 10,189
Fu, A.Y.: 1,41,42
Fuhr, G.: 1,76; 10,10,43,129,130,
134,203,218; 11,152,257

Fuhrmann, G. F.: 2,11

Gabbay, E. J.: 8,135
Gabriel, C.: 8,164
Gadre, S. R.: 4,2; 7,7
Gagnon, Z.: 10,100

Galambos, P. C.: 1,70
Gallo-Villanueva, R.: 10,181;
11,129,131,221

Gambari, R.: 10,124
Gambi, C. M. C.: 8,93
Gao, Y.: 10,190; 11,122
Garcia, A.: 9,82
Garcia-Ojeda, M. E.: 10,109; 11,111
Garin, Y.: 11,220
Garza, M.: 10,82; 11,124
Gascoyne, P. R. C.: 2,17,18,108,143;
9,62; 10,17,24,35,44,47,51,52,
77,80,81,97,108,109,112,114,116,
118–120,122,123,125,136,210;
11,86,87,107–109,112,114,116,
118–120,122,123,125,136,210

Gaude, V.: 1,74
Gealt, M. A.: 8,162
Geddie, W. R.: 11,155
Geiger, A.: 8,23
Geiger, E. J.: 11,179
Gencoglu, A.: 10,178
Gentet, L. J.: 9,64; 11,151
Ger, T-R.: 1,57,62
Gerardino, A.: 10,122
Gerhardt, P.: 9,98
Gericke, K-H.: 10,74
Gessner, A. G.: 8,37
Gestblom, B.: 8,164
Ghazal, P.: 8,169; 10,113; 11,230
Giaever, G.: 11,43,44
Giansanti G.: 8,167
Gibbs, J. H.: 8,120
Giddings, J. C.: 1,14,15
Gijs, M. A.: 1,59
Gilardi. M. C.: 10,76
Gilbert, P.: 11,65
Gili, T.: 8,147
Gilles, M.: 11,184
Gilman, S. D.: 11,242
Gilson, M. K.: 8,73
Gimsa, J.: 10,43,215,218; 11,175
Giner, V.: 10,69,73
Ginzburg, B. Z.: 9,72
Giraud, G.: 8,169; 10,113; 11,230
Giulianelli, L.: 10,137
Giustolisi, G.: 10,76
Glade, N.: 10,121
Glaser, R.: 10,43; 11,46
Glass, R. E.: 11,205
Glasstone, S.: 7,21
Glibitsky, G. M.: 8,163
Goater, A. D.: 10,36,50,127; 11,185
Godin, J. M.: 1,44

Gold, J.: 1,63
Gomperts, B. D.: 9,20
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dielectrophoresis, theory, 245
dielectrophoresis, traveling wave, 251,
273, 275

dielectrophoretic force, 41
dielectrophoretic force calculation, 15
differential calculus, 94
diffusion coefficient, 394–396, 406
dipole image force, 280, 299
dipole moment, 93, 107, 108
dipole moment, assembly of charges,
106,

dipole moment, cell with induced
surface charge, 109

dipole moment, induced, 39, 40, 47
dipole moment, orientation, 150, 152
dipole moment, relaxation, 156, 164
dipole moment, sugar molecules, 178
dipole relaxation, 153, 154, 164
dipole term, 106, 109
dipole-dipole interaction, 276
displacement current, 57, 62, 65, 125,
251, 253

distribution of relaxation times, 156,
159

divergence theorem, 74
DNA, 194, 197
DNA, dielectrophoresis, 328, 356
double-shell model of a cell, 230, 231,
238

dynamic viscocity, 36

E. coli, 230, 236, 238, 321, 324, 326
effective medium theory, 223
E-field flux, 61, 63
electric dipole moment, 93, 107, 108
electric field, 49, 55, 70, 93
electric field gradient, 70, 94, 97,112
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electric field gradient, charged ring, 70
electric field gradient, coaxial
electrodes, 70

