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V

Preface

This is the fourth volume in the series “Soft Matter” and the first to be de-
voted to biological systems, the study of which has become one of the most
intense activities in soft condensed matter in recent years.

Both chapters of this volume address the properties of lipid bilayers, a
system which forms the basis of all biological membranes. At first glance,
however, the two contributions are very di=erent.

The first chapter, authored by Sagar Pandit and H. Larry Scott, is con-
cerned with the behavior of the bilayer on the scale of the individual lipid
molecules. They review, therefore, the numerous microscopic models which
are used to describe bilayers, and the methods by which they are simulated,
in particular molecular dynamics, Monte Carlo, and Langevin dynamics.
Thermal fluctuations are important because the hydrocarbon chains are very
flexible, and accordingly their conformations are dominated by entropy. The
focus is on the dynamics of the several di=erent components which make
up the bilayer. Here, the three major players are cholesterol, lipids whose
chains are fully saturated, and other lipids whose chains often contain one
double bond, but occasionally as many as six. Chemical details matter. For
example, cholesterol contains a rigid multi-ring structure of which one face
is “smooth” the other “rough”. These interact di=erently with the chains.
Some lipids, particularly those readily synthesized and available commer-
cially, have two identical tails. In contrast, biological lipids often have one tail
which is saturated and the other mono-unsaturated. What are the di=erences
expected between laboratory and biological systems? How do the di=erences
in the structures of the membrane components account, if at all, for “rafts”,
the putative agglomeration of cholesterol and saturated lipids which float,
like rafts, in a sea of unsaturated lipids?

In contrast to the above, the chapter by Gerald Lim H. W., Michael Wor-
tis, and Ranjan Mukhopadhyay, treats the membrane, consisting of the lipid
bilayer and its associated skeleton, as a continuum surface described by var-
ious elastic modulii. Details of the bilayer components do not matter. They are
relevant only in determining the actual values of the elastic modulii. Atten-
tion here is on the equilibrium shape of the red blood cell, whose characteris-
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tic size is on the order of several microns, a thousand times larger than the
characteristic size of the lipid components. For the most part, thermal fluctua-
tions are not important as the characteristic energy of the system is that of the
bending modulus, about 50 kT . The focus of this chapter is the fascinating
behavior of the shape of red blood cells, which is normally that of a flattened,
biconcave disc, a “discocyte”, under varying conditions. By the application of
suitable chemical agents, this shape can be made to undergo several trans-
formations: to become either more concave and invaginated (shapes denoted
stomatocytes, from the Greek for “mouth”), or to exhibit external perturba-
tions and protrusions (denoted echinocytes, from the Greek for “hedgehog”).
What the authors show conclusively is that an energy functional, which ac-
counts for curvature and stretching elasticity as well as the e=ect of a dif-
ference in area between the bilayer leaves, leads to the sequence of shapes
normally observed, and makes many predictions about others.

There are also several striking similarities between the chapters however.
First one notes the central role of Newton’s laws. Of course molecular dy-
namics is the sequential application of Newton’s laws to the components of
the system. Similarly elasticity theory is the application of Newton’s laws to a
continuous body. What makes the application to membranes so fascinating
is that, because the membrane can change shape, one must implement elas-
ticity theory in a manner applicable to arbitrarily curved surfaces. This imme-
diately brings us to the applications of di=erential geometry, which are often
relegated to courses on general relativity and astrophysics. It is a pleasure to
see them applied here to more terrestial problems. The necessary material
is clearly presented in a masterful series of appendices. Both chapters also
show that, to extract useful results, one has to rely on numerical solutions.
Indeed the explication of the means to undertake this forms a large part of
the chapter by Pandit and Scott.

Both of these chapters represent contemporary studies in biological sys-
tems, but they also represent complementary qualities that we hope to show-
case in this series. Simulations of large biological systems are changing
rapidly as the capabilities of computers increase. The chapter by Pandit and
Scott presents a snapshot of the state of such simulations at this moment in
time. In several years, the applications illustrated in such a chapter, and some
of the underlying methodology, will probably be significantly di=erent. The
chapter by Lim, Wortis, and Mukhopadhyay on the other hand is a definitive
monograph. There may be some adjustment of parameters in the future,
and further comparison with experiment, but it is likely that this work will
remain the definitive text. We are both pleased, and proud, to present these
two outstanding contributions to the community.

March 2008 Gerhard Gompper and Michael Schick
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1
Simulations and Models of Lipid Bilayers

Sagar A. Pandit and H. Larry Scott

Abstract

Atomistic level molecular dynamics can provide insights into the structure,
dynamics and thermodynamic stability of lipid membranes and of localized
raft-like regions in membranes. However the challenges in the construc-
tion and simulation of accurate models of heterogeneous membranes are
great. In this chapter we outline the steps needed to carry out and analyze
atomistic simulations of hydrated lipid bilayers. While molecular dynamics
is a method that is simple in its conceptual content, there are many sub-
tle challenges that must be addressed in the construction of a simulation
of a lipid bilayer in water. These include simulation algorithms, forcefields,
boundary conditions, equilibration and others. We will discuss all of the ba-
sic requirements for the construction and running of a molecular dynamics
simulation of a lipid bilayer. We then discuss how one analyzes the data pre-
sented by a simulation, in terms of experimental results and detailed struc-
tural and dynamical predictions of the simulation. In the final part of the
chapter we show how the data from a molecular dynamics simulation can be
used to construct a coarse grained model for the heterogeneous bilayer that
can predict the lateral organization and stability of rafts at up to millisecond
timescales.

1.1
Introduction

There are many well documented fields of research in structural biology to
which physicists and physical chemists regularly contribute; equally inter-
esting are fields of biological research for which the reverse is true. The
emergence of order in complex systems, from basic bio-molecular building
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Fig. 1.1 Snapshot of a sphingomyelin lipid bilayer produced in a simulation. The lipid
is 18:0 sphingomyelin, a common brain lipid. Color coding is: gray: hydrocarbon chains;
red: oxygen atoms, orange: phosphorous atoms: white: hydrogen atoms and blue: nitro-
gen atoms. Water molecules and hydrogen atoms on hyrdocarbon chains and outermost
choline groups have been excluded for clarity.

blocks (proteins, lipids, carbohydrates, sterols and others), suggests new lev-
els of emergent material properties that hold fundamental insights in basic
soft matter physics and chemistry. One such biologically inspired field in
soft matter science is the study of the structure, thermodynamics, dynamics
and functional behavior of biological membranes. The physics of biologi-
cal membranes is uniquely interesting for multiple reasons including, but
not restricted to, the following: they self-assemble spontaneously in solu-
tion, they are quasi-two-dimensional, they are composed of relatively large
but flexible molecules with many intramolecular degrees of freedom, they
exhibit complex phase behavior and they are capable of incorporating larger
biomolecules, like proteins, without compromising their basic structural in-
tegrity. This level of structural diversity presents many challenges to those
desiring to use modeling to dissect the underlying physical and chemical
properties of biomembranes, and it also presents the possibility that new
physics may emerge from biomembrane modeling.

Typical biomembranes are highly non-homogeneous in composition but
the basic underlying structural matrix, the lipid bilayer, is the same in al-
most all prokaryotic and eukayrotic cells. Figure 1.1 shows a snapshot of a
lipid bilayer from a simulation. The commonly accepted conceptual model
for a biological membrane is such a double layer of lipid molecules, within
which are embedded sterols and a bewildering variety of membrane pro-
teins. Lipid bilayers are back-to-back monomolecular layers of phospholipid
molecules. A typical phospholipid molecule, generally of a molecular weight
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around 750, consists of two distinct parts: a water-soluble, or hydrophilic
part, and a water-insoluble, or hydrophobic part. Figure 1.2 shows a dia-
gram of a commonly studied phospholipid, dipalmitoylphosphatidylcholine
(DPPC). Figure 1.2 shows that a typical biological lipid consists of three dis-
tinct chains linked through a “backbone”. In phospholipids the backbone is
a three-carbon glycerol link while for sphingolipids the link is a sphingosine
group. In all cases of biological interest two of the chains are made of CH2

groups connected by single or, in some cases, double bonds and terminated
by a methyl CH3. These two chains are highly hydrophobic, with very low
solubility in water. The third chain contains phosphate (PO4) and choline
(N(CH3)3) fragments connected by a methylene (CH2). At neutral pH the
phosphate carries a net negative charge that is balanced by a net positive
charge on the choline. The dipolar nature of the polar chain (referred to as
the “head group”) renders the head group highly soluble in water. As a con-
sequence of the amphiphilic (half water-hating and half water-loving) nature
of the molecule, when dispersed in excess water lipids like DPPC self assem-
ble into structures that shield the hydrophobic regions from water and maxi-
mize contact between the polar regions and water. One class of structures are
lipid bilayers. In a lipid bilayer in an aqueous solution, the hydrophobic parts
make up the interior while the hydrophilic parts make up the interface with
the water. Lipid bilayers can spontaneously form closed spherical structures,
or vesicles, when mixed in excess water. Vesicles are the natural “compart-

Fig. 1.2 (a) Stick models of DPPC and cholesterol molecules. In DPPC, the upper chain
is the hydrophilic polar head group, and the two lower chains are the hydrophobic part of
the molecule. (b) A snapshot of a simulated bilayer made up of DPPC and cholesterol. This
snapshot also shows water molecules above and below the bilayer.
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ments” that separate the interior from the exterior of a cell. Cholesterol, also
shown in Fig. 1.2, is another biologically important lipid that contains hy-
drophobic and hydrophilic parts. In the case of cholesterol the hydrophobic
part has four fused rings and a short tail, while the hydrophilic part consists
of a single hydroxyl attached to the first ring. Of particular interest, as we
will discuss later in this chapter, are the three methyls that protrude from
one side of the ring portion of cholesterol. They are represented by three
horizontal sticks in Fig. 1.2.

The conceptual view of biomembranes based on the lipid bilayer concept,
called the fluid mosaic model, was first proposed in 1972 (Singer and Nichol-
son 1972). In the fluid mosaic picture, membrane proteins, sterols (such as
cholesterol) and other biologically essential molecules reside in, on or pen-
etrate the lipid bilayer, performing essential biochemical functions required
by the cell. Since 1972 much progress has been made in understanding the
properties of a fluid mosaic membrane at a molecular level. It has become
clear that the fluid mosaic picture describes a highly dynamic structure of
extremely hetreogeneous composition that can fluctuate in its lateral orga-
nization and in the ordering of the lipid chains in response to stimuli from
the interior and the exterior of the cell. Within the plane of the lipid bilayer
there is rapid lateral di=usion and dynamical fluctuations in structure on
a sub-nanometer scale. Since a typical membrane is made up of perhaps a
dozen di=erent lipids, and contains sterol and proteins, to dissect the un-
derlying physical interactions is a formidable problem. To better understand
the many complex physical and chemical reactions and interactions which
drive biological functions, a tractable approach is to first gain insight into the
molecular interactions within simple lipid bilayers, such as shown in Fig. 1.1.
In model membranes the composition is greatly simplified compared to that
of biological membranes. Typically model membranes contain only one or
two di=erent lipids, a controlled amount of cholesterol and/or one or no
membrane proteins. Figure 1.2 shows the structure of two commonly stud-
ied lipid molecules. Figure 1.2 also shows a snapshot that illustrates a typical
distribution of lipids and water in a small part of a model bilayer which was
generated by a simulation. The highly disordered, fluid nature of the bilayer
can be seen in this figure.

Model membranes have been quantitatively studied experimentally by a
wide variety of methods (Merz and Roux 1996; Nagle and Tristram-Nagle
2000; Tristram-Nagle and Nagle 2004). Over the years an interplay has devel-
oped between experiment and simulation, wherein experimental data revise
and improve the quality of simulations and in turn simulations are used to
interpret experimental data. As a consequence, there is now a sizable and
growing data base of structural and dynamical data from which it is possi-
ble to construct theoretical models for lipid bilayers. The goal of theoretical
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models is to understand how the microscopic intermolecular interactions in
lipid bilayers lead to the experimentally observed structures. As an insight
is gained into simple lipid bilayers through this process, the goal of future
modeling work is to apply the new information to the expanded study of lipid
bilayers of a more complex and biological composition. Unfortunately the
complex structure of even the simplest lipid molecules (see Figs. 1.1 and 1.2)
makes modeling especially di;cult. Each of the three chains (two in the hy-
drophobic region and one hydrophilic chain) can change shape by rotations
about atomic bonds (dihedral rotations), so that the conformation space of a
single molecule is huge. A lipid bilayer is not just a simple two-dimensional
fluid but a two-dimensional fluid of molecules, each of which has a large
number of internal degrees of freedom. Hence, the interaction between pairs
of lipid molecules depends not only on their separation, but also in some
complex fashion on the conformational shapes of the molecules.

Theoretical models for lipid bilayers that concentrated on the main chain
melting phase transition have been proposed (Nagle 1973; Scott 1975; Na-
gle and Scott 1978). However, it is generally very di;cult to realistically use
the analytical tools of statistical mechanics to model a complex system such
as a lipid bilayer without major approximations. The best approximation
schemes are those that are guided by experimental data. This di;culty was
a severe limitation in the early development of this field due to a lack of
detailed understanding of atomic level interactions between lipid molecules
in bilayers, an essential requirement for the construction of realistic mod-
els. However over the past 10–15 years this situation has begun to change
as atomistic simulations of lipid bilayers have progressed. A major motiva-
tion for doing simulations for lipid bilayers is that by doing reliable sim-
ulations (where reliability means the simulations are of su;cient scale in
size and simulation time, and that they agree with all available experimen-
tal data) one gains atomic level structural and dynamical coordinates of all
atoms in the system. The basic prediction of any simulation is a trajectory
or a set of system configurations consisting of atomic coordinates, velocities
(for molecular dynamics simulations) and interaction potentials which can
be directly linked to the macroscopic behavior observed in experiments. This
wealth of atomic resolution, structural and dynamical data is then available
to test hypotheses used by experimentalists in interpreting measurements
and for the design of new experiments. It can also be used by theorists to
formulate better coarse grained statistical mechanical models for membrane
phase behavior.

In this chapter we discuss the current state of atomistic simulations of
model membranes. We will also describe some ways by which information
from atomistic simulations can be directly employed for improved statisti-
cal mechanics modeling of model membranes at scales that greatly exceed
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those of simulations. In the first section we review the basic simulation tech-
niques, molecular dynamics (MD) and Monte Carlo (MC) as applied to model
membranes, and we discuss the interplay between experiments and simula-
tions. In Section 1.3 we discuss e=orts to build upon atomistic simulations
by constructing coarser grained models that can extend the scope of atom-
istic simulations. In Section 1.3.3 we describe models based on Mean Field
Theory that predict model membrane structure at a thermodynamic scale
and over milliseconds in time. Section 1.4 contains concluding discussions.

1.2
Atomistic Models

1.2.1
Classical Approximation

Atomistic simulations are simulations in which, in principle, all individual
atoms are included. In practice, for systems as large as lipid bilayers it is nec-
essary to somewhat relax this goal in several ways. Firstly, atoms (or groups
of atoms) are approximated as classical particles centered at the respective
atomic nuclei. Secondly, atomistic simulations of complex molecular sys-
tems like lipid bilayers are generally run under a set of key assumptions
concerning the treatment of the intermolecular interactions between atoms
that are chemically bonded, and atoms that are not chemically bonded.

The first assumption takes advantage of the fact that the dynamical time
scales for electronic degrees of freedom are several orders of magnitude
faster than the dynamical time scales for the positions and momenta of in-
dividual atomic nuclei. Under this approximation, one can include the ef-
fects of electronic motions into averaged interactions that are embedded into
simpler bonded and non-bonded interactions. A complete derivation of the
classical interactions in atomistic simulations within the framework of the
time dependent self consistent field approximation has been presented by
Marx and Hutter (2000). Of course within this approximation it is not possi-
ble to simulate chemical reactions. Also within this framework electrostatic
properties of single atoms are compromised due to the lack of electronic
polarizability. However, these are not severe compromises if one is only in-
terested in physical properties as in lipid bilayer simulations. The second as-
sumption is that all the non-bonded interactions are represented by sums of
forces between pairs of atoms only, without the inclusion of triplet or higher
many-body interactions.
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Vtot =
∑
bonds

Kb(r − r0)2 +
∑
angles

Kθ(θ − θ0)2

+
∑

impropers

KΦ(Φ − Φ0)2 +
∑

dihedrals

Kφ[1 + cos(nφ − φ0)]

+
∑

non-bonded pairs

{
qiqj

rij
+

[
C

(12)
ij

r12
ij

−
C

(6)
ij

r6
ij

]}
(1.1)

The most common form of the intermolecular potential energy function
used in simulations of lipid bilayers is shown pictorially in Fig. 1.3 and explic-
itly in Eq. (1.1). The sum runs over (in the order of terms in Eq. (1.1)) bonds,
bond angles, improper and proper dihedrals, and all pairs of atoms that are
on di=erent molecules or are separated by more than four interatomic bonds
on a molecule. The dihedral function in Eq. (1.1) represents the energy of a
connected set of four consecutive atoms on a molecule. Figure 1.3 pictorially
summarizes the contributions to Eq. (1.1).

Equation (1.1) shows a typical potential energy function that incorporates
these assumptions, and is used in most of the classical atomistic simulations.
The expressions in Eq. (1.1) represent strong approximations regarding the
nature of the interatomic interactions between lipids. In reality interactions
between polyatomic molecules are not spherically symmetrical, and electric

Fig. 1.3 Figure showing typical interaction functions used in atomistic molecular dynamics
simulations. Bond length, angle and dihedral contributions are also shown pictorially on
the right.
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polarization plays a critical role, so that simple coulombic and 6–12 potential
functions are not correct. However, they are necessary if one is to run a simu-
lation of a complex system over time and length scales that compare with an
experiment. The use of simplified interaction potentials can be justified by
carefully tuning the parameters in Eq. (1.1) to fit independent experimental
data, a process we will describe in a subsequent section.

Once a classical interaction function such as Eq. (1.1) is accepted as de-
rived approximately from full quantum molecular systems and parameter-
ized in accordance with multiple sets of experimental data, several sampling
techniques, such as molecular dynamics, Monte Carlo, or Brownian dynam-
ics, can be employed to generate an ensemble of statistical samples in the ac-
cessible phase space of the system. These points are then used to determine
the average properties of the simulated systems. For the lipid bilayer systems
the most popular simulation tools are molecular dynamics and Monte Carlo.
We will examine these methodologies in the following sections.

1.2.2
Molecular Dynamics

In molecular dynamics (MD), configurations of the system are sequentially
generated beginning with an initial set of positions and velocities of all the
atoms in the system and integrating Newton’s equations of motion using the
potential function such as that in Eq. (1.1) for all the atoms. The outcome
of an MD simulation is a “pseudo trajectory” of positions and velocities of
all of the atoms in the simulation system, and this data set can be used to
determine structural and dynamical properties of the system at a level of
atomic resolution that exceeds what can be determined from other modeling
methods.

In a typical molecular dynamics simulation atoms or groups of atoms are
treated as point particles for the calculation of positions, momenta and in-
termolecular forces. Simulations begin with predetermined configurations
and, usually, random velocities for all of the individual atoms. Then Newton’s
equations of motion are numerically integrated, where the force is obtained
from the negative gradient of a potential function such as Eq. (1.1). Itera-
tive application of this generates sequential sample points which trace classi-
cal trajectories in the phase space of the particles. Ideally molecular dynam-
ics simulations provide a detailed description of the dynamic evolution of
complex molecular systems. However, the coupled di=erential equations ob-
tained from Newton’s equations are a highly nonlinear system of equations.
Many such systems of nonlinear di=erential equations are known to exhibit
chaotic behavior. That is, they are deterministic systems but have long-term
behavior that is practically impossible to predict due to an exponential sen-
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sitivity to the initial conditions. One of the peculiar properties of chaotic dy-
namics is that two almost identical starting configurations evolve very dif-
ferently in time. For this reason the main use of molecular dynamics is to
generate sample points of the system rather than to predict a precise final mi-
croscopic state that is found after evolution from a fixed initial state. This has
strong implications for the applicability of molecular dynamics simulations.
Due to the chaotic nature of molecular dynamics trajectories it is di;cult to
ascertain if a particular final state is representative of an experimental ver-
sion of the system, or is a result that contains peculiarities that have evolved
from the particular initial state. However, if one is concerned only with the
overall distribution of final states rather than a particular state the chaotic
nature of the simulation is an advantage, in that successive microstates di-
verge exponentially from each other, and thereby a sampling of microstates
is gained in a long simulation. Systems that are more solid-like and evolve
more slowly to sample more limited regions of configuration space are not as
well simulated using molecular dynamics. Precisely for these reasons molec-
ular dynamics is an excellent tool in the study of lipid bilayers. Lipid bilayers
are in a fluid phase in biological systems, and also in most experimental
model membrane studies. Then, the quantities of interest are not usually
the particular conformations of lipids but instead are found as averages over
many configurations of properties like densities and order parameters.

It is clear that the application of molecular dynamics to lipid bilayers is
more complex than an application to a simple fluid. The simulation cell is
non-uniform, with lipids in a bilayer surrounded by water. There are very
strong local electrostatic forces that if not screened or otherwise balanced,
will lead to instabilities. The interior of the bilayer contains hydrocarbon
chains that are fairly tightly packed and strongly resist penetration by water.
The evolution of a simulation under molecular dynamics strongly depends
on the initial state. For all of these reasons it is essential that the intermolec-
ular forces in the simulation accurately depict the actual interatomic forces.
This is a challenge as the actual interatomic forces are extremely complex
and nonlinear and so approximate force expressions, as discussed above, are
implemented. In the following section we describe the process by which the
interatomic force functions are defined and optimized for lipids and water
in hydrated bilayer environments.

1.2.2.1 Forcefields for Lipid Simulations
The exact form of the interaction function (see Eq. (1.1)) and the set of all
the parameters defined therein, are referred to as the forcefield for a molecu-
lar dynamics simulations. Equation (1.1) represents one particular forcefield
and is the functional form that is almost universally used, but it is by no
means unique. Due to the extensive simplifications in forcefields compared
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to actual interatomic interactions, simulation forcefields must be parameter-
ized to be su;ciently complex and robust to reproduce most experimentally
measured structural properties in the domain of applicability of the molecu-
lar dynamics simulation. The forcefield parameters can be grouped by type:

• Parameters for forces between bonded atoms.

• Parameters for intramolecular forces between non bonded atoms within
the same molecule.

• Parameters for intermolecular forces between non bonded atoms on dif-
ferent molecules.

As described above, Eq. (1.1) contains terms for each type of interac-
tion. We now turn to the determination of the parameters for each of these
classes of interatomic interactions. The discussion will be primarily based
on Eq. (1.1) but one should keep in mind that, depending on required ac-
curacy and availability of resources, several additional interaction terms can
be introduced. For example anharmonic bonds explicit hydrogen bond in-
teractions could be added; for intramolecular forces special 1–4 interaction
parameters (between atoms on one molecule separated by three bonds, to be
discussed below) could be added; and for non-bonded interactions the more
to complex Morse potential is an alternative to 6–12 Lennard–Jones poten-
tial (Cramer 2006).

Of particular concern are the 1–4 interactions between atoms on a chain
within a single molecule that are separated by two other atoms on the chain.
They are important in the generation of molecular conformations, as in
many chain rotational states the 1 and 4 atoms in a lipid chain interact quite
strongly in a bilayer environment. The simplest approach is to use dihe-
dral interaction functions as will be described below. These potentials are
designed to describe the torsion angle interactions within a chain, and this
includes the 1–4 interactions. Also of concern is the set of forcefield parame-
ters that are used for water. Clearly it is necessary to accurately describe inter-
actions between waters and between waters and lipids, but accurate models
turn out to be prohibitively expensive in terms of computational time. The
pros and cons of various water models will be discussed below. Electrostatic
interactions present a challenging problem to simulations because of the
long range nature of the Coulomb force. This issue will also be addressed in
a subsequent subsection. There is also a concern that actual interactions be-
tween complex molecules may require many-body contributions. However
experience seems to indicate that the limitation of the potential function to
two-body interactions is, for the simulation of lipid bilayers, a reasonable as-
sumption provided the parameters are chosen carefully and the interactions
are not truncated too rapidly.
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The forcefields in use today have been constructed to address these chal-
lenges, and now simulations of simple lipid bilayers have achieved a high
level of success in reproducing structural experimental properties including
density, chain order and the distribution of the various atoms within the bi-
layer. As we will discuss in subsequent sections, the challenge is now to ex-
tend simulations to more complex and biologically relevant membranes. As
an example in the following subsection we will describe the determination
of a forcefield for a united atom based MD simulation of lipids.

In principle one should determine the forcefield parameters for all the
interactions in Eq. (1.1) by a series of independent calculations and simula-
tions that determine the values that provide the best fit to independent ex-
perimental data. Several research groups have calculated united atom force-
fields for lipids and cholesterol (Chiu et al. 1999b; Berger et al. 1997). Other
groups have focussed on all-atom forcefields for lipid simulations (MacK-
erell Jr 2004). However forcefields are in a continual state of updating, as
new data become available, and, if a simulation of a new lipid or a cholesterol
analog such as ergosterol is planned, then the following forcefield parame-
ters from Eq. (1.1) should be calculated for the new molecule or molecules.

• Bond length and bond angle parameters.

• E=ective atomic charges.

• Dihedral torsion parameters.

• Lennard–Jones, or 6–12, parameters.

The standard strategy in the general determination of the various force-
field parameters is to consider “model compounds”, or “fragments”, that is
smaller molecules that are part of the lipid molecule and for which experi-
mental data are available. The forcefields for the model compounds are ad-
justed to optimally fit available experimental data and then are incorporated
into the relevant part of the lipid forcefield. To fill in the forcefield for a sim-
ulation it is necessary to specify forcefield parameters for harmonic bonds,
for atomic charges, for 6–12 parameters and for torsional interactions. This
must be done for each atom type in the molecule and, for inter-molecular
interactions, for all pairs of atom types. For the case of chemical bonds, the
complicated quantum mechanical interactions that determine bond length
and angle fluctuations are modeled in Eq. (1.1) by simple harmonic poten-
tials. In lipid bilayers around room temperature the lowest vibrational mode
is generally the dominant one. For harmonic bond length and bond angle
interactions parameters are adjusted to reproduce experimentally measured
molecular spectra from model compounds, and this part of the forcefield is
therefore quite accurate (Cramer 2006).
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For atomic charges the choices are somewhat more ad hoc. To compute
partial charges several steps are required. First density functional theory
(DFT) calculations are performed on small fragments of the molecules.
Then, based on the electron probability densities from DFT, partial charges
are computed by performing a population analysis of the electrons. An al-
ternative method that is popularly used to obtain partial charges is based
on empirical parameters like electronegativity and ionization potential of the
atoms in the molecule. This method, although less accurate, is extremely fast
compared to the density functional theory method. Hence, it can be used on
each sample point to generate charge distributions based on configurational
geometries.

The set of torsion angle potential parameters in a linear chain modu-
late the interactions between quadruplets of bonded atoms along a chain,
and thereby control the intramolecular configurations that are allowed. The
torsional parameters required for MD can be determined using the proce-
dure outlined by Reiling et al. (1996). In general, in this method a poten-
tial energy profile, Eq. (1.2), as a function of the dihedral angle is com-
puted at the ab-initio level using a quantum chemistry package such as
GAUSSIAN03 (Frisch et al. 2004) with ab-initio calculations at B3LYP/6-
31G(d,p) level with all other geometrical parameters optimized. The general
form for the torsion potential is

VTor(φ) = Kφ (1 + cos(δ) cos(mφ)) (1.2)

where Kφ, δ, m, and φ are the force constant, phase shift, multiplicity, and
dihedral angle, respectively. The procedure based on Eq. (1.2) is employed
for dihedrals in or near the polar part of the lipid molecules. For lipid hy-
drocarbon chains the united atom model requires a dihedral potential with
multiplicity up to m = 5. For the hydrocarbon chain torsions, one generally
uses one of the two well known and well tested dihedral potentials: Ryckaert–
Bellemans (1978) (see Eq. (1.3)) or Kuwajima (1994) (see Eq. (1.4)) potential
functions are used. Both of these torsional functions are computed with ex-
plicit 1–4 non-bonded interactions included. In general, the torsional param-
eters can be derived with or without 1–4 interactions included.

VTor(φ) = 9.28 + 12.16 cos φ − 13.12(cos φ)2 − 3.06(cos φ)3

+ 26.24(cos φ)4−31.5(cos φ)5 kJ/m (1.3)

VTor(φ) = 7.35 + 19.40 cos φ + 4.35(cos φ)2 − 31.10(cos φ)3 kJ/m (1.4)

Chiu et al. determined head group torsion parameters by a similar proce-
dure, using a di=erent set of model compounds to calculate parameters for
separate fragments that make up the polar group. The procedure was applied
to the phosphocholine head group, which consists of choline and phosphate
fragments as well as two ester groups which link the head group and the



1.2 Atomistic Models 13

hydrocarbon tails (Fig. 1.4). The following model systems were used for the
determination of the dihedral parameters for these molecular sub-groups:

• Choline group: ethyltrimethylammonium;

• Phosphate group: dimethyl phosphate;

• Ester group region: methyl acetate CH3COOCH3.

Head group paramaterization was done using ab initio calculations to de-
termine partial charges, and as MD simulations to determine non-bonded
interactions for each of these compounds. The end result was a set of force-
field parameters for the polar head group of DPPC and other lipids with a
phosphocholine polar group.

The 6–12 parameters for hydrocarbon chain united atoms can be de-
termined by adjusting non-bonded forcefield parameters in MD simula-
tions to obtain correct density and heat of vaporization for linear alka-
nes and alkenes. Berger et al. (1997) used this approach to develop a set
of 6–12 parameters based on fitting volumetric and thermodynamic data
for liquid pentadecane, as an analogue for the 16-carbon chains of the
dipalmitoylphosphatidylcholine (DPPC) phospholipid molecule and showed
that this modification agreed very well with experimental data on the DPPC
bilayers. However, fitting hydrocarbon parameters to a single length hydro-
carbon chain leaves the parameters underdetermined. This is because there
are multiple combinations of methyl and methylene specific volumes that
will result in the correct specific volume for a linear hydrocarbon of any spe-
cific length, such as pentadecane. Chiu and co-workers (1999b, 2003) then
developed hydrocarbon forcefields that provided an excellent fit for volume
and heat of vaporization over a wide range of hydrocarbon lengths. This ef-
fort consisted of running MD simulations of hexane, decane, pentadecane
and 5-decene. The parameters that were adjusted included non-bonded in-
teractions between CH1, CH2 and CH3 molecules. The CH1, CH2 and CH3

were modeled as united atoms (no explicit hydrogens). After tuning the pa-
rameters they produced one set for each type of united atom that would, in
simulations of the liquid alkanes, reproduce the liquid density and the heat
of vaporization.

The final step in the development of a set of forcefield parameters is of
course validation against experiment. Pandit et al. (2007b) ran extended sim-
ulations of DPPC, dioleyol phosphatidylcholine (DOPC) and palmitoyloleyol
phosphatidylcholine (POPC) for this purpose. Figure 1.8 shows X-ray form
factors (to be discussed in more detail later in this chapter) calculated from
simulation, and compared with experimental data from the group of Nagle
et al. (2006, 1997). Agreement between experiment and simulation is very
good out to the third lobes in the experimental data.
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Table 1.1 Structural properties for DPPC, POPC, and DOPC bilayers. a Vc is calculated as
Al × Dc from reported values and VHG = Vl − Vc. Volumes are in Å3 and areas are in Å2.
Experimental data are from Kucerka et al. (2005a)

DPPC DPPC POPC POPC DOPC DOPC
simulation expt simulation expt simulation expt

Temperature (K) 323 323 303 303 303 303
Vl 1212.8 1228.5 1241.8 1256 1269.7 1303
Vc 869.0 895.6a 911.4 924.2 949.3 971
VHG 343.8 332.9a 330.4 331 320.4 331
VCH2 27.1 — 27.1 27.6 27.0 27.6
VCH3 54.2 — 54.2 53.6 54.0 53.6
VCH=CH — — 43.4 44.2 43.2 44.2
Al 64.3 64.2 66.5 68.3 68.8 72.5

Other structural data such as order parameter profiles (to be discussed
later in this chapter) summarized in Table 1.1, are also in very good agree-
ment with experimental data. The overall agreement between simulation and
experiment is of su;ciently high quality that the forcefield can be used with
confidence for these lipids in new simulations

1.2.2.2 Simulation Considerations and Techniques
Figure 1.5 is a flow chart for an MD simulation. As the figure shows any
molecular dynamics simulation has four important components, three of
which repeat many times: (i) initialization, (ii) computation of forces, (iii)
numerical integration and (iv) comparison with real experimental quanti-
ties. Practical implementation of these components require use of special-
ized techniques, additional approximations and algorithms. Below, we dis-
cuss these components in the context of lipid bilayer simulations.

Initialization: Initialization consists of building the bilayer, adding waters
of hydration and equilibrating. Each of these components will be discussed
in a subsequent section. This step must be done with great care, because the
trajectory of the simulation will depend on the initial state. Any unrealistic or
unphysical elements present in the initial state can compromise calculated
properties of the simulated bilayer.

Force computations: The intermolecular force computation step requires a
significant fraction of the total CPU time in each molecular dynamics time
step. For this reason numerous algorithms and strategies have been devel-
oped to increase the e;ciency of intermolecular force computations. From
Eq. (1.1) there are two types of forces one needs to compute: (i) bonded
forces, including harmonic bond stretching forces, bond angle forces and tor-
sional forces; (ii) non-bonded forces, including Coulombic and 6–12 forces.
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Fig. 1.5 Flow chart for molecular dynamics algorithm

In classical molecular dynamics simulations there are no chemical reactions
so the bond structure of all the atoms remains invariant throughout the sim-
ulation. This fact is used in accelerating the computation of bonded interac-
tions. Static bond lists and exclusion lists can be constructed at the begining
of the simulation, and can then be used throughout simulations to compute
bond length, bond angle, torsional and excluded 1–4 interaction forces. Non-
bonded interactions such as Lennard–Jones and electrostatics interactions
cannot be implemented as static lists because one needs to consider all pos-
sible pairs of atoms in these interactions. With periodic boundaries, these
sums have to incorporate the e=ect of atoms from periodic images. How-
ever, if the interaction decreases with interatomic distance as fast as or faster
than r−3 then one can use a truncation method in which the potential is cal-
culated only up to a cuto= radius from the central atom and is considered
to be zero beyond that distance. The truncation method may be simple and
abrupt,

V (r) =
{

V6−12(r) r ≤c

0 r > rc
(1.5)

or shifted

V (r) =
{

V6−12(r) − V6−12(rc) r ≤ rc

0 r > rc
(1.6)

Simulation software usually allows the user to select the cuto= method and
the value of rc. A conservative choice is 1.8 nm cuto= which introduces
∼ 3 × 10−4 kJ/mol error in a typical CH3–CH3 interaction at cuto= distance
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(although many researchers use a much shorter cuto= of 1.0 nm to improve
simulation e;ciency but that gives rise to an error of ∼ 10−2 kJ/mol in a
typical CH3–CH3 interaction). Neighbor lists can be constructed that store
lists of atoms that are within the cuto= distance, thereby avoiding scans over
all pairs of particles at each force calculation step. Because the timesteps
are quite small, and lipid di=usion is also small, the neighbor list need to
be updated only after a preset number of time steps, usually around 5–10.
Long range electrostatic forces present a serious challenge: one can simply
truncate the electrostatic interaction, but this has been shown to produce ar-
tifacts in correlation functions at the cuto= point (Patra et al. 2003), and in
the molecular area per molecule in simulations since the Coulomb interac-
tion only decreases as r−1. The situation becomes even more challenging
with periodic boundaries as the electrostatic interaction sum becomes condi-
tionally convergent and requires special care in summing. A preferred choice
for performing electrostatics sums in this situation is the Ewald summation
algorithm. The Ewald method is described in many textbooks on compu-
tation including, for example (Cramer 2006). In software implementations
the Ewald sum algorithm is further improved using Smooth Particle Mesh
technique (Essmann et al. 1995). The Ewald sum method divides the electro-
static sums into real space and fourier space components. Therefore the im-
plementation of an Ewald algorithm requires parameters such as real space
cuto=, number of fourier space vectors and so on that must be chosen by the
user. Most simulation programs parse the atoms in a molecule into "charge
groups" for the calculation of electrostatic interactions. The user must de-
fine the charge groups in input files for a simulation. These charge groups
must be neutral to avoid unwanted charge-charge correlations especially at
the edges of the simulation box. Also, if the charge groups are too large,
artifacts may occur in the simulation. A disadvantage of Ewald summation
is that it imposes an artificial periodicity on the system. However for su;-
ciently large simulations this limitation does not pose a serious concern. In
a study of the comparative e=ects of cuto=s and Ewald summations on the
properties of a simulation Wohlert and Edholm (2004) found that for suf-
ficiently large lipid simulations (over 1000 lipids plus waters of hydration)
using a cuto= electrostatic interaction of 1.8 nm or greater did not a=ect the
results of the simulation. However, for smaller simulation boxes, artifacts
due to cutting o= the long range Coulomb forces were apparent.