electric field gradient, dielectric
sphere, 70

electric field gradient, metal sphere, 70
electric field gradient, spherical
electrodes, 70

electric field, cage, 46
electric field, charged dielectric sphere,
68, 70

electric field, charged metal sphere, 67,
70

electric field, charged parallel
electrodes, 69, 70

electric field, charged ring, 59, 60
electric field, coaxial cylindrical
electrodes, 70

electric field, concentric spherical
electrodes, 70

electric field, definition, 32
electric field, linear charge, 66, 70
electric field, of a dipole, 109,
electric field, point charge, 56, 57
electric field, vector, 32
electric flux D, 61, 63, 66
electric force, on a cell, 33
electric susceptibility, 72
electrical analogue of fluid flow, 381,
391

electrical conditions a boundaries, 97,
102, 103, 110, 112, 114

electrical double layer, 35, 353, 397
electrical energy loss, 251
electrical potential energy, 32, 77, 79
electrification, resinous, 51
electrification, vitreous, 51
electrode polarisation, 163
electrodes, carbon, 291
electrodes, castellated, 281
electrodes, funnel, 284
electrodes, indium-tin-oxide (ITO),
322, 343, 349, 355

electrodes, isomotive, 246
electrodes, liquid, 291
electrodes, polynomial, 250
electrodes, quadrupole, 250
electrodes, spiral, 351
electrodes, zipper, 282
electrofusion, 314, 315, 319
electrokinetic mobility, 401
electrokinetics, 4, 13, 37
electrolyte for DEP experiments, 174
electrolytes, 172

electrometer, 50
electronegativity, 146
electroosmosis, 394, 400, 403
electroosmotic mobility, 401
electrophoresis, 13, 33, 36, 44
electrophoretic mobility, 33, 36, 47,
400

electrorotation (ROT), 265, 268
electrorotation, bacteria, 320
electrorotation, beta-cells, 349
electrorotation, relationship to DEP,
270

electrorotation, yeast cells, 316
electrostatic boundary conditions, 97,
102, 103, 110, 112, 114

electrostatic energy, ionic crystal, 149
electrostatic force, 2, 51, 53, 78
electrostatic interactions, 51
electrowetting on dielectric (EWOD),
15

ellipsoid, polarisation, 161
endothelial cells
energy density stored in a capacitor, 88
energy density stored in a field, 87
energyy of a particle in a field, 88
eosinophils, 407
equation of continuity, 74
equipotential contour, 82, 90
equipotential surface, 82, 84, 85
erythrocyte, membrane thickness, 218,
225

erythrocytes, 332, 333, 335, 338, 344,
407

erythrocytes, trophozoite-infected,
333

erythroleukaemia cells, 336
Escherichia coli, 230, 236, 238, 3321,
324, 326, 338, 346

Euler’s formula, 255

Faraday, Michael, 55, 124
Feynman, Richard, 77
Fick’s equation, 396
field gradient, 97, 112
field gradient, tensor representation,
113

field, energy density, 87
field, outside charged rod, 95
field, radial, 79
filtration of blood cells, 4
fission yeast, 311
flagella torque, 326
flow cytometry, 25, 26
fluid flow, electrical analogue, 381, 391

fluid, continuity equation, 386, 392
fluid, continuum model, 384
fluid, density, 384
fluid, flow resistance, 387
fluid, laminar fluid, 388
fluid, pressure, 381, 384, 385–387
fluid, shear strain, 384
fluid, slip plane, 35
fluid, turbulent flow, 389
fluid, viscosity, 382
fluidic channel, characteristic
dimension, 381, 383

fluidic channel, wetted perimeter, 383,
389

fluorescence activated cell sorting, 4,
12

force, conservative, 77, 78
force, dielectrophoretic, 89
force, electrostatic, 78
force, gravitational, 78
free charge, 49, 57, 59, 61, 69
Fröhlich model, 158
fundamental theorem of calculus, 93
fungal cells, 409

gamma-dispersion, water, 186, 191
gas laws, 381
gas, mean free path length, 382, 383,
394

gases versus liquids, 381
Gauss, Johann Carl, 56, 61
Gaussian cylinder, 114
Gaussian surface, 61, 63, 65, 67, 69, 71,
147