Integrators and ensembles: The propagation by molecular dynamics integra-
tion of Newtonian equations over time samples the states on a constant en-
ergy hyper–surface in the phase space of the system. The simplest algorithm
for the integration step is the well known Verlet algorithm (Frenkel and Smit
2002)
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r(t + ∆t) = 2r(t) − r(t − ∆t) +
F (t)
m

∆t2 (1.7)

which has an error of order ∆t4. There are several variations of this scheme
mostly used to improve performance or accuracy. The popular molecular dy-
namics software GROMACS (Berendsen et al. 1995) uses a method called
“leap frog” Verlet to integrate trajectories. In this method velocities are eval-
uated at the half time step as

v

(
t +

∆t

2

)
= v

(
t − ∆t

2

)
+

∆t

m
F (t) (1.8)

r(t + ∆t) = r(t) + v

(
t +

∆t

2

)
(1.9)

The other variation typically used is the velocity Verlet method where each
velocity and each force is computed only at each full time step. If the forces
are not velocity dependent then this method requires one fewer velocity com-
putation per time step compared to other Verlet type methods.

There are a number of higher order intergration schemes that are more
accurate than the simple Verlet algorithm, such as an nth order predictor-
corrector algorithm (Frenkel and Smit 2002). In this algorithm the position
of a particle first n derivatives at time t are used to predict the position and
its first n time derivatives at time t + ∆t. Then the prediction of the second
derivative is “corrected” by comparison with a calculation of the force, and
the correction is used to update the other predicted derivatives at the new
time. This procedure has the advantage that it has error proportional to ∆tn

with only a small additional computational price.
Straightforward integration of the N coupled atomic equations of motion,

using one of the above algorithms, produces a simulation with a fixed num-
ber of particles (N), a fixed volume (V) and a fixed energy (E) (= NVE ensam-
ble). An NVE simulation therefore produces sample configurations from the
micro–canonical ensemble. To produce sample configurations from di=erent
ensembles the system can be coupled to a heat bath at constant temperature
(NVT or canonical ensemble) and also can be coupled to pistons at constant
temperature and pressure (NPT or pressure-temperature ensemble). Such
couplings are achieved by extending the phase to incorporate degrees of free-
dom corresponding to the scaling variables used to scale velocities and the
simulation cell.

For example, the Nose–Hoover thermostat is a widely used temperature
coupling scheme that produces simulations in the Canonical (NVT) ensem-
ble. As described in textbooks (see, for example, Frenkel and Smit 2002) this
is accomplished by adding an additional canonical coordinate, s, and con-
jugate momentum, Qṡ, pair to the system Hamiltonian, and introducing a
scaling factor to the velocity of each atom by a factor s. The system Hamilto-
nian then has the added term:
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Q

2
ṡ2 + kBTL ln s (1.10)

where Q, representing an e=ective “mass”, and L are parameters. With the
choice L = 3N +1, it can be shown that this additional term has the e=ect of
coupling the system to a temperature reservoir at the temperature T , produc-
ing a canonical ensemble for the original system. The scaling factor has the
e=ect of keeping the kinetic temperature of the overall system at the value of
T input in the new term. A parallel method can be used to place the simula-
tion in contact with a “piston”, leading to an NPT ensemble simulation.

Hybrid ensembles such as constant pressure in one direction and constant
surface area perpendicular to this direction (NAPT) can be constructed. An
ensemble that is of use in lipid bilayer simulations with small numbers of
molecules is one in which the surface tension (γ) of the bilayer is fixed along
with the normal pressure on the bilayer (NγPT ensemble). This is necessary
because, as shown by Feller and Pastor (1996) and discussed originally by
Chiu et al. (1995), small lipid bilayer simulations run in an NPT ensemble
generally do not approach the expected equilibrium state where γ = 0.

A simulated lipid bilayer is obviously very small compared to the corre-
sponding experimental bilayer. In such a small system the boundaries can
have significant e=ect on the physical properties of simulated systems. The
usual way to reduce boundary e=ects is to impose periodic boundary condi-
tions, where the system is replicated indefinitely in all the directions. How-
ever Pastor and co-workers (2002) have described alternative boundary con-
ditions that allow for a di=erent type of molecular exchange within a leaflet of
a bilayer and across leaflets at the boundaries. This reduces the artificial pe-
riodicity that is imposed by periodic boundary conditions. For the simulation
of a planar lipid bilayer embedded in a three-dimensional bath of water, the
two axes in the plane of the bilayer are to be distinguished from the third di-
mension normal to the bilayer. If an NPT ensemble is to be used care must be
taken in the implementation of the pressure coupling algorithm. Most MD
code packages implement a constant pressure simulation by allowing the di-
mensions of the three axes to change during the simulation, in response to
an applied pressure (this is implemented in several di=erent ways that are
beyond the scope of this chapter to describe). The user must choose whether
to allow the three sides of the simulation box to be changed isotropically or
to decouple the three sides of the box. For a bilayer the best approach is to
decouple the normal dimension, but couple the two dimensions of the box
parallel to the bilayer plane (this avoids unphysical changes in the shape of
the membrane in the box).
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1.2.3
Molecular Dynamics Simulations of Lipid Bilayers

The previous sections focused primarily on general molcular dynamics
methodologies, with some examples for lipid bilayers. In this Section we
now turn to the specific design and execution phases of a molcular dynam-
ics simulation of a lipid bilayer. These include the initial state construction,
equilibration of the simulation and the overall length of the simulation.

1.2.3.1 System Construction and Simulation Design
An initial salient point to consider in the design of an molcular dynamics
simulation of a lipid bilayer is that single component lipid bilayers exhibit
a first order phase transition with respect to temperature. This temperature
ranges from about 40 ◦C for DPPC to temperatures well below 0 ◦C for lipids
with one or more double bonds in the hydrocarbon chains (see the LIPIDAT
data base of thermochemical properties of lipids: www.ca=reylabs.ul.ie).
Above the phase transition temperature lipid bilayers are in a fluid or liquid
crystalline phase and it is in this region that molcular dynamics is especially
suitable tool to study structural and dynamic properties. Additionally, the
structure of the fluid phase varies from lipid to lipid. Phospholipids such
as dioleyol phosphatidylcholine (DOPC) and palmitoyloleyol phosphatidyl-
choline (POPC) are relatively highly disordered above their respective phase
transition temperatures, due to the presence of double bonds between car-
bons 9-10 on one (sn–2) chain (POPC) or both chains (DOPC). However, un-
der similar conditions, sphingolipids are significantly more ordered. The key
di=erence in structure between phospho-sphingolipids (SM) with 16-carbon
chains, and a saturated phospholipid with 16-carbon chains, DPPC, is small.
SM has one double bond at the 4-5 position on the sn–2 chain, and a sphingo-
sine backbone region that contains amide and hydroxyl moieties, compared
to carbonyls in DPPC. 18:0 SM has a phase transition temperature of around
45 ◦C, close to that of DPPC. Nonetheless, the area per molecule in 18:0 SM
above the phase transition is considerably smaller than that of DPPC (about
64 Å

2
for DPPC, and about 52 Å

2
for 18:0 SM). This means that simulations

of SM bilayers will involve more ordered and rigid membranes, compared
to phospholipids, so that configuration sampling will require longer simula-
tion times. This is also true for mixed bilayers where one of the components
is an ordered lipid, say SM or cholesterol. Interestingly if one removes the
phosphocholine polar group from SM one obtains ceramide, an important
skin lipid and a participant in some cell signaling phenomena. Ceramide
bilayers are even more highly ordered than SM bilayers, with phase transi-
tion temperatures above 90 ◦C. Figure 1.6 shows a snapshot of a ceramide
bilayer run at 95 ◦C. We will discuss simulations of mixed and ordered (but
still “fluid” phase) bilayers in a subsequent section.
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Fig. 1.6 Snapshot of a hydrated (with 50 waters/lipid) ceramide bilayer at 95 ◦C.

A second salient point to consider in the design of a molcular dynamics
simulation is the duration of the simulation run. This is determined by the
slowest degree of freedom that one wants to study. For example, in simula-
tions of mixed lipid bilayers in which the lateral organization and distribu-
tion of the various lipids is important the simulation time is determined by
the di=usion coe;cient of the lipid constituents. Unfortunately for molcu-
lar dynamics simulations, lateral di=usion coe;cients for the lipids in the
liquid crystalline phase are small. As determined from experiments di=u-
sion constants are of the order of ∼5 × 10−12 m2/s (Filippov et al. 2003).
This value along with Einstein’s relation gives a root mean square (RMS) dis-
placement of ∼ 20 Å for a single lipid in 200 ns. So, if we are investigating
organization on the length scale of 20 Å then typical simulation runs should
be several hundreds of nanoseconds. On a small size linux cluster a typical
molcular dynamics simulation consisting of around 200 lipids, with an ade-
quate amount of water, can achieve about a half nanosecond per day. Hence,
one needs at least a few months of wall clock simulation time to observe
organization on 20 Å organization.

In simulations a small patch of a bilayer self–assembles in a lipid water
solution in few tens of nanoseconds (de Vries et al. 2004). However most
simulations are performed starting with pre-assembled bilayers. In either
case, but especially in the case of a pre-assembled initial bilayer, a su;ciently
long initial simulation is needed to ensure that the equilibrated state has no
memory of the initial state. Figure 1.7(a) shows one possible choice for an
initial state, a bilayer in a gel-like conformation with all straight, ordered
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Fig. 1.7 Snapshots of sphingomyelin lipid bilayers. The lipid is 18:0 Sphingomyelin, a
common brain lipid. Color coding is: gray: hydrocarbon chains; red: oxygen atoms, orange:
phosphorous atoms: white: hydrogen atoms, and blue: nitrogen atoms. Water molecules
and hydrogen atoms on hyrdocarbon chains and outermost choline groups have been ex-
cluded for clarity. (a) The initial state of the bilayer consisting of all straight chains. (b) The
bilayer after 20 ns of MD simulation.

chains. Figure 1.7(b) shows that same bilayer after 20 ns of molcular dynam-
ics, in which the chains have assumed disordered, fluid-like conformations.
An alternative initial state construction procedure (Venable et al. 1993; Pan-
dit et al. 2004b) involves picking each individual chain from a large chain
conformation library, and assembling a bilayer from these choices. In this
method care must be taken to avoid severe steric overlaps between neigh-
boring chains that will cause the simulation to “blow up” due to huge initial
forces. A third increasingly popular option for starting an MD simulation is
to simply download a pre-equilibrated lipid bilayer from one of the multi-
ple websites that o=er these data files. This approach is often employed for
simulations of the e=ect of non-lipid molecules such as peptides, anesthet-
ics, or channels in a bilayer environment. The non-lipid molecule is inserted
into the downloaded bilayer by removal of a su;cient number of lipids to
create accessible volume. The new composite bilayer is then re-equilibrated.
However this latter option is useful only if the lipid of interest has already
been simulated to equilibrium, and has properties that are in concordance
with experiment. The simulation of the composite membrane is then sub-
ject to the details of the initial molcular dynamics simulation that created it,
and should be run using the same forcefield that was used in the creation
and equilibration of the downloaded bilayer. If new systems are to be simu-
lated they should be built from the “ground up”. For example, for simulations
of multi-component bilayers Pandit et al. (2004b) constructed the initial bi-
layers of 100 18:0 SM, 100 DOPC and 100 cholesterol by randomly picking
molecules from previous simulation coordinate files and placing them in a
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bilayer geometry with lipid phosphate locations and cholesterol oxygen loca-
tions at ±25 Å from the origin.

In general the initial setup of the simulation state must be done with care.
There should not be any artificial local or global structures in the initial state
as these may produce unphysical correlations that may not disappear even
after a very long simulation. Initial states with large potential energies inad-
vertently embedded between some of the molecules will cause major insta-
bilities due to large repulsive forces.

In all cases where a bilayer is built it is necessary to carefully adjust the
initial configurations through an energy minimization scheme, to elimi-
nate high energy contacts present in the initial configuration. Most popu-
lar molcular dynamics simulation packages o=er energy minimization al-
gorithms using steepest descent or conjugate gradient methods (Berend-
sen et al. 1995). Equilibration of the lateral organization in a multicompo-
nent membrane will, as discussed above, require many hundreds of ns. In
this case an alternative is to build and run simulations with several di=er-
ent possible initial states. This could include di=erent random placements
of molecules or it could also include the construction of a pre-formed do-
main to consider possible higher degrees of lateral membrane organization
(Pandit et al. 2004c). The equilibration time depends on the size and chemi-
cal composition of the simulation and on the initial state of the system. Typ-
ically equilibration is examined by calculating time correlation functions of
relevant physical quantities of the system. For example, in lipid systems usu-
ally area per lipid and chain order parameters are closely monitored. Apart
from physical properties, thermodynamic properties such as temperature
and pressure are also closely monitored during equilibration process.

In the process of designing a molecular dynamics simulation of a lipid bi-
layer a decision must be made regarding the inclusion of hydrogen atoms.
Simulations that include all hydrogen atoms explicitly are referred to as all-
atom simulations. Usually all-atom simulations are more accurate but they
impose a huge penalty in computation time, due to the large number of
additional degrees of freedoms associated with the hydrogen atoms. Also
explicit hydrogens in the system restrict the integration time step because
the hydrogen atom is one order of magnitude lighter than the other atoms
in the simulation. Alternatively, one can use a united-atom simulation where
apart from hydroxyl, amide and water hydrogen atoms, all other hydrogens
are combined with the atom with which they are connected. Forcefields for
both types of simulations are available, as discussed in a prior section. Gen-
erally, for lipid systems the united-atom simulations are preferred because
they strike a balance between accuracy and the simulation speed. However
Venable et al. (2000) have shown that an all-atom model is necessary if one
is to simulate a lipid bilayer in the low temperature gel phase.



24 1 Simulations and Models of Lipid Bilayers

To simulate a lipid bilayer in a biological context it is necessary to “hydrate”
the simulation box. The user must determine the model water molecule to
be used and the number of molecules to add. Here again there is a trade-
o= between atomistic accuracy and computational speed. Most commonly
used water molecules treat water as a rigid assembly of three or four point
charges (balanced for overall neutrality), (Stillinger and Rahman 1974; Still-
inger 1980; Jorgensen et al. 1983). For each model the central oxygen atom
also serves as a center for a 6-12 van der Waals potential. In each model lo-
cations and magnitudes of the positive and negative charges are adjusted to
fit experimental data, but no model fits all of the diverse and complex prop-
erties of water. For example TIP4P (Jorgensen et al. 1983), perhaps the most
popular water model used in simulations, has a dielectric constant that is
much lower than 80, the value for pure water. It has a melting temperature
of 232K, and it fails to predict the ice 1h solid phase. The other fixed point
charge models have their own shortcomings. Importantly for biological sim-
ulations, none of the rigid water molecules allow for the important e=ects
of polarization. However, in spite of these rather severe model deficiencies,
fixed-charge water models provide a degree of atomistic structural accuracy
to a molecular dynamics simulation of a bilayer so that the water models may
be reasonably accurate over the temperature range of molecular dynamics
simulations of lipids (10–50 ◦C). A new model for water, CC-pol (Bukowski
et al. 2007), has been developed that promises to improve greatly on wa-
ter molecules and includes polarization e=ects. The model is more complex
than the above water models, however with some 3-body interactions that
may adversely a=ect computational performance.

The number of water molecules to be included in the run is as important
as the choice of water model for a simulation. In a simulation of a hydrated
bilayer about 8–10 water molecules become hydrogen bonded to lipid po-
lar group, and carbonyl oxygens of each lipid molecule. This means that the
water near the lipid interface is not structurally similar to bulk water. So to
simulate a lipid bilayer in excess water, it is necessary to have su;cient water
so that there is a layer of water with the density and di=usion constant of bulk
water. This layer serves as a bu=er to interactions across the periodic bound-
ary of the lipid polar groups on the opposite leaflets. If the leaflets interact
across the periodic boundaries the simulation will contain serious unwanted
artifacts. A general guideline is that there should about 32 waters per lipid
for simulations of phospholipids with phosphocholine polar groups. How-
ever for lipids with more exposed charge groups, such as ceramide (Cer)
more waters (in that case about 50 per lipid (Pandit et al. 2007c)) are needed,
see Fig. 1.6. The hydration level is an important consideration for an addi-
tional reason, namely the computation of electrostatic interactions between
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water molecules utilizes much of the CPU time in a lipid bilayer molcular
dynamics simulation.

Once a hydrated lipid bilayer has been successfully constructed, hydrated
with the water molecule of choices and energy minimized, it must be equi-
librated by molcular dynamics simulation before structural properties can
be calculated. Generally equilibration is carried out by running successive
simulations of a few hundred picosecond duration. After each simulation
the atomic velocities are reset randomly from a Gaussian distribution with
variance proportional to the simulation temperature. The number of such
simulations needed to reach equilibrium depends on the specific lipid com-
position and the size of the simulation, but at least 10–20 ns seems to be
necessary for even the simplest cases. It is also possible to include other
equilibration methods, in conjunction with MD, to speed the equilibration
runs. Chiu et al. (1995) found that intermittent Configurational Bias Monte
Carlo steps (to be described in a subsequent section) speed up equilibration
of a DPPC bilayer by a factor of three. The reason for the speed-up is that MC
moves can change the configuration of the bilayer so that the MD run that
follows has a di=erent starting point, and traverses into a di=erent region
of configuration space. A simulated lipid bilayer is judged to be equilibrated
after structural and thermodynamic properties of the system become inde-
pendent, within fluctuations, of the time. Properties to be monitored during
equilibration include the dimension of the simulation cell (in an NPD en-
semble), the total energy (in NPT or NVT ensembles), and structural prop-
erties such as chain order parameters. However, we hasten to point out, that
in an MD simulation run on even a 100 ns time scale not all degrees of free-
dom will be equilibrated. For example, molecular rotational and translational
reorganization requires an order of magnitude or more longer in time.

After equilibration is achieved a long continuous molecular dynamics sim-
ulation (with no velocity resets) is run. Trajectories and snapshots are saved
at regular intervals (usually a few ps) from this run for the calculation of the
structural and statistical properties of the bilayer. In the next sections we will
discuss the analysis steps that produce these data.

1.2.3.2 Analysis and Comparison with Experiments
Lipid bilayer systems continue to be extensively studied using various ex-
perimental techniques, and these data should be continually used to test
simulations. Although atomistic simulations have a unique contribution to
understanding of the properties of lipid bilayers, any comparison between
simulations and reality has to be done in the context of the finite (extremely
small compared to experimental) length and time scales used in simulations.
In the following sections we will discuss comparison of simulations with ex-
periments such as X-ray di=ractions, NMR, and AFM experiments that deter-
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mine structural properties of the lipid bilayers. We will also discuss compar-
ison of simulations with electrophoretic measurement experiments which
measure ion binding and surface potential of lipid bilayers. Agreement be-
tween simulation and any particular experimental data set is a necessary but
not a su;cient condition for the validity of the simulation. Agreement be-
tween simulation and a large set of independent experimental data sets improves
confidence in the simulations but still does not prove the validity of the cal-
culations.

X-ray di=raction experiments and simulations: In experiments the form factor
of the bilayer is obtained from the X-ray di=raction pattern. Then the elec-
tron density profile is obtained from the form factor by developing a lipid bi-
layer model and optimizing the model parameters to reproduce the observed
form factors. Many di=erent structural models have been introduced for the
analysis of electron densities in lipid bilayers. Torbet and Wilkins (1976) de-
veloped a model with constant electron densities for di=erent regions of the
lipid bilayer. Due to the use of step functions the model develops disconti-
nuities leading to high frequency noise at the large amplitudes of the form
factor (see figures 5, 7, 8 of Klauda 2006). To overcome the di;culties intro-
duced by step functions Wiener and White (1991, 1992, 1992) introduced a
model in which overlapping Gaussian distributions were used. Although this
model did not have discontinuities it was necessary to tune a large number of
free parameters and consequently non-unique solutions were possible. Two
models were developed and used by Nagle and co-workers using liquid crys-
tal theory and, more recently, simulations (Klauda et al. 2006; Tristram-Nagle
and Nagle 2004; Nagle and Tristram-Nagle 2000) to interpret X-ray di=raction
data.

In simulations one can directly calculate the electron density. However,
direct comparison of this electron density is not possible because the exper-
imental electron density is model dependent. It is therefore better to use
simulation data to calculate the form factors from the electron densities us-
ing

F (q) =
∫ D/2

−D/2

(ρe(z) − ρbulk water
e ) cos(qz)dz (1.11)

where D is average length of the simulation cell in z direction, ρe(z) is
symetrized electron density of the system, and ρbulk water

e is the electron density
of the bulk water. Figure 1.8 shows a comparison between simulations and
experiment for X-ray form factors (a) and electron densities (b) for POPC.
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Fig. 1.8 Simulated and experimental X-ray structure data for pure POPC: (a) Form factors;
(b) electron density. ULV: experimental data from unilamellar vesicles; ORI: experimental
data from oriented multibilayers. Reprinted from Pandit et al. (2007a)

NMR experiments and order parameters: The ordering of hydrocarbon tails
is determined in NMR experiments by measuring the deuterium order pa-
rameters. The order parameter tensor, S, is defined as

Sab =
1
2
〈3 cos(θa) cos(θb) − δab〉 a, b = x, y, z (1.12)

where θa is the angle made by the ath molecular axis with the bilayer nor-
mal and δab is the Kronecker delta. In 2H–NMR experiments quadrupo-
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lar splitting ∆νQ is observed for the selectively deuterated hydrocarbon
chains (Douliez et al. 1995). This splitting is related to the Wigner matrix
elements D(p)

mn as

〈∆νQ〉 =
3
2
AQ

3 cos2(θL) − 1
2

〈D(2)
00 (Ω)〉 (1.13)

where θL is the angle between bilayer normal and the laboratory z–axis and

〈D(2)
00 (Ω)〉 = SCD =

1
2
〈3 cos2(β) − 1〉 (1.14)

Figure 1.9 illustrates the definition of β; the angle between the bilayer normal
and the C−H plane for a given methylene molecule. In the simulations with
the united atom forcefield, the order parameter for saturated and unsaturated
carbons SCD can be determined using the following relations

−SSat
CD =

2
3
Sxx +

1
3
Syy (1.15)

−SUnsat
CD =

1
4
Szz +

3
4
Syy ∓

√
3

2
Syz (1.16)

These relations essentially determine β using tetrahedral and planer geom-
etry of saturated and unsaturated bonds respectively. Figure 1.9 shows an
order parameter profile for DPPC bilayer at 50 ◦C. A signature of the profiles
is the decrease in the order parameter with increasing carbon number along
the chain.

Most current simulations are capable of producing order parameter pro-
files that agree with experiment. That this agreement is found in spite of very
short simulation times (far shorter than the time scale for whole molecule
tilting or large scale rotations) suggests that simulations are able to gener-
ate enough molecular configurations to fully sample the important region
of configuration space for a lipid bilayer. The slope of the profile in Fig. 1.9
is a general consequence of steric interactions between chains in a bilayer
environment.

Atomic force microscopy experiments and simulations: In atomic force mi-
croscopy experiments a bilayer is generally supported on a hard surface like
mica and then thickness and surface forces are deduced by scanning the bi-
layer surface with a cantilever.

To reliably measure the bilayer thickness in simulations consider first the
simulation setup in comparison with the AFM experimental setup of Rinia
et al. (2001). In the experiment the thickness is measured with respect to a
flat surface on which the bilayer is supported. Since the simulated bilayer
does not have such a flat reference surface an algorithm proposed by Pandit
et al. (2003a) can be employed which gives a surface to point correlation
function.
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Fig. 1.9 (a) Schematic diagram illustrating the angle used in the determination of segmental
order parameters. (b) Typical plot of an order parameter profile comparing experiment and
simulation

The algorithm is described in the schematic drawing in Fig. 1.10. Here, for
each phosphorus in the top leaflet one locates the phosphorus in the lower
leaflet which is approximately below it. This is achieved by

• Tesselating the lower leaflet into voronoi polygons.

• Projecting coordinates of phosphorus from the top leaflet on to this tesse-
lated surface.

• Identifying the polygon in which the projected coordinates fall. This pro-
cedure identifies a trans-bilayer “neighbor” for each lipid in the top leaflet.

With such identification we define the distance of phosphorus in the top
leaflet with respect to the surface defined by the phosphorus atoms in the
lower leaflet as the normal distance between phosphorus atoms from two
leaflets that are “vertical neighbors” of each other. This distance is used to
calculate the densities of phosphorus atoms of DOPC and SM in one leaflet
with respect to the surface defined by the phosphorus atoms in the other
leaflet.

As an example we compute the thickness of a ordered domain in fluid
phase lipid bilayer. Figure 1.11 shows plots of the densities of phosphorus
atoms of SM and DOPC molecules in one leaflet as function of the distance
from the surface defined by the phosphorus atoms from the other leaflet.
The SM density shows two peaks. The peak at ∼ 4.5 nm thickness is mainly



30 1 Simulations and Models of Lipid Bilayers

Fig. 1.10 Schematic drawing describing the method used to calculate surface to point cor-
relation function.

Fig. 1.11 Surface to point correlation of phosphorus in one leaflet with respect to the surface
defined by the phosphorus atoms in the other leaflet. Reprinted from Pandit et al. (2004b).
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due to the SM molecules which are on top of DOPC or other SM molecules
with lower order parameter. The peak at ∼ 4.8 nm represents SM molecules
that are near the center of the domain where SM molecules lie only on top of
another straight chain of SM molecules. The di=erence in the thickness of
the SM–CHOL domain and the thickness of DOPC calculated from Fig. 1.11
is ∼ 4.5 ± 0.35 Å for the SM closer to the boundary and ∼ 7.4 ± 0.34 Å for
the SM near the center of the raft like domain. The error estimates of the
thickness were calculated by computing the standard deviation of the average
thickness calculated over several 250 ps trajectories. Rinia et al. (2001) found
this di=erence in AFM experiments to be ∼ 6 Å.

1.2.3.3 Surface Potential Experiments
Experimental studies measuring the electrostatic properties of the mem-
brane interface often make use of electrophoretic methods (Cevc 1990; Eisen-
berg et al. 1979; McLaughlin 1989; Tatulian 1987). In electrophoretic experi-
ments the mobility of vesicles in electrolyte is measured. The ζ–potential is
calculated from this mobility using the Helmholtz–Smoluchowski equation.
The membrane surface charge density is then determined by calculating the
intrinsic binding constant of ions using the Langmuir isotherm along with
the Gouy–Chapman (GC) theory. The GC model assumes that the interface
between the membrane and aqueous solution is planar with zero width and
that the charge on the membrane is homogeneously distributed on the mem-
brane surface in a continuous way. The ions in the GC description are repre-
sented as point charges immersed in a dielectric continuum and the ion–ion
correlation is neglected.

To illustrate the analysis of simulation data for ion binding to a lipid bi-
layer we summarize the study of Pandit et al. of a DPPC bilayer in a salt
solution (Pandit et al. 2003b). In order to consider ion binding it is neces-
sary to identify a reasonable criterion to discern if an ion is bound. One of
the simplest structural changes that indicates the binding of an ion is its de-
hydration. If an ion loses one or more of the water molecules from its co-
ordination shell it can be considered to be bound to the membrane surface
to some extent. Figure 1.12 shows that Na+ ions in the range of 1.4–1.8 nm
from the center of the bilayer have 1–3 fewer waters (out of ∼ 6) in their
coordination shell. One may consider that only these interfacial ions are
bound to the surface. With this criterion ∼0.9–3.7 ions are bound to the
surface. This range in the number of bound ions gives rise to an intrin-
sic binding constant1) KNa+ of ∼0.15–0.61 M−1 (Pandit et al. 2003c). The

1) The intrinsic binding constant is taken to be K = α
(1−α)C

, where C is the concentration

of ions at the membrane surface (in our case ∼0.1 M) and α is the fraction, (moles of
bound ion) / (moles of lipid on the surface) (Macdonald and Seelig 1988). The number of
lipids on the surface of a bilayer leaflet in the case of our simulation is 64.
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Fig. 1.12 Plots of (a) atom density, (b) sodium atom distribution and (c) coordination
numbers from simulations.
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experimentally observed binding constant of Na+to phosphatidylcholine is
0.15±0.10 M−1 (Tatulian 1987). Following the same logic simulations show
that one Cl− is bound to the membrane surface (Pandit et al. 2003b). This
gives a binding constant KCl− of ∼0.16 M−1. The corresponding experimen-
tal value is 0.2±0.1 M−1 (Tatulian 1987).

In order to probe the electrostatic environment at the membrane surface
in a simulation one can calculate the electrostatic potential as a function of
the bilayer normal (z) by twice integrating Poisson’s equation for the charge
density along the bilayer normal z axis as follows:

Φ(z) − Φ(z0) =
−1
ε0

∫ z

z0

∫ z′

z0

ρ(z′′)dz′′ dz′ (1.17)

where the point z0 is in the bulk water, ε0 is the permitivity of the vacuum,
and the ρ is the charge density calculated by dividing the whole box into slabs
parallel to the x–y plane and counting the number of charges in each slab.
The zero of the potential is placed at z0 and, since leaflets of the bilayer are
equivalent, we averaged the contributions from the two leaflets in the calcula-
tions. Figure 1.12 shows the potential profile from the center of the bilayer to
the bulk water. The PC—NaCl system exhibits a positive potential (∼25mV)
with respect to the bulk water just outside the bilayer (>∼ 3 nm), while the
potential in the pure-PC system remains approximately zero. We attribute
this positive potential to the adsorption of sodium ions to the surface of the
membrane. We calculated the surface charge density as a function of z using
the following relation:

σ(z) =
∫ z

0

ρ̂(z′)dz′ (1.18)

where z = 0 is at the center of the bilayer and ρ̂ is the charge density of
the system excluding water. Figure 1.12 shows that after ∼2.65 nm from the
center of the bilayer the surface charge density becomes positive due to the
adsorption of excess sodium ions in the PC—NaCl system. Note that the sur-
face charge density in the pure-PC system is never positive. The observation
of positive charge density and of a small positive potential in a region close
to the boundary of the bilayer and water is consistent with the sign and the
value of the ζ–potential measured in experiments with Na+ cations (Makino
et al. 1991). The experimental results related to ζ–potential are often analyzed
with the help of the simple Gouy–Chapman theory.

Of general interest for lipid bilayer simulations is the dipole potential of
the membrane. This is the potential di=erence between the interior and the
surface of the membrane. Figure 1.13 shows that this di=erence is a few hun-
dred millivolts. It is possible to use simulation data to identify the source of
this potential. Figure 1.13 shows calculated dipole potential profiles across
the membrane for 18:0 sphingomyelin and 16:0 ceramide bilayers. The sim-
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Fig. 1.13 Dipole potential profiles for SM (dashed lines) and Cer (solid lines) bilayers.
(a) Total potential. (b) Separate contributions from water and lipid for Cer. (c) Separate
contributions from water and lipid for SM.

ulations both show that the positive potential barrier is the result of the dif-
ference between the potentials from larger contributions: water contributes
a positive dipole potential of several volts for SM and less for Cer. The fact
that the net potential barrier is a few millivolts means that the lipid polar
groups contribute a negative dipole potential that does not quite compensate
the water contribution.
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1.2.3.4 Radial Distribution Functions
While snapshots of configurations produced in lipid bilayer MD simulations
are interesting, quantitative structural analysis of intermolecular and inter-
atomic structures in a fluid bilayer requires the calculation of radial distribu-
tion functions. If properly sampled the calculated correlation functions can
provide information about change in free energy with the configuration of
two particles as the reaction coordinate. Generally pair correlation functions
are calculated as averages over solid angles leaving only a radial dependence.
These are denoted as radial distribution functions (RDF). The RDF is defined
as

g(r) =
N(r)

4πr2ρδr
(1.19)

where N(r) is the number of atoms in the shell between r and r + δr

around the central atoms and ρ is the number density of atoms, taken as
the ratio of the number of atoms to the volume of the simulation cell. In
a simulation the RDF is calculated, between atoms A and B, on di=erent
molecules by scanning all simulation snapshots from the equilibrated bilayer
simulation, calculating the radial distance between each pair A and B and
binning the data. The normalized binned distributions then represent the
RDF. For correlation between complex polyatomic molecules it is necessary
to pick specific atoms in each molecule for binning. For example, a typical
RDF produced from a simulation is shown in Fig. 1.14 in which atom A is
the cholesterol hydroxyl oxygen and atom B is a water oxygen atom.

The RDF in this figure was produced from an MD simulation of a ternary
1 : 1 : 1 mixture of DOPC, SM and cholesterol. The RDF distances were
calculated between the hydroxyl oxygens of cholesterol molecules and the
middle carbon atom of the backbone regions of DOPC and SM, respectively.
It is important to point out that the RDFs are quite sensitive to the choice
of atoms. For example, if RDFs between lipids and cholesterol are calculated
based on center of mass distances much structural information is hidden be-
cause the center of mass distances are strongly dependent on molecular con-
formations that are driven by the hydrocarbon tails. Lateral organizational
information is better determined from RDFs calculated between the back-
bone regions, to which all of the chains are attached.

Peaks in Fig. 1.14 are identified as coordination shells for the molecules.
The first coordination shell is defined by the location of the sharp peak in the
RDF. By integrating the RDF under the peak one can obtain the total number
of waters bound to cholesterol. RDF data as defined above are purely radial.
However in the case of bio-molecules angular asymmetry is also important.
The cholesterol molecule has one flat face (the α–face) and one face which
is rough due to protruding methyl groups (the β–face). Since cholesterol lies
primarily in the hydrocarbon region of the bilayer it is reasonable to ques-
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Fig. 1.14 RDF of cholesterol OH – water O in DPPC at various cholesterol contcentrations.
Reprintred from Chiu et al. (2002).

tion whether this specific design of the cholesterol molecule plays any role in
promoting domain formation. For correlations involving two variables, ori-
entation and position, one can define a bivariate correlation function g(r, ϕ)
between one selected backbone carbon atom of DOPC and SM molecules
respectively, and the oxygen atom of cholesterol defined by

g(r, ϕ) =
N(r, ϕ)

2πrρδrδϕ
(1.20)

where the distance r and ρ are defined as in RDFs, the angle ϕ is the angle
made by the distance vector with respect to the positive x–axis of the choles-
terol body coordinate frame (see Fig. 1.15) and N(r, ϕ) is the number of the
selected lipid carbon atoms in an area element rδrδϕ at the point (r, ϕ) from
the oxygen of cholesterol. In a later section we will illustrate an example of
the use of a two dimensional RDF that has provided new insights into lipid-
cholesterol interactions, and has led to an accurate coarse grained model for
lipid-cholesterol bilayers.

1.2.3.5 Heterogeneous Membrane Simulations
In this section we describe results of simulations of heterogeneous mem-
branes. The first and simplest type of heterogeneous membrane that has
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Fig. 1.15 The body coordinate system used in calculation of g(r, ϕ). Reprinted from Pandit
et al. (2004b).

been studied by simulations is also one with considerable biological impor-
tance: bilayers composed of a single species of lipid and a varying concentra-
tion of cholesterol. Lipid-cholesterol mixtures have been studied by Monte
Carlo and MD simulation for over twenty years by several groups (Scott
1993; Tu et al. 1998; Pandit et al. 2004a; Hofsäß et al. 2003; Chiu et al.
2001a; Chiu et al. 2001b; Scott 2002). In 2002 Chiu et al. (2002) reported
a comprehensive study of mixed bilayers of dipalmitoyl phosphatidylcholine
(DPPC) and cholesterol. They carried out Configurational Bias Monte Carlo
and molecular dynamics simulations for bilayers of dipalmitoylphosphatidyl-
choline (DPPC) and cholesterol for DPPC:cholesterol ratios of 24 : 1, 47 : 3,
23 : 2, 8 : 1, 7 : 1, 4 : 1, 3 : 1, 2 : 1 and 1 : 1, using 5 nanosecond
(ns) molecular dynamics runs and interspersed Configurational Bias Monte
Carlo to ensure equilibration (this procedure will be described in a subse-
quent section). For simulations with cholesterol concentrations above 12.5%
the area per molecule of the heterogeneous membrane varied linearly with
cholesterol fraction, as shown in Fig. 1.16. From the slope of the linear area
versus cholesterol concentration it was found that the area per cholesterol
was surprisingly small, ≈ 24 Å

2
per molecule, while the area per DPPC was

≈ 52 Å
2
. The low area of cholesterol is a consequence of the ability of the flex-

ible DPPC chains to back closely around the cholesterol rings. Figure 1.16
shows the linear relationship between area and cholesterol concentration.

Radial distribution function analysis of the lateral distribution of choles-
terol molecules in the bilayer revealed a tendency for small subunits of one
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Fig. 1.16 Plot of area per molecule vs cholesterol concentration for DPPC-cholesterol sim-
ulations. Reprinted from Chiu et al. (2002).

or two lipids plus one cholesterol, hydrogen bonded together, to act as one
composite particle and perhaps to aggregate with other composites at higher
concentrations of cholesterol. The conclusions drawn from simulations are
consistent with experimentally observed e=ects of cholesterol, including the
condensation e=ect of cholesterol in phospholipid monolayers and the ten-
dency of cholesterol-rich domains to form in cholesterol-lipid bilayers, but
the short simulation times shed no light on the longer-time stability of the
subunits. However the data shown in Fig. 1.16 and the insights that resulted
from the DPPC-cholesterol simulations are an early example of the powerful
insight that can come from careful simulations.