Gauss’s law, 61, 63, 65, 84
Gauss’s theorem, 74
glucose, 173, 174, 178, 179
Gouy-Chapman equation, 398
grad vector operator, 32, 41, 57, 94
gradient of a field, 97, 112
Gram positive & negative bacteria,
236

Gram stain, 236
Green, George, 122
Green’s Essay, 122
Green’s Theorem, 122
Grotthuss mechanism, 171

haemoglobin, 186, 190
Hanai mixture equation, 224, 225, 230
heating effect on alpha dispersion, 238
heating effect on beta-dispersion, 238
Helmholtz-Smoluchowski equation, 37
Henderson-Hasselbach equation, 34
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herpes simplex virus (HSV-1), 354,
356

HL-60 cells, 327, 329, 336
Höber, Rudolf, 214
hybrid DEP-acoustophoresis, 26
hybrid DEP-electrowetting, 26
hybrid DEP-magnetophoresis, 25
hydraulic diameter, 383
hydrodynamic plane of shear, 38, 47,
399, 400

hydrogen bond, 168, 177, 185, 195
hydrophoresis, 4, 7
hypertonic solution, 173
hypotonic solution, 173

image charges, 110
induced charge, 71
induced dipole moment, cell, 39
induced dipole moment, sphere, 120
induced surface charge, 40
insulator, 51
insulinoma cells, 349
interface charging, relaxation time, 137
interface charging, relaxation time -
multipoles, 136

interfacial polarisation, 75, 136, 159
interfacial polarisation, influence on
cell DEP, 227, 235

ion mobility, 406
ionic double layer, 397
islets of Langerhans, 349
isodielectric cell separation, 294, 318
isoelectric point, 33, 186

Joule heating, 288, 289, 295
Jurkat cells, 328

K562 cells, 332
Kepler, Johannes, 55
kinetic energy, 77
Kirchhoff’s laws, applied to fluid flow,
391

Klebsiella pneumoniae, 320, 321, 346
Knudsen number, 383
Kramers- Krönig relations, 155, 163,
316

laminar flow, 35, 388
Langevin function, 152
Laplace equation, solution, 119, 123,
132

Laplace’s equation, solving by
separation of variables, 102

Laplace’s equation, 64, 96

Laplace’s equation, hemispherical
electrodes, 103

Laplace’s equation, solution, 246, 249
Laplace’s equation, spherical
coordinates, 102

Legendre polynomial, 103, 104
leukemia cells, 327, 330, 332, 338
leukocytes, 407
lift force in a flowing fluid, 387
lines of force, 52, 53, 56, 65
Lorentz (local) field, 128, 129, 131, 145
Lorentz, Hendrik, 126
Lorenz, Ludwig, 126
lymphocytes, 258, 260, 270, 274
lysozyme, 186, 189, 191, 193

magnetic labelling of cells, 22
magnetic nanoparticle, 22
magnetophoresis, 22
magnetophoretic force calculation, 23
malaria, 333, 334
Mandel’s counterion fluctuation
model, 200, 203

MATLAB program, cell double-shell
model, 231

MATLAB program, cell DEP
characteristics, 262

MATLAB program, cell single-shell
model, 227

MATLAB program, Clausius-Mossotti
factor, 139

MATLAB program, yeast double-shell
model, 231

Maxwell stress tensor, 252
Maxwell, James Clerk, 56, 65, 121
Maxwell, James Clerk: comments
regarding Mossotti, 124

Maxwell’s equations, 65
Maxwell-Wagner equation, 223
Maxwell-Wagner interfacial
polarisation, 159, 223, 227