In an extension of the work of Chiu et al. (2002), and with the revised and
improved forcefields for lipids described in the previous section Pandit et al.
have run and analyzed simulations of mixtures of cholesterol with palmi-
toylolyeol phosphatidylcholine (POPC) and diolyeol phosphatidylcholine
(DOPC) (Pandit et al. 2007b). This work revealed a new way to interpret
the area per molecule in a pure lipid bilayer, as discussed in the previous
section. It also revealed significant new insights into the nature of phospho-
lipid-cholesterol interactions.
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Table 1.2 Partial molecular volumes and areas calculated for lipid-cholesterol mixtures
calculated from simulations and from experimental data (Greenwood et al. 2006).

DPPC DPPC POPC POPC DOPC DOPC
(MD) (Expt ) (MD) (Expt) (MD) (Expt)

Temperature (K) 323 323 303 303 303 303

Vl (Å3) 1213.9 1228.6 1239.5 1255.5 1269.4 1300.1
(x < 0.25) (x < 0.25)

1197.3 1207.6
(x ≥ 0.25) (x ≥ 0.25)

Vch (Å3) 594.4 573.8 608.0 622.6 606.8 632.9
(x < 0.25) (x < 0.25)

644.9 637.1
(x ≥ 0.25) (x < 0.25)

Al (Å2) 54.07 — 61.50 — 61.50 —

Ach (Å2) 23.84 — 12.42 — 20.84 —

x is the cholesterol concentration. Partial specific area data are for x > 15%.

Table 1.2 lists calculated partial molecular volumes and areas calculated
from the simulations for DPPC, DOPC and POPC as functions of choles-
terol concentration. Pandit et al. calculated the partial molecular following
the method proposed by Edholm and Nagle (2005), and the partial specific
volume following the method proposed by Greenwood et al. (2006), and
described earlier in this chapter. Of particular interest are the partial mo-
lar molecular areas. For cholesterol concentrations close to 10% the partial
molecular area of a cholesterol is negative. Negative partial molecular areas
are interpreted by Edholm and Nagle (2005) as a manifestation of the conden-
sation e=ect of cholesterol on surrounding lipids. Above about 15%, and up
to 50% cholesterol concentration, the partial specific areas take on the con-
centration-independent values listed in Table 1.2.The partial molecular areas
of cholesterol and lipids are listed in Table 1.2. The computed cholesterol
partial molecular area is largest in saturated DPPC and smallest in POPC
where one chain is saturated and the other chain is unsaturated. For DOPC,
with two unsaturated chains, the area per cholesterol is higher. This implies
that in mono-unsaturated POPC bilayers cholesterol admits a di=erent pack-
ing structure as compared to the mixtures with fully saturated DPPC and
di-unsaturated DOPC.

To further explore this somewhat surprising conclusion, Pandit et al. cal-
culated radial distribution functions of CH=CH group of sn–2 chains around
the CH3 group of β–face of cholesterol. Figure 1.17(a) shows these RDFs for
POPC and DOPC molecules. There are two peak in the RDFs. The first peak
is around ∼ 4.5 Å from the methyl group and the second peak is around
∼ 7 Å from the methyl group. As illustrated in Fig. 1.17 these two peaks
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Fig. 1.17 (a) Radial distribution functions between cholesterol methyl groups on the rough
β face and POPC and DOPC CH=CH double bonds. (b) Stick model of cholesterol and
DOPC illustrating atoms used in RDF calculation.

correspond to two closest positions for CH=CH group along β and α–faces
respectively. In Fig. 1.17, for DOPC both the peaks are approximately the
same height whereas for POPC the first peak is taller than the second peak.
This implies higher correlation of POPC CH=CH groups with the β–face of
cholesterol.

Sphingomyelin is an important component of the outer leaflet of mam-
malian cell membranes, yet much less is known about SM structure in bi-
layers than is known about phospholipids. To begin to address this issue
Chiu and co-workers constructed a fully hydrated bilayer of 18:0 SM (Chiu
et al. 2003). The size of this system was 1600 SM molecules and51 200 wa-
ter molecules, for a total of over 250 000 atoms. Chiu et al. found that the
SM bilayer is much more ordered than its DPPC counterpart, with an area
per molecule of 48 Å

2
compared to about 64 Å

2
for DPPC. For the SM bilayer

there is significant intramolecular hydrogen bonding between the phosphate
oxygen and the amide hydrogen, as well as between water and the sphingo-
sine hydroxyl moiety.

Khelashvili and Scott (2005) ran simulations of a bilayer consisting of 266
SM, 134 cholesterol molecules and 12924 waters, at two separate tempera-
tures, 20 ◦C and 50 ◦C. This choice of temperatures brackets the SM phase
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transition temperature of about 41 ◦C so that the e=ect of cholesterol on both
gel-like and fluid-like SM bilayers would be compared. The simulations re-
vealed an overall similarity of both systems, despite the 30 ◦C temperature
di=erence. The area per molecule, lipid chain order parameter profiles, atom
distributions and electron density profiles are all very similar for the two
simulated systems. Khelashvili and Scott also observed strong intra-molecu-
lar hydrogen bonding in SM molecules between the phosphate ester oxygen
and the hydroxyl hydrogen atoms and they found that cholesterol hydroxyl
groups tend to form hydrogen bonds primarily with SM carbonyl, methyl
and amide moieties and to a lesser extent methyl and hydroxyl oxygens.

Ternary mixtures of lipids and cholesterol have been studied in simulation
by Pandit et al. (2004c, 2004b) and most recently by Niemală et al. (2007). In
two sets of simulations Pandit et al. examined the structure of lipid bilay-
ers containing mixtures of 18 : 0 SM, DOPC and cholesterol. In the first
case they constructed a large bilayer consisting of 1424 molecules of DOPC,
266 molecules of 18 : 0 SM, 122 molecules of cholesterol and 62,561 water
molecules. Figure 1.18 shows snapshots of this bilayer.

A second ternary mixture simulation run by Pandit et al. consisted of 100
DOPC, 100 SM and 100 cholesterol molecules plus 9600 waters. Unlike the
domain simulation described above this system was started from a random
distribution of DOPC, SM and cholesterol. They simulated this system for
250 ns to identify the structural and dynamical parameters that drive the for-
mation of domains. Also unlike the domain simulation described above this
simulation was started from a random distribution of DOPC, SM and choles-
terol molecules. As a control a simulation of a binary system consisting of
100 SM plus 100 DOPC, with no cholesterol, was also run. Figure 1.18 shows
before and after snapshots of the ternary system and a 200 ns snapshot of the
binary system.

One of the features qualitatively revealed in the snapshots in Fig. 1.18 is
that in 1 : 1 : 1 DOPC-SM-cholesterol mixtures an apparent preponderance
of cholesterol exists at the interface between regions rich in SM and regions
rich in DOPC. To quantitatively investigate this observation we calculated
two-dimensional RDFs as described in a previous section. Figure 1.19 shows
the two dimensional RDFs for DOPC-cholesterol (a) and SM-cholesterol (b).
The density plots show that SM is preferentially located on the smooth face
of cholesterol. DOPC tends to be found to a greater extent near the rough
face and the edges of the cholesterols. The two-dimensional RDFs shown
in Fig. 1.19 show how SM is found to a greater extent at the smooth face of
cholesterol, while DOPC by “default” is found to a slightly greater extent near
the rough face.

This result is an example of how the atomic level of details available in
a simulation can reveal new subtle intermolecular interactions and correla-
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Fig. 1.18 Initial (a) and final (b) snapshots of one of the leaflets in systems of 1 : 1 DOPC-
SM, with (a) and (b) and without (c) equimolar cholesterol. DOPC molecules are repre-
sented by gray solid atoms, SM by orange solid atoms, and Chol by yellow solid atoms.

tions that may be important for larger scale membrane structure. In fact,
as we describe in a subsequent section, this particular find was incorpo-
rated into a coarse grained model for lipid-cholesterol mixtures that agrees
extremely well with experimental data.

Niemela et al. (2007) extended the time and length scales of lipid-choles-
terol simulations by running MD studies of 1024 lipids in 1 : 1 : 1 and
2 : 1 : 1 POPC:16:0 SM:cholesterol. The simulations were run for 100 ns
each. This study provides pressure profiles and order profiles that show the
rigidity of the bilayers, possibly a consequence of the use of POPC instead
of DOPC as the phospholipid. The lateral distribution of chain order is in-
dicative of the beginnings of a lateral organization process. These profiles
are similar to ones that can be constructed by Self Consistent Mean Field
modeling as we describe in a subsequent section.



1.2 Atomistic Models 43

Fig. 1.19 Density plot of g(r, θ) on the XY-plane of Chol body co-ordinate system. A Chol
molecule is schematically shown as a black bar with a the small appendage that denotes
the β-face of the molecule with possible fluctuation of its shape (with respect to the body
coordinates) shown in gray. Reprinted from Pandit et al. (2004b).
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In summary, a number of important insights into interactions between
lipids and cholesterol:

• Simulations have observed the change from fluid to liquid ordered struc-
ture in DPPC as cholesterol concentration increases.

• Simulations have shown that the partial specific area of cholesterol in
DPPC is less in all cases than the area of cholesterol in crystals of pure
cholesterol. POPC bilayers minimize the partial specific area of choles-
terol.

• The asymmetric structure of cholesterol plays an important role in lipid-
cholesterol interactions, with the smooth face favoring contact with satu-
rated lipid chains strongly over unsaturated chains.

• Cholesterol seems to prefer to lie at an interface between lipids with sat-
urated chains and lipids with monounsaturated chains or, in the case of
POPC, seems to invite an asymmetric packing that minimizes the choles-
terol partial specific area.

1.2.3.6 Simulations of Ordered Lipid Phases
At temperatures below the main lipid chain melting temperature lipids in
bilayers form a “gel” phase in which hydrocarbon chains are generally ori-
ented parallel to each other and tilted perpendicular relative to the mem-
brane plane. In addition certain double chain lipids with relatively large polar
groups (such as phosphatidylcholine phospholipids) exhibit an intermediate
phase between the fluid and gel phases in which the bilayer forms periodic
corrugations, or “ripples”. While the gel phase and the ripple phase are not
of direct biological significance they are of interest as new phases of soft mat-
ter. Simulations of ordered phases pose a new set of problems, because of the
extra rigidity and slower rate at which configuration space is sampled. Thus
equilibration is a much more severe problem in the simulation of ordered
or partially ordered membranes. The slow rate of conformational changes
and di=usion means that the relaxation of a simulation from the initial state
means that memory of that initial state persists for much longer simulation
times than would be the case for a fluid phase simulation.

A careful simulation of a DPPC bilayer in the gel phase (at 293K) was
carried out by Venable et al. (2000). They were able to reproduce many exper-
imental properties of the gel phase including D-spacing, chain tilt, fraction
gauche and the lateral compressibility modulus. Their simulations repro-
duced the correct orientation of the chain tilt across the two leaflets. The
tilt of the chains should result in a parallel alignment of the chains across
the two leaflets. However, earlier simulations (Scott and Clark 1996, unpub-
lished) led to herringbone patterns for the chains across the leaflets. Simula-
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tions by Tu et al. (1996) also found a herringbone gel structure. These results
indicated that either the forcefields or the simulation starting state were in
need of modification. Venable et al. used an all-atom model for DPPC, with
all hydrogens included, whereas our own earlier simulations were done in
a united atom model. It may be that all-atom simulations are needed to cor-
rectly model the gel phase in atomistic simulations.

The ripple phase has been an enigma for modeling for many years (Scott
1984). This phase is only found in lipids with relatively large polar groups
and saturated or monounsaturated chains such as DPPC and POPC. It is not
found in phosphatidylethanolamine bilayers. The distinguishing character-
istic of the ripple phase is a periodic but asymmetric corrugation that can
persist defect free for several hundred nanometers.

Numerous experimental studies have provided detailed data for the struc-
ture of the ripple phase using X-ray scattering and scanning microscopy
(Stamato= et al. 1982; Wack and Webb 1988; Sun et al. 1996; Woodward and
Zasadzinski 1997; Sengupta et al. 2003). The consensus is that the ripple
phase consists of asymmetric linear parallel corrugations across the mem-
brane. The ripple wavelength varies for di=erent lipids but is generally be-
tween 11 and 20 nm. The asymmetry presents itself in the form of major and
minor domains. The major domain has structure similar to the gel phase
of the lipid under study while the minor domain shows significantly greater
disorder and possible chain interdigitation.

Early models of the ripple phase were based on coarse grained Statistical
Mechanics models (Doniach 1979; McCullough and Scott 1990; Carlson and
Sethna 1987). These models attempted to include the frustration in molec-
ular packing caused by the large cross sectional area of the polar group rel-
ative to that of the two hydrocarbon chains. Generally all models were able
to produce a periodic ripple-like patterns but none were able to describe the
asymmetric ripple structure seen in experiments. In a large scale MD sim-
ulation de Vries et al. (2005) have however observed a corrugated structure
that has most of the experimental properties of the ripple phase. Figure 1.20
shows a snapshot of the ripple phase in DMPC from the simulation. The
simulation suggests that the ripple phase forms as a result of packing frus-
tration between fluid and gel phases. The minor domain is predominantly
fluid and the major domain is predominantly gel. One caveat is that the sim-
ulation was run with periodic boundary conditions and shows only one full
ripple, so that the periodicity of the ripples is not guaranteed. Thus for a truly
definitive study it will be necessary to run a simulation at least twice as large.

1.2.3.7 Simulations of Asymmetric Lipid Bilayers
Biological membranes have inner and outer leaflets that di=er significantly
in structure. Outer leaflets are generally rich in sphingolipids and phos-
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Fig. 1.20 Structure of the ripple phase from MD simulation. Note the asymmetric structure
of the ripples. The simulation contains one full ripple; the figure shows periodic reflections
in addition to the main simulation cell. Reprinted from de Vries et al. (2005).

phatidylcholine lipids, while inner leaflet lipids are rich in phosphatidyletha-
nolamine and phosphatidylserine lipids. These two classes of lipids are char-
acterized by smaller polar groups, with the bulky choline (N(CH3)3) moiety
being replaced by the simpler NH3. In addition phosphatidylserines carry a
net negative charge at neutral pH.

To form a foundation for simulations of asymmetric lipids that mimic
the inner and outer leaflets of membranes several groups have run simu-
lation studies of symmetric bilayers composed of inner leaflet lipids such
as ethanolamine and serine lipids. Early simulations of dilauryl phos-
phatidylethanolamine (DLPE) were carried out by Damodoran and Merz
(1994) and by Zhou and Schulten (1995). These were very short simulations
for small systems, limited by computing power in the mid 1990s. Murzyn et
al. (2005) have recently done a 25 ns simulation of a mixed palmitoyloleoyl
phosphatidylethanolamine (POPE) – palmitoyloleoyl phosphatidylglycerol
(POPG) consisting of 54 POPE and 18 POPG, plus 1955 waters. The aim of
this simulation was to determine the properties of a model for the inner bac-
terial membrane. They carried out a detailed analysis of hydrogen bonding
between POPE pairs, and POPE and water, including water bridges between
POPE. POPG did not appear to participate in H-bonding to the extent found
with POPE. Simulations of phosphatidylserine bilayers were carried out by
Pandit and Berkowitz and by Mukhopadhyay et al. (2002, 2004). Pandit and
Berkowitz simulated DPPS in a bilayer with Na+ counterions. They found
an area per molecule of about 54 Å

2
, in the range of experimental values
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for this lipid. They found that the low area per molecule for a liquid crys-
talline phase is due to extensive counterion-facilitated hydrogen bonding in
the polar region. They concluded that the counterions screen the negative
charge on the serine, and that the remainder of the molecule behaves much
like an ethanolamine bilayer (Pandit and Berkowitz 2002). Mukhopadhyay
et al. (2004) did two simulations of a palmitoyloleoyl phosphatidylserine
(POPS) bilayer, with Na+ counterions and with NaCl. The goal of these
simulations was to consider the e=ect of salt on the bilayer structure. Both
simulations converged to an area per molecule of about 55 Å

2
. The Na+ ions

displaced water from the ester region of the lipids, and the amine group
participated in hydrogen bonds with phosphate and carboxylate groups on
neighboring molecules.

Phosphatidylinositol represents a class of phospholipids which, while
present only in small concentrations in eukaryotic cell membranes (and
some bacteria), play important roles in a variety of biological functions.
Phosphatidylinositol lipids (PI) are phosphatidic acids linked through the
phosphate group to inositol, that is hexahydroxy-cyclohexane. In PI the pres-
ence of multiple hydroxyl groups on the cyclohexane ring allow for a large
variety of binding and other interaction possibilities, and thus for a wide
range of biological functions. The most common inositol lipid in animal and
plant membranes is sn-1-stearoyl-sn-2-arachidonoyl-glycerophosphorylinos-
itol 4,5-biphosphate(PIP2). This lipid has two very di=erent hydrocarbon
chains; one saturated stearoyl chain and one poly-unsaturated arachidonyl
chain. It also has two phosphates bound at the 4 and 5 carbons of the inositol
ring. PIP2 is found in concentrations up to 10% in brain lipid (Christy 2003),
in blood platelets (Bodin et al. 2005) and in lesser concentrations other tis-
sues. To date no atomistic simulations have attempted to include any of the
PI lipids, in spite of the biological importance of these molecules.

One of the challenges in building and running MD simulations of asym-
metric bilayers is that the asymmetry in lipid structure will lead to mechan-
ical stresses in the membrane. This is in fact an underlying cause of the
curvature of biological membranes, but in a simulation with periodic bound-
ary conditions unwanted instabilities may arise. For this reason it is impor-
tant that the two leaflets in an asymmetric simulation be constructed so that
they will have the same molecular area at the simulation temperature. This
means that the number of lipids in each leaflet may be di=erent. Another way
that the stress between leaflets can be moderated is through the addition or
removal of cholesterol. Cholesterol, as discussed earlier in this chapter, mod-
ifies the molecular area of a bilayer by inducing increased order in the lipid
chains.

To date two sets of simulations of asymmetric lipid bilayers have been
published. Cascales et al. (2006) simulated a bilayer in which one leaflet con-
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tained 96 DPPC and 48 DPPS− lipids plus 48 Na+ counterions. The other
leaflet contained 120 DPPC molecules. They compared structural proper-
ties of the DPPC molecules on both leaflets to ascertain if the structure of
the pure DPPC leaflet was perturbed by the other leaflet of mixed compo-
sition. They found that the lipid order parameters, polar group orientation
and lateral di=usion rates of the DPPC were not perturbed by the presence
of DPPS− in the opposite leaflet. However the DPPC in the same leaflet with
DPPS− were, as one would expect, altered in their structure. Additionally the
dipole potential of the asymmetric membrane showed an asymmetric is not
symmetric in shape, with the potential between the water interface and the
membrane center about 10 millivolts larger on the DPPC-DPPS side of the
bilayer.

Bhide et al. (2007) simulated an asymmetric bilayer in which one leaflet
contained 84 18:0 sphingomyelin and 44 cholesterol molecules, while the
opposing leaflet contained 84 molecules of steroyloleoyl phosphatidyl ser-
ine (SOPS) and 44 cholesterol molecules. The asymmetric bilayer was built
after separate symmetric bilayers of SM–cholesterol and SOPC–cholesterol
were constructed and equilibrated. Then leaflets from each of the symmet-
ric bilayers were joined to make an asymmetric bilayer. Figure 1.21 shows
a snapshot of the asymmetric bilayer after 50 ns of MD simulation. In 50 ns
of MD, Bhide et al. found that the structures of the two leaflets do not di=er
significantly from structures found in their simulations of symmetric bilay-
ers of SOPC–cholesterol and SM–cholesterol. The simulation of Cascales et
al. and of Bhide et al. show that mechanically stable asymmetric bilayers of
200 lipids can be constructed and simulated over a 50–100 ns timescale. In
both cases the two lealets of the bilayers seemed to behave independently of
each other. In biomembranes the two leaflets must interact but it is likely
that much larger bilayers and longer simulations will be necessary to study
these interaction modes.

1.2.4
Equilibrium Monte Carlo Methods

Motivated by emerging computational technologies, and by Cold War nu-
clear arms concerns, the Monte Carlo method was developed in the late
1940s at Los Alamos National Laboratory (Metropolis et al. 1953). Over the
past 60 years the Monte Carlo (MC) method has become an essential tool in
an extemely wide range of applications. The Wikipedia (http://en.wikipedia.
org/wiki/Monte_Carlo_simulation) entry for Monte Carlo lists applications
ranging from quantum chromodynamics to finance. In the condensed mat-
ter physics of complex systems, where direct analytical calculations are un-
feasible, MC has proven to be an essential tool. The foundation for the MC
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Fig. 1.21 Snapshot of an asymmetric bilayer of SOPS, cholesterol (open spheres), and Na+

(solid spheres) in the lower leaflet; SM and cholesterol in the upper leaflet. Reprinted from
Bhide et al. (2007).

method is described in many books and reviews, such as the classic vol-
ume of Binder (1986) and more recent texts such as that of Frenkel and
Smit (2002). In this chapter we provide a synopsis of the MC method as
it is used in statistical physics and we describe applications that are germane
to the simulation of membranes.

The MC method provides a means for the evaluation of the equilibrium
values of thermodynamic properties of many-particle systems by numerically
calculating averages of the form

< O >=
∑
C

O(C) exp[−H(C)/kBT ]/
∑
C

exp[−H(C)/kBT ] (1.21)

where the sum runs over all configurations of the system C, H is the Hamil-
tonian function evaluated for configuration C, kB is Boltzmann’s constant,
T is the absolute temperature, and O is any dynamical variable. The numer-
ator and the denominator of this equation cannot be evaluated analytically
for more than a handful of nontrivial models (Baxter 1982), and these gener-
ally involve formidable mathematical analysis. Direct numerical evaluation
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of the sums is also not practical in many cases. To illustrate, consider a sys-
tem of N n-mer linear polymers and use a model for the polymer for which
only three internal torsional degrees of freedom per C–C bond are allowed.
For this simplified model there are still a total of (3n)N torsional configura-
tions, where N ≈ 1023. The vast majority of the configurations contribute
negligibly to Eq. (1.1). Many of the torsional states will be forbidden by ac-
tual or near-excluded volume overlaps. The goal in a numerical simulation is
to identify and include primarily the “important” terms while wasting little
time sampling states of high Boltzmann weight. If the MC summations gen-
erate trial states that have weights proportional to exp[−H(C)/kBT ], then
the average of a dynamical variable < O > is just an arithmatic average over
generated configurations,

< O >=

∑
Ct

O(Ct)P−1
t exp[−H(Ct)/kBT ]∑

Ct
P−1

t exp[−H(Ct)/kBT ]
=

1
N

∑
Ct

O(Ct) (1.22)

where Ct is a trial configuration picked with a probability given by Pt (Binder
1986). In Eq. (1.2) the terms P−1

t correct for the sampling bias.
The Importance Sampling procedure was developed by Metropolis and co-

workers (1953) and was designed to accomplish Boltzmann weighted sam-
pling for simulation of many particle systems. The procedure requires that
configurations be generated as a Markov walk, a succession of states for
which state n + 1 depends only upon state n. If P (Ct) is the probability that
trial configuration Ct occurs, and if w(t, t′) is the transition probability from
a state t to a state t′ in the Markov walk, then the rate of change of P (Ct) is
given by the Master Equation,

dP (Ct)
dt

=
∑
t′ �=t

[w(t′, t)P (Ct′) − w(t, t′)P (Ct)] (1.23)

At equilibrium dP (Ct)
dt = 0 and P (Ct) = Peq(Ct) = Z−1 exp[−H(C)/kBT ]

satisfies the Detailed Balance criterion:

Pe(Ct′)w(t′, t) = Pe(Ct)w(t, t′) (1.24)

Utilizing the fact that the equilibrium probabilities are proportional to Boltz-
mann factors,

w(t, t′)
w(t′, t)

=
Pe(C ′

t)
Pe(Ct)

= exp[−(H(C ′
t) −H(Ct))/kBT ] (1.25)

The unknown proportionality factors in the equilibrium probabilities are
canceled in the ratio. The key result is that the quotient of the transition prob-
abilities depends only on the di=erence in energy between the two states. It
follows that a su;cient condition for the sampling probabilities to approach
their equilibrium values is that the sampling procedure must be a Markov
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walk through phase space with step-to-step transition probabilities which sat-
isfy Eqs. (1.24) and (1.25). Two typical examples of such probabilities are:

w(t, t′) =
1
m exp[−(∆H)/kBT ] ∆H > 0

1
m ∆H ≤ 0

(1.26)

or

w(t, t′) =
1

2m

exp[−(∆H)/kBT ]
[1 + exp−(∆H)/kBT ]

(1.27)

where m is a factor related to the number of ways to pick a succeeding move
in the Markov walk and ∆H = (H(Ct′) − H(Ct)). More complete discus-
sions of the underlying basis for the Metropolis MC method can be found in
textbooks (Binder 1986; Frenkel and Smit 2002)

1.2.5
Monte Carlo Studies of Lipids

The Monte Carlo method, when applied in practice, consists of generating
trial molecular configurations and accepting or rejecting them according to
Eq. (1.26) or Eq. (1.27). Lipids, unfortunately, have very many conformational
states and this means the level of sampling is reduced unless many steps are
generated. For example, DPPC consists of 50 atoms (not counting hydro-
gens) on the three distinct chains described earlier. All three of the chains in
lipids are flexible. Distortions in bond length, bond angle and, most impor-
tantly, rotations about bonds all control the conformation of the molecule.

Historically, the application of the MC method to lipids probably began
with the lattice-based simulations of Whittington and Chapman (1966).
Whittington and Chapman used a two-dimensional lattice to generate a line
of chains using a self-avoiding walk algorithm. In general lattice-based sim-
ulations have the advantage that the configuration space of the system is
greatly reduced, making long simulations of larger systems possible. The
problem is that the reduction is a very severe limitation on the accessible
molecular conformations in the case of large, flexible molecules such as
phospholipids. As computing power has grown the need for an underlying
lattice in MC simulations has diminished, and it is mainly used for models
which aim to describe long range cooperative phenomena.

Early Monte Carlo continuum simulations of hydrocarbon chains in a
lipid bilayer type of environment were carried out by Scott (1977). The first
such simulations consisted of ten or fewer chains of hard spheres with the
topmost sphere attached to an interface. Since models studied by the MC
method have progressed to bilayers of 200 chains interacting via 6-12 poten-
tials between atoms and containing cholesterol (Scott 1993) or gramicidin
(Xing and Scott 1992).
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In the early 1980 s, in order to carry out simulations in reasonable time it
was necessary to restrict the dihedral angles allowed for C−C bonds to three
states per bond, 0 and ±120 degrees. This restriction is consistent with the
locations of three distinct minima in the dihedral energy function (Ryckaert
and Bellemans 1978), and is commonly called the rotational isomeric ap-
proximation, and the states are called rotational isomeric states or RIS. Even
within the rotational isomeric approximation it was not possible to include,
for example, lipid head groups or water in MC simulations at that time. A
consequence of the restricted dihedral angles was that order parameter plots
for the chains in the simulations were not as smooth as experimental plots.
The key lesson from these simulations was that the configuration space of
a lipid bilayer with 15% or more cholesterol present is very di;cult to e;-
ciently sample by standard MC means within the rotational-isomeric model.
Similar conclusions were drawn in Monte Carlo simulations of lipid chains
adjacent to hard cylinders with hemispherical “lumps”(Coe and Scott 1992),
and of lipid chains adjacent to gramicidin A. Comparison of data for chains
of length 14, 16 and 18 carbons suggested that the hydrophobic length of the
gramicidin allowed the shorter chains to pack more e;ciently around it than
was the case for the long chains (Xing and Scott 1992).

More promising are applications that take advantage of MC moves along
with molecular dynamics (MD) simulation steps. The simplest such applica-
tion uses a very short MD trajectory as a basis for a MC move. In this case,
the timestep for the MD is larger than typically used in longer MD trajecto-
ries. This inserts the possibility of a larger scale conformational change, that
is accepted or rejected by a metropolis criterion. Generally though MD sim-
ulation, as described earlier in this chapter, e=ectively samples the “fast” de-
grees of freedom, such as local torsional transitions, but does not, in reason-
able computational time, sample large scale conformational changes or long
range cooperative changes in systems. However, using modern MC methods
it is possible to design hybrid MC–MD simulations that can potentially im-
prove sampling of configurations of lipids in bilayers. Three such examples,
Configurational Bias Monte Carlo (CBMC), Replica Exchange Monte Carlo
(REMC), and Gibbs Ensemble Monte Carlo (GEMC) are described below.

Combined Configurational Bias Monte Carlo – Molecular Dynamics Simulation

It was shown by Chiu et al. in 1999 (1999a) that bilayers equilibrate far more
e;ciently if standard MD is interspersed with CBMC steps. CBMC steps are
designed to move the system to a di=erent region of phase space, guided by
thermodynamic equilibrium sampling bias. More importantly they have the
potential to “jump” molecules over energy barriers that may not be overcome
during a long continuous MD run. There are a number of “smart” MC meth-
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ods which have been applied to similar problems in liquid physics (Allen and
Tildesley 1989). These methods either sample preferentially (for example,
move molecules near a perturbant more often) or bias the MC moves ac-
cording to the intermolecular force or some other quantity such as the virial.
For a system of flexible chain molecules force-bias MC algorithms would be
di;cult to apply because the net force will not be constant over the entire
chain, and resulting displacements would either violate bonding constraints
or would only be optimal for a portion of the chain. The Configurational Bias
Monte Carlo method (CBMC), due to Siepmann and Frenkel (2002), attempts
to choose MC steps for entire chains or molecules which have a higher like-
lihood of producing energetically favorable conformations. The procedure
has as its basis the early work of Rosenbluth and Rosenbluth (1955) on MC
simulation of a long polymer chain on a cubic lattice.

Each CBMC step in a lipid simulation consists of the following proce-
dure (Chiu et al. 1999a):

• Pick a single lipid at random and pick one of the two hydrocarbon chains
(in this application head groups and waters are not moved in the CBMC).
Pick a bond on the chosen chain at random.

• Generate a large number (Chiu et al. 1999a) of trial positions for the atom
below the chosen bond(or above, in the case of head groups). Calculate the
configuration energy for each trial, and the weight w(n) =

∑
j exp(−βEj),

where β is the inverse of Boltzmann’s constant times the absolute temper-
ature, and Ej is the energy of the atom at the jth trial position.

• Pick one of the trial positions k with probability exp(−βEk)/w(n).

• Repeat the above process until the end of the chain is reached. Calculate
the “Rosenbluth Weight” W (n) =

∏
atoms w(n).

• Calculate the “old Rosenbluth Weight”, W (o),of the initial configuration by
repeating the above procedure with one of the trials at each atom position
being the original position of that atom.

• Accept the new configuration of the chain with probability

p = min [W (n)/W (o), 1]

• If configuration is rejected, reset coordinates of chosen chain or head
group to original values.

Seipmann and Frenkel (2002) and other texts describe the proof that the
above procedure satisfies the requirements that configuration averages over
states converge towards equilibrium thermodynamic averages. The CBMC
procedure is carried out at the fixed box dimensions from a previous MD
trajectory at the same temperature as the MD run.



54 1 Simulations and Models of Lipid Bilayers

The end result of the CBMC procedure is (if accepted) a move to an en-
tirely new chain configuration which fits well (in a MC sense) with the local
environment of that chain. In a traditional MC procedure, in which only one
or two C–C bonds are rotated to a new dihedral position, such an optimal
whole-chain conformation would be generated only very rarely. Seipmann and
Frenkel (2002) have tested the CBMC algorithm against classical Monte Carlo
and other techniques for systems of alkane chains of di=erent lengths. In all
cases the CBMC method provided faster convergence and better accuracy, in
some cases by many orders of magnitude.

By itself CBMC will not e;ciently simulate a lipid bilayer because water
and polar groups need to be included. Chiu et al. (1999a) used the combined
CBMC–MD protocol described above to fully sample lipid molecular con-
formations. This procedure exploited complementary features of MD and
CBMC. CBMC moves across the energy barriers associated with torsion an-
gles in the phospholipid structure more readily and e;ciently than MD or
conventional MC. E;ciency is achieved via reduced degrees of freedom, fo-
cusing on important transitions in configuration space, in particular torsion
angle transitions between relative energy minima in torsion angle phase
space. In this way CBMC is enabled to explore large regions of configuration
space in a coarse–grained fashion, with convergence to a Boltzmann distri-
bution. On the other hand MD explores local regions of configuration space
more thoroughly than CBMC because it replicates the continuous motions
of the system. In the latest version of our method all translational motions
(which are less capable of being expressed in reduced degrees of freedom
than the torsion angle transitions) are produced by the MD. MD is guaran-
teed to ultimately converge to a Maxwell–Boltzmann distribution for all de-
grees of freedom if either: (i) the simulation is started near equilibration, or
(ii) the simulation is carried out for a very long time. When these procedures
are alternated the CBMC calculation permits the system to make substantial
conformational changes provided the results of those changes are thermo-
dynamically acceptable, while the subsequent MD calculation explores the
region of conformation space near the region that CBMC has moved and
drives all translational moves. In the combined simulations this procedure
is analogous to a series of small thermodynamic changes in the system, mov-
ing it through phase space towards a thermodynamic equilibrium state. Fur-
ther interspersing longer continuous MD production runs with CBMC steps
allow for a more thorough configuration space sampling. This procedure will
be particularly e=ective in heterogeneous systems where lipid chains must
interact with more rigid molecular interfaces as presented by cholesterol or
membrane proteins.

Figure 1.22 shows the flowchart for a combined MD–CBMC equilibration
procedure from Chiu et al. (1999a). Figure 1.23 shows a plot of the time
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Fig. 1.22 Flowchart for combined MD–CBMC simulation procedure for equilibration of
a lipid simulation. In this example the MD was run in a combination of NVT and NγT
ensembles, but the procedure is applicable if NPT is used instead of NγT, although the short
NVT simulations that follow each CBMC phase should be retained. Reprinted from Chiu
et al. (1999a).

evolution of the total potential energy of an MD–CBMC equilibration run for
a pure DPPC bilayer (Chiu et al. 1999a). The initial state for this run was an
ordered state similar to that shown in Fig. 1.7. The figure shows an ≈ 30%
speedup in the evolution from to a state where the energy becomes constant,
within fluctuations, over the remaining simulation time for the NID-CBMC
simulation, compared to the MD-only simulation.

The entire combined equilibration process may be viewed as a series of
“quasistatic” steps in the thermodynamic sense. As in a textbook expansion
of a system, the process is carried out in a large number of slow, small steps
so that equilibrium is never disturbed from the beginning to the end of the
expansion. In experiments, such as monolayer expansions, one ideally ex-
pands or compresses the system by moving the monolayer barrier by a small
amount and then stopping barrier motion to let the system equilibrate (or
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Fig. 1.23 Plot of the time evolution of the total surface area of a DPPC lipid bilayer simula-
tion. The simulation started in a gel phase, and evolved towards a fluid phase. The dotted
curve represents a combined MD–CBMC simulation while the solid curve represents an
MD simulation. Reprinted from Chiu et al. (1999a).

simply move the barrier very slowly, which is a limiting case of the stop-start
procedure). In our case the system moves from its initial volume towards
a final fluid-phase volume in a series of MD steps. On the other hand the
majority of torsion angle transitions, and hence the largest changes in the
hydrocarbon chain order parameters, take place during the CBMC steps. In
this procedure, as we have implemented it, the CBMC is run in an NVT en-
semble using the fixed box size and temperature from the end of the prior
MD step. Both the MD and the CBMC move the system reversibly through
its phase space.

Replica Exchange

A di=erent computational approach of interest for heterogeneous bilayer
simulations is Parallel Tempering (PT) (Frenkel and Smit 2002) alternatively
called Replica Exchange Molecular Dynamics (REMD) when applied to MD
simulations (Sugita and Okamoto 1999). In a REMD or PT simulation sev-
eral identical copies of the system are simulated, each under slightly di=erent
thermodyamic conditions. Probably the most common parameter which is
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varied is the temperature. If the system has a complex energy landscape with
many local minima, simulations run at higher temperature are more likely to
“hop” from one minimum to another in configuration space. In PT/REMD
one periodically stops the simulations and attempts an exchange of a ran-
domly selected pair of the systems. The exchange is accepted or rejected ac-
cording to a Metropolis-like criterion. The Monte Carlo-based PT method
has been applied to zeolites (Falconi and Deem 1999) and to a Lennard–
Jones fluid phase equilibrium study (Yan and de Pablo 2000). REMD has
been applied to protein structure prediction and folding by a number of
groups including Sugita and Okamoto (1999), Garcia et al. (2002) and Rhee
et al. (2004). An excellent and convincing example of PT applied to a particle
in a one-dimensional multiple-minimum potential is given in the Frenkel
and Smit monograph (2002). PT/REMD could be run by using separate sub-
sets of available linux clusters for the various simulations and making the
system exchange moves “by hand”, or they could be set up to run in a grid
environment, with separate grid nodes running the individual simulations
and then communicating to perform the system exchange trial moves. The
major drawback of REMD is the requirement for a large number of replicas
(the energy distributions of neighboring replicas must have su;cient over-
lap or all replica exchange moves will be rejected), and therefore a very large
number of processors. This approach is becoming increasingly important as
more researchers gain access to large “farms” of linux clusters. Then a GRID
environment could be used to run the multiple simulations on separate sets
of nodes possibly at remote sites.