Maxwell-Wagner interfacial
polarisation, electric circuit model,
155

Maxwell-Wagner polarisation, effect
on cell DEP, 227, 234

mean free path, gas molecules, 382
mechanical filtration, 5
membrane conductance, 260, 263,
272

membrane proteins, effect on
capacitance, 229, 230

membrane surface conductance, 260
membrane, action potential, 218

membrane, beta-dispersion, 213, 215,
226, 230

membrane, capacitance, 215, 217, 220,
225, 228, 230 254, 259, 261, 272

membrane, conductance, 219, 233
membrane, excitation, 214, 219,
membrane, hyperpolarisation, 219
membrane, ion channel, 219, 220
membrane, resistance, 215, 216, 219,
220

membrane, resting potential, 219
membrane, topography factor, 216,
229

membrane, voltage drop, 260
method of image charges, 110
micro-capillary electrodes, 216, 218
Micrococcus lysodeikticus, 237, 313,
314, 345, 347

microfluidic device, 2
microfluidics, 381
micro-scale physics, 2
microvilli, effect on membrane
capacitance, 221, 229, 240

molar polarisation, 72
molar refraction, 127
molecular electrical potential surface,
86

molecular polarisation, 120, 124,
monocytes, 407, 408
monopole term, 105
Monte Carlo simulation, 277
Mossotti, Ottaviano Fabrizio, 124
multipole, 105, 277, 298
multipole expansion of a potential, 105
mutual DEP force, 276
Mycobacterium smegmatis, 323
myoblasts, 341
myoglobin, 186, 187, 189, 190, 194

Navier-Stokes equations, 383, 392
NB4 cells, 345
NCI-60 cell types, 337
necrosis, 309
negative dielectrophoresis, 42
negative potential, 82
nematodes, 351
Nernst, Walther, 214
neurons, 339
neurospora, 348
neutrophils, 407
Newtonian fluid, 393
nonuniform field, 32, 40, 41, 43
nuclear envelope, modelling, 217, 226,
230
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nuclear envelope, resistance, 217
nucleic acids, 194
nucleoplasm, resistivity, 216
nucleus-cytoplasm volumetric ratio
effect, 230

oblate ellipsoid, polarisation, 162
octupole, 107, 249
Ohm, George, 214
Onsager equation, 132, 133, 170
Onsager model, 132
Onsager, Lars, 131
oocytes, 350
optical tweezer, 11
orientation correlation factor g, 170
orientational polarisation, 152
orthogonality, equipotential surfaces
and field lines, 85, 90

osmolarity, 173
osmosis, 173

paramagnetic material, 19
parasitaemia, 333
partial derivative, 94
Pascal’s law, 385
pearl chaining of cells, 276
Peclet number, 7, 294, 396
periodic table of elements, 145
permittivity, cell suspensions, 223
permittivity, complex, 135
permittivity, frequency dependence,
156, 163

permittivity, mixtures, 191, 192
permittivity, proteins, 192
pH, 34, 406
phasor, 251, 254, 256, 263
phospholipase, 186
pinched flow fractionation, 8
pKa, 34
Planck, Max, 214
plasma membrane, capacitance, 215,
217, 220, 225, 228, 230

plasma membrane, conductance, 219,
233

plasma membrane, resistance, 216,
217, 220

plasma membrane, thickness, 217, 220,
224, 225

Plasmodium falciparum, 333
platelets, 334, 408
Poiseuille’s law, 387
Poisson, Siméon-Denis, 121
Poisson-Boltzmann equation, 397
Poisson’s equation, 64, 96, 97

polarisability, 39, 43, 45
polarisability volume, 127
polarisation, 49, 51, 57, 66, 71, 145
polarisation, atomic, 146
polarisation, distortion, 146
polarisation, electronic, 146
polarisation, function of time, 164
polarisation, interfacial, 165
polarisation, ionic, 148
polarisation, orientational, 152
polarisation, solid hydrogen, 148
polarisation, time dependence, 135
positive dielectrophoresis, 42
positive potential, 82
potential gradient plot, 96
potential difference, 81, 83, 85, 90
potential energy, 77
potential energy, electrical, 2, 77, 89
potential gradient, 93
potential surface, molecular, 86
potential, charged rod, 86
potential, charged sphere, 84
potential, linear charge distribution, 85
potential, negative, 82
potential, point in a field, 83
potential, positive, 84
principle of conservation of energy, 77
principle of superposition, 53, 63, 69
prions, 409
prolate ellipsoid, polarisation, 162
protein, DEP immobilisation, 366
protein, dipole moment, 184, 185, 186,
188