Semi-Gibbs Ensemble MC

In order to simulate systems with multiple phases and/or types of molecules,
it is necessary to attempt moves that transfer molecules between phases.
Within standard molecular dynamics or Monte Carlo, this type of transfer
will not occur unless prohibitively long simulations are run. One alternative
approach is based on the Semigrand Gibbs Ensemble Monte Carlo (SGEMC)
method. The SGEMC procedure has been applied to the simulation of phase
equilibria in simple systems and mixtures (Kofke and Glandt 1988). In the
SGEMC ensemble the temperature, pressure and di=erences in chemical
potentials of the molecules are fixed. In a SGEMC step a randomly chosen
molecule of one type is changed into a molecule of the second species in the
mixture. Moves are accepted according to

acc(i → j) = min
[
1,

ξj

ξi
exp(−β∆V (ij))

]
(1.28)



58 1 Simulations and Models of Lipid Bilayers

where ξi is the fugacity, exp(βµi), of the molecule of type i with chemical
potential µi and ∆V (ij) is the di=erence in potential energy of the system
after the identity change move, and β = 1/kT (Frenkel and Smit 2002). In
the limit of a large number of MC moves the composition and lateral organi-
zation of the molecules evalues toward the thermodynamic equilibrium state
for the given T , P , and ∆µ.

The lack of knowledge of the molecular chemical potentials is a disadvan-
tage of the SGEMC method. However, it is possible to design MC moves
that swap molecular identities between two randomly chosen lipids of dif-
ferent types in a mixed lipid bilayer. This process begins by randomly se-
lecting one molecule of each type. Then morph molecule 1 into molecule
2 and vice versa. CBMC can be used to find the best fit (in a Monte Carlo
sense) of the swapped molecules into the space of the original molecules.
The acceptance probability will be based on the CBMC algorithm, with old
weights generated from the original positions of the molecules. Since this
is a double morphing move changes in chemical potential cancel out elim-
inating the need to know them. The high density in the interior of a lipid
bilayer presents problems for any MC move that involves molecular replace-
ment or insertion. Actual full-molecule insertion is not a viable possibility
for a MC move, but the SGEMC identity-swap moves have a better chance of
being accepted because the new molecule is placed into the space occupied
by the old molecule. However since new and old molecules are not iden-
tical, there will always be “fitting” problems. The Configurational Bias MC
chain placement procedure will help to overcome this problem by exploring
the available space for the thermodynamically optimal conformation for the
new molecule in the given space. After a successful swapping move tradi-
tional MD in the NPT ensemble can be run to further relax the system and
explore other molecular degrees of freedom. This algorithm has been tested
on a simple bilayer consisting of 200 DPPC and 200 DMPC molecules, plus
10 000 waters at a temperature of 305K (between the transition tempera-
tures of DPPC and DMPC). Figure 1.24 shows the identity change of a single
DMPC into a DPPC. This is a relatively simple change involving the use of
CBMC to generate positions for the two extra methylenes needed by DPPC.
The swap moves proposed herein will of course be more di;cult, but we be-
lieve that this algorithm may provide a way to move molecules large distances
in a simulation while retaining thermodynamic equilibrium distributions.

1.2.6
Thermodynamic Quantities, Limitations of Atomistic Simulations

In spite of continual advances in computational power the direct application
of atomistic simulations to biological systems at length and time scales of bi-
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Fig. 1.24 A sample swap move of DMPC and DPPC molecules. Here the initial DMPC (left)
is replaced by DPPC (right) using our new algorithm. Extra atoms added using CBMC are
shown in purple.

ological significance is decades away. To illustrate the problem consider that
lateral di=usion coe;cients for the lipids in liquid crystalline phase, deter-
mined in experiments, are of the order of 5 × 10−12 m2/s. This value along
with the Einstein di=usion relation gives approximately a 1.7 nm root mean
square (RMS) displacement for a lipid molecule in 250 ns. While 250 ns is at-
tainable in an atomistic simulation at this time, the wall clock time for such
a run is on the order of months.

Thermodynamic properties of interest such as phase changes, heat capac-
ities, or permeabilities are also beyond the scope of atomistic simulation.
Lateral phase separation or domain formation involving large numbers of
molecules will not be observed in atomistic simulations any time soon. While
it can be argued argued that in 250 ns it is possible to identify the initial
stages of domain formation, it will be necessary to employ other modeling
methods to directly observe large scale atomic rearrangements in a bilayer
(Pandit et al. 2003c).

1.3
Coarse Grain Models

As a consequence of this limitation there have been a number of e=orts to
devise alternative “coarse grained” simulation models that retain the essen-
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tial features of atomistic lipids but that have otherwise severely reduce the
number of molecular degrees of freedom, thereby greatly accelerating the
simulations. In this section we describe several coarse graining strategies
that have the goal of extending simulations to greater scales of length and
time. In each case atomistic detail is sacrificed and the choices that are made
a=ect the properties of the coarse granied models.

1.3.1
Simulations Based on Reduced “Pseudo-Molecular” Models

One way to model lipid bilayers on larger scales of length and time is to
reduce the number of degrees of freedom per molecule. This approach con-
denses a typical lipid molecule from about 50 (non-hydrogen) atoms to be-
tween four and twenty “pseudo-molecules” by combining atoms along the
three lipid chains into larger atoms. The pseudo-molecules are constructed
as chains of typically 4-10 pseudo-atoms (solvent is generally represented
by single pseudo-atom molecules). After defining suitable forcefields for the
coarse grained model the properties of the system are calculated using stan-
dard MD or MC. The e=ect of the reduced number of degrees of freedom is
to allow for a time step of ≈ 5 picoseconds in MD or larger moves in MC.
Thus with a coarse grained model for the lipids one can obtain an improve-
ment of about 3–4 orders of magnitude in computational speed (Groot and
Rabone 2001; Kranenburg et al. 2003a; Kranenburg et al. 2003b). Lipowski
and co-workers have studied similar coarse-grained molecular models for
bilayers using Monte Carlo (MC) and MD simulation (Goetz and Lipowsky
1998; Goetz et al. 1999). Marrink et al. have developed a robust forcefield for
coarse grained simulations of lipid bilayers (Marrink et al. 2004) allowing for
the most comprehensive simulations of lipids in this approximation to date.
The model consists of mapping the non-hydrogen atoms of a typical phos-
pholipid, DPPC, consisting of 50 non-H atoms, onto a pseudo-lipid consist-
ing of 10 lipids. The coarse grained molecule has chains of four atoms each, a
“backbone” of two atoms and a polar group of two atoms (for phosphate and
choline). Water is modeled as a single sphere. All of the atoms interact with
each other through 6-12 potentials, with screened coulombic forces included
between head group atoms. Bond length and angle potentials are included as
harmonic functions and a trigonometric potential is used for chain dihedrals.
The strengths of the interactions are designed to model shielded electrostatic
interactions where needed, and all interaction parameters are adjusted to fit
electron density and atom distribution profiles from full atomistic simula-
tions. A cuto= of 1.2 nm is used for all of the non-bonded interaction ranges.
The reduction in degrees of freedom and the choice of parameters allowed
Marrink and co-workers to run MD simulations for over 10 microseconds
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(µs). This allows for the simulation of such events as pore formation (Knecht
et al. 2005), vesicle fusion (Marrink and Mark 2003) and hexagonal phase for-
mation (Marrink and Mark 2005). In an interesting application Stevens has
used this type of coarse graining to show how domains form in and how they
match across the two leaflets of a bilayer (Smith 2005). This level of coarse
graining produces results that are of clear qualitative value in understanding
the dynamical interactions of membranes on a large scale. However, there
is no real connection between the atomic level interactions and the coarse
grained model. The parameters for the latter were determined from experi-
mental data rather than from atomistic forces. This approach is most useful
for thermodynamic properties, but is not as useful for understanding small
scale biological interactions.

1.3.2
Continuum Models

An important goal modeling of model membranes is to predict the equilib-
rium properties of the systems. Even though unrelated to much of the biolog-
ical activity in living cells, equilibrium structural and thermodynamic prop-
erties of simple model lipid bilayers are essential tests of modeling work.
Firstly equilibrium structural data provide insights into the interactions that
control structural properties of biomembranes. Secondly equilibrium struc-
tural data provide tests that guide theoretical modeling work. Theoretical
modeling work, in turn, can both yield atomistic insights into biomembrane
driving forces and can aid in the interpretation of experimental data in model
and biological membranes. There is now a fairly large literature on theoret-
ical models for lipid bilayers. In this chapter we will not attempt to review
this literature but will focus on current models that can be directly related to
atomistic MD simulations.

Equilibrium models based on bulk properties of bilayers: A technique for the
extension of atomistic simulation predictions to biological scales has been
developed by Ayton et al. in a series of papers (Ayton et al. 2001; Ayton et al.
2002; Ayton and Voth 2002; Ayton et al. 2004; Ayton et al. 2006; Ayton et al.
2007). In this modeling e=ort the lipid bilayer is described at a mesoscopic
level by a continuous elastic membrane. The elastic modulus for the mem-
brane is calculated by either non-equilibrium MD or dissipative particle dy-
namics (DPD) methods, with input from the MD for the bulk properties.
Ayton et al. and co-workers describe several methods by which et al. use lo-
cal bulk elastic properties for their mesoscopic simulations by which they
map mechanical properties from MD simulations onto coarse grained mod-
els. The coarse graining in this case is to a continuum elasticity based field.
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The elastic modulus for the membrane is calculated by non-equilibrium MD
or DPD methods based on input from the MD for the bulk properties. Prop-
erties of the field are then calculated by continuum simulation algorithms.
When applied to lipid-cholesterol mixtures, for example, an elasticity field
is coupled with a composition field. The latter is evolved in time using the
Cahn–Hilliard equation (Lubensky and Chaikin 1995). Applied to a mixture
of cholesterol and dimyristoylphosphatidylcholine (DMPC) this model pre-
dicts composition-curvature fluctuations that can be interpreted as micro-
domains rich in cholesterol and ordered DMPC. One disadvantage of this
model is that the intersections are highly complex and simulation times are
about the same as atomistic MD

Equilibrium models based on mean field theory: The major challenge for all
coarse-graining modeling is to link the dynamical entities (pseudo-particles
or fields) with accurate atomic level detailed properties of the system. A
promising method for simulations which can address this problem, and that
can be run at scales of micrometers and milliseconds, is Langevin Dynamics
driven by free energy gradients in a locally defined molecular order (Luben-
sky and Chaikin 1995; Balazs et al. 2000; Peng et al. 2000). In this type of
modeling a system is defined over an area or volume by a localized free en-
ergy functional of a suitably defined, localized, order parameter. Minimiz-
ing this functional over the order parameter in the absence of perturbants
or external driving forces leads to the usual static Ginzburg–Landau the-
ory for phase transitions. Dynamics are introduced via the time-dependent
Ginzburg–Landau (TDGL) equation (Lubensky and Chaikin 1995). The ap-
plication of this methodology to mixtures of DPPC-cholesterol is discussed
below.

Equilibrium models for systems with the internal degrees of freedom and
complexity of a lipid bilayer present a significant challenge. It is in princi-
ple necessary to denumerate all of the molecuar conformational states, and
calculate energies of interaction between molecules for all possible states, by
summing atom by atom. Clearly, some approximation scheme is needed. In
1974 Marčelja formulated a statistical mechanical model for a lipid bilayer.
The model was based on the Maier Saupe model for liquid crystals (Maier
and Saupe 1959). In this approach the complex inter-atomic interactions
that contribute to conformation-dependent intermolecular interactions are
approximated by an interaction function based on hydrocarbon chain molec-
ular order parameters. The molecular order parameter is defined as the aver-
age of the segmental order parameters over the chain:

ψ(r) =
∑

n

sn(r)/N (1.29)

where sn(r) is defined in Eq. (1.14).
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The Hamiltonian function in this framework is

H = −
∑

<ll′>

V0slsl′ (1.30)

where the sum extends over nearest neighbor pairs of lipid chains. The basic
assumption in this model is that the inter-molecular interactions can be con-
sidered to be bilinearly dependent on the average chain order parameters.

In the Mean Field approximation the Hamiltonian is written as

H = −
∑

<ll′>

V0sl < sl′ >= − < s >
∑

<ll′>

V0sl (1.31)

where < s > is the bilayer-average chain order parameter which does not
depend on the molecular position in a homogeneous bilayer.

The free energy of the system is given by

F = −kB T lnZtot = −kB T ln


 ∑

all chains

∑
all conf

exp
[
− H

kBT

]
 (1.32)

where Ztot is the total partition function of the system, kB is the Boltzmann
constant, T is the absolute temperature and the summation on the right hand
side is over all the possible configurations of all the lipid chains. Evaluating
F in the Mean Field approximation (SCMFT) the sums in Eq. (1.32) reduce
to single-molecule sums and can be evaluated explicitly. However, the pres-
ence of < s > in the Hamiltonian requires that one must close the theory by
solving a self-consistent equation

〈
< s >

〉
=

∑
all conf

sc exp[βΦsc]

Zi

=

∑
all conf

sc exp

[
β

{
ν−ci∑
j=1

(V0

〈
sj

〉
)

}
sc

]

Z
(1.33)

Φ is the mean field at a lipid chain due to the average interactions of all
neighboring chains

Φ =
ν−ci∑
j=1

Vo

〈
sj

〉
(1.34)

and depends on the values of
〈
sj

〉
at the neighboring sites. Equation (1.33)

is a non-linear equation, which can be solved numerically. In the solution
procedure in order to evaluate the partition function Z it is necessary to
sum over lipid chain conformations. Marčelja (1974) did this by generating
the statesusing the rotational-isomeric model on a computer. With a phe-
nomenological choice of the coupling constant V0 Marčelja was able to fit
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this theory to the temperature and enthalpy change for the main lipid bi-
layer chain melting phase transition. While Mean Field theory seems to be
an unlikely modeling method for a system with the conformational degrees
of freedom of a lipid bilayer recent applications, summarized in an earlier
volume in this series by Matson and Müller (2006), show that this method is
quite robust and appears to be well suited to modeling lipid bilayers, as long
as one is not concerned about behavior very close to a second order critical
point.

Schick and co-workers have used the Marčelja model as a base for mod-
eling the interactions between lipids of di=erent chain saturation states and
cholesterol (Scoville-Simonds and Schick 2003; Elliott et al. 2005; Elliott
et al. 2006). For the application of the model to di-unsaturated chains
Scoville-Symonds and Schick (2003) reduced the e=ective chain length in
the Marčelja model by reducing the number of CH2 molecules that con-
tribute to the average order in chains with double bonds by two. The single
chain states that are used in the partition function evaluation are generated
much the same way as was done by Marčelja except the contributions from
CH2 molecules associated with double bonds are not counted. This model
also allows Scoville-Symonds and Schick to model the e=ect of the locations
of the double bonds on the properties of the membrane. Since this model
calculates equilibrium properties the phase transition temperatures can cal-
culated as functions of the location of the CH=CH double bonds.

In the Mean Field approach based on the Marčelja model the underlying
system is two-dimensional. Lipid-lipid interactions are computed as prod-
ucts of chain-averaged order parameters is that details of the interactions
between specific chain segments on neighboring chains within the bilayer
are lost. Elliot et al. (2005) developed a model that includes details of these
interactions in the third, interior bilayer, dimension in order to capture de-
tails of the e=ect of unsaturated bonds on the bilayers. This model was again
solved in the self consistent mean field approximation. Applying the model
to single component DOPC and DPPC bilayers, and to mixed DOPC–DPPC
bilayers of varying composition, Elliot et al. were able to calculate single lipid
phase transitions and, more significantly, phase separation transitions and
binary phase diagrams for the DPPC–DOPC mixtures (Elliott et al. 2006).
The model was applied to DPPC–cholesterol using the same basic model
and the SCMFT approach. The phase diagram they calculated was in good
agreement with experiments. This set of papers demonstrates the robust ap-
plicability of SCMFT to systems as complex and non-uniform as mixed lipid
bilayers.

The SCMFT models of Schick and co-workers calculates equilibrium ther-
modynamic properties of the lipid bilayers under consideration. In order to
also extract dynamical behavior of mixed lipids, on a larger scale than is pos-
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sible in MD simulations, SCMFT can be combined with Langevin Dynamics
modeling. We describe work in this direction in the following subsection.

1.3.3
MD Based Langevin Dynamics and Mean Field Theory

A major challenge for all coarse graining modeling is to link the dynamical
properties of membranes with an accurate atomic level set of intermolecular
forces. For this modeling the equilibrium methods of the previous section
must be extended to allow time-dependent behavior. A promising method
for simulations which can address this problem, has a basis in SCMFT and
can be run at scales of micrometers and milliseconds, is Langevin Dynamics
driven by free energy gradients in a locally defined molecular order (Luben-
sky and Chaikin 1995; Balazs et al. 2000; Peng et al. 2000). In this type of
modeling a system is defined over a region of appropriate dimensionality
by a localized free energy functional of a suitably defined, localized, order
parameter. Minimizing the free energy functional over the order parameter
in the absence of perturbants or external driving forces leads to the usual
static Ginzburg–Landau theory for phase transitions. Dynamics are intro-
duced via the time-dependent Ginzburg–Landau (TDGL) equation (Luben-
sky and Chaikin 1995). In an earlier application of this method (Peng et al.
2000) the basic free energy functional was, based on the Landau Theory of
phase transitions (Landau and Lifshitz 1980), shown in Eq. (1.35)

F =
∫

dr
[
−aψ(r)2/2 + bψ(r)4/4 + c∇(ψ(r))2

]
(1.35)

where ψ(r) is the order parameter for the model. This free energy functional
is phenomenological and is not sensitive to the details of the system. In this
subsection we describe an approach that uses coarse grained Langevin Dy-
namics (LD) with a free energy that is based on the Marčelja model described
above. In addition this approach calculates interactions and chain confor-
mation from libraries obtained from atomistic simulations. The method ex-
tends the predictions of atomistic simulations to 100 + microsecond time
and to micrometer length scales. The use of MD data reduces the number
of phenomenological parameters to one, which is used to fit the main lipid
chain melting transition. The LD methodology has been applied to mixtures
of dipalmitoylphosphatidylcholine (DPPC) and cholesterol (Khelashvili et al.
2005; Pandit et al. 2007a) and it can be extended to ternary mixtures using
interaction functions and coupling constants calculated from the MD simu-
lations on the approrpriate atomistic membranes.

The Langevin modeling is based on a Ginzburg–Landau approach to the
study of coexisting phases (Lubensky and Chaikin 1995). One defines an or-
der parameter which characterizes the phase transition, ψ, and a free energy
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functional F (ψ, t). ψ can be, for example, the di=erence in densities of liquid
and vapor phases, or the spontaneous magnetization per particle in simple
systems. For a lipid bilayer an appropriate choice is the same as used by
Marčelja in which ψ is the local average chain order parameter field:

ψ(r) =
∑

n

Sn(r)/N (1.36)

where Sn(r) is the C–H order parameter at carbon n for the chain at po-
sition r and N is the total number of carbons for which Sn is calculated
in the chains of the lipids. The free energy then evolves in time according
to the Time-Dependent Ginzburg–Landau (TDGL) equation (Lubensky and
Chaikin 1995; Peng et al. 2000):

∂ψ(r)/∂t = −Γ∂F (ψ(r))/∂ψ(r) (1.37)

where Γ is an “order parameter mobility”. This equation treats the lipid fluid
phase as a continuum. The order parameter ψ(r) is not conserved over the
bilayer (i.e. the sum of ψ(r) over all lipids is not fixed). An alternative ap-
proach is to use the Cahn–Hilliard equation (Lubensky and Chaikin 1995) in
which the right hand side of the above equation contains a Laplacian oper-
ator in addition to the functional derivative, conserves ψ(r), but this is not
appropriate in the case of fields of fluctuating chain order. If, in addition to
a chain order field, the system contains discrete objects (such as cholesterol
molecules) each of which has an orientation θ and a position r then θi and ri

evolve in time according to Langevin equations based on associated gradients
in the system free energy F (Peng et al. 2000)

∂ri/∂t = −M∂F/∂ri + ηi (1.38)

∂θi/∂t = −M ′∂F/∂θi + ζi (1.39)

where M and M ′ are mobilities, and ηi and ζi are thermal fluctuations which
are derived from an appropriate Gaussian distribution.

In the adaptation of this methodology to a lipid bilayer one first defines
and initializes a large (at least ∼ 300 × 300) two dimensional lattice network
of lipid chains plus cholesterols. The lipid chain order parameters values are
assigned to points on the lattice while the cholesterols, modeled as small
hard rods which move continuously over the plane, are given initial random
center of mass positions and orientations. The cholesterol rod length is set
at 0.7 times the lattice constant to match the relative size of a cholesterol
molecule relative to lipid chains. The mean field model was carried out in
the following sequence:

• Define lattice size and cholesterol concentration.

• Initialize: randomly distribute chain order and rods representing choles-
terols over lattice.
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• Solve self consistent mean field equations for initial distribution.

• Advance time by one timestep; move cholesterols according to Eq. (1.37).

• Solve self consistent mean field equations with new cholesterol distribu-
tion.

• Go to step 4.

The purpose of this modeling is to predict the lateral organizational struc-
ture of heterogeneous membranes. To illustrate we describe how the model
has been applied to DPPC–cholesterol bilayers over a range of cholesterol
concentrations and temperatures (Pandit et al. 2007a). A key to this work is
that the interaction energies between DPPC and cholesterol were calculated from
MD simulation data. Predictions of the model are therefore extensions of MD
simulation predictions, within the approximations that underly the mean
field model itself. The mobilities used in Eqs. (1.37)–(1.39) are related to the
experimental di=usion constant D by : Mr = D/kbT,Mθ ≈ (10–100)×Mr,
and Γ ≈ 10Mr. The dimensionless simulation timestep ∆τ is related to the
real-time step length ∆t by ∆τ = D

a2 ∆t ≈ 107∆t, where a is the lattice
constant, set in preliminary work at 0.65 nm. This allows for nanosecond or
greater real time step sizes with reasonable ∆τ for the coarse grained sim-
ulation. For higher cholesterol concentration smaller timesteps are needed
but the self-consistent equations converge faster in this case, compensating
for the shorter timestep. Figure 1.25 shows the results of the application of
this method to DPPC–cholesterol mixtures.

Figure 1.25 shows color density plots of the variation of the order param-
eter field across the simulation cell for three di=erent cholesterol concen-
trations. The density is in this case order parameter density, with darker
colors representing higher chain order. The small lines represent the lo-
cations and orientations of cholesterols and are inevitably surrounded by
regions of high relative chain order. In initial investigation of the SCMFT
modeling approach, we considered DPPC-cholesterol mixtures (Khelashvili
et al. 2005). Based on MD simulations we derived the SCMFT model
for DPPC–cholesterol system described in Section 1.3.3. Simulations for
DPPC+cholesterol systems at 5, 10, 15, 20 ,25, 30 and 35% cholesterol con-
centration and on a wide range of temperatures from 303K to 328K were per-
formed. After 20 µs of SCMFT simulation at each temperature and choles-
terol concentration, predictions of this model were compared to experimen-
tal data as described below.

In Fig. 1.26(a) we show a plot of the average order parameter as a func-
tion of temperature for various chol concentrations within this model. In the
absence of chol the model clearly exhibits a first order phase transition at
315 K. The order parameters at temperatures below and above phase tran-
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Fig. 1.25 Legend see p. 68
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sition are similar to the values expected in gel and liquid crystalline phases
of DPPC respectively. A closer examination of Fig. 1.26(a) reveals that with
increasing cholesterol concentration the phase transition diminishes and
completely vanishes for concentrations above 15%. At concentrations above
25% the system has uniform order across all the temperatures investigated
here, representing the liquid ordered (β) phase. Similar results are reported
by the NMR and DSC experiments of Huang et al. (1993). Figures 1.26(b)
to (e) show a comparison of average order parameters obtained using our
model, and the NMR quadrupolar shift reported by Huang et al. In their
study Huang et al. report the shift for sixth carbon atoms in DPPC hydro-
carbon chains. Since the order parameter of the sixth atom is on the plateau
region of the order parameter profile, one expects the average order param-
eter over the entire chain to be lower than the order parameter of the sixth
atom. Figures 1.26(b–e) show distributions of order parameters calculated
from the model and the calculated average order parameters show remark-
able agreement with the NMR data for various temperatures and cholesterol
concentrations.

In order to quantify the existence of regions within the model field of dif-
ferent levels of chain order one can obtain the distribution of chain over the
order parameter field order by a binning procedure. For certain tempera-
ture and cholesterol concentrations coexisting regions of di=erent order are
found, as revealed by a bimodality in the distribution. This property can be
used to identify di=erent regions of a “phase diagram”. Figure 1.27 shows
distributions of order parameters at 5%, 25% and 30% of chol concentra-
tion at various temperatures. The distributions show peaks around the order
parameter values corresponding to gel and liquid crystalline order. For cer-
tain values of concentrations and temperatures these distributions show two
peaks indicating coexistence of two “phases” for example, at 50 C and 25%
cholesterol concentration the system clearly has multiple peaks in order pa-
rameter distribution.

By examining all distributions at various temperatures and cholesterol
concentrations a plot can be drawn that outlines the regions in which the dis-
tribution of order parameters is bimodal as revealed in Fig. 1.28. This figure
is fully consistent with the phase diagram proposed by Vist and Davis (1990).

Fig. 1.25 Order parameter density plots of the average local DPPC chain order parameters
for two di=erent cholesterol concentrations, at times t = 0(left), and t = 20µs(right). Color
scale indicates magnitude of local order parameters on the lattice. Analysis of the plots
indicates that cholesterol creates local ordered regions which merge into larger regions of
higher order as the cholesterol concentration increases. At concentrations between 12 and
20% we observe dynamical coexistence of regions of high order (blue-red) and regions of
relatively lower order (pale green). Reprinted from Pandit et al. (2007).
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Fig. 1.26 (a) Average order parameter as a function of temperature for various chol concen-
trations. Comparison of the average order parameter in the model with the order parameter
of the sixth carbon atom reported by Huang et al. for (b) 10% chol, (c) 15% chol, (d) 20%
chol, and (e) 30% chol. Reprinted from Pandit et al. (2007c).

In particular, both model and experiment show non-overlapping regions hav-
ing di=erent degrees of chain order at the same cholesterol concentrations
and temperatures. At temperatures below 315 K, coexisting regions of gel
and intermediate order (gel + β region). At temperatures above 315 K, there
are non-overlapping regions of intermediate and low levels of order (Lα + β
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Fig. 1.27 Distribution of order parameter values as a function of temperature, at three
cholesterol concentrations. Bi-modality in a plot reveals regions within the bilayer of dif-
ferent degrees of lipid order at that temperature and cholesterol concentration. (a) 5%
cholesterol, (b) 25% cholesterol, (c) 3% cholesterol. Bi-modality is seen at lower cholesterol
concentration over a range of temperatures that decreases as the cholesterol concentration
increases.

region). The agreement between the model diagram and the Vist–Davis di-
agram is shown in Fig. 1.28, and is significant in that no parameters in the
model were set phenomenologically to fit the experimental plot.

The model was tested further against experiment by computing the spe-
cific heat as function of temperature. The specific heat at constant pressure
was calculated by
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Fig. 1.28 (a) Computed phase diagram from the model. Dots represent the locations of
peaks in distributions of chain order in Fig. 1.27. Lines are guides to the eye. (b) Plots of
specific heat as a function of temperature for several cholesterol concentrations. Reprinted
with permission from Pandit et al. (2007c).
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where the ∂ < si >/∂β in the expression was obtained by solving the self–
consistent equation
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with ∆s2
k =< s2

k > − < sk >2. Figure 1.28 shows the specific heat as a
function of temperature for the systems with 0%, 10%, 20%, and 30% con-
centration of cholesterol. A comparison with Fig. 4 of Huang et al. (1993)
shows that the model DSC curves are in good agreement with the experi-
mental DSC curves. One important prediction of this model is that there is
no first order phase separation transition in this model. All changes in order
are continuous, so that the bimodal distributions of order do not represent
coexisting equilibrium phases. This conclusion is independently supported
by recent re-analysis of NMR data by McConnell and Radhakrishnan (2006).

The SCMFT approach is readily generalizable to ternary and higher mix-
tures of lipids. In order to model the mixed lipid bilayer a new field that
describes the local molecular composition of the bilayer is introduced on
the lattice at each site r, for example for sphingomyelin (SM) and di-
oleylphosphatidylcholine (DOPC) one has:

Φ(r) = φSM (r) − φDOPC(r) (1.42)

where φx represents the concentration of species x, at the point r and Φ is
then the local di=erence in concentration. One can construct a free energy
functional which includes the interactions of all of the lipids in the mixture,
all using maximum input from

simulations. In addition to propagating cholesterols through the model
plane we now also propagate SM and DOPC, in this case using a Cahn–
Hilliard equation (in order to conserve the total number of atoms, this equa-
tion must be used instead of the Langevin equation) (Lubensky and Chaikin
1995). The functional contains coupling terms between di=erent molecules
which will be calculated from simulations and will be used to predict the
lateral organization of membranes on the scale of the TDGL method. Fig-
ure 1.29 shows calculated ordering in mixtures of SM-DOPC-cholesterol ob-
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Fig. 1.29 Ordering in ternary mixtures of SM, DOPC and cholesterol. (a) 1:1 mixture of
DOPC and SM with 10% cholesterol. (b) 1:1 mixture of DOPC and SM with 20% cho-
lesterol. Darker color indicates higher order, and therefore a greater concentration of SM,
while small segments represent cholesterol molecules.
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tained using a preliminary estimate of the salient coupling constants from
MD simulations and after an LD-SCMFT run of 100 µs.

It is evident that cholesterol induces the formation of regions of increased
order in the field. In this model increased order is correlated with an en-
hanced concentration of sphingomyelin. By a quantitative examination of
the distribution of order over the field, it is possible to map out a ternary
phase diagram for this mixture. This work is in progress.

1.4
Summary

In this chapter we have described modeling of lipid bilayers. We started at the
atomistic level, where molecular dynamics or Monte Carlo are the methods
capable of providing details of atomistic phenomena at this level. Molecu-
lar dynamics, while simple to describe conceptually, must be applied with
caution to successfully model a hydrated lipid bilayer. The complex nature
of the interatomic interactions means that individual atoms will experience
large forces from chemical bonds, dihedral forces, steric forces, electrostatic
forces and weak van der Waals attractions (which nevertheless sum to an
appreciable contribution). While the forces are large, their interplay leads to
cancellations in many cases. One excellent example is the dihedral angle dis-
tribution in a chain. Consideration of the dihedral potential in isolation leads
to a model (the rotational isomeric model) in which chains take on mainly
conformations with dihedrals at one of the three minima of this potential.
However, simulations show that the presence of 6–12 forces allows dihedral
angles to take on values that are displaced from the dihedral potential wells.
Further, small di=erences in each dihedral along a chain will propagate to
large di=erences in chain conformations.

The development of MD forcefields for lipid bilayers is a process that can-
not be overlooked. Depending on whether hydrogen atoms are to be included
or excluded the forcefields will be quite di=erent. In general, both types of
forcefields are of the highest quality when successfully tested against exper-
imental smaller “model compounds” in independent simulations before be-
ing applied to a lipid simulation. In this vein the model for molecular water
is an important consideration. Most current simulations employ water mod-
els that consist of fixed point charges for the oxygen and the hydrogens, and
a van der Waals force centered at the oxygen. However, new developments
and faster computers may allow for the use of greatly improved water models
in the near future.

We discussed statistical mechanical ensembles and their implementation
in MD simulations. A lipid bilayer MD simulation should be performed
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(usually) in an NPT ensemble, so that pressure and temperature coupling
algorithms must be applied. The size of the simulated bilayer is another im-
portant consideration. While smaller simulations can of course be run far
more quickly, they may contain artifactual properties. For simulation cells
consisting of 60 or fewer lipids in each leaflet most of the lipids will be at
the perimeters of the cell, where periodic boundary artifacts enter in. For
small simulations it is also necessary to cut o= intermolecular interactions
at shorter distances and Ewald summation is done over a smaller periodic
system.

The process of constructing an initial bilayer to begin simulations, and the
equilibration of that bilayer, are described in this chapter. We point out sev-
eral ways by which an initial bilayer may be constructed and we describe the
generally used equilibration procedures. One unique addition that improves
equilibration is the use of Monte Carlo steps interspersed with MD steps
during the initial phases of the simulation. After equilibration a production
MD run is carried out for up to 100 ns, or more, generating a continuous
phase space trajectory for the bilayer and the surrounding water. From the
trajectory one calculates properties of the simulated bilayer that can be tested
against experiment and that o=er predicted new modes of behavior. Many of
the properties of interest are described in this chapter.

While atomistic simulations are of great interest and provide many new
insights they are limited by the relatively slow rate of di=usion of lipids in a
bilayer to time scales where individual molecules do not move very far later-
ally. However, atomistic simulations do provide clues for larger scale thermo-
dynamic properties of bilayers in the local interactions. We describe e=orts
to use input from MD simulations to construct models based on self con-
sistent mean field theory that can describe larger scale lateral organizational
development over time and across the membrane. Self Consistent mean field
theory, based on models with parameters calculated from atomistic simula-
tions has, as we illustrated in this chapter, great promise for understanding
the properties of lipid bilayers of complex composition. The long range goal
of this type of modeling is to begin to understand properties of membranes
of biological composition.

In conclusion, this chapter provides an overview of many aspects of the
modeling of lipid membranes. The goal is of course to better understand
biological phenomena in membranes, and progress is being made in that
direction. But also there are new physical insights that are emerging from
the modeling studies of this type of soft matter. These insights may at some
point be of use in other areas of soft matter science.
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2
Red Blood Cell Shapes and Shape Transformations:
Newtonian Mechanics of a Composite Membrane

Gerald Lim H. W., Michael Wortis, and Ranjan Mukhopadhyay

Abstract

The normal human red blood cell has at equilibrium the shape of a flattened
biconcave disc about 8µm in diameter. A variety of chemical and physical
stresses cause the normal red cell to deform in a systematic and universal
way to form, on the one hand, invaginated shapes called “stomatocytes” and,
on the other, spiculated shapes called “echinocytes.” This series of shapes is
called the stomatocyte-discocyte-echinocyte or SDE sequence. It is now be-
lieved that the SDE sequence is largely controlled by a single mechanical pa-
rameter which specifies the extent to which the cell membrane prefers a con-
cave or convex shape. This mechanism, first proposed by Sheetz and Singer
in 1974, is called the bilayer–couple hypothesis. To understand the SDE se-
quence and to test the bilayer–couple hypothesis it is necessary to under-
stand the structure of the red-cell membrane and to model it in terms of the
variables which characterize its mechanical properties. The red-cell mem-
brane is a composite structure consisting of a fluid-bilayer plasma mem-
brane closely associated on the cytosolic side with an elastic protein network
called the membrane skeleton. The plasma membrane resists bending but
has no shear resistance. The membrane skeleton is comparatively soft but re-
sists both stretch and shear deformation. To elucidate the shapes and shape
transformations of the red cell it is necessary to understand the mechanics
of these fluid and elastic membranes, both separately and in their composite
state.

This article reviews red-cell mechanical properties and equilibrium mem-
brane mechanics and then applies this material to the problem of modeling
the red cell and understanding the SDE sequence. The motivation for such
a review is the fact that, although the basic experimental facts have been
known for more than sixty years and the membrane mechanics have been
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understood at a conceptual level for about thirty years, until recently it has
not been possible reliably to compute cell shapes more complicated than
the discocyte and, thus, to test in detail the bilayer–couple hypothesis and
to reproduce the full range of SDE shapes. Although some of this work has
already appeared in the professional literature, a full exposition has not been
available and many of the results presented here are new.

Following an introductory section, which gives an overview of the field,
Sections 2.2–2.4 review what is known about the mechanical properties of
the red cell and how to model its equilibrium shape in terms of membrane
mechanics. Section 2.5 describes the Monte Carlo technique we use for solv-
ing the shape equations. Detailed results for the model red-cell shapes which
result from these calculations are presented in Section 2.6. Finally, in Sec-
tions 2.7 and 2.8, these predictions are compared with observations. We show
that, using a reasonable choice of mechanical parameters, it is now possible
to produce from membrane mechanics the full SDE sequence plus certain
other unusual red-cell shapes, several of which have been observed.

The presentation is designed to be pedagogical and might be used as the
basis for a minicourse on red-cell shapes and membrane mechanics. Sec-
tion 2.1 summarizes the problem and the results. Section 2.2 gives biological
background on red-cell structure and shape phenomenology. Section 2.3 pro-
vides background on membrane-shape energetics. Section 2.4 is a primer on
equilibrium membrane-shape mechanics, including both fluid and elastic
components. Additional important but more-technical background is pro-
vided in a series of linked Appendices. Appendix A summarizes what is
known about the important mechanical parameters of the red cell and its
membrane. Appendix B gives a symmetry-based discussion of the terms
which appear in the membrane Hamiltonian, including an introduction to
two-dimensional elastic theory. Appendix C provides a derivation and sum-
mary of results from di=erential geometry that are needed to formulate the
mechanics of curved membranes in a convenient and fluid manner. Ap-
pendix D provides details of membrane-mechanical calculations for results
quoted in Section 2.4 but too technical to present in the main text. An exten-
sive bibliography is included.

2.1
Introduction

2.1.1
Overview and History

Red blood cells (RBCs), or “erythrocytes,” were first observed by Anton van
Leeuwenhoek in 1674, soon after the invention of the light microscope. In
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Fig. 2.1 Normal human red cells are flattened biconcave discs, a shape known as the dis-
cocyte. Copyright information: Electron micrograph courtesy of Dr. Narla Mohandas, with
permission.

its normal resting state at physiological osmolarity (∼ 290 mosmol/l), pH
(∼ 7.4) and at room temperature, the human erythrocyte assumes naturally
the shape of a flattened biconcave disc (Fig. 2.1) with a diameter of 8µm,
a thickness of 1.7µm, a volume of 90–110µm3 and a surface area of 130–
140µm2 (Bessis 1973; Lichtman et al. 2005). Of course, all these numbers
have a range of natural variability, in that their values vary within the RBC
population of a single individual and, also, from one individual to another
(more in Appendix A). An erythrocyte with this general shape is referred to
as a discocyte .

In addition to its normal discocytic shape, the red cell at rest is known
to assume a variety of other distinct shapes. Figures 2.2 and 2.3 illustrate
some of these “unusual” erythrocyte shapes along with the terminology used
to describe them. “Echinocytes” are characterized by one (or more) exterior
projections or “spicules.” “Stomatocytes,” on the other hand, exhibit corre-
sponding cup-shaped invaginations. A sequence of roman-numeral labels
indicate the severity of the deformation. The smaller deformations, up to
and including category III, occur reversibly; beyond category III, deforma-
tions are irreversible. A few other named shape categories are also shown
in Fig. 2.3. Terminology in the form presently used is largely due to Bessis
(1972) (Bessis 1973; Bessis 1974; Bessis 2000).

Many of these unusual shapes appear in vivo as infrequent anomalies in
normal blood and their appearance in this context is not related to any clinical
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Fig. 2.2 The standard, pictorial classification of RBC shape classes in use today, originally
proposed by Bessis (1972). Stage IV is irreversible, since the transformation from stage III
to IV is accompanied by a loss of membrane area through vesiculation (see Section 2.2.3).
Transformations among the intermediate stages are qualitatively reversible and are collec-
tively referred to as the stomatocyte-discocyte-echinocyte shape transformations. Adapted
from Fig. 2 of Betticher et al. (1995) with permission of the American Physiological Society.

Table 2.1 Shape-changing agents. Typical examples of stomatocytogenic and echinocyto-
genic agents. An extensive list is given in Wong (1999).

Stomatocytogenic Echinocytogenic

Cationic amphipathic drugs Anionic amphipathic drugs

Cholesterol depletion Cholesterol addition

Low salt (hypotonic saline) High salt (hypertonic saline)

Low pH High pH

Intracellular ATP depletion

Proximity to glass

disease or pathology. In addition, they can be produced systematically and re-
liably by treating normal erthyrocytes in vitro with specific chemical agents.
In particular, there is a broad class of agents, shown in Table 2.1, whose
application drives the normal discocyte through the the stomatocyte-disco-
cyte-echinocyte (SDE) sequence of shape transformations shown in Fig. 2.2.
Application of agents in the echinocytogenic group, in su;cient concentra-
tion, drives an initially discocytic shape to the right in Fig. 2.2, while applica-
tion of those from the stomatocytogenic group drives it to the left. Di=erent
agents from the same group take an initially discocytic erythrocyte through
exactly the same sequence of shapes. The agents from one class counteract
the agents from the other (as long as the system remains in the reversible
range). Explaining the cause and mechanism of the SDE sequence, includ-
ing its apparent universality, is a central focus of this paper.
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Fig. 2.3 (a–g) The SDE sequence. Side-by-side comparison of laboratory images of stom-
atocytes III, II and I (a–c), discocyte (d) and echinocytes I, II and III (e–g) with the corre-
sponding calculated shapes, NAS(10), NAS(7), AS(3), AD(5), E1-9(3), SS(11) and SS(10)
at Vms = 148 µm3 (see Section 2.6). (A–C) Laboratory images of a non-axisymmetric dis-
cocyte, a triangular stomatocyte and a knizocyte. Plot of Fmin as a function of Vms and m0:
Schematic illustration of the intersections of the surfaces of minimum energy Fmin of the
principal shape classes in the vicinity of Vms = 148 µm3 (see Section 2.6.3). m0 is a dimen-
sionless measure of the e=ective area di=erence between plasma-membrane leaflets (see
Eq. (2.101)); Vms measures the volume of the relaxed membrane skeleton (see Section 2.3.3
and Fig. 2.7). For clarity, we have omitted some intermediate shapes in the transformation
from SS to E1-9. The directed lines show schematic trajectories through the shape classes
as m0 is varied by application of echinocytogenic or stomatocytogenic agents. Dashed seg-
ments indicate sudden irreversible changes associated with hysteretic behavior.
Copyright information: Image (A) and images (c) and (d) are reprinted from Fig. 5C of
Fischer et al. (1981) and Fig. 2A of Jay (1975), respectively, with permission of the Biophys-
ical Society. Images (a), (b), (B) and (f) are reprinted from Fig. 119 of Bessis (1956), Plate
I(a) and I(b) of Brailsford et al. (1980) and Fig. 1 of Jones et al. (1987), respectively, with
permission of Elsevier. Images (C), (e) and (g) are reprinted from Figs. 28–16, 28–20 and
28–22, respectively, of Kimzey (1977).
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It appears that Hamburger (1895) was the first to observe reversible RBC
morphological transformations induced by changes of solution tonicity.
Then, in the 1930s, Ponder (1948) performed comprehensive investigations,
both with and without volume changes, and identified all shape classes on
the discocyte–echinocyte side of the SDE sequence. Subsequent experiments
in the 1960s, particularly the work of Deuticke (1968), firmly established the
discocyte-stomatocyte transformations. Bessis (1972) (Bessis 1973; Bessis
1974; Bessis 2000) finally combined the discocyte-echinocyte observations
with the discocyte-stomatocyte observations to form the full SDE sequence
shown in Figs. 2.2 and 2.3.

In spite of the wealth of knowledge about RBC shapes accumulated over
more than three centuries of observation, a full explanation of the shapes
and shape transformations of the normal human RBC has remained elu-
sive. As recently as 2001, the RBC physiologist J.F. Ho=man (2001) regarded
this problem as the first of his “. . . own most perplexing and cherished red
cell problems. . . ” in a commentary entitled ‘Questions for Red Blood Cell
Physiologists to Ponder in This Millennium.’ The work reported here is an
answer – or at least a partial answer – to Ho=man’s implied question.

Both usual and unusual erythrocyte shapes are (of course!) the result of
mechanical forces operating at the microscopic level. It is the purpose of this
article to describe what those forces are and how they lead to the observed
shapes and shape transformations, especially the well-documented SDE se-
quence. We will also discuss some of the other unusual shapes. We will need
as background to review the structure and composition of the red-cell mem-
brane (Section 2.2). We will then review (Section 2.3) how the mechanical
energy of this structure may be modeled in terms of a small set of material
parameters, many of which are measurable in vitro. This energy functional,
which we denote F [S], depends on the shape S of the red cell. The e=ect of
thermal fluctuations on the shape mechanics is generally – but not always –
small, so the observed shapes are expected to be minima of F [S] with respect
to variations of S. Finding these minimizing shapes requires solving a prob-
lem in membrane mechanics (Sections 2.4 and 2.5). With these ingredients
in hand we will then be able to explore in the remaining sections how the ob-
served stationary shapes emerge from the shape mechanics and how they de-
pend on the material-parameter inputs. Although the background material is
generally well-known, much of the material presented in Sections 2.6 and 2.7
is new. The reason for this is that shape calculations for the more-complex
morphologies are computationally intensive. Thus, although the key qualita-
tive ideas have been around for several decades, it is only recently that these
ideas could be validated by quantitative calculations of shapes which are not
axisymmetric. A summary of results has been presented elsewhere (Wortis
2001; Lim et al. 2001; Lim et al. 2002; Mukhopadhyay et al. 2002); however,
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what appears here is the first published comprehensive account of our work
(see also Lim (2003)).

The remainder of this section contains a summary of the overall logic of
the red-cell shape problem, including the structure of the red cell, the ingre-
dients of the shape mechanics and the form of the shape calculations. It is
intended that this material should give an overview of red-cell shape mechan-
ics at a qualitative level. The remainder of the paper fills in this framework.

2.1.2
Structure of the Erythrocyte: the Composite Membrane

Most cells have internal stress-bearing structures which determine their
shapes; however, red cells are an exception to this rule. Red cells are pro-
duced from stem cells in the bone marrow. Initially, they are nucleated;
however, upon exiting the marrow and entering the circulation, they lose
their nucleus and additional internal structures, leaving the interior cytosol
a more-or-less uniform viscous fluid, capable of supporting at equilibrium
only an isotropic pressure. At this stage, they are called reticulocytes. Once
in the blood stream, it takes several days for the reticulocyte to assume the
normal RBC shape. After this it lives in the circulation for about 120 days and
is then biochemically tagged, captured in the spleen and recycled. During its
lifetime the red cell cycles (about 105×) through the circulatory system car-
rying oxygen. In this process it must pass repeatedly through capillaries with
diameters as small as 3µm. In order to pass through these restrictions, the
red cell deforms at constant volume and area into a sausage shape, which
makes good di=usive contact with the capillary walls, and then reforms its
discoid shape after the constriction. This reversible shape transformation re-
quires energy (supplied by the heart), so there is an evolutionary advantage
to building the red cell out of a soft material.

From a mechanical perspective, the red cell in circulation is e=ectively
a bag of fluid surrounded by a quasi-two-dimensional composite mem-
brane (Alberts et al. 2002; Lichtman et al. 2005). On the inside, the cytosol
is predominately a concentrated aqueous solution of hemoglobin, but also
containing various salts and biologically active proteins. The surrounding
membrane is a thin composite structure consisting of two closely coupled
components, which will be described in more detail in Section 2.2. The outer
layer, called the plasma membrane (pm), is a self-assembled amphipathic bi-
layer in the fluid (Lα) phase. Its dominant ingredient is a multi-component
lipid mixture; however, there is a significant admixture of proteins and other
biomolecules. The plasma membrane has a thickness D ≈ 4 nm. It is per-
meable to water but e=ectively impermeable to ions and large molecules, so
it forms a semipermeable osmotic barrier between the cytosol and the ex-
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tracellular fluid. The inner layer, called the membrane skeleton (ms) or, by
some authors, the cytoskeleton, is a loose elastic network of polymerized pro-
teins which is anchored at discrete locations to the plasma membrane and
extends up to 50 nm into the cytosol. Note that the membrane-skeleton thick-
ness, although significantly larger than D, is nonetheless still small on the
scale of the whole cell. Both the plasma membrane and the membrane skele-
ton have structure at the submicron level (see Section 2.2) but are uniform
and isotropic to a good approximation on the length scale of the whole cell.
Being fluid, the plasma membrane is easily deformable but rather fragile.
The role of the membrane skeleton appears to be that of toughening the cell-
membrane capsule so that it is not breached during the repeated large shape
deformations which the red cell undergoes in the circulation.

2.1.3
What Fixes the Area and Volume of the Red Cell? Flaccid vs. Turgid Cells

The surface area A and volume V of the red cell play a crucial role in RBC
morphology. In all our computations we have used the values A0 = 140µm2

and V0 = 100µm3, as shown in Table 2.2 (see also Appendix A). It will be
useful in what follows to define a characteristic length RA by

A0 ≡ 4πR2
A, (2.1)

so the volume of a sphere of area A0 is

VA0 =
4π

3
R3

A. (2.2)

Based on the area given above, one finds RA = 3.34µm, which is an impor-
tant length scale in the red-cell shape problem. The dimensionless ratio,

v =
V0

VA0

, (2.3)

is called the reduced volume. For the red cell v = 0.642, as tabulated in
Table 2.2.

The red-cell area is e=ectively fixed at A = A0 = ARBC by the amount of
material in the plasma membrane. Of course, in principle, the area responds
elastically to the tension created by any pressure di=erence ∆P across the
membrane; however, the area expansion modulus of the plasma membrane
KA≈ 0.5 J/m2 (Katnik and Waugh 1990) is large enough so that, for typical
pressure di=erences, any area change is negligible.1)

1) The typical pressure di=erence for a flaccid RBC is ∆P ∼ 5×10−3 J/m2, which translates
to a fractional area change of roughly 2 × 10−8. This estimate is based on a membrane
energy E ∼ κb with ∆P ∼ dE

dV
∼ κb

R3
A

∼ 2τ
RA

with τ = KA
∆A
A0

, where τ is the mem-

brane tension (see more at Sections 2.3 and 2.4 and Appendix A).
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Table 2.2 Parameters of the model. Defining equations and further references are given at
the right.

Cell and membrane geometry

Red-cell area A0 = ARBC = 140 µm2 Appendix A
Red-cell volume V0 = VRBC = 100 µm3 Appendix A
Scale length RA = 3.34 µm Eq. (2.1)
Maximum volume of red cell VA0 = 4πR3

A/3 = 155.8 µm3 Eq. (2.2)
Reduced volume of red cell v = V0/VA0 = 0.642 Eq. (2.3)
Bilayer thickness D = 4 nm

O=set of leaflet midplanes D0 ≈ 2 nm Eq. (2.21)
Membrane skeleton thickness Dms ≈ 50 nm

Constraint moduli

Area modulus of pm KA = 0.5 J/m2 = 2.5 × 106 κb/µm2 Eq. (2.9)
Osmotic modulus KV = RTc0 Eq (2.12)

= 7.23 × 105 J/m3 = 3.61 × 106 κb/µm3

Computational area modulus K∗
A = 1.0 × 10−3 J/m2 = 5 × 104 κb/µm2 Eq. (2.83)

Computational osmotic modulus KV = 1.0 × 104 J/m3 = 5 × 104 κb/µm3 Eq. (2.84)

Plasma-membrane parameters

Bending modulus κb = 2.0 × 10−19 J/m2 ∼ 48 κbTroom Eq. (2.14),
Appendix A

Gaussian bending modulus −2κb ≤ κg ≤ 0 (unknown, Eq. (2.15),
Appendices B.2, D.3) Appendix A

Area-di=erence modulus κ = 2κb/π = 1.27 × 10−19 J Eq. (2.16),
Appendix A

Ratio of moduli αb = κ/κb = 2/π = 0.637

Spontaneous curvature C0 (c0 = RAC0) Eq. (2.14)
Area di=erence (relaxed) ∆A0 (∆a0 = ∆A0/D0RA) Eq. (2.16)
Area di=erence (actual) ∆A (∆a = ∆A/D0RA) Eq. (2.21)
E=ective C0 C0 (c0 = RAC0) Eq. (2.23)
Area-di=erence parameter m0 m0 = 2c0/αb (−60 < m0 < 160) Eqs. (2.33),

(2.101)

Membrane-Skeleton parameters

Stretch modulus of ms Kα = 5 × 10−6 J/m2 = 25 κb/µm2 Eq. (2.27)
Shear modulus of ms µ = 2.5 × 10−6 J/m2 = 12.5 κb/µm2 Eq. (2.27)
Elastic length scale Λel∼ 0.3 µm Eq. (2.5)
Nonlinear elastic coe;cients a3 = −2, a4 = 8, b1 = 0.7, b2 = 0.75 Eq. (2.28)
Relaxed area of ms A[S0] = A0 = 140 µm2 Fig. 2.7
Relaxed volume of ms Vms = V [S0] (V0 ≤ Vms ≤ VA0 ) Fig. 2.7

The red-cell volume V , on the other hand, is set by osmotic equilibrium.
The osmotic pressure of any significant osmotic imbalance is almost always
appreciably larger than any pressure di=erence ∆P across the membrane,2)

so water flows through the membrane until the tonicities of the cytosol and

2) According to the van’t Ho= relation ∆P = RT∆c, where R is the gas constant and ∆c
is the tonicity di=erence across the membrane in moles/m3. Thus, at the physiological
osmolarity of 290 mosmol/l, a typical flaccid-vesicle pressure di=erence of ∆P ∼ 3 ×
10−3 J/m2 is supported by a fractional di=erence in tonicity of ∆c

c
= ∆P

RTc
∼ 7 × 10−9.
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the extracellular solution are e=ectively equalized. Thus, if a red cell is placed
in hypertonic solution, water flows outwards from the cytosol, deflating the
cell. Conversely, if the extra-cellular solution is hypotonic, water flows in-
wards, inflating the cell. Depending on the degree of hypotonicity, one of
three things happens. If the original osmotic imbalance is su;ciently small,
then inflation stops (i.e., osmotic balance is achieved) at V < VA0 , the maxi-
mum volume that can be accommodated by the original, unstretched mem-
brane area A0. In this range the pressure di=erence ∆P remains small1) and
the resulting vesicle is said to be “flaccid.” For larger osmotic imbalance, the
in-flowing water begins to push against the membrane-area limitation, thus
forcing the area to increase above A0 and bringing the expansion modulus
into play. In this situation the membrane tension τ and the pressure dif-
ference ∆P both increase rapidly, and the vesicle is said to be “turgid.” The
shape of a turgid vesicle is spherical to a good approximation. Finally, for still
higher osmotic imbalances, the membrane tension exceeds the lysis tension
and the plasma membrane ruptures.3) At this point cytosol escapes, relieving
the excess pressure and generally removing some osmogenic solutes. With
the pressure relieved, the line tension at the broken edge can lead to reseal-
ing of the plasma membrane and osmotic flow resumes. This cycle of lysis
followed by resealing can be repeated several times, until the red cell is left
finally in osmotic balance in either the flaccid or the turgid state (although
normally with a damaged membrane skeleton).

The in vivo red cell, which finds itself subject to physiological osmolarity,
has biochemical feedback loops (Strange 1994; Lang 2006) which adjust its
cytosolic tonicity to keep its volume at V0 = VRBC ≈ 0.642VA0 , in the flaccid
range. When such a cell is placed in vitro in a solution of non-physiological
tonicity, it swells or deflates on a time-scale faster than the internal feedback.
In this article we will be concerned principally with the shapes of undamaged
flaccid red cells. In many – but not all – experiments, the extra-cellular solu-
tion is maintained at physiological tonicity, so the cell volume remains at V0.
Work involving the shapes of cells subject to osmotic inflation (“sphering”)
and/or deflation has also been carried out (Furchgott and Ponder 1940; Pon-
der 1948; Rand and Burton 1963; Rand 1967; Fung and Tong 1968; Canham
1970; Canham and Parkinson 1970; Skalak et al. 1973; Zarda et al. 1977; Pai
and Weymann 1980) but is not specifically addressed in this work.

3) Lysis occurs when the area has increased by only a percent or two, that is, at a tension of
τ ∼ KA

∆A
A0

∼ KA
100

∼ 5×10−3 J/m2. At this point the pressure di=erence has increased

by a factor of roughly 6 × 105 above its flaccid value. However, even at this higher value,
the corresponding osmolarity di=erence is still small, ∆c

c
∼ 4 × 10−3.
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2.1.4
Shape Determination for a Flaccid Red Cell at Equilibrium:
Membrane-Energy Minimization

What determines the shape of a flaccid red cell at equilibrium in aqueous
solution? Red cells do not contain internal force-bearing structures to regu-
late their shapes. Flaccid red cells have V0 < VA0 , so they are not maintained
spherical by internal pressure. The cell membrane is surrounded only by
fluids which, on the scale of the cell size RA, are uniform and isotropic. It
follows that the cell shape can only be determined by the shape preference of
the cell membrane itself. Like any other mechanical system in a dissipative
environment (the fluids inside and outside) the membrane will tend towards
its state of lowest mechanical energy. Thus, if F [S] is the membrane en-
ergy (strictly speaking, its free energy) as a functional of the cell-membrane
shape S, the observed shape at mechanical equilibrium will be one which
minimizes F with respect to changes in S, subject to the constraints that the
cell volume and area have at their prescribed values. Energy minimization
implies that the equations of mechanical equilibrium are satisfied: cells take
on shapes determined by membrane mechanics.

Clearly, a central ingredient of equilibrium-shape determination is the
form of the shape-energy functional F [S], which we discuss in the next sub-
section and which we will explore in full detail in Section 2.3. Once F [S]
is known, finding the equilibrium shape is reduced to the computational
problem of finding a constrained energy minimum. F [S] depends on cer-
tain material parameters or moduli, whose values control the equilibrium
shapes.

There are two factors which will make this picture somewhat more com-
plex. One is that, under given conditions, there may be more than one me-
chanically stable state. The second is that thermal fluctuations are always
present. Except in special cases of degeneracy, one of the stable states – the
“ground state” –has the lowest energy, while any others are metastable. If the
energy kBT of thermal fluctuations were large on the scale of the membrane-
energy landscape, then what would be seen in the lab would be a fluctuat-
ing thermal ensemble of all the states – equilibrium and non-equilibrium –
within roughly kBT of the ground state. It will, however, turn out that the
membrane energy scale is set by the bending modulus of the plasma mem-
brane κb ≈ 2 × 10−19 J ∼ 50κbTroom (see Section 2.3 and Appendix A). In
this sense, red-cell shape is a low-temperature problem, so thermal fluctu-
ation e=ects are normally small, although there are exceptions to this rule
near mechanical instabilities. At the same time, it means that barriers be-
tween the ground state and any metastable states will generally be high, so
that we may anticipate – and will encounter – metastability and hysteresis in
the cell-shape mechanics.
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2.1.5
Ingredients of the Membrane Shape-Energy Functional F [S]

The shape-energy functional F [S] will be described in detail in Section 2.3;
however, it will help our overview to give here a qualitative account of its
most important ingredients. We saw in Section 2.1.2 that the membrane is
composite. Correspondingly, we will write the membrane energy as a sum,

F [S] = Fpm[S] + Fms[S], (2.4)

referring to the plasma membrane (pm) and the membrane skeleton (ms),
respectively. Fpm[S] encodes the mechanics of the bilayer. Since the plasma
membrane is fluid, it cannot support shear stress. Thus, its mechanics is
dominated by its resistance to bending, which is characterized by the bend-
ing modulus κb and by a preferred mean curvature of the membrane sur-
face, denoted 1

2C0, which reflects the asymmetry between the inner and
outer leaflets of the bilayer. The quantity C0, called the e=ective sponta-
neous curvature, is defined (see Section 2.3.2) in such a way that C0 > 0
promotes outward curvature, that is, spiculated shapes like echinocytes, and
C0 < 0 promotes inward curvature, that is, invaginated shapes like stoma-
tocytes. Fms encodes the elasticity of the cytoskeletal protein network, char-
acterized by stretch and shear moduli Kα and µ, respectively, with Kα ≈
2µ ∼ 5 × 10−6 J/m2.4) To define fully the energy of stretch and shear, it is
necessary to know the strain and energy of some reference state of the mem-
brane skeleton. We shall take this state to be a hypothetical “relaxed”, that is,
unstressed, reference shape S0. Thus, the energy of the membrane skeleton
depends functionally on both S and S0, and we shall write it as Fms[S0;S]
when we wish to emphasize this dependence. It would be simple to assume
that S0 is simply a sphere of area A0; however, it will turn out (Sections 2.6
and 2.7) that there is good reason to believe that this is not so and that, in-
stead, S0 is somewhat oblate.

The relative importance of the two terms in Eq. (2.4) is measured by the
ratio of the bending modulus to, say, the shear modulus, which defines an
“elastic length scale” Λel (Mukhopadhyay et al. 2002), according to

Λ2
el ≡

κb

µ
, (2.5)

giving Λel∼ 0.3µm. Thus, it follows on dimensional grounds that, when
elastic stresses in the membrane skeleton are present, they will tend to domi-

4) Note that Kα (for the membrane skeleton) is five orders of magnitude smaller than KA

(for plasma membrane). Thus, in a uniform stretching of the composite membrane, the
e=ect of Kα would be entirely negligible. Indeed, it is the large value of KA that holds
the cell-membrane area e=ectively fixed. However, as the cytoskeleton redistributes itself
over the plasma membrane to minimize the total energy, the strain in the cytoskeleton is
by no means uniform, and the contribution of Fms (including the stretching term) to the
total energy can be locally important, as explained below. The failure to recognize the quite
di=erent roles played by Kα and KA has lead to some confusion in the literature.
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nate the shape problem at length scales larger than Λel, while at length scales
smaller than Λel the shape will be controlled by the bending energy. Note that
RA > Λel � D, so the elastic length scale is smaller than the cellular scale
but still much larger than the membrane thickness. The upshot for the red
cell is that, for relatively smooth shapes like the discocyte, the membrane
skeleton is not subject to significant stress (and certainly not to significant
stress inhomogeneity), so Fms[S] does not play a very important role in shape
determination. On the other hand, for the more pronounced spiculated or
invaginated shapes, appreciable cytoskeletal stresses are present. In this sit-
uation, we may expect that features of cell shape on scales smaller than Λel

are controlled by the bending energy Fpm[S] (the size of which is measured
by κb), while those on scales larger than Λel are dominated by the energy
cost of cytoskeletal deformations, as encoded in Fms[S] (the size of which is
measured by Kα and µ). As a consequence we will find, for example, that the
typical spicule size is comparable to Λel.

2.1.6
Shape Classes, Stability Boundaries and Phase Diagrams

The full shape-energy functional is, as we have seen above, a functional
of the membrane shape S, the unstressed cytoskeletal shape S0, the cell
volume and area, and a number of material parameters {pi} (such as the
elastic moduli), that is, F [A0, V0, {pi}, S0;S]. To find the mechanically sta-
ble shape or shapes for given A0, V0, {pi}, S0, we will minimize over S to
produce a set of shapes S

(α)
min[A0, V0, {pi}, S0] with corresponding energies

F
(α)
min [A0, V0, {pi}, S0]. If one (or more) of the parameters inside the brack-

ets varies smoothly, the corresponding minimizing shapes and energies will
also, in general, vary in a smooth manner. Thus, each minimizing shape
S

(α)
min becomes a class of shapes continuously related to one another and,

correspondingly, each energy F
(α)
min becomes a “sheet” or “branch” over the

“phase space” [A0, V0, {pi}, S0], as illustrated in Fig. 2.3. Each of these shape
classes (and each of the corresponding energy sheets) carries a label α. We
will choose this shape-class label descriptively, and in some (but not all) im-
portant cases the classes will be associated with simple symmetries. Thus,
in Fig. 2.3, the label AD for “axisymmetric discocyte” refers to shapes simi-
lar to the normal discocyte, with a rotation axis plus an up/down reflection
plane perpendicular to that axis. Similarly, the “axisymmetric stomatocyte”
(AS) class has axisymmetry but lacks the up/down reflection plane. Other
classes will be described and discussed in Section 2.6.1.

Characteristically, each class of stable equilibrium shapes exists over some
limited range of the phase-space variables. These limits correspond often
(but not always) to mechanical instabilities, and they are usually associ-
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ated with mathematical bifurcations. We will, therefore, refer both to the
edges of the sheets and to their projections onto the underlying phase space
[A0, V0, {pi}, S0] as stability boundaries. Beyond the stability boundaries of a
particular class, stable shapes in that class do not exist.5) The relationship of
distinct sheets to one another depends on the details of the bifurcation struc-
tures. Sheets may pass through one another, when changing the value of a
parameter causes the relative energy of two sheets of distinct shapes to inter-
change. Alternatively, two sheets can meet along a stability boundary as, for
example, when a sheet of lower symmetry bifurcates from a sheet of higher
symmetry. This will be discussed at greater length in Sections 2.6 and 2.7.

The loci in phase space of all stability boundaries and sheet intersections
constitute a kind of generalized phase diagram. We will wish to refer to some
particular subsets of this generalized phase diagram (see Fig. 2.4). The first
and simplest such subsets are the stability diagrams, which show for each
shape class α the outline of the region of phase space over which a shape
of that class is mechanically stable. A stability diagram is, of course, just the
locus of the stability boundaries surrounding the class α. Up to now we have
said nothing about the relative energies of the various sheets. This is rele-
vant, since, at the longest time scales and at low-enough temperatures, all
cells find their lowest-energy (ground) state. The “T = 0 phase diagram” or
“shape diagram” is a map over phase space of the regions where each shape
class contains the ground-state shape. The shape diagram contains two kinds
of boundaries (see Fig. 2.4). The first are boundaries where two sheets cross
one another (B and C in the generic example of Fig. 2.4). This happens in
regions of the phase diagram where there are two (or more) distinct stable
shapes and the energy sheets of the two lowest-energy shape classes inter-
sect. On one side of the intersection, one shape class has the lowest energy;
on the other side, the order is interchanged. The loci of these lowest-energy
intersections we will refer to as “discontinuous” or “first-order” phase bound-
aries, since the lowest-energy shape changes abruptly across such bound-
aries.6) Alternatively, a ground-state region may be bounded by a stability
boundary where, at a bifurcation, one shape class becomes smoothly unsta-
ble to another (A and B in the generic example of Fig. 2.4). Such bound-
aries we refer to as “continuous” or “second-order,” since one class of shapes

5) Sometimes a sheet continues beyond its stability boundary as a sheet of unstable equi-
librium shapes. Such mechanically unstable shapes are not observable in the lab, nor are
they picked up computationally by the kind of energy-minimization process described in
Section 2.5, although they would show up as solutions of the equations of mechanical equi-
librium (Section 2.4).

6) The terminology is suggested by that of thermodynamic phase transitions. However, it
is important to keep in mind that sharp transitions in the shape problem are strictly a
zero-temperature phenomenon. The red cell is a finite system; thus, all sharp boundaries
disappear at any T > 0 and all that remains is a smoothly changing thermodynamic shape
ensemble.
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Fig. 2.4 Schematic representation of energy sheets with associated phase and stability
diagrams. Energy is measured in the vertical direction; the horizontal coordinates repre-
sent control parameters. There are three shape classes, A, B and C, in this example. The
transition between A and B is continuous, so the energy sheets for these two classes join
smoothly. An independent sheet C intersects B and forms the lowest-energy (ground) state
on the right-hand side. The black lines outlining the A+B sheet are stability boundaries; the
phase C is assumed stable over the entire region. The generalized phase diagram shows
the phase and stability as projected onto the base plane. The B/C phase boundary is dis-
continuous; the A/B phase boundary is continuous. The joint stability diagrams of the A+B
phases are shown below. Note that B remains locally stable beyond the B/C intersection,
so that moving to the right on the sheet B through the intersection will not generally result
in an abrupt shape change until and unless the energy barrier between the B and C config-
urations becomes comparable to the thermal energy kBT . In the uncolored region of the
phase diagram, some other shape class or classes (not shown) must be present, since the
ground-state energy always changes continuously.

blends smoothly into another class with lower symmetry. Because the shape
changes smoothly across a second-order boundary, such transitions may be
hard to locate experimentally with precision, especially when thermal fluctu-
ations are significant.

To appreciate the significance of the shape diagram, consider a labora-
tory experiment in which one (or more) control parameters (e.g. V0, C0, . . .)
are varied smoothly, tracing out a continuous one-dimensional trajectory in
phase space (see Fig. 2.3). If the change is carried out too fast, equilibrium
shapes are not observed, because the system does not have time to equili-
brate. On the other hand, if it is carried out very slowly, then the system
has time to find its ground state, so the shape classes observed will be those
of the shape diagram. There is, however, an intermediate situation, where
the shape can equilibrate to a stable state but not necessarily find the ground
state due to the generically high energy barriers between distinct energy min-
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ima (see Section 2.1.4). This situation is actually quite common. In this case,
second-order boundaries remain sharp in principle but, as always, di;cult to
locate precisely in experiment; however, first-order boundaries typically be-
come moot in experiments because of hysteretic e=ects. Thus, the observed
shape will typically continue on what was the ground-state sheet beyond the
nominal first-order transition point into the the metastable region and drop
to a lower-energy sheet only as the system approaches a stability boundary,
where the energy barriers become comparable to the thermal energy kBT .

In Section 2.6, we will calculate both stability diagrams and shape (phase)
diagrams for the red-cell problem. However, the calculations are time-con-
suming, and we so will only be able to explore a limited region of the full
phase space.

2.1.7
Understanding the SDE Transformation Sequence: Universality and the
Bilayer–Couple Hypothesis

The key feature of the SDE transformations is that they are “universal” in the
sense that the di=erent agents in each of the two classes listed in Table 2.1
drive the red cell through the same sequence of shapes. This universality
suggests that there is a single dominant mechanism or parameter which con-
trols the RBC shape and that the di=erent inducing agents all “turn the same
knob.” The identity of this dominant driving force was correctly surmised
by Sheetz and Singer (1974), although at the time there was no quantitative
theory of red-cell shapes, so their insight could not be tested by a compar-
ison of calculations with observation. Indeed, the first comprehensive and
quantitative test of Sheetz-Singer is provided by the present work (Lim et al.
2002).

Their idea, called the “bilayer–couple hypothesis,” was that, because of the
spatial o=set, D0 ≈ D/2, between the midplanes of the two leaflets of the
plasma membrane, any di=erence in area ∆A0 = Aout − Ain between the
two leaflets serves to produce a bending moment or couple.7) If the outer
leaflet is larger, then that couple will tend to make the membrane bow out-
ward into spicules. If the inner leaflet is larger, then the couple will tend to
produce inward curvature, that is, invagination. Thus, any process which in-
creases the number of molecules or the area per molecule in the outer leaflet
will produce a positive ∆A0 and a tendency towards spiculation. Conversely,
increasing the number or area of inner-leaflet molecules will produce a neg-

7) Of course, such a couple could not be maintained if the two leaflets exchanged lipid
molecules freely, since it would immediately be relaxed by lipid “flip-flop.” We shall find in
Section 2.2.1 that flip-flop is inhibited and, indeed, that cellular metabolic processes control
specifically and individually the lipid composition of the two leaflets.
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ative ∆A0 and invagination. We will discuss in Section 2.8.4 how each of
the agents in the left column of Table 2.1 might produce a negative ∆A0

and each of the agents in the right column, a positive ∆A0. It is necessary
to understand how this quantity ∆A0 enters the shape mechanics described
in Section 2.1.5. What we will show in Section 2.3.2 is that there is a linear
relation between the e=ective spontaneous curvature C0 and the area di=er-
ence ∆A0.

While the bilayer–couple hypothesis is, we believe, correct, the full story
has an extra complication, not appreciated until considerably later than the
seminal paper of Sheetz and Singer (1974). The bilayer–couple refers only to
the bilayer component of the red-cell membrane. In this spirit there was con-
siderable work starting with Helfrich and coworkers (Helfrich 1973; Deuling
and Helfrich 1976) and continuing into the 1990s which studied the equilib-
rium shapes of in vitro fluid-phase lipid-bilayer vesicles, based on the energy
functional Fpm[S] (only), in the expectation that vesicles might be good mod-
els for red-cell shape. We will review this work in Section 2.3.5; however,
su;ce it to say for the present that this work was only partially successful.
While it turns out that appropriate neutral and negative values of C0 do pro-
duce credible discocytic and stomatocytic shapes, echinocyte vesicle shapes
are never seen. Instead, for positive values of C0, vesicles first become pear
shaped and then tend to “vesiculate,” that is, to form small spherical or nearly
spherical “buds” with dimensions comparable to 1/C0 and connected to the
main body of the vesicle by a narrow neck (Miao et al. 1991; Seifert et al. 1991;
Fourcade et al. 1994; Miao et al. 1994). Such shapes are not characteristic of
the intact red cell. It was eventually recognized by the community (Waugh
1996; Khodadad et al. 1996; Iglič 1997; Iglič et al. 1998a; Iglič et al. 1998b;
Wortis 1998) that the cytoskeletal contribution Fms[S] solves this problem by
assigning high shear energy to the narrow neck of the vesiculated shapes,
thus converting them to echinocytic shapes, as illustrated in Fig. 2.5. Turn-
ing this recognition into a calculation was not easy, since at the time only

Fig. 2.5 E=ect of the membrane skeleton for large values of C0. In the absence of cytoskele-
ton (a), increasing the value of C0 leads to the formation of buds of characteristic radius
1/C0 connected to the rest of the cell by a narrow neck. In the presence of a membrane
skeleton (b), the neck region experiences high shear, so budding is replaced by spicule for-
mation.
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axisymmetric shapes could be calculated. The first individual spicule shapes
were calculated by Waugh (1996), Iglič (1997), Iglič et al. (1998a), Iglič et al.
(1998b) and by our group (Mukhopadhyay et al. 2002) on the basis of various
simplifying assumptions; however, not until this work (Lim et al. 2002) has
it become feasible numerically to calculate full spiculated shapes.

2.1.8
Perspective and Outline

After reviewing red-cell components and shape observations in Section 2.2
and models of membrane structure in Section 2.3, Section 2.4 is devoted to
a review of the equations of shape mechanics of first the pure-lipid plasma
membrane and then the full composite plasma membrane-plus-membrane
skeleton. Although these equations are useful background, they have not
proved to be practical tools in calculation except in situations with axisym-
metry. Section 2.5 explains the method of numerical calculation that we have
used to find red-cell shapes. This consists in representing the composite
membrane configuration as a two-dimensional mesh, developing algorithms
for calculating the mesh energy (including both bending and stretch/shear
elasticity) and then using Monte Carlo methods to find shapes that are local
energy minima.