protein, hydration, 188, 190
protein, molecular weight, 186
protein, permittivity, 191, 192
protein, structure, 184
proton mobility, 171
protoplasts, 314, 319, 347
protozoal cells, 409
Pseudomonas aeruginosa, 70

quadrupole, 107, 248, 249, 257, 267,
282

radial electric field, 79, 95
Raman spectroscopy, 341
reactance, 254, 264,
reaction field, 131, 132
reference, zero potential, 80
relative permittvity, 49, 52, 57, 68, 73
relaxation time, 74, 153, 156, 157, 161
relaxation time, bacteria polarisation,
239

Reynold’s number, 6, 9, 389
ribonuclease, 186, 189
ribosomal RNA (rRNA), 364
RNA, 194, 203
RNA, dielectrophoresis, 364
root mean square voltage, 45

S. cerevisiae, sequencing project, 318
Saccharomyces cerevisiae, 310, 312,
316, 318, 346, 369

Salmonella typhimurium, 326
Schizosaccharomyces pombe, 311
sedimentation force, on cell, 35
Serratia marcescens, 346
shear force, 36
shear plane, 38, 47
shear stress, 36, 37
single-shell model of a cell, 225
sinusoidal voltage, complex
exponential function, 255

sinusoidal voltage, waveform, 135,
142

specific inductive capacity, 57
speed of light (Maxwell’s derivation),
125

sperm cells, 350
spherical (polar) coordinates, 64
Staphylococcus epidermidis, 323
stem cells, 338
Stern layer, 353
Stokes’s equation, 157
Stokes’s law, 36, 313
Stokes-Einstein equation, 394
sugar, molecular dipole moment, 178
sugar, molecular hydration, 178
superparamagnetism, 22
superposition of forces, 53, 54
surface charge density, 85, 87
surface charge, bacteria, 33
surface charge, cell membrane, 40
surface charge, induced, 40
surface conductance, 260, 275
surface conductance, diffuse layer,
353

surface conductance, Stern layer, 353
surface tension, 16, 406

target, capture efficiency, 3
target, capture purity, 3, 4
target, enrichment, 4
target, recovery rate, 3
target, yield parameter, 3
Taylor series expansion, 246
three-shell model of bacteria, 238
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T-lymphocytes, 279, 408
tobbacco mosaic virus (TMV), 353,
356

torque on a dipole, 107, 111
traveling wave dielectrophoresis
(TWD), 272

trypsin, 186
two-layer heterogeneous dielectric,
160

unit vector, 54, 55, 57, 61, 64, 94

van der Waals radii, 175
vector field plot, 95
vector notation, 94
viruses, 351, 409

viscocity, dynamic, 36, 406
viscous force, 36

water molecule, electron density map,
150

water, dielectric properties, 168, 170
water, dipole moment, 168, 170
water, dissociation, 169
water, electrical conductivity, 171
work, assembling charges, 80
work, done by electric field, 79, 80, 84
work-energy theorem, 77, 78, 87, 89

yeast cell, life cycle, 310
yeast cell, separation of live from dead,
312, 317, 319

yeast cell, structure, 310
yeast cell, vital stain, 311
yeast, cell wall conductivity, 313
yeast, cytosol conductivity, 315
yeast, DEP, 316
yeast, electrorotation, 316
yeast, model cell for DEP studies,
318

yeast, plasma membrane conductivity,
315

Young’s Equation, 16

zero potential, reference, 80
zeta potential, 37, 38, 47
Zweifach-Fung effect, 7
zwitterion, 205
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