Our results for red-cell shapes and phase diagrams are presented in Sec-
tions 2.6 and 2.7. They focus principally on two axes of the high-dimensional
phase space, the parameter C0 (e=ectively, the Sheetz-Singer parameter) and
a parameter Vms labeling the sphericity of the relaxed membrane-skeleton
shape S0. All the various shapes in the SDE sequence (Fig. 2.2) do appear in
the shape (phase) diagram, along with several other unusual shapes, some
of which are seen in experiments. This result – although encouraging – is
a necessary but far from su;cient condition for “success.” To validate the
theory completely it would be necessary to show that, at each point in phase
space, the calculated shape agrees with what is seen in the lab. Unfortunately,
this kind of validation is impossible, since several of the phase-space param-
eters are known only poorly (see Appendix A) and some of them (like the
cytoskeletal shape) are not known at all. Thus, our objective must remain
more modest.

The key test that we will focus on is the sequence of predicted vs. observed
shapes as the Sheetz–Singer parameter is varied. What we will find in Sec-
tion 2.7.2 is that – for the parameter choices we adopt (Table 2.2 and more
in Appendix A) – the observed SDE sequence of shape transformations does
emerge from the minimization problem but only for a rather narrow range
of cytoskeletal shapes S0, close to the spherical limit but still appreciably
oblate. Outside of this range some members of the sequence are missing or
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other di=erent shape classes (e.g., Fig. 2.3) occur. Section 2.7 summarizes
the principle results and predictions of our model.

Overall, the success of the calculations presented here in reproducing the
observed shapes and shape changes suggests that – despite its simplicity –
the model captures the key features of the red-cell mechanics and, also, that
the parameters we have put in are reasonable. The limitations of the model
and the robustness of the parameter choices are discussed further in Sec-
tion 2.8.

What is the significance of these conclusions from the biological point
of view? In a sense it would seem that we have come full circle. Initially it
might have been thought that the complex red-cell shape changes reflected
subtle biochemical control mechanisms. Instead, it now appears that they
arise from Newton’s laws (membrane mechanics) and material properties
(moduli), driven dominantly by a single biochemically-controlled parameter
(C0). Indeed, it is precisely the universality of the SDE transformations that
makes them – in the end – rather uninteresting from the biochemical per-
spective. Many di=erent inputs produce identical outputs, so the observation
of output gives us only a crude, one-dimensional picture of the biochemical
input. Biological-physics problems often (usually?) turn out to be more “bio-
logical” than “physical” in the sense that they depend importantly on complex
biochemical, DNA-mediated control mechanisms. By contrast, the red-cell
shape turns out to fit the “physics” paradigm of complex behavior arising
from simple inputs. We must immediately add that the biochemical pro-
cesses that influence or control C0 are complicated and interesting. And, it
may well turn out that biological complexity makes itself felt at other length
and time scales (see Section 2.8.5).

Once the shape mechanics are fully understood (some further fine-tuning
of parameters may still be required, see Section 2.8), the way will be open to
inverting the logic and using shape mechanics as a probe of the biochem-
ical parameters entering C0. Thus, we anticipate that shape observations
will be used in the future to infer the bilayer area di=erence ∆A0. Watching
changes in ∆A0 will allow quantitative monitoring of changes in the num-
ber of molecules (or of the area per molecule) in each leaflet of the plasma
membrane. At this stage it begins to become feasible to quantitate the e=ects
of inducing agents such as those listed in Table 2.1 and, thus, to probe the
corresponding biochemical processes via physical shape observations.

Overall this article has two purposes. On the one hand, it contains a re-
view of the mechanical structure of the red-cell membrane and the models
that have been proposed for the calculation of red-cell shapes from first prin-
ciples. On the other hand, most of the results given for red-cell shapes and
shape transformations are reported here for the first time, so this article is
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also a monograph on a particular approach to the predictive understanding
of red-cell shapes.

2.2
Structure of the Cell Membrane; the SDE Sequence

In this section, we will review the structure of the RBC membrane, starting
with the plasma membrane (Section 2.2.1) and continuing to the membrane
skeleton (Section 2.2.2). We conclude by giving additional background on the
SDE sequence and other observed red-cell shapes (Section 2.2.3).

The structural organization of the the RBC membrane is sketched in
Fig. 2.6. Note that the detail is taken from the lower surface of the red cell, so
the membrane skeleton, which is on the inside, appears on top of the plasma
membrane. The plasma membrane is the bilayer sandwich shown schemati-
cally; the membrane skeleton is the linear protein network just inside the
plasma membrane. The membrane skeleton is coupled to the plasma mem-
brane via protein complexes which are anchored into the plasma membrane
via hydrophobic domains. The plasma membrane is a 2D fluid, so the an-
choring complexes are free to move in the plane of the membrane as the
skeleton adjusts to lower its elastic energy. In what follows, we will give a
brief characterization of these two parts of the membrane. Good general ref-
erences on red-cell membrane structure are Steck (1989), Mouritsen and An-
dersen (1998) and Lichtman et al. (2005).

Overall, the red-cell membrane is composed of a mixture of lipids and
proteins plus a small amount of carbohydrate. The lipids are confined to the
plasma membrane and dominate its structure (see Section 2.2.1). A major-
ity of the protein component is associated with the membrane skeleton and
is peripheral to the membrane. The remaining minority fraction associated
with the plasma membrane consists mainly of integral membrane proteins,
anchored into the plasma membrane by one or more hydrophobic α-helical
bilayer-spanning domains.

2.2.1
Plasma Membrane

The plasma membrane is a self-assembled bilayer in the fluid (Lα) phase.
Self-assembly is driven by the amphipathic structure of the lipids, which
combines a polar headgroup with one or more (usually two) hydrophobic hy-
drocarbon chains. The lipids are highly diverse. The dominant species (with
approximate weight percents (Alberts et al. 2002)) are cholesterol (Chol,
23%), phosphatidylethanolamine (PE, 18%), sphingomyelin (SM, 18%),
phosphatidylcholine (PC, 17%), phosphatidylserine (PS, 7%), glycolipids
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Fig. 2.6 Schematic view of the structural organization of the RBC membrane. As drawn,
the interior of the cell lies above the plasma membrane, so the cytoplasm bathes the cy-
toskeletal protein layer (mainly spectrin) which forms the membrane skeleton. Note that
the membrane skeleton is quasi-two-dimensional and does not extend significantly into the
cell interior, which is otherwise filled by a concentrated solution of hemoglobin. After Fig. 1
of Schmidt et al. (1993).

(3%) and others (13%). These materials are not distributed symmetrically
between the two leaves of the bilayer. Most of the PC, SM and glycolipids
are in the outer leaflet, while most of the PE and PS are in the inner leaflet.
At physiological pH most of these species are neutral (typically zwitterionic)
except for PS, which carries a net negative charge in solution. Thus, the
outer leaflet is electrically neutral, while the presence of the PS gives the
inner leaflet a negative charge (which is, of course, neutralized by a nearby
positively charged counterion layer). This lipid asymmetry is believed to be
maintained actively in the functioning erythrocyte by a variety of specific
ATP-dependent enzymes called lipid translocases. If the cell is deprived of
ATP, lipid redistribution occurs, presumably towards a more symmetrical
state; however, this passive “flip-flop” – thermally activated exchange be-
tween leaflets – is a slow process for most lipids because of the high energy
required to make the polar headgroup pass through the region of hydropho-
bic tails. By contrast, because of its small polar head group, cholesterol flips
relatively easily between leaflets. Under normal conditions cholesterol par-
titions with a mild preference for the outer leaflet (Lange and Slayton 1982;
Steck et al. 2002). Both the active and passive flip-flop processes are typi-
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cally slow on the scale of 10−1–1 s required for mechanical shape changes.
For this reason, the area di=erence ∆A0 and the spontaneous curvature C0

(the two factors which enter C0, see Section 2.3.2) are for practical purposes
fixed over the time-scales of shape-changing events. By the same token, lipid
flip-flop can be a mechanism for shape relaxation at longer time scales. All
these considerations will become relevant when we return in Sections 2.8.4
and 2.8.5 to consider the mechanisms by which the various shape-changing
agents of Table 2.1 act.

In the composite red-cell membrane lipids and proteins are in a ratio of
roughly 3 : 4 by weight (Gennis 1989), so proteins are a significant com-
ponent. The non-cytoskeletal membrane proteins are very diverse, including
both structural proteins, like the band 3 tetramer, the protein 4.1, the ankyrin,
the actin oligamer and glycophorin, which cross-link the membrane skeleton
and anchor it locally to the plasma membrane (see Fig. 2.6), and a hosts of
other functional proteins, including pores, channels, transporters, signaling
complexes and so forth.

2.2.2
Membrane Skeleton

The membrane skeleton is a quasi-triangular protein network composed
mainly of spectrin, actin and band 4.1 plus the transmembrane anchor-
ing proteins, band 3 and glycophorin C. The spectrin is polymeric, con-
structed from units which are tetrameric associations of two heterodimers
in head-to-head association. Each junction of the protein network is a pro-
tein complex formed by the band 4.1-assisted binding of approximately six
spectrin tetramers to one actin, with one band 4.1 molecule for every spec-
trin tetramer at the spectrin binding site on actin (Bennett and Baines 2001).
Each junction complex is coupled to the plasma membrane by the binding of
each of its approximately six band 4.1 molecules to a glycophorin C molecule
of the plasma membrane (Workman and Low 1998). In addition, one ankyrin
molecule binds to a site near the midpoint of each spectrin tetramer of the
membrane skeleton and to a band 3 tetramer of the plasma membrane (Van
Dort et al. 1998). Of these two protein linkages, the latter is known qualita-
tively to be much stronger. A detailed review of the structural organization of
the RBC membrane is given in Appendix A of Lim (2003).

From our point of view, the main role of the membrane skeleton is to pro-
vide an elastic net which inhibits strong local deformations of the plasma
membrane. The main elastic components of the membrane skeleton are
the spectrin polymers, which form the connections between the vertices of
the triangular mesh. Each unit of the spectrin is an (αβ)2 double-stranded
tetramer with an overall contour length of 200 nm. The persistence length
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of these linear units is only 10–20 nm at physiological temperatures. Thus,
they are rather flexible, a significant part of their elasticity is entropic, and
they will tend at equilibrium to adopt a partially folded configuration. As a
consequence, in the resting state of the membrane skeleton, the actual sep-
aration between the vertices of the net is about 76 nm and the o=set from
the plane of the plasma membrane is in the range of 30–50 nm (Boal 1994;
Heinrich et al. 2001). The motion of membrane molecules with large cyto-
plasmic domains is known to be significantly inhibited, due at least in part
to interference from the membrane skeleton.

2.2.3
More on the SDE Sequence of Cell-Shape Transformations

The standard terminology (Bessis 1972; Bessis 1973; Bessis 1974; Bessis
2000) for the shapes of the SDE sequence was introduced in Section 2.1.1
and Fig. 2.2. The major non-discocyte stages, stomatocyte (after Greek stoma,
mouth) and echinocyte (Gr. echinos, sea urchin or hedgehog), are each di-
vided into four subcategories as follows (arranged in order of increased
movement away from the discocyte in the two opposite directions):

Stomatocyte I: A cup shape with a shallow circular invagination.

Stomatocyte II: A cup shape with a deeper invagination, still at least approx-
imately circular.

Stomatocyte III: A cup shape with a deep invagination, often elongated into
a mouth-like slit and sometime accompanied by other pit-like invaginations.

Sphero-stomatocyte (or Stomatocyte IV): A spherical shape with small inte-
rior buds still attached to the membrane.

Echinocyte I: A disc with several undulations around its rim.

Echinocyte II: A flattened elliptical (oblate) body with rounded spicules dis-
tributed more or less uniformly over its surface.

Echinocyte III: An ovoid or spherical body with sharper and more numerous
(30–50) spicules distributed evenly over its surface.

Sphero-echinocyte (or Echinocyte IV): A sphere with small sharp projections
still attached to its surface.

The sequence of shape transformations listed above and depicted in
Figs. 2.2 and 2.3 (without stage IV) is commonly known in the hematol-
ogy literature, for example (Lichtman et al. 2005), as the stomatocyte-disco-
cyte-echinocyte (SDE) shape transformations. The observations leading to
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the pictorial classification above are based on the behavior of populations of
cells. Not surprisingly, with the natural variation of cellular properties, there
is a spread of cell morphologies across several stages in any particular pop-
ulation at a given strength of the inducing agent (Hochmuth and Mohandas
1972; Seigneuret and Devaux 1984; Ferrell et al. 1985; Reinhart and Chien
1986; Rasia and Bollini 1998; Gedde et al. 1999); however, all cells can be
driven to the terminal, stage IV, shapes.

In the classical literature the trajectory through stages I-II-III are regarded
as reversible, in the sense that removal of the inducing agent or addition of
an “antagonist” agent at stage III can cycle the shapes back through II and
I and so forth. We will find in Section 2.7.3 that this reversibility is prob-
ably to some extent imperfect, that is, that some shape “hysteresis” is ex-
pected. On the other hand, once stage IV (the “sphero-” stage) is reached,
reversal is no longer possible. Indeed, careful observation shows that the
overall area of the visible membrane (which remains constant during earlier-
stage shape changes) decreases in stage IV. At the same time, small vesi-
cles composed apparently of plasma-membrane material are observed in
the cytosol of sphero-stomatocytes and in the extra-cellular fluid for sphero-
echinocytes. It is inferred that these vesicles (which lack membrane skeleton)
have budded o= from the plasma-membrane. This budding process proba-
bly takes place without detachment of the cytoskeletal proteins that anchor
the membrane skeleton to the plasma membrane, via direct flow of plasma-
membrane material into the small regions between the anchoring proteins.8)

In any case, our calculations will not address the terminal, stage IV, shape
classes. Rapid hemolysis (rupture of the RBC membrane) occurs on further
forcing of the terminal stages.

In addition to shapes belonging to the dominant SDE sequence, other mi-
nor shape classes can occur naturally or by design. Three of these are of
particular interest to us as a consequence of their being found in the cat-
alogue of shapes predicted in this work. These three shapes, illustrated in
Fig. 2.3 (A, B and C), are:

Non-axisymmetric discocyte: A discocytic shape but with an uneven rim
thickness, retaining the up-down symmetry of the normal discocyte but hav-
ing a single additional mirror plane instead of full axisymmetry, produced by
treating an osmotically swollen, nearly spherical RBC with diamide and then
osmotically shrinking it back to the normal volume (Fischer et al. 1981).

8) An alternative mechanism would be a simple disjoining of the plasma membrane from the
membrane skeleton via the pulling out of the cytoskeletal anchors due to the pressure Q
that acts between the two parts of the composite membrane (Section 2.4.1). However, a
crude estimate (Mukhopadhyay et al. 2002) suggests that the required pull-out pressure
remains two orders of magnitude above the pressures which actually occur.
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Triangular stomatocyte: A cup shape with a deep triangular invagination. A
stomatocyte II sometimes transforms to this shape, instead of a stomato-
cyte III shape, when treated with a stomatocytic agent (Bessis 1972).

Knizocyte: A triconcave RBC (Bessis 1973; Bessis 1974) found predominantly
in healthy newborn infants (Ruef and Linderkamp 1999) but also observed
in certain hemolytic anemias, such as hereditary spherocytosis (Bessis 1972).

Normal red cells subject to appropriate forcing adopt the shapes listed
above. There exist additional shape classes associated with erythrocytes
which have significant structural abnormalities. These include elliptocytes
(Liu et al. 1982) (biconcave discocytes deformed so they have an elliptical
outline), which apparently occur when the membrane skeleton is weakened
or absent as occurs in hereditary elliptocytosis or in the lab when red cells
are subjected to urea treatment (Khairy et al. 2007). In addition, we mention
reticulocytes (Section 2.1.2), in which the structure of the mature red cell
has not yet fully developed; codocytes, in which the area of the cell is abnor-
mally large relative to its volume; keratocytes and acanthocytes, in which the
membrane skeleton is damaged or deformed; and sickle cells, in which the
hemoglobin carried by the cell polymerizes, so that the cytosol is no longer
fluid and the cell membrane is no longer the principal determinant of cell
shape. While certainly interesting, these shapes will not be discussed further
herein.

2.3
Membrane Energetics

Membrane mechanics is represented mathematically by giving the mem-
brane (free) energy as a functional F [S] of the membrane configuration S.
Because the membrane thickness is small on the scale of the red cell (and,
also, on the scale of typical radii of curvature of red-cell surface features), it
will su;ce to treat S as a strictly two-dimensional surface. In this section we
introduce the various contributions to F [S].

We will organize these contributions into three classes: contributions
Fcon[S] associated with the constraints of fixed membrane area A and cell
volume V ; contributions Fpm[S] associated with the bending resistance of
the plasma membrane; and contributions Fms[S] associated with the stretch
and shear rigidity of the membrane skeleton. These contributions are addi-
tive at the level of our description,

F [S0;S] = Fcon[S] + Fm[S0;S], (2.6)

where

Fm[S0;S] = Fpm[S] + Fms[S0;S] (2.7)
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refers to the (free) energy of the membrane at fixed area and volume. Note
that Fms, but not the other contributions, depends on the notional unde-
formed or relaxed shape S0 of the membrane skeleton, as will be discussed
further below. This section presents a discussion of each of these contribu-
tions in turn.

For flaccid red cells the constraint term e=ectively sets the volume V [S]
and area A[S] of the red cell to their normal resting values, V0 and A0. In
this situation Fcon is negligible and Eq. (2.6) reduces to Eq. (2.7). A term
like Fcon[S] but with di=erent coe;cients will reappear in Section 2.5 as a
convenient computational device.

Once the shape-energy functional is known, the problem of finding equi-
librium shapes reduces to solving the variational problem δF [S] = 0 (or
δFm[S] = 0), which is, of course, equivalent to mechanical equilibrium un-
der Newton’s laws. In particular, mechanically stable shapes are (local or
global) minima of F [S]. To find such energy-minimizing shapes we have
always two choices. We can solve Newton’s equations or we can simply
search F [S] directly for minima. In Section 2.4 and Appendix D we will
derive and discuss the form of the equations of Newtonian membrane stat-
ics, starting with Fpm and then adding in Fms. While these equations have
conceptual and historical interest, they are not – except in the very sim-
plest cases – analytically soluble. Indeed, they have so far proved numeri-
cally tractable only for axisymmetric geometries. Thus, we will go on in Sec-
tion 2.5 to the explanation of how to implement numerically the direct search
for minima. It is this method which will form the basis of the cell-shape cal-
culations reported in Section 2.6.

2.3.1
Energies of Constraint

The constraint energy has two terms, one associated with the cell area and
the other with the cell volume,

Fcon[S] = FA[S] + FV [S]. (2.8)

FA expresses the elastic energy of area dilation/compression when the actual
cell area A[S] is forced to di=er from its relaxed value A0 (which for us will
usually be A0 = ARBC ). Of course, dilating the area causes stresses in both
the plasma membrane and the membrane skeleton; however, as noted in
Section 2.1.3, the elastic moduli for the skeleton are much smaller than those
of the plasma membrane. Thus, we approximate (Evans and Skalak 1980;
Seifert 1997),

FA[S] ≈ KA

(
A[S] − A0

)2

2A0
, (2.9)
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valid for small deviations of A from A0, where KA is the stretch or area mod-
ulus of the plasma membrane, whose measured value is given in Table 2.2.

FV expresses the osmotic free energy caused by changing the volume of
the cell from its natural value V0, at which it is at osmotic equilibrium, to
some other value V [S], at which it is not. Suppose that the initial equilibrium
solute concentration inside the cell is c0 = n0/V0, where n0 is the num-
ber (in osmoles) of osmotically active molecules trapped within the plasma
membrane. When the cell has the larger volume V , the solute concentra-
tion is reduced to c = n0/V and the van’t Ho= relation requires an osmotic
pressure di=erence across the membrane given by (Seifert 1997)

∆P (V ) = RT (c0 − c) = RTn0

(
1
V0

− 1
V

)
, (2.10)

where R = 8.314 Jmol−1K−1 is the universal gas constant and T is the ab-
solute temperature (measured in Kelvin). Integration of ∆P (V ) with respect
to volume from V0 to V gives the work done in the expansion and, therefore,
the osmotic energy stored,

FV =
∫ V

V0

dV ∆P (V ) = RT

[
c0

(
V − V0

)
− n0 ln

(
V

V0

)]
, (2.11)

which becomes

FV [S] ≈ KV

(
V [S] − V0

)2

2V0
(2.12)

in the limit of small deviations of V from V0. KV ≡ RTc0 is called the
“osmotic modulus.” At physiological osmolarity and T = 300K, KV =
7.23 × 105 J/m3, as given in Table 2.2.

For flaccid cells, the energy scale is set by the bending modulus κb. Thus,
we expect FA ∼ FV ∼ κb, which means that ∆A/A0 ∼ ∆V/V0 ∼ 5 ×
10−5. For this reason, there is a negligible error in assuming – as we shall –
that the area and volume are strictly fixed for flaccid cells. In analytic work
for flaccid cells, we will enforce the constraint on red-cell area and volume
strictly (see Section 2.4). On the other hand, in the numerical Monte Carlo
simulations of Section 2.5, it is more convenient to allow the area and volume
to vary subject to constraints of the form of Eqs. (2.9) and (2.12), which serve
to make variations of area and volume about A0 and V0 negligibly small.
In this context, there is no particular reason to use the physical values of
the moduli KA and KV . Instead, we have used the weaker computational
moduli K∗

A and K∗
V given in Table 2.2, which serve to set A ≈ A0 and V ≈

V0 to within tolerances of 0.02%, which is su;cient for our purposes and
computationally more e;cient than the harder constraints.
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2.3.2
Bending Energy of the Plasma Membrane

We model the plasma membrane as an isotropic fluid bilayer in which each
leaflet has a uniform composition. Uniformity is, of course, an approxima-
tion. We will comment further on this approximation in Section 2.8.6. This
model without the cytoskeletal contribution has been used extensively to de-
scribe the properties of lipid-bilayer vesicles. The reader is directed to earlier
literature (Miao 1992; Miao et al. 1994; Wortis and Evans 1997), and partic-
ularly the excellent review by Seifert (1997). In what follows we give a brief
pedagogical presentation of this material.

The free-energy functional Fpm[S] describes the bending resistance of the
plasma membrane and consists of three terms,

Fpm[S] = Fsc[S] + Fg[S] + Fad[S], (2.13)

where S is the two-dimensional mathematical surface representing the
closed bilayer. The forms of these three terms are given by

Fsc[S] =
κb

2

∮
S

dA
[
2H(r) − C0

]2
, (2.14)

Fg[S] = κg

∮
S

dA K(r), (2.15)

Fad[S] =
πκ

2D2
0A0

(
∆A[S] − ∆A0

)2
, (2.16)

which we shall refer to as the spontaneous-curvature (sc) or “Helfrich” term,
the Gaussian-curvature (g) term and the area-di=erence (ad) term, respec-
tively. Collectively these terms constitute what is called the area-di=erence
elasticity (ADE) model. In the succeeding paragraphs we will explain the first
two terms and then the third.

In the first two terms, Fsc + Fg, the integrals are surface integrals over S.
The quantities H(r) and K(r) are, respectively, the mean and Gaussian cur-
vatures of S at the point r. Thus, if the principal radii of curvature of S at r
are denoted Ri(r), i = 1, 2 (so the principal curvatures are Ci(r) = 1/Ri(r)),
then

H(r) =
1
2

(
C1(r) + C2(r)

)
=

1
2
trC (2.17)

K(r) = C1C2 = det C, (2.18)

where C is the curvature tensor (see Appendix C). The sign convention is
chosen so that the Ci’s are positive where the shape is convex (outward). κb

and κg are the bending modulus (see Table 2.2) and the Gaussian modulus,
respectively. C0 is a material parameter called the spontaneous curvature (see
below). Note that positive C0 favors convex shapes.
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The functional forms of Fsc and Fg follow from simple symmetry prin-
ciples by a kind of Landau argument. We assume that the bending energy
depends locally on S, so

Fsc[S] + Fg[S] =
∮

S

dA fb(r), (2.19)

where the bending (free) energy per unit area, fb, depends on the local shape
of S in the vicinity of r in a way which respects Euclidean invariance and the
local in-plane isotropy of the fluid membrane. The upshot of this argument,
which is presented in full in Appendix B, is that, through terms of order
(D/R)2,

fb(r) = κ0 + κ1(C1 + C2) + κ3(C2
1 + C2

2 ) + κ5C1C2, (2.20)

where C1,2 are the local principal curvatures of S in the vicinity of r and the
coupling constants κi are material moduli independent of r (assuming that
the membrane composition is uniform over S). Substitution of Eq. (2.20)
into Eq. (2.19) gives an expression which is equivalent to Fsc + Fg provided
that the three material moduli κ1, κ3, and κ5 are related to the three pa-
rameters κb, κg, and C0 of Eqs. (2.14) and (2.15) according to κb = 3κ3,
κbC0 = −κ1 and κg = κ5 − 2κ3. Note that the term in κ0 is shape-indepen-
dent and, therefore, arbitrary for purposes of shape determination.

The Gaussian term Fg, Eq. (2.15), does not contribute to the shape prob-
lem and is often omitted in forming the sum Fpm, Eq. (2.13). The reason for
this is a mathematical property called the Gauss–Bonnet theorem (Millman
and Parker 1977), which guarantees that, for any smooth S, the surface in-
tegral

∮
dA K(r) of the Gaussian curvature is a topological invariant. For

example,
∮

dA K(r) = 4π for any surface with the topology of a sphere. It
follows that this term can only distinguish between shapes of di=erent topol-
ogy but plays no role in selecting among shapes of the same topology.

We now address the third term Fad of Eq. (2.13). This term arises be-
cause – as emphasized in Section 2.2 – the two leaflets of the plasma mem-
brane do not interchange material readily and, therefore, may in principle
have slightly di=erent relaxed areas (due, for example, to a few additional
molecules in one leaflet compared to the other or to a di=erence between
leaflets in the average relaxed area per molecule). This relaxed area di=er-
ence, denoted ∆A0 = Aout − Ain, was already introduced in Section 2.1.7
in connection with the bilayer–couple hypothesis, and we are now in a posi-
tion to deal with it in a careful manner. If the two leaflets were maintained
flat and with their edges fixed together, then for ∆A0 > 0 the material in
the outer leaflet would have to be compressed and/or the material in the in-
ner leaflet would have to be expanded.9) This would cause a strain variation

9) A heated bimetallic strip provides a one-dimensional analog.
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across the thickness of the membrane and would give rise to a bending mo-
ment or “couple” tending to make the membrane become convex outwards.
The situation is similar for a closed membrane, which is necessarily curved.
In this case, there is a (small) area di=erence,

∆A[S] ≡ 2D0

∮
dA H(r), (2.21)

between the two leaves of the bilayer, where D0 ≈ D/2 is the distance –
assumed uniform over the membrane – between the midpoints of the two
leaflets.10) This well-known relation is rederived in Appendix C. The gen-
eralization of the flat-membrane discussion above is the statement that a
bending moment is produced whenever (∆A[S] − ∆A0) �= 0, and the di-
mensionless area strain of the resulting mismatch is (∆A[S] − ∆A0)/A[S].
The corresponding modulus is essentially the area modulus KA,11) so the
stored strain energy per unit area becomes ∼ KA[(∆A[S] − ∆A0)/A[S]]2.
Summing this over the entire membrane gives the area-di=erence strain en-
ergy,

Fad[S] ∼ A[S] × KAD2
0

D2
0

×
(

∆A[S] − ∆A0

A[S]

)2

,

which is equivalent to Eq. (2.16) for A[S] = A0. Note that κ ∼ D2KA ∼ κb,
so αb ≡ κ/κb is expected to be of order unity (see Table 2.2 and Appendix A).
Because of the forms of Eqs. (2.16) and (2.21), Fad appears nonlocal and could
not have been picked up by the Landau argument above. κ is called the area-
di=erence modulus or, sometimes, the nonlocal bending modulus. The extra
factor π in the numerator is purely conventional. A more detailed form of this
discussion is given in Miao et al. (1994).

The values that we have used in calculation for the elastic moduli are κb =
2.0× 10−19 J and κ = 2κb/π, as shown in Table 2.2 and discussed further in
Appendix A.

The reader will have noticed that positive spontaneous curvature C0 in
Fsc and positive area di=erence ∆A0 in Fad have similar e=ects in that they
both promote outward convexity of the membrane. Indeed, it is convenient
to combine Eqs. (2.14) and (2.16) to rewrite Eq. (2.13) in the form,

10) Technically, D0 is the distance between the so-called “neutral surfaces” of the two
leaflets (Evans and Skalak 1980), the point of the leaflet profile about which the bend-
ing moment vanishes. This point is not necessarily at the leaflet midpoint. However,
the leaflet stress profile has not to our knowledge been reliably measured, so we adopt
D0 ≈ D/2 as a working hypothesis. Since D0 only appears in our calculations via the
e=ective spontaneous curvature, Eq. (2.23), any change in its value serves only to modify
the relation between the physical quantity ∆A0 and the computational quantity m0 (see
more at Eq. (2.101) and Section 2.8.5).

11) There are additional numerical factors, since KA refers to the entire membrane while the
energy here refers to the stretching/compression of individual leaflets (Miao et al. 1994).
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Fpm[S] =
κb

2

∮
S

dA
[
2H(r)−C0]2+

πκ

2A0

(∮
S

dA 2H

)2

+constant, (2.22)

where

C0 = C0 +
παb

D0

∆A0

A0
(2.23)

acts as an e=ective spontaneous curvature and the constant term is shape-
independent. In arriving at Eq. (2.22), the Gaussian term has been dropped
and the area is assumed fixed at A0, as is appropriate for flaccid vesicles.
Equation (2.23) shows how C0 and ∆A0 combine to make up the single
control parameter C0 introduced in Section 2.1.5.12) It may be useful to dis-
tinguish the somewhat di=erent origins of these two similar e=ects. C0 is
best thought of as arising from the shapes of individual molecules in the
leaflets of the bilayer. Positive C0 arises from a preponderance of large head-
groups and/or small tailgroups in the outer leaflet or, correspondingly, a pre-
ponderance of large tailgroups and/or small headgroups in the inner leaflet.
Both of these e=ects produce bending moments for the individual leaflets.
If the leaflets are symmetrical, then the overall e=ect cancels for the bilayer
and C0 = 0. But, the plasma membrane is not symmetrical (Section 2.2.1),
so there is no reason for such a cancellation to occur. By contrast, the area-
di=erence e=ect occurs even when molecular-shape e=ects are completely
absent, whenever more (or larger) molecules are packed into one leaflet rela-
tive to the other. Helfrich (1973) was the first to postulate the spontaneous-
curvature mechanism. Helfrich (1974) and Evans (Evans 1974; Evans 1980)
later identified the area-di=erence e=ect. It is now recognized that these
e=ects are both present and generically comparable in magnitude.13) Nei-
ther C0 nor ∆A0 can at this point be measured directly. The fact that they
enter the shape problem together in C0 is very convenient, since there is
only one unknown parameter, which must be inferred indirectly from obser-
vation.

2.3.3
Elastic Energy of the Membrane Skeleton

Following Evans and Skalak (1980), we model the membrane skeleton as
a two-dimensional continuous isotropic hyperelastic material (Ogden 1984;

12) The two input variables C0 and ∆A0 appear only in the combination C0 and cannot,
therefore, be deduced independently from experiment. Of course, our choice to think of
the combined variable as an e=ective spontaneous curvature is arbitrary. We could equally
well have defined as a control parameter the e=ective area di=erence, ∆A0 = ∆A0 +
D0A0
παb

C0.

13) The limiting case κ → ∞, in which the area di=erence ∆A is locked to ∆A0, is some-
times called the bilayer–couple or ∆A model. (Svetina et al. 1982; Svetina and Žekš 1983;
Svetina et al. 1985; Svetina and Žekš 1985; Svetina and Žekš 1989)
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Mase and Mase 1999; Başar and Weichert 2000; Holzapfel 2000) confined
to the surface S. Technically, “hyperelastic” means that the elasticity is as-
sumed non-dissipative14); however, we intend in addition to emphasize that
we will be dealing with large strains, well beyond the realm of linear elas-
ticity, with dimensionless strains (see Section 2.7.4) which may be of order
unity. It is an approximation to refer the cytoskeletal stresses to S, since the
membrane skeleton is typically o=set from the plasma membrane by dis-
tances Dms∼ 50 nm (Sections 2.1.2 and 2.2.2). Thus, we are ignoring cor-
rections of relative order Dms/R, where R is a typical radius of curvature
of S. For smooth shapes, Dms/R ∼ Dms/RA ∼ 10−2, so these e=ects are
small. We also ignore cytoskeletal bending moments. As we have seen in
Section 2.3.2, any bending modulus due to the cytoskeleton should scale as
D2

msKα, where Kα is the cytoskeletal stretching modulus. Thus, we expect
κms

b /κb ∼ (Dms/D)2(Kα/KA) ∼ 10−3 (see Table 2.2), due to the weakness
of Kα relative to KA.

In this picture then, the membrane skeleton is a two-dimensional elas-
tic continuum with spherical topology, which we visualize as starting from
some initial shape S0 at which it is uniform, isotropic and unstressed. We
shall refer to S0 as the “reference shape” of the membrane skeleton. A con-
figuration of the membrane skeleton is a continuous one-to-one mapping
of each point R0 of S0 to a point R of S. There are, of course, many such
mappings, since the material points of S0 can be moved around on the math-
ematical surface S. Any such mapping produces a strain field over the now-
deformed cytoskeletal material. This strain field can be mapped back to S0.
The integrated elastic energy of this strain field constitutes the cytoskeletal
free energy Fms.

In the mapping of S0 to S, the unstressed two-dimensional neighborhood
of each point R0 of S0 is mapped to a (generally) strained two-dimensional
neighborhood of the corresponding point R of S. This mapping involves
Euclidean operations (translation and rotation), which have no e=ect on the
elastic energy, plus a locally linear deformation. Because the local strain is
linear, it transforms any infinitesimal circular domain of S0 into what is gen-
erally an infinitesimal elliptical domain on S. The ratios by which the two
elliptical axes on S have been stretched (or compressed) relative to the orig-
inal circular domain on S0 define the so-called principal extension ratios λ1

and λ2 associated locally with the mapping from S0 to S. The principal ex-
tension ratios are in general dependent on the location R0.

The dependence of the local elastic energy density on these ratios is lim-
ited by two conditions. First, the energy density is minimum when there is
no deformation and, second, deformations which are purely rotational are
isometric and cannot change the energy. It follows from simple symmetry

14) Some authors use the term “Green elastic” to describe these materials.
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arguments (see Appendix B) that the local elastic energy density can only de-
pend on two “strain invariants.” These invariants are conventionally chosen
to be the so-called area and shear strains,

α = λ1λ2 − 1 (2.24)

and

β =
1
2

[
λ1

λ2
+

λ2

λ1
− 2

]
, (2.25)

respectively. α measures the fractional area change as a local neighborhood
on S0 is mapped to S; β is a measure of shear strain. Both vanish when
λ1 = λ2 = 1. They obey α > −1 and β ≥ 0. In analogy with Eq. (2.19),
the general form of the membrane-skeleton free energy is assumed to be the
integral of a local strain-energy density fms,

Fms[S0;S] =
∮

S0

dA0 fms
(
α(R0), β(R0)

)
, (2.26)

where the integral is over the unstressed skeleton S0 and the functional no-
tation [S0;S] is intended to indicate that the energy depends on the mapping
which distributes the material of S0 onto S. By hypothesis, the unstressed
(reference) state has the minimum energy density, which we may choose to
vanish, so fms(α, β) ≥ fms(0, 0) = 0.

It remains only to specify the functional form of the local elastic energy
density fms. At weak deformation the leading terms available are (Evans and
Skalak 1980)

fms
(
α, β) ≈ Kαα2

2
+ µβ, for small strains, (2.27)

which defines Kα and µ, the elastic moduli for cytoskeletal stretch/compres-
sion and shear, respectively. Experimental values for these linear moduli are
given in Table 2.2 and discussed in Appendix A. However, there is no reason
to expect that these “linear” expressions should remain valid when |λ1,2 − 1|
is not small with respect to unity, that is, when the strains α and β become
of order unity, 15) as will turn out to occur for well-developed echinocytes
and (to a lesser extent) stomatocytes (see Section 2.7.4). The origin of the
cytoskeletal elasticity is the configurational entropy of the coiled polymeric
units. Polymers become inextensible as they are pulled out towards the max-
imum length allowed by their covalent bonds. It follows that we expect a
“hardening” of polymeric elasticity at moderate and large deformations. We
represent this hardening empirically by adding higher terms to the linear
form Eq. (2.27), so

15) In practice, nonlinear e=ects become noticeable when |λ1,2 − 1| ∼ 0.1.
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Fms[S0;S] =Fstretch + Fshear (2.28)

=
Kα

2

∮
S0

dA0

(
α2 + a3α

3 + a4α
4
)

+ µ

∮
S0

dA0

(
β + b1αβ + b2β

2
)
, (2.29)

which is the expression for skeletal elasticity that we use in computation. The
coe;cients a3, a4, b1 and b2 are dimensionless higher-order nonlinear elas-
tic moduli, whose computational values are given in Table 2.2. As described
in detail in Appendix A, the origin of these values is a phenomenological fit
which incorporates recent experiments at both low and high deformations.
We emphasize that Eq. (2.28) has no fundamental significance but is just a
way of extending the usual linear relation Eq. (2.27) to high deformations to
accommodate the expected hardening e=ects in a flexible manner. What we
will find (see Section 2.8.3) is that we need relatively weak linear moduli Kα

and µ to reproduce the observed SDE sequence. However, without the non-
linear correction terms such weak linear moduli would not be consistent
with high-deformation experiments.

Finally, we need to discuss the reference shape S0 at which the membrane
skeleton is assumed to be relaxed, that is, to have zero elastic energy. First,
a technical point. In our model it costs no energy to bend the membrane
skeleton. It follows that S0 is not uniquely determined, since any shape can
be creased arbitrarily without e=ect on its energy as long as local infinites-
imal neighborhoods are not otherwise deformed: a simple example is local
indentation of a spherical surface inside a circular perimeter, which – carried
to the extreme – would reduce it to a doubled half sphere. This degeneracy
may be resolved (although in practice we shall not always do so) by always
choosing for the representative reference shape the “inflated” shape that one
would obtain by very gently “blowing up” the shape to its maximal volume.

Note that the shape, area and volume of S0 are generally unknown and
may be di=erent from those of S. We emphasize that there is no simple
way in which the shape of S0 can be determined experimentally by phys-
ically removing the membrane skeleton from the RBC membrane (John-
son et al. 1980; Lange et al. 1982; Vertessy and Steck 1989; Svoboda et al.
1992; Lenormand et al. 2001; Lenormand et al. 2003), since the properties of
the membrane skeleton depend on its environment, that is, on the physico-
chemical properties of the closely associated cytoplasm and plasma mem-
brane. For example, it was shown by Liu and Palek (1984) that intracel-
lular hemoglobin promotes spectrin dimer-dimer association and spectrin
tetramer stability. Therefore, the removal of hemoglobin will a=ect the ge-
ometry and area of S0. For this reason, we are forced to treat S0 as unknown
and to try to determine it by fitting to experiment. To do this generally is
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Fig. 2.7 Family of possible reference shapes S0 assumed for the red-cell membrane skele-
ton. All these shapes have A[S0] = A0. The control parameter is the volume V [S0] ≡ Vms,
as described in the text. Left to right: S0 at Vms = 100, 110, 114, 116, 118, 130, 148, 152,
154 and 155.8 µm3.

computationally impractical; therefore, we will make simplifying assump-
tions. First, we assume that the area A[S0] = A0, that is, that the surface
area of S0 is that of the normal red cell. This may or may not be so;16)

however, as we shall see in Section 2.3.4 below, the principal e=ect of any
di=erence in area between S and S0 would be to modify the elastic con-
stants Kα and µ. Since these are determined experimentally for intact red
cells (see Appendix A), we may assume that such changes are already in-
corporated. Second, we restrict consideration to a particular plausible one-
parameter class of possible reference shapes, shown in Fig. 2.7. The two
limiting shapes are (at the left) a discocytic shape with volume V0 and (at
the right) a sphere of volume VA0 (with v = 0.642 and v = 1, respectively,
in reduced units). They correspond to the picture that the membrane skele-
ton has been moulded in some way to be stress free at the normal disco-
cyte shape or, on the other hand, that it is a uniform sphere with no shape
preference. Uniform tank-treading (Fischer and Schmidt-Schönbein 1977)
in shear flow suggests the latter picture; however, recent “go-and-stop” ex-
periments by Fischer (2004) provide evidence for some non-uniformity of
the membrane. The intermediate shapes in Fig. 2.7 are a one-parameter in-
terpolation between these two limits labeled by the volume Vms ≡ V [S0]
of the relaxed membrane skeleton. Specifically, this sequence is defined by
minimizing Fm[S] at fixed area and volumes V0 ≤ Vms ≤ VA0 with the
following parameters, κ = C0 = 0, Kα = κb/µm2, µ = 0.2κb/µm2 and
no nonlinear terms. This somewhat arbitrary choice was motivated by the
fact that it is known from earlier work (Seifert et al. 1991) that such a se-
quence arises from the spontaneous curvature model Eq. (2.14) with C0 = 0.
The reason for adding a weak (c.f., Table 2.2) membrane-skeletal elasticity
is numerical. As described in Section 2.5, we perform energy minimization
computationally using a triangulated network. In the absence of skeletal elas-

16) Boal (1994) has suggested on the basis of a simulation model that the relaxed skeleton
may be 10–20% smaller than the plasma membrane; on the other hand, Svoboda et al.
(1992) find that isolated skeletons are expanded.
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ticity, there is no driving force to keep the triangular elements fairly regular
during Monte Carlo minimization.17) As a result, the triangular elements
have a tendency to become long and needle-like, so that they do not accu-
rately represent a smooth surface. Introducing a weak Fms is an e=ective way
of keeping the shapes of the triangular elements regular, as Fig. 2.7 clearly
shows.

2.3.4
Dimensionless Variables and Scaling

It is often convenient to work in dimensionless units. Such a representation
is required for computational work. In this case the exercise of introducing
such units will serve to highlight some important scaling properties of the
membrane mechanics.

It is natural to scale all energies by the dominant energy κb and all lengths
by the characteristic length RA, thus defining, h(r) = RAH(r), c0 = RAC0,
a0 = A0/R3

A = 4π, da = dA/R2
A and so forth.18) In this rescaled notation,

Eqs. (2.14) and (2.16) take the form,

1
κb

Fsc =
1
2

∮
S

da
[
2h(r) − c0

]2
(2.30)

and
1
κb

Fad =
αb

8
(
∆a[S] − ∆a0

)2
, (2.31)

where ∆a[S] = ∆A[S]/D0RA and ∆a0 = ∆A0/D0RA, so Eq. (2.22) be-
comes

1
κb

Fpm[S] =
1
2

∮
S

da
[
2h(r) − c0]2 +

αb

2

(∮
S

da h(r)
)2

+ constant, (2.32)

where

c0 = c0 +
αb∆a0

4
≡ αb

2
m0 (2.33)

is the reduced e=ective spontaneous curvature and the quantity m0 is an
equivalent reduced quantity commonly used in the literature.

The fact that the length scale RA is absent from Eq. (2.32) means that the
shape problem for the plasma membrane has a kind of scale invariance in
that the energies of two bilayer vesicles (no membrane skeleton yet!) which
di=er only in scale are the same, provided that the corresponding values

17) This is related to the so-called “reparametrization invariance” of Fpm[S], according to
which a relabeling of the coordinates of S cannot a=ect the result.

18) From this point of view it would be natural to define v ≡ V/R3
A, so vA0 = 4π/3.

Fortunately or not, the notation of Eq. (2.3) for the reduced volume is well-established, so
we have, instead, v = 3V/4πR3

A with vA0 = 1.
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of C0 and ∆A0 are related in such a way that c0 is the same for the two vesi-
cles. If this is true, then, for example, the minimum energy shape for the two
vesicles will be the same, despite their di=erence in size. Because c0 and ∆a0

occur in Eq. (2.32) only in the combination Eq. (2.33), the minimum-energy
problem for a pure bilayer vesicle is fully characterized by only two parame-
ters, the reduced spontaneous curvature c0 and the reduced volume v (plus,
of course, the ratio αb of the area-di=erence modulus κ to κb). The value of
the bending modulus, κb, does not a=ect the minimum-energy shape. Of
course, at nonzero temperature T , the ratio of the thermal energy kBT to κb

does determine the size of thermal fluctuations.
Finally, we turn to the e=ect of the length scale on the membrane-skeleton

energy Fms[S0;S]. Note that, if S and S0 change scale together, then the
local principal extension ratios λ1 and λ2 do not change. In this situation the
strains α and β remain invariant, so

1
κb

Fms[S0;S] =
R2

AKα

2κb

∮
S0

da0

(
α2 + a3α

3 + a4α
4
)

+
R2

Aµ

κb

∮
S0

da0

(
β + b1αβ + b2β

2
)
.

(2.34)

The ratio κb/µ defines the elastic length scale Λel, Eq. (2.5), so the dimen-
sionless coe;cient of the scaled shear term is just the ratio (RA/Λel)2. (This
ratio also multiplies the stretch term, since Kα and µ are comparable.) This
shows that the cytoskeletal elastic contribution becomes increasingly impor-
tant at large length scales, as discussed in Section 2.1.5. Equivalently, the
elastic moduli must be rescaled to keep the dimensionless couplings con-
stant to achieve scale invariance.

If, on the other hand, S is held fixed while S0 is reduced in linear scale by a
factor b, then the local principal extension ratios both increase by a factor of b.
In this situation the shear strains β remain invariant but the new stretches
become α′ = b2λ1λ2 − 1, which does not involve a simple power of b. Sim-
plification occurs when the area of S is held fixed, since dA/dA0 = λ1λ2,
so ∮

S0

dA0 = A[S0] and
∮

S0

dA0λ1λ2 = A[S], (2.35)

and only terms quadratic and higher in the product λ1λ2 play a role in shape
determination. It follows that, e=ectively, under S0 → b−2S0,

Kα

∮
S0

dA0 α2 + µ

∮
S0

dA0 β −→ b2Kα

∮
S0

dA0 α2 +
µ

b2

∮
S0

dA0 β. (2.36)

Thus, at the harmonic (linear) level, decreasing the scale of S0 by a linear
factor b is equivalent to hardening the stretch modulus to b2Kα and soften-
ing the shear modulus to µ/b2, as shown originally by Mukhopadhyay et al.
(2002). The nonlinear elasticities do not scale so simply.
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2.3.5
History: Other Red-Cell Models

Modern work on red-cell shapes dates to the work of Helfrich (1973), who fo-
cussed attention on the bending energy as the principal determinant of lipid-
bilayer vesicle shapes. Indeed, the spontaneous curvature term, Eq. (2.14), is
often called the “Helfrich model.” The same energy functional was proposed
by Canham (1970) only with the restriction C0 = 0. It was recognized early-
on (Deuling and Helfrich 1976) that, with appropriate choice of parameters,
this model produces a variety of discocyte and stomatocyte shapes similar
to red cells. The importance for lipid bilayers of the area-di=erence-elastic-
ity term, Eq. (2.16), was first noted by Sheetz and Singer (1974), Helfrich
(1974) and Evans (Evans 1974; Evans 1980) and was further developed by
Svetina, Žekš and coworkers (Svetina et al. 1982; Svetina and Žekš 1983;
Svetina et al. 1985; Svetina and Žekš 1985; Svetina and Žekš 1989) and many
others (Seifert et al. 1991; Miao et al. 1994). The vesicle-shape problem has
been recently reviewed in an excellent article by Seifert (1997). The impor-
tance of the cytoskeletal elasticity for the echinocytic red-cell shapes was first
stressed by Waugh (Waugh 1996; Khodadad et al. 1996), Iglič (Iglič 1997;
Iglič et al. 1998a; Iglič et al. 1998b) and others (Wortis 1998). Full calcula-
tions, based on both Fpm and Fms, have only recently been reported in the
literature (Lim et al. 2002; Mukhopadhyay et al. 2002; Lim 2003).

The earliest calculations of red-cell shapes based on membrane mechan-
ics (Fung and Tong 1968; Zarda 1974; Zarda et al. 1977; Evans and Skalak
1980; Evans 1980; Pai and Weymann 1980; McMillan et al. 1986) incorrectly
assumed that the membrane is a thin uniform isotropic elastic shell with
no fluid component. The unstressed, preformed (“rubber-duck”) shape was
usually assumed to be either spherical or discocytic. These models give rise
to a bending energy of the form,

κb

2

∮
S0

dA0

[(
C1 − Ĉ1

)2 + 2ν
(
C1 − Ĉ1

)(
C2 − Ĉ2

)
+

(
C2 − Ĉ2

)2
]
, (2.37)

where ν is a material parameter and Ĉ1(R0) and Ĉ2(R0) are the principal
curvatures at the point R0 of the unstressed shell S0. The bending modulus
is usually taken to be in the range of our κb. In addition to the bending
contribution, the thin-shell models include an in-plane elastic component
similar to Eq. (2.28) only with a stretch modulus on the scale of the plasma
membrane area modulus KA and a shear modulus on the much weaker scale
of our µ.

Although they persist in the engineering and materials literature, the thin-
shell models of RBC shape are flawed in that they ignore the composite struc-
ture of the RBC membrane; nevertheless, for reasons that we now discuss,
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they do provide a reasonable fit to observed red-cell shapes in some cases.19)

Note that, when ν = 1 and Ĉ1 = Ĉ2 and is independent of R0, as would be
true for a spherical S0, then Eq. (2.37) reduces to Eq. (2.14) and the thin-shell
models are equivalent to Fsc +Fms, that is, to our membrane model Eq. (2.7),
only without the ADE term, Eq. (2.16), and with an anomalously large Kα. In
this situation the large elastic stretch modulus correctly and strongly inhibits
significant overall area changes of the red-cell membrane; however, it also in-
hibits local shape changes such as spicule formation, which are low-energy
deformations in Fsc and only weakly discouraged by our elastic energy Fms.
The upshot is that these models often give qualitatively reasonable shapes for
deformations like swelling which do not involve significant local cytoskeletal
stretching relative to the normal discocyte. However, the lack of an e=ec-
tive spontaneous curvature C0 (that is, the lack of the ∆A0 parameter of the
ADE term) means that the basic driving force for the SDE shape sequence
is missing. The failure to distinguish between the weak cytoskeletal elastic-
ity and the strong fixed-area constraint of the plasma membrane means that
these models cannot correctly describe strongly deformed shapes.

Physically the problem with the thin-shell models is that they do not prop-
erly represent the composite nature of the RBC membrane. The plasma
membrane is locally incompressible (large KA) but has no resistance to
static shear deformations; on the other hand, the membrane skeleton resists
shear but is relatively easily compressible (0 < Kα ∼ µ 	 KA). Of course,
when the membrane skeleton is compressed or expanded locally, the pro-
teins which anchor the skeleton must move relative to the incompressible
2D lipid-bilayer fluid with viscous drag and consequent dissipation. In the
absence of local skeletal compressibility, (Kα = ∞), the areal density of the
skeleton remains constant, so that relative motion of the (incompressible)
2D fluid and the skeleton, although allowed, is not required. There is an in-
teresting formal connection between the thin-shell model and the composite
model when KA = Kα = ∞ (not the case for the red cell). In this situa-
tion, the ADE term, Eq. (2.16), vanishes, so both models are described by a
bending elastic energy of the form of Fsc, Eq. (2.14), and a shear elasticity of
the form of Eq. (2.27) (or Eq. (2.28)) with the area strain α = 0 everywhere.
The only di=erence between the two models is then in the spontaneous cur-
vature C0, which is in general spatially dependent (C0(r)) for the thin-shell
model but not for the spontaneous curvature model. Thus, for the special
case of a strictly spherical S0, the two models become indistinguishable in
their static properties (although not, of course, for dynamics).

In the remainder of this section we discuss models of the composite RBC
membrane and corresponding shape calculations. Generally speaking, these

19) An example is the so-called “sphering” of the normal discocyte as it swells osmotically
towards lysis (Zarda et al. 1977).
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models are of two types. Some authors have represented the cytoskeleton at
a coarse-grained level by a network of tethers or springs anchored to the
plasma membrane at the junctions. For most of these “polymeric” mod-
els (Leibler and Maggs 1990; Discher et al. 1998; Li et al. 2005), the junc-
tion points of the network function computationally as a triangulation of the
bilayer surface. An exception is the work of Boal et al. (1992) who used a
finer triangulation for the fluid surface and a coarser one for the membrane
skeleton. In this approach, the properties of the polymeric elements (and the
temperature T ) determine the e=ective elastic constants of the membrane
skeleton. Thus, Kα and µ are automatically comparable and, when this ap-
proach is carried through carefully, the relation Kα ≈ 2µ emerges (Hansen
et al. 1996; Boal 2002) and the elasticity hardens automatically at large defor-
mations. On the other hand, the necessity of handling the polymeric degrees
of freedom (particularly, if the elasticity is generated entropically) makes the
calculations cumbersome, and systematic RBC shape calculations have not
yet been carried out. Of the two papers which do calculate shapes, Discher
et al. (1998) focus exclusively on RBC micropipette aspiration and Li et al.
(2005) study optical tweezer experiments. Neither group has included the
ADE term. All four of the above groups use a calculational representation of
the bending energy that is known to be at best approximate (Gompper and
Kroll 1997).

Other authors (Evans and Skalak 1980; Evans 1980; Elgsaeter et al. 1986;
Stokke et al. 1986a; Stokke et al. 1986b; Peterson 1992a; Peterson et al. 1992b;
Waugh 1996; Iglič 1997; Iglič et al. 1998a; Iglič et al. 1998b; Mukhopadhyay
et al. 2002; Lim et al. 2002; Lim 2003; Kuzman et al. 2004) have represented
the cytoskeleton as a 2D elastic continuum described by an energy of the
form Eq. (2.26). Of these, Evans and Skalak (1980), Evans (1980), Peterson
(1992a), Peterson et al. (1992b), Waugh (1996), Iglič (1997), Iglič et al. (1998a)
and Iglič et al. (1998b) use Kα = ∞, e=ectively reducing the problem to a
thin-shell model. The remaining authors use free energies that are equiv-
alent to our membrane model, Eq. (2.7), including both ADE terms and
soft cytoskeletal moduli. A variety of di=erent forms for the local elastic en-
ergy density are used in these works. Most authors used the linear elasticity,
Eq. (2.27) or equivalent, without specifically including hardening at high de-
formation. The exceptions are Elgsaeter et al. (1986), Stokke et al. (1986a),
Stokke et al. (1986b), Lim et al. (2002) and Lim (2003), who use the harden-
ing representation Eq. (2.28).

Work on the pure-lipid models (without cytoskeleton) identified disco-
cyte and stomatocyte shapes. In contrast, work on the models that incorpo-
rate membrane-skeleton elasticity has naturally focussed on echinocytes and
spicule shapes. Spicule shapes have been calculated in Stokke et al. (1986b),
Waugh (1996), Iglič (1997), Iglič et al. (1998a), Iglič et al. (1998b), Mukhopad-
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hyay et al. (2002), Lim et al. (2002), Lim (2003) and Kuzman et al. (2004);
however, for computational reasons, most of these authors assumed some
parametrized form for the spicule shape and used the energy minimization
to choose parameter values. The only work which leaves the full shape to be
determined by energy minimization is that of Mukhopadhyay et al. (2002),
Lim et al. (2002) and Lim (2003).

In the context of models including cytoskeletal elasticity, there have been
only two groups that have examined the full SDE red-cell sequence and the
parameters controlling it. The more recent is Lim et al. (2002) and Lim
(2003), work which is fully reported here. The earlier work is that of Elgsaeter
et al. (1986), Stokke et al. (1986a) and Stokke et al. (1986b). The title of this se-
ries of two papers emphasizes the hypothesis that the RBC membrane skele-
ton may be a gel, which in retrospect is probably not correct. Furthermore,
the driving force for shape change is incorrectly taken to be the “osmotic ten-
sion” of the spectrin gel, instead of the bilayer area di=erence. Nevertheless,
the authors came up with a set of energy contributions that are close to ours,
including the use of low values for the elastic cytoskeletal moduli. Although
they were not able to calculate shapes due to the relatively crude computer re-
sources of the day, they did adopt a set of parametrized shapes of stomatocyte,
discocyte and echinocyte (spicule) types and they identified energy-minimiz-
ing shapes of these classes, thus building up the first systematic “erythrocyte
cell shape class diagram,” a remarkable achievement for that time.

2.4
Equations of Membrane Shape Mechanics

2.4.1
Introduction

Observable equilibrium RBC shapes are (aside from thermal fluctuations)
local minima of the membrane (free) energy Fm[S0;S] at fixed area A0 and
volume V0. As such, these shapes obey the equations of mechanical equi-
librium which characterize the composite membrane. In this section we de-
scribe and summarize the equations of static membrane equilibrium. Full
derivations are given in Appendix D. In principle these equations – subject
to appropriate boundary conditions – can be solved to find any mechanical-
equilibrium shape of the RBC. Such configurations include not only the lo-
cal-minimum shapes but also a variety of unstable equilibrium shapes which
are not generally observable in the laboratory. Thus, any solution of the me-
chanical equations must be tested to see whether it is a true energy mini-
mum or a saddle point, before it is accepted as an observable shape. Up to
now the approach to equilibrium shapes via integration of the Newtonian
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equations of mechanical equilibrium has only proved useful for axisymmet-
ric shapes. The obstacle in the more general case is the numerical di;culty
of implementing the condition that the computational surface should close
smoothly. The numerical method described in Section 2.5 is based on direct
minimization of Fm[S0;S]. It is not restricted to axisymmetric shapes and it
handles closure naturally.

According to the model we have adopted in Section 2.3, the plasma mem-
brane and the membrane skeleton can slide freely with respect to one an-
other, subject only to a viscous friction for relative motion in the transverse
direction. It follows that, at equilibrium, the force between them must be nor-
mal to the common membrane surface S. We designate this normal force
Q(s1, s2), where (s1, s2) are general curvilinear coordinates on S (see Ap-
pendix C). Q is the force per unit area which the plasma membrane exerts
on the cytoskeleton, defined positive when it is directed outward from the
interior of the cell. By Newton’s third law there is a reaction force, −Q (that
is, a force which acts inwards when Q > 0) on the plasma membrane. In
mechanical terms, Q is the only coupling between the two components of
the RBC membrane, beyond the condition that they both are located on the
common surface S.

In this context, it will simplify the discussion to break it into two parts
corresponding to the composite nature of the RBC membrane. Section 2.4.2
describes the mechanics of an idealized plasma membrane in the absence
of cytoskeleton. This system is characterized by the (free) energy functional
Eq. (2.13) of an ideal lipid-bilayer vesicle. There is only a small di=erence
in the equilibrium mechanical equations between a lipid-bilayer vesicle and
the plasma membrane of the full RBC. For the vesicle, the normal force per
unit area is the (uniform) pressure di=erence ∆P between the fluid envi-
ronments inside and outside of the vesicle (we define ∆P > 0 when the in-
side pressure is higher than the outside pressure). For the full RBC plasma
membrane, the e=ect of the additional normal force due to the membrane
skeleton is to replace this by the (generally nonuniform) e=ective pressure
∆P − Q(s1, s2).

Section 2.4.3 describes the mechanics of the membrane skeleton. The
physics here is that of equilibrium two-dimensional (nonlinear) elastic the-
ory. The complication is that the two-dimensional sheet is not flat but, rather,
deformed to fit the curved metric of the surface S. The condition linking the
membrane-skeleton mechanics with that of the plasma membrane is that the
normal forces Q on the membrane skeleton and −Q on the plasma mem-
brane are an action-reaction pair in the sense of Newton’s third law. Solution
of the full, coupled problem is discussed briefly at the end of Section 2.4.3
and a simple axisymmetric example is provided in Appendix D.6.



2.4 Equations of Membrane Shape Mechanics 125

Finally a comment on presentation. In treating mechanical equilibrium,
there are always two equivalent complimentary approaches: the “Newtonian”
approach which focusses on the balance of forces and the “energetic” ap-
proach which focusses on the stationary property of the energy. While we
will use both approaches, we will tend to emphasize the former. The reason
for this is historical and pedagogical. Much of the work in this field (but by
no means all) has taken the energetic approach. The Newtonian approach
provides good physical insight and has been somewhat neglected in the lit-
erature.

2.4.2
Mechanics of the Plasma Membrane

There are excellent reviews of the statics of fluid membranes with bending
rigidity, including Evans and Skalak (1980), Yeung and Evans (1995), Seifert
(1997), Powers et al. (2002), Capovilla and Guven (2002), Lomholt and Miao
(2006), Fournier (2007) and Van Hemmen and Leibold (2007).

Fluid membrane mechanics takes as its starting point the energy func-
tional Fpm[S] of the plasma membrane, Eq. (2.13). To incorporate the con-
straints of fixed area A0 and volume V0, it is convenient to introduce La-
grange multipliers Σ and ∆P and and to construct the variational functional,

Fvar[S] = Fpm[S] + ΣA[S] − ∆P V [S]. (2.38)

Making Fvar stationary with respect to unconstrained variations of S, that is,
setting δFvar = 0, now leads to shape equations parametrized by Σ and ∆P .
By appropriately choosing the Lagrange multipliers, one sets the area and
volume to A0 and V0, respectively. The parameter ∆P turns out to be the
fluid-pressure di=erence across the membrane (as indicated by the notation);
but, the parameter Σ is not, in general, the mechanical membrane tension,
as we shall discuss further below.

A significant simplification is now possible because of the variational
structure of Eq. (2.38). The entire S dependence of the area-di=erence term
Fad, Eq. (2.16), comes from the term ∆A[S], which in turn is related to the
integral over the mean curvature by Eq. (2.21). Thus,

δFad[S] = 2κb
παb

D0A0

(
∆A[S] − ∆A0

)
δ

∮
S

dAH(r). (2.39)

On the other hand, the variation of the spontaneous-curvature term Fsc

Eq. (2.14) takes the form,

δFsc[S] = −2κbC0 δ

∮
S

dAH(r) + 2κb δ

∮
S

dAH2(r), (2.40)

which also contains a term proportional to the variation of the integrated
mean curvature. It follows, therefore, that the entire e=ect of Fad[S] on any
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variation of Fpm[S] is e=ectively to replace C0 in Eq. (2.40) by the combina-
tion,

Ce=

0 [S] ≡ C0 −
παb

D0A0

(
∆A[S] − ∆A0

)
= C0 −

παb

D0

∆A[S]
A0

. (2.41)

The equations of membrane mechanics arise from such variations. Further-
more, the variations of the Gaussian term Fg vanish, provided there is no
change of topology. We conclude finally that the vesicle-shape mechanics
of the full Fpm is equivalent to that of a pure spontaneous-curvature model
(Fsc only), provided that C0 is replaced by Ce=

0 according to Eq. (2.41). Thus,
in discussing fluid-membrane mechanics, there is no loss of generality in
starting from Fsc, Eq. (2.14) (or, in case the Gaussian term comes in, from
(Fsc + Fg)).20) In what follows we will take this approach. Furthermore, to
keep the notation simple, we will write the spontaneous curvature parame-
ter that appears in the mechanical equations as C0, omitting the superscript
and thereby suppressing the self-consistency.

2.4.2.1 Fluid Membrane Without Bending Rigidity
It is instructive to start the treatment of fluid-membrane mechanics with a
simple example. Consider a bilayer–fluid vesicle with a relaxed membrane
area A0 surrounding a volume V0 of incompressible aqueous solution. As-
sume that the membrane is completely characterized by a linear expansion
modulus KA, so that the energy of the membrane is

F [S] =
KA

2

(
A[S] − A0

A0

)2

A0. (2.42)

Equilibrium shapes correspond to minima of F [S] with respect to variations
of S at constant V [S] = V0. There are two cases. For V0 < VA0 (the “flaccid”
vesicle of Section 2.1.3), there are many shapes with A[S] = A0, that is, with
zero membrane tension. All these shapes are (degenerate) energy minima,
there is no unique ground-state shape, and there is no pressure di=erence
across the membrane.21)

On the other hand, for V0 > VA0 (the “turgid” vesicle of Section 2.1.3),
A[S] must be greater than A0, so the energy Eq. (2.42) cannot be zero. The
equilibrium shape must minimize A[S] at constant volume and is, therefore,
spherical. The corresponding isotropic tension in the membrane at equilib-
rium is τ0 ≡ KA(A[Smin]−A0). The same calculation can be carried out via

20) Of course, Ce=

0 depends on S, making the full shape problem self-consistent from this
perspective; however, this should not obscure the fact that Ce=

0 appears parametrically in
the mechanical equations.

21) This discussion ignores thermal fluctuations, which can generate both pressure and ten-
sion by forcing the system to sample configurations with A[S] > A0. Such e=ects lead to∣∣A−A0

A0

∣∣ ∼ (
kbT
KA

)1/2 ∼ 10−9 (for the typical parameters of Table 2.2) and are generally
unimportant.
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an unconstrained variation of S by constructing the variational functional
(c.f., Eq. (2.38)),

Fvar[S] = F [S] − ∆P V [S]. (2.43)

Varying with respect to S at constant V [S] identifies Smin as a sphere of
(unknown) radius R, so

Fvar[S] → Fvar(R) =
KA

2

(
4πR2 − A0

A0

)2

A0 −
4π

3
∆P R3. (2.44)

Setting dF/dR = 0 evaluates the Lagrange multiplier,

∆P =
2τ0

R
, (2.45)

which is just the usual soap-bubble equation.22) Note that τ0 depends on R,
which in turn depends on V0, so Eq. (2.45) gives the Lagrange parameter
∆P as a function of V0. Finally, to identify ∆P with the mechanical pressure
di=erence, we equate the axial forces on the spherical patch shown in Fig. 2.8.
The upward force due to the pressure di=erence is πr2∆P ; the downwards
force due to the isotropic surface tension τ0 is 2πr sin θτ0; r = R sin θ; and,
Eq. (2.45) reemerges. Notice here that the nonzero tension and the nonzero
pressure di=erence arise together as a result of the constraint of fixed volume
and the area response of the stressed membrane.

A related but di=erent situation arises for an isotropic fluid membrane of
relaxed area A0 spanning a hole in a partition between two compartments
maintained at a fixed pressure di=erence ∆P (Fig. 2.9). If the aperture is
circular, then it is not hard to show that the equilibrium membrane shape
is again spherical and Eq. (2.45) holds. However, if the aperture is not cir-
cular, then the equilibrium membrane shape cannot be spherical. Suppose
the membrane shape S is described as a vector function R(s1, s2) of general
surface coordinates (s1, s2).23) The membrane tension remains uniform,

∂τ0

∂sα
= 0, (2.46)

however, Eq. (2.45) generalizes to

∆P = τ0

(
1

R1
+

1
R2

)
= τ0

(
C1 + C2) = 2τ0H = τ0 trC, (2.47)

where Ri and Ci are the principal radii and principal curvatures, respectively,
at the general point (s1, s2) of the membrane and C is the local 2 × 2 cur-
vature tensor. Equation (2.47) may be derived as an exercise in variational

22) Of course, for the soap bubble, τ0 is fixed by the air-water interfacial tension and, thus,
independent of R.

23) The use of superscripts rather than subscripts here and in the following is motivated by
the fact that the infinitesimal dsα behaves under coordinate transformations in a con-
travariant manner (see Appendix C).
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Fig. 2.8 Forces on patch with circular boundary. The upward force πr2∆P due to the pres-
sure di=erence balances the net downwards tension force applied tangentially along the
perimeter of the patch.

Fig. 2.9 Isotropic fluid membrane across non-circular aperture. The pressure on the left is
higher than that on the right. Because the aperture perimeter is not circular, the membrane
shape is not spherical. But, it does satisfy Eqs. (2.46) and (2.47).

calculus or, alternatively, by requiring that the net force on a small patch
of membrane should vanish (see Eq. (2.56)). The curvature tensor C(s1, s2)
is defined in terms of derivatives of R(s1, s2) (Appendix C), so Eq. (2.47)
becomes a di=erential equation for R(s1, s2). The solution of Eqs. (2.46)
and (2.47) subject to the appropriate boundary conditions determines both
the equilibrium film shape S and the unknown membrane tension τ0. For
general 0 < KA < ∞, both S and τ0 vary with the pressure di=erence ∆P ,
since they are related by τ0 = KA(A[S] − A0). Note that the minimizing
shape S is a surface of constant mean curvature equal to ∆P/2τ0, which
becomes a “minimal surface” (H = 0 everywhere) as ∆P → 0.

The relative areas of the hole (Ah) and the relaxed membrane (A0) play
an important role at low pressure di=erences. When Ah > A0, the mem-
brane must always be under tension to span the hole, so, as ∆P → 0, the
equilibrium shape S becomes flat but the tension τ0 remains positive. On
the other hand, when Ah < A0, the excess area means that, as ∆P → 0, τ0
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goes to zero and the minimum-energy shape is degenerate. The case of an
e=ectively incompressible membrane is special (and relevant to the RBC). In
this situation, KA → ∞ and A[S] → A0, so the product τ looks indetermi-
nate. In this limit, the minimizing shape S becomes independent of ∆P for
all ∆P > 0. The ratio ∆P/τ0 is fixed by geometry, that is, by the boundary
conditions applied to Eq. (2.47). As a consequence, τ0 scales linearly to zero
with ∆P .24) The limits KA → ∞ and ∆P → 0 do not commute.

We will see below how all this changes when the membrane acquires a
bending rigidity.

2.4.2.2 General Equilibrium Conditions for Membranes with Internal Stresses
Before introducing bending rigidity, it will be useful to develop in a general
way the conditions for mechanical equilibrium of membranes with internal
stresses. These conditions derive from the laws of Newtonian statics, accord-
ing to which an extended object can be in mechanical equilibrium if and
only if the net force on it, Fnet, and the net torque on it, Nnet, both vanish.
We assume for simplicity that there are only two kinds of forces which act on
the membrane, external forces due to pressure di=erences across the mem-
brane which act along the outward normal n̂ and internal forces related to
the membrane stresses.

Consider a patch Σ of membrane described by the 3D vector function
R(s1, s2) and surrounded by a boundary ∂Σ. The membrane-stress force
on each infinitesimal element of ∂Σ is proportional to its length dl and has
in general the form dl T(p̂), so T(p̂) is a force per unit length. The argu-
ment here is entirely general; when necessary, we will distinguish membrane
stresses due to the plasma membrane and the membrane stresses due to the
membrane skeleton by writing Tpm(p̂) and Tms(p̂), respectively, so that for
a patch of the composite membrane,

T(p̂) = Tpm(p̂) + Tms(p̂), (2.48)

and similarly for for other related quantities. In all these expressions, p̂ is
the outwardly-directed in-plane unit normal to the boundary element ∂Σ (see
Fig. 2.10) and its appearance as a argument of T recognizes that the force per
unit length will generally depend on the orientation of the boundary. Note
that T(p̂) is a 3D vector (written in bold face) and may have both in-plane and
out-of-plane components. The net force on Σ consists, therefore, of a sum of
two terms, which must vanish as a condition of mechanical equilibrium,

Fnet = ∆P

∫
Σ

dA n̂ +
∫

∂Σ

dl T(p̂) = 0, (2.49)

with dA =
√

g ds1ds2 and dl2 = gαβdsαdsβ , where gαβ is the metric tensor
and g = det gαβ , in the notation of Appendix C.

24) All this can be worked out explicitly when the hole is circular.
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Fig. 2.10 Patch Σ of surface surrounded by boundary ∂Σ. At the boundary point R(s1, s2),
n̂ is the unit outward normal to Σ and p̂ is the unit vector in the plane of Σ which points
perpendicularly outward from ∂Σ. The boundary element dl is directed along n̂ × p̂.

In order to turn this global condition for translational equilibrium into a
local one, we must rewrite the stress term making use of some properties
of the boundary-stress forces. It follows from a simple argument (see Ap-
pendix D.1) that T(p̂) can be decomposed as

T(p̂) = pαTα, (2.50)

where p̂ = pαYα = pαgαβYβ , in which Yα ≡ ∂R/∂sα are the tangent vec-
tors to the surface (see Appendix C). The two components Tα, α = 1, 2, are
independent of p̂. We will refer to them collectively as the surface stress ten-
sor. The lower indices on pα and Yα indicate that these quantities transform
under changes of the surface coordinates (s1, s2) as covariant first-rank ten-
sors; the upper indices on pα and Tα indicate that these quantities transform
as contravariant first-rank tensors. Contractions of upper and lower indices,
such as occur in the expressions for the physical quantities p̂ and T(p̂), are
invariant under coordinate changes. Upper and lower indexed quantities are
related by the metric tensor and its inverse,25) pα = gαβpβ with gαβgβγ = δγ

α.
The stress-tensor vector Tα may be further decomposed into in-plane and
out-of-plane components according to

Tα = TαβYβ + Tα
⊥ n̂, (2.51)

in which the (physical) scalar quantities Tαβ transform as a contravariant
second-rank tensor under coordinate change. We are now in a position to
transform the second term of Eq. (2.49) from a boundary integral to a surface
integral,

25) We use δβ
α = δα

β = δαβ = δαβ with the convention of choosing the representation that
makes the covariant notation fluent.
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∂Σ

dl T(p̂) =
∫

∂Σ

dl pαTα =
∫

Σ

dADαTα, (2.52)

where Dα is the covariant derivative, so DαTα ≡ ∂αTα + Γα
αβTβ is the

curved-space version of the divergence. The equality of the second and third
terms is the 2D curved-space version of Gauss’s law (see Appendix C). By
combining Eqs. (2.49) and (2.52) and shrinking the patch Σ to infinitesimal
size, we find

∆P n̂ + DαTα = 0. (2.53)

Equation (2.53) is the general condition for local translational equilibrium
with pressure and stress forces, as expressed in general surface coordinates,
and will be the starting point of our discussion of the e=ects of membrane
bending rigidity in the next section.

Before continuing it may be useful to see how this approach applies to
the case of the fluid membrane without bending rigidity, as discussed in the
previous section. In this case the stress acts perpendicularly outward on the
boundary element, so

T(p̂) = τ0p̂ = τ0Yαpα = Tαpα (2.54)

and
Tα = τ0Yα (2.55)

for membranes without bending rigidity. A brief calculation using results
from Appendix C provides the evaluation, Dα(τ0Yα) = (∂ατ0)Yα −
τ0(trC)n̂, where C is the curvature tensor. Substituting this result into the
general equilibrium condition, Eq. (2.53), gives

(∆P − τ0trC)n̂ + (∂ατ0)Yα = 0, (2.56)

which is equivalent to the two conditions, Eq. (2.46) and (2.47), displayed
above.

The second condition for mechanical equilibrium of the patch Σ is that the
net torque Nnet acting on it must vanish. This torque has contributions from
the pressure and boundary forces. In addition, for membranes with bend-
ing rigidity, it may include an “intrinsic” torque Nint, which we will discuss
below. Thus, the torque condition takes the form,

Nnet = ∆P

∫
Σ

dAR × n̂ +
∫

∂Σ

dl R × T(p̂) + Nint = 0, (2.57)

which is the analogue of Eq. (2.49) for the force equilibrium. Using Gauss’s
law simplifies the boundary integral,∫

∂Σ

dl R × T(p̂) =
∫

∂Σ

dl R × Tαpα =
∫

Σ

dADα

(
R × Tα

)

=
∫

Σ

dA
(
Yα × Tα + R × DαTα

)
. (2.58)
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When this is substituted into Eq. (2.57), the final term cancels against the
pressure term by virtue of the force equilibrium condition, Eq. (2.49), and
the result is

Nnet = Nint +
∫

Σ

dAYα × Tα

= Nint +
∫

Σ

dAYα ×
(
TαβYβ + Tα

⊥n̂
)

= 0, (2.59)

which reduces finally to

Nnet = Nint +
∫

Σ

dA
√

g
(
T 12 − T 21

)
n̂ +

∫
Σ

dATα
⊥Yα × n̂ = 0. (2.60)

It is often but not always true that Tαβ is symmetric, so the second term
vanishes (Lomholt and Miao 2006).

For the simple Helfrich model, Eq. (2.14), it will turn out that the form of
the intrinsic torque is particularly simple. In this case the membrane rigidity
produces an isotropic torque density of magnitude,

M = κb(2H − C0) = κb(C1 + C2 − C0), (2.61)

directed along the patch boundary in the sense n̂ × p̂, so

Nint =
∫

∂Σ

dlMn̂ × p̂ =
∫

∂Σ

dl
(
Mn̂ × Yα

)
pα

=
∫

Σ

dADα

(
Mn̂ × Yα

)

= −
∫

Σ

dAgαβ
(
∂βM

)
Yα × n̂, (2.62)

where the last step requires some results from Appendix C. Combining this
with Eq. (2.60) (and assuming Tαβ to be symmetric) leads to the relation,

Tα
⊥ = gαβ∂βM = ∂βM, (2.63)

which shows that the out-of-plane component of Tα, which vanishes in the
absence of bending rigidity, is related to the local torque density when rigidity
is present.

2.4.2.3 Fluid Membrane with Bending Rigidity
For lipid-bilayer membranes which are flaccid, that is, for V [S] < VA0

(Eq. (2.2)) or, generally, for membranes which are not constrained to exceed
their relaxed area, the area compressibility does not generate membrane ten-
sion. In the absence of other e=ects, all flaccid configurations would be neu-
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Fig. 2.11 Mechanical e=ect of Helfrich bending rigidity. When forced away from its preferred
mean curvature C0 by bending about one axis (a), the membrane responds by bending in
the opposite sense about the perpendicular axis (b). In this illustration C0 = 0, so the flat
configuration is an energy minimum. When forced into the trough shape shown at the left,
the membrane responds by adopting the saddle configuration shown at the right.

trally stable and there would be no unique energy-minimizing shapes. What
breaks this degeneracy is the bending rigidity.26)

It is not surprising that bending rigidity is associated with bending mo-
ments or torques in the membrane; however, it may be less clear how it gen-
erates tensions. Consider the form of the energy functional Fsc, Eq. (2.14).
The energy density is minimum locally when 2H = C0. Suppose for sim-
plicity that C0 = 0, so that the flat configuration is an energy minimum. If
we now bend the membrane, forcing it into a cylindrical trough of radius R

along some chosen direction (Fig. 2.11), the membrane will try to respond
by bending the trough axis about the perpendicular axis to achieve a comple-
mentary radius of curvature −R, so that the mean curvature again achieves
2H = 1/R − 1/R = 0. If constraints inhibit the zero-energy state, then lo-
cal torques will develop in the membrane. Equation (2.63) shows how these
torques produce out-of-plane force densities on the scale M/R ∼ κb/R2.
In-plane e=ects are comparable. The upshot is that, in the presence of bend-
ing rigidity, the force density T(p̂) develops a structure more complicated
than that given by Eq. (2.54), with new terms both in-plane and out-of-plane.
These new terms scale as κb/R2. They are neither uniform nor isotropic. It
is these terms which generate membrane tension even for flaccid vesicles.

The equilibrium mechanics of membranes governed by the energy
Eq. (2.14) is summarized by giving the expression for the Helfrich stress
tensor,27)

Tα = Tα
pm =

(
τ0 +

κb

2
(
2H − C0

)2
)
Yα −MCα

β Yβ +
(
∂αM

)
n̂ (2.64)

or, equivalently,

26) In this discussion we will ignore thermal fluctuations, which typically produce e=ects of
relative order kBT/κb ∼ 1/50. Such e=ects can, however, become important near the
boundary between flaccid and turgid configurations, as has been examined in the vesicle
context by Evans and Rawicz (1990).

27) This result requires generalization when external forces act on the membrane at posi-
tions which are not precisely at the center (neutral plane) of the membrane, as discussed
by Lomholt and Miao (2006).
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Tαβ
pm =

(
τ0 +

κb

2
(
2H − C0

)2
)
gαβ −MCαβ and

(
Tpm

)α

⊥ = ∂αM, (2.65)

where M is given by Eq. (2.61). In the notation of Appendix C, the curvature
tensor is C = Cα

β = gαγCγβ and 2H = trC. Note that the part of Tα normal
to the plane of the membrane obeys the general condition for torque equilib-
rium, Eq. (2.63). This result is derived in full in Appendix D.2 (Eq. (2.195))
and elsewhere (Evans and Skalak 1980; Yeung and Evans 1995; Capovilla and
Guven 2002; Lomholt and Miao 2006). Equation (2.64) generalizes the sim-
ple soap-film stress tensor, Eq. (2.55). We will find in Appendix D.2 that the
new terms reflect the existence at the microscopic level of a profile of stress
across the thickness of the membrane whose first moment is the torque den-
sity, Eq. (2.61). The Helfrich stress tensor Eq. (2.64) contains the expected
component Eq. (2.63) normal to the membrane plane. The remaining in-
plane stress can be resolved into components perpendicular to and along the
boundary,

T⊥ = T(p̂) · n̂ = pα∂αM,

Tp̂ = T(p̂) · p̂ =
(
τ0 +

κb

2
(
2H − C0

)2
)
−MpαC β

α pβ ,

T(p̂) ·
(
n̂ × p̂

)
= MpαC β

α εβγpγ =
√

gMpα
(
C 1

α p2 − C 2
α p1

)
, (2.66)

where we have used notation and results from Appendix C. Equations (2.66)
show clearly that the stresses are generally non-uniform, anisotropic and de-
pendent on the local curvature. These expressions are particularly simple
when p̂ and (n̂ × p̂) lie along the principal axes of the curvature tensor, in
which case the second (shear) term vanishes and pαC β

α pβ = Cp̂, where Cp̂

is the principal curvature in the direction p̂. For other directions of p̂, the
shear term is generally non-zero. Note from Eq. (2.66) that, when the prin-
cipal curvatures are equal, C1 = C2, so C is proportional to the unit matrix,
then the component of T(p̂) along the boundary vanishes and the compo-
nent Tp̂ along the in-plane normal becomes isotropic. These symmetry prop-
erties reflect the fluidity of the membrane.28) In particular, the vanishing of
T(p̂) ·

(
n̂ × p̂

)
reflects the absence of shear rigidity in the fluid phase. For

situations for which C1 �= C2, the membrane does support a (small) shear
stress proportional to the bending moment M.

It is now straightforward to calculate the generalized divergence DαTα

(see Appendix D, Eqs. (2.197) and (2.198)) and to evaluate the condition,
Eq. (2.53), for force equilibrium. Working through the di=erential geome-
try gives, finally,

28) Note, in contrast, that T⊥ depends on in-plane derivatives of the curvature and does not
vanish unless these are independent of direction.
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∆P = 2H
(
τ0 +

κb

2
(
2H − C0

)2
)
− ∆M−M

(
4H2 − 2 detC

)
∂ατ0 = 0, (2.67)

which we shall refer to as the Ou-Yang equations. These equations general-
ize Eqs. (2.46) and (2.47). Note that τ0 remains uniform. The equation for the
pressure di=erence was first derived by Ou-Yang and Helfrich (1987a) using
a variational technique (see also Ou-Yang and Helfrich (1987b) and Ou-Yang
and Helfrich (1989)). In the special case of a closed vesicle, where the area
constraint is incorporated via the Lagrange multipliers ∆P and Σ, Eq. (2.38),
it turns out that τ0 = Σ. Equilibrium membrane shapes of fluid membranes
can in principle be obtained by solving Eq. (2.67) subject to appropriate
boundary conditions and taking into account the self-consistency discussed
at Eqs. (2.40) and (2.41). When there are no open boundaries, as is the case
for vesicles, then suitable boundary conditions are provided by the require-
ments of fixed overall area and volume. When open boundaries are present,
then the boundary stresses T(p̂) and torques M required for equilibrium
may be calculated by applying Eqs. (2.61) and (2.64) at the boundaries. These
boundary stresses and torques are required for overall translational and ro-
tational equilibrium, Eqs. (2.49) and (2.57), and must be supplied in the lab-
oratory by some external agency, for example, the material of the aperture
boundary.

In practice, integrating Eq. (2.67) has not proved to be a useful technique
for finding equilibrium membrane shapes except for axisymmetric geome-
tries. We can illustrate these ideas by applying the force analysis to the simple
axisymmetric geometry shown in Fig. 2.12, which shows a uniform mem-
brane section, closed at one end and open at the other. Axisymmetry guaran-
tees that the forces in radial directions cancel, so that any net force must be
axial. The net force to the left due to the pressure di=erence ∆P is πr2∆P .
In order for equilibrium to hold, this force must be balanced by the boundary
force along the length 2πr of the open lip. The force per unit length on the
boundary has a component T⊥ in the normal direction n̂ and a component
Tp̂ in the plane of the membrane and perpendicular to the edge, as shown.
It follows that

πr2∆P = 2πr
(
Tp̂ sin θ − T⊥ cos θ

)
, (2.68)

which generalizes the argument based on Fig. 2.8 which lead to Eq. (2.45).

The force densities are given in this case by Eq. (2.66), so Tp̂ =
(
τ0+κb

2

(
2H−

C0

)2
)
− MCp̂ and T⊥ = dM

ds , where s is the arclength coordinate. It is

convenient to use the relation dr
ds = cos θ to cast the final result in the form,

dM
dr

=
1

cos2 θ

[
sin θ

(
τ0 +

κb

2
(2H − C0)2 −MCp̂

)
− r

2
∆P

]
. (2.69)
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Fig. 2.12 Notation for describing an axisymmetric membrane patch. As shown, r measures
radial distance from the rotation axis; s measures distance from the pole P along a line of
longitude; θ measures the deviation of the tangent from the radial direction and ϕ is the az-
imuthal angle. n̂ is the unit outward normal vector; p̂ is the unit vector in the tangent plane
perpendicular to the local element of membrane boundary. The stress-tensor components
T⊥ and Tp̂ act along n̂ and p̂, respectively. The elastic cytoskeletal disk S0 shown at the
left is discussed in Appendix D.6. The center of the relaxed disk is made coincident with the
pole P and the remainder of the disk is deformed in an axisymmetric manner (ϕ = ϕ0) to
fit the membrane shape. The resulting elastic deformation of the disk is described in terms
of the mapping s(s0).

This result, which we refer to as the Helfrich equation, was originally derived
variationally by Deuling and Helfrich (1976) and is given in the historical no-
tation in Appendix D.6 as Eq. (2.230). It expresses the axial force-balance
condition and has been the basis of most axisymmetric vesicle-shape cal-
culations. Note that this is a first-order di=erential equation and is clearly
di=erent from the Ou-Yang equation (2.67). The relation between them is
that Eq. (2.69) is a first integral of Eq. (2.67) incorporating the condition that
the net axial force is zero.29)

Up to this point, we have ignored the Gaussian contribution to the en-
ergy, Fg, Eq. (2.15). Although we know that such a term cannot contribute
to the shape determination of closed vesicles because of the Gauss–Bonnet
theorem (see Section 2.3.2), it is generically present (Appendix B). Its e=ect
on the equilibrium mechanics is discussed briefly in Appendix D.3. It turns
out that it does not contribute to the stress tensor, so Eq. (2.64) remains un-
changed; however, it does contribute an additional term to the linear density
N(p̂) ≡ pαNα ≡ pαNαβYβ of intrinsic boundary torque. Previously, with
Fsc only, this torque density was Nsc(p̂) = M(n̂× p̂), Eqs. (2.61) and (2.62),
directed along the boundary and isotropic in magnitude. The new Gaussian
contribution takes the form,

29) If the axisymmetric membrane is under an overall non-zero axial tension, then that force
must be added as a constant term to Eq. (2.68). This occurs, e.g., for cylindrical mem-
branes under tension (Bukman et al. 1996).
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Nα
g = κgg

αγ
(
2Hδβ

γ − C β
γ

)
n̂ × Yβ . (2.70)

It is easy to show that this new contribution satisfies DαNα
g = 0, so it in-

tegrates to zero around any closed boundary (via Gauss’s law) and does not
contribute to Nint, Eq. (2.62), and does not a=ect Eq. (2.63). Interestingly, the
local torques which are produced are not isotropic and have, in general, a
component along p̂ in addition to one along n̂ × p̂,

p̂ · Ng(p̂) = κg

(
2Hδβ

α − C β
α

)
εβγpγpα (2.71)

(
n̂ × p̂

)
· Ng(p̂) = κg

(
2Hδβ

α − C β
α

)
pβpα. (2.72)

These results are particularly simple in local Cartesian coordinates (gαβ =
δαβ) aligned along the principal directions of the curvature tensor,

p̂ · Ng(p̂) = κg

(
C2 − C1

)
p1p2 (2.73)

(
n̂ × p̂

)
· Ng(p̂) = κg

(
C1p

2
2 + C2p

2
1

)
. (2.74)

Thus, if the edge happens to coincide locally with one of the principal axes,
then the torque density is aligned along the edge and proportional to the
principal curvature in the direction of the edge.

2.4.3
Mechanics of the Membrane Skeleton

The membrane skeleton, as we have modeled it in Section 2.3.3, consists of
an infinitely thin isotropic elastic sheet without bending rigidity. The gen-
eral stress-tensor analysis introduced in the previous section and leading to
Eq. (2.53) applies to the membrane skeleton and now takes the form,

Qn̂ + DαTα
ms = 0, (2.75)

where Q (which replaces the ∆P in Eq. (2.53)) is the the normal force per
unit area exerted on the membrane skeleton by the plasma membrane (de-
fined positive in the outward direction) and Tα

ms is the surface stress tensor
of the membrane skeleton. Now, (Tα

ms)⊥ ≡ 0, since the membrane skeleton
cannot (by hypothesis) support forces in the normal direction. Furthermore,
Nint ≡ 0, since the membrane skeleton cannot support intrinsic torques.
Therefore, it follows from Eq. (2.60) that the remaining in-plane stress ten-
sor Tαβ

ms must be symmetric. Under these restrictions, it is easy to separate
Eq. (2.75) into normal and in-plane components,30)

Q = Tαβ
ms Cαβ = trCTms, (2.76)

DαTαβ
ms = ∂αTαβ

ms + Γα
αγT γβ

ms + Γβ
αγTαγ

ms = 0, (2.77)

30) Note (Appendix C) that DαTα
ms =

(
DαT αβ

ms

)
Yβ − T αβ

ms Cαβn̂.
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where C is the curvature tensor and Tms is the stress tensor in the form
(Tms)β

α (see Appendix C). Note that, unlike ∆P in Eq. (2.53), Q is not uni-
form but will in general vary from place to place on the membrane skeleton.
In the special case for which the principal axes of C and Tms coincide, then

Q = τ1C1 + τ2C2 =
τ1

R1
+

τ2

R2
, (2.78)

where C1,2 and τ1,2 are the principal curvatures and the principal stresses,
respectively. Equation (2.78) generalizes Eqs. (2.45) and (2.47). The two-
component Eq. (2.77) expresses in-plane force equilibrium. The Christo=el
symbols Γ, defined in Appendix C, encode the shape of the (plasma mem-
brane) surface on which the elastic membrane (skeleton) is stretched.

The solution of Eqs. (2.76) and (2.77) determines the equilibrium stress-
strain state of the membrane skeleton as it is stretched/compressed from its
initial, undeformed shape S0 ≡ R0(s1, s2) to fit over the shape R(s1, s2)
of the plasma membrane. In this context, Eq. (2.76) is a constraint equation
which evaluates the necessary distribution of normal force Q acting on the
elastic membrane to keep it localized at R (of course, there is a correspond-
ing non-uniform pressure −Q which acts on the plasma membrane). Once
the form of the elastic constitutive relations is given, Eq. (2.77) determines
the distribution of stress Tαβ

ms over the elastic membrane. Thus, for consti-
tutive relations like Eqs. (2.27) or (2.28) which give the local elastic energy
density fms(λ1, λ2) as a function of the local principal extension ratios, it
follows immediately that the principal stresses are31)

τ1 =
1
λ2

∂fms

∂λ1
and τ2 =

1
λ1

∂fms

∂λ2
, (2.79)

so that in locally Cartesian coordinates oriented along the principal-axis di-
rections Tαβ =

[
τ1 0
0 τ2

]
. In simple cases the principal axes of C and Tms are

aligned, and it is clear that Eq. (2.77) provides two equations to determine
the distributions of the two unknowns λ1 and λ2. A situation of this type
is worked out in Appendix D.6, where a circular patch S0 is deformed to fit
over an axisymmetric shape S. More generally, however, an additional angu-
lar variable θ(s1, s2) is required at each point to specify the unknown local
orientation of the principal stress axes, so it might seem that there are only
two equations to determine the three fields λ1, λ2 and θ. The resolution of
this apparent paradox is that there is a symmetry relation (trivially satisfied
in the axisymmetric case) due to the fact that the local deformation matrix
M = M(λ1, λ2, θ) (see Appendix B) is determined as the in-plane part of
∂Rα(s1, s2)/∂(R0)β(s1, s2). Thus, spatial derivatives of M are constrained

31) The argument invokes the work theorem for an initial unit patch of membrane deformed
to dimensions λ1×λ2 and then further to (λ1 + dλ1)×λ2. Thus, ∆E = ∂fms

∂λ1
dλ1 =

(force) × (distance) = (τ1λ2)dλ1.
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by the equality of cross derivatives in expressions like ∂2Rα/∂(R0)β∂(R0)γ ,
which provides another local relation between λ1, λ2 and θ. The general rela-
tion connecting the elastic energy density fms(α, β), Eq. (2.26) and the elastic
stress tensor of the membrane skeleton is

T στ
ms =

[
∂fms

∂α
−

(1 + β

1 + α

)∂fms

∂β

]
gστ +

1
(1 + α)2

∂fms

∂β
gστ

0 , (2.80)

where gστ
0 and gστ are, respectively, the metric tensors of the undeformed

and deformed surfaces, R0(s1, s2) and R(s1, s2). This important result is
proved in Appendix D.5. Equation (2.79) is a special case.

With the mechanics of the membrane skeleton now in hand, we are fi-
nally in a position to discuss the analytic approach to the coupled problem of
the plasma membrane plus the membrane skeleton. The only e=ect of the
cytoskeleton is to provide an additional (non-uniform) pressure −Q on the
plasma membrane, thus replacing ∆P → ∆P −Q in Eq. (2.53), which then
passes through to the Ou-Yang equation (2.67). The in-plane forces are not
a=ected, so τ0 remains uniform. Note that the full red-cell calculation is now
self-consistent: To calculate the shape of the plasma membrane from the Ou-
Yang equation, one needs to know Q. To evaluate Q from Eq. (2.76) for the
membrane skeleton, one needs to know the elastic stress tensor Tαβ

ms for the
membrane skeleton (Eq. (2.80)) and the local curvature C. To calculate the
elastic stress tensor from Eq. (2.77), one needs to know the geometric quan-
tities Γ. Finally, to find C and Γ, one needs to solve the plasma membrane
shape problem. While this program has been carried out under the simplifi-
cation of axisymmetry (Mukhopadhyay et al. 2002) (see also Appendix D.6),
for more general shapes it has so far proven simpler to resort to numerical
methods, as discussed in the next section.

2.5
Calculating Shapes Numerically

This section describes the technique we have used to find RBC shapes nu-
merically for given values of the control parameters. We represent the mem-
brane skeleton as a discrete triangular mesh of labeled vertices, first over the
undeformed cytoskeletal shape S0 and then, appropriately deformed, over
the final membrane shape S. We will denote the undeformed and deformed
meshes as S̃0 and S̃, respectively. These meshes encode two kinds of infor-
mation. On the one hand, they may be viewed as piecewise planar (triangu-
lated) approximations to the shapes of the surfaces S0 and S. On the other
hand, the deformation of each triangular plaquette in the mapping from S̃0

to S̃ encodes in discrete, approximate form the local elastic deformations
of the membrane skeleton S0 as it is distributed over the final membrane
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shape S. The calculation involves constructing the initial and final triangu-
lations, representing the (free) energy F [S0;S], Eq. (2.6), in the discretized
approximation F̃ [S̃0; S̃] (where we use the tilde to denote the discrete approx-
imation), and then using Monte Carlo methods to minimize F̃ by variation
of S̃. The final, minimizing mesh, S̃min, then provides an approximate rep-
resentation of the energy-minimizing RBC shape Smin.

In very recent work Khairy et al. (2007) have numerically solved the same
model we have used here by expanding in a spherical-harmonic represen-
tation. Details of this method have not yet been published; however, it is
claimed to be e=ective and computationally economical, especially for rather
smooth shapes.

2.5.1
Construction of an Initial Spherical Net S̃sphere

The initial discretized spherical surface, S̃sphere, is built up from an icosahe-
dron by utilizing a standard method of constructing a sphere in computer
graphics. Imagine an icosahedron inscribed within a sphere of radius RA.
This icosahedron, which constitutes the initial, level-zero triangulation, has
20 triangular faces, 12 vertices (all with five-fold coordination) and 30 edges.
In each refinement of this triangulation, we replace each original equilateral
triangle by four equal smaller equilateral triangles by projecting the mid-
point of each edge onto the circumscribing sphere and then connecting those
points to the three original vertices and to one another. In this process the
number of edges, Ne, and the number of triangular faces (“plaquettes”), Nt,
both increase by four times and so, after Ndiv generations, Ne = 30 × 4Ndiv

and Nt = 20×4Ndiv . The number of vertices Nv is then determined by Euler’s
theorem (Millman and Parker 1977, p. 188): Nv = Ne−Nt+2 = 10×4Ndiv +2.
Note that the 12 initial vertices retain their five-fold connectivity, whereas all
the others have a six-fold connectivity. The former are referred to as defective
vertices and the latter, as regular vertices.

Information pertaining to the mesh is stored in three files. The first con-
tains the vertex coordinates calculated to a precision of 16 decimal places;
the second, the vertex indices of each triangle, ordered anti-clockwise as seen
from the outside; the third, the indices of the five or six nearest-neighbor ver-
tices of each vertex, also ordered anti-clockwise as seen from the outside. The
information within these files completely specifies the group of nearest and
second-nearest triangles about each vertex, which we refer to as a cluster. As
illustrated in Fig. 2.13, there are three distinct types of clusters, depending
on whether the central vertex or one of its nearest neighbors is defective.
The geometries of these triangles are required for calculating the change in
energy caused by a Monte-Carlo move of the central vertex k.



2.5 Calculating Shapes Numerically 141

Fig. 2.13 Local plaquette clusters about a central vertex k, showing nearest- and next-
nearest-neighbor triangles. When the central vertex undergoes a Monte Carlo move, the
geometry of the full cluster is needed to compute the energy change ∆F̃ . Each triangle Ti

is associated with its outward normal n̂i. Nearest-neighbor triangles are shown in grey. In
the left-hand figure, all vertices are six-fold coordinated and the full cluster contains 24 trian-
gles. In the central figure, one nearest-neighbor vertex (circled) is defective, so there are 23
triangles in the full cluster. In the right-hand figure, the central vertex k (circled) is defective
and the full cluster contains 20 triangles.

This mesh refinement method is applied subsequently to S̃0 and S̃ but
without projecting the newly created vertices of S̃0 and S̃ onto S0 and S, re-
spectively, since S0 (during its construction) and S are not known a priori.
In practice, the number of mesh refinements required for su;cient numer-
ical accuracy (Lim 2003) is Ndiv = 3 (Nt = 1280) for surfaces with smooth
morphologies, for example, axisymmetric and non-axisymmetric discocytes,
stomatocytes I and knizocytes, and Ndiv = 4 (Nt = 5120) for surfaces with
sharper features, for example, echinocytes I, II and III and stomatocytes II
and III.

In the remaining subsections we will need a notation for describing the
mesh and its deformation. Thus, each initial triangular plaquette T 0 of S̃0

transforms into a plaquette T of S̃, as illustrated in Fig. 2.14. In this pro-
cess the edge vectors l0 and l′0 of T 0 transform into edges l and l′ of T . We
will assume that the vectors l and l′ are chosen so that N ≡ l × l′ points
outwards. The unit outward normal vector to T is n̂ = N/|N|. In the follow-
ing, sums over plaquettes, edges and vertices will all appear. We adopt the
convention of distinguishing such sums from one another by labeling them
with indices i, j and k, respectively.

2.5.2
Discretization of Fcon[S]

It is convenient to enforce the area and volume constraints (Sections 2.1.3
and 2.3.1) by means of Eq. (2.8) using, however, the computational moduli
K∗

A and K∗
V of Table 2.2 in place of the physical moduli KA and KV , as

discussed in Section 2.3.1.
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Fig. 2.14 Deformation of a representative triangular plaquette from its initial unstressed
shape T 0 (as part of S̃0) to its final stressed shape T (as part of S̃) with corresponding
changes of the edge vectors l0 → l and l′0 → l′ and of the included angle φ0 → φ. N is the
cross product of l and l′ and points in the direction of the unit normal n̂ to the plane of T .

The first step in approximating Fcon[S] is to approximate the area and vol-
ume, A[S] and V [S], by those of the equivalent mesh S̃. Elementary algebra
gives

Ã[S̃] =
∑

i

∆Ai =
1
2

Nt∑
i=1

∣∣∣Ni

∣∣∣ (2.81)

and

Ṽ [S̃] =
1
6

Nt∑
i=1

Ri · Ni, (2.82)

where the sums run over the number Nt of triangular plaquettes and ∆Ai is
the area of plaquette i. Once Ã and Ṽ are found using Eqs. (2.81) and (2.82),
they are substituted into Eqs. (2.9) and (2.12),

F̃A[S̃] =
K∗

A

(
Ã[S̃] − A0

)2

2ARBC
(2.83)

and

F̃V [S̃] =
K∗

V

(
Ṽ [S̃] − V0

)2

2VRBC
, (2.84)

to give the approximate versions of FA[S] and FV [S], respectively, the sum
of which provides the computational constraint,

F̃con[S̃] = F̃V [S̃] + F̃A[S̃]. (2.85)
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2.5.3
Discretization of Fpm[S]

The bending energy Fpm[S] of the plasma membrane is given by Eq. (2.13)
without the Gaussian term or, equivalently, by Eq. (2.22). These expressions
contain two surface integrals over the mean curvature H of S for which we
require discrete approximations,

IH [S] =
∮

S

dAH ←→
Nv∑
k=1

∆AkHk = ĨH [S̃] (2.86)

and

IH2 [S] =
∮

S

dAH2 ←→
Nv∑
k=1

∆AkH
2

k = ĨH2 [S̃]. (2.87)

In the discrete expressions at the right the sum is over vertices k of the mesh,
∆Ak is the area element associated with each vertex and the expression Hk

represents an appropriate local average of the mean curvature of S. The dif-
ficulty is that the discretized surface, S̃, is piecewise planar and intrinsically
lacks a well-defined curvature, so it is not clear how Hk is to be defined on S̃.
This is the problematic part of formulating a sensible discrete approxima-
tion to Fpm. We will discretize Fpm based on a method due to Jülicher (1996),
which represents Fpm exactly in the continuum limit, unlike the commonly
used earlier method of Kantor and Nelson (1987) (Kantor 1989), which is
only approximate (Gompper and Kroll 1997).

What Jülicher (1996) (see also (Kern 1998)) showed is that, in a way that
becomes exact in the continuum limit (finer and finer mesh), the curvature
may be regarded as concentrated at the sharp edges between the triangular
plaquettes. Thus, in Fig. 2.15, two adjacent triangular plaquettes meet along
an edge l which has been rounded into a cylindrical surface of radius r and
length l. The mean curvature, Eq. (2.17), is zero everywhere except on the
cylindrical surface, where it has the constant value H = 1/2r. The area of the
exposed cylindrical surface is lrθ, where θ is the angle between the plaquette
normals n̂ and n̂′, so n̂ · n̂′ = cos θ. It follows that the integrated mean
curvature over the entire configuration of the two adjacent plaquettes is the
product 1

2 lθ, in which the cylinder radius has cancelled out, so we can take

the limit r → 0, recreating the sharp edges of S̃. This limit provides a clean
definition of the discretized integral Eq. (2.86),

ĨH [S̃] =
1
2

Ne∑
j=1

ljθj =
1
4

Nv∑
k=1


∑

jk

ljk
θjk


 , (2.88)
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Fig. 2.15 Two plaquettes meet along the edge l, here shown expanded into a cylinder which
the flat triangles meet tangentially along the two parallel lines shown. The turning angle θ
which these two lines subtend along the cylinder axis is the same as the angle between the
plaquette normals n̂ and n̂′. The integrated mean curvature of this plaquette geometry is
treated as concentrated on the cylindrical surface and has a well-defined value in the limit
r → 0. It is shown by Jülicher (1996) that the integrated mean curvature of S̃ calculated
in this way agrees with that of the smooth surface S in the limit as the triangulation mesh
becomes fine.

where the sum on jk in the right hand term is over the edges32) incident at
the vertex k and the extra factor of 1/2 is due to the fact that each edge is
incident at two vertices. Comparing Eqs. (2.86) and (2.88) suggests that we
define,

Hk ≡ 1
4∆Ak

∑
jk

ljk
θjk

. (2.89)

It is convenient to construct the area element ∆Ak to be associated with each
vertex by taking 1/3 the area of each of the surrounding plaquettes, so

∆Ak ≡ 1
3

∑
ik

∆Ai, (2.90)

where the sum ik is over the six triangles (five for defective vertices) which
share the vertex k, as illustrated in Fig. 2.16.

Although plausible, the prescriptions, Eqs. (2.89) and (2.90), do not prove
that Hk approaches the local mean curvature of S in the neighborhood of k

as the triangulation becomes infinitely fine (provided, of course, that S is
locally smooth). It is tedious but not di;cult to persuade oneself that this is,
indeed, the case by working close to the limit, where all plaquettes near k are
very close to the tangent plane, so the Monge representation is convenient
and expansion techniques can be used.

Using these results, we arrive finally at the discretized approximation to
the bending energy Fpm, Eq. (2.13), of the plasma membrane (the Gaussian
term has been dropped),

32) Note that the number of terms in the sum is six for regular vertices and five for defective
ones.
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Fig. 2.16 The area ∆Ak associated with vertex k (shown shaded) is precisely one third of
the total area of the triangular plaquettes surrounding k. The dotted lines shown connect
each vertex to the midpoint of the opposite side. The three such lines for each triangle meet
at the centroid.

F̃pm[S̃] = 2κbĨH2 [S̃] − κ m0

RA
ĨH [S̃] +

κ

2R2
A

Ĩ2
H [S̃], (2.91)

where Eqs. (2.1), (2.23) and (2.33) have been used.

2.5.4
Discretization of Fms

In the mesh representation we are using, the deformation of the membrane
skeleton in going from the relaxed configuration, S0, to the final configu-
ration, S, is represented discretely by the deformation of the mesh in go-
ing from S̃0 to S̃. In this process, each plaquette i goes from an initial un-
strained configuration, T 0

i , to a final strained configuration, Ti, as illustrated
in Fig. 2.14. We take the the strain to be uniform over each plaquette, so
discretization of the membrane skeletal stretch and shear energy Eq. (2.28)
takes the form,

F̃ms[S̃0; S̃] =
Nt∑
i=1

(∆A0)i

(
Kα

2
(
α2

i + a3α
3
i + a4α

4
i

)

+ µ
(
βi + b1αiβi + b2β

2
i

))
, (2.92)

where the plaquette area (∆A0)i refers to S̃0 and αi and βi are the area and
shear strains, Eqs. (2.24) and (2.25), respectively, for plaquette i (assumed
uniform).

It remains to calculate the strains associated with the deformation shown
in Fig. 2.14. It is convenient to do this by finding the deformation matrix M
(see Appendix B) which takes T 0 into T . There is no loss of generality in
assuming that l0 and l are aligned, in which case it is easy to show that M =
[ a b

0 c ], with
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a =
l

l0
, (2.93)

b =
1

sin φ0

(
l′

l′0
cos φ − l

l0
cos φ0

)
, (2.94)

c =
l′

l′0

sin φ

sin φ0
. (2.95)

It is then straightforward to calculate the invariants, Eq. (2.117),

det MTM = a2c2 (2.96)

trMTM = a2 + b2 + c2, (2.97)

and to construct the strains, Eq. (2.24) and (2.25),

α = ac − 1 =
∆A

∆A0
− 1, (2.98)

β =
1

2ac

(
a2 + b2 + c2 − 2ac

)
. (2.99)

This completes the calculation of the strains α(l0, φ0, l, φ) and β(l0, φ0, l, φ)
induced by the deformation of each triangular plaquette in going from S̃0

to S̃. Substitution into Eq. (2.92) completes the evaluation of the discretized
membrane-skeleton energy.

2.5.5
Energy Minimization by the Metropolis Monte Carlo Algorithm

At this point we have all the necessary preparation for calculating the dis-
cretized approximation of the total membrane free energy,

F̃ [S̃0; S̃] = F̃con[S̃] + F̃pm[S̃] + F̃ms[S̃0; S̃], (2.100)

where the individual terms have been given in Eqs. (2.85), (2.91) and (2.92).
In practice, the computational moduli K∗

A and K∗
V in F̃con, although softer

than the physical moduli KA and KV (see Table 2.2), are sti= enough to fix
the area and volume of S̃ very close to A0 = ARBC and V0 = VRBC , re-
spectively. Under these conditions F̃con is small and F̃ ≈ F̃m, the discrete
approximation to the membrane energy Eq. (2.7) of the red cell at fixed vol-
ume and area.

We proceed now to the final step in minimizing F̃ , implementation of
the Metropolis algorithm to carry out the actual minimization (Allen and
Tildesley 1989; Newman and Barkema 1999). For computational e;ciency
the twelve defective vertices and the Nv − 12 regular vertices are separated
at the beginning by numbering the former as the first twelve followed by the
latter in the array of all vertex indices. Each vertex on S̃ is picked sequen-
tially from the array and subjected to a trial move. In each such move, the
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vertex is displaced randomly by a small amount through the use of a pseudo-
random number generator (the simple multiplicative congruential genera-
tor (Press et al. 1994)) to produce a slightly perturbed surface S̃′ from S̃.
This vertex displacement gives rise to a change in the energy F̃ , defined by
∆F̃ ≡ F̃ [S̃0; S̃′]−F̃ [S̃0; S̃], which is calculated from the new and old geome-
tries of the triangles of the cluster about the displaced vertex (see Fig. 2.13).
Moving the central vertex of a cluster redefines only the nearest-neighbor
(grey) plaquettes. Thus, in calculating the energy change ∆F̃ due to each
move, only a small number of terms in F̃ need to be considered. For F̃con

and F̃ms, Eqs. (2.85) and (2.92), changes occur only in the six terms i (five for
the defective vertices) associated with the grey plaquettes. For F̃pm, Eq. (2.91),
the sums Eqs. (2.86) and (2.87) defining ĨH and Ĩ2

H use Hk, Eq. (2.89), which
involves all the surrounding plaquettes and their edges jk. It follows that
moving the central vertex k a=ects contributions both from k and from its six
(or five) nearest-neighbor vertices. Finally, the last part of each trial move is
to accept the change if the Boltzmann factor exp

(
−∆F̃ /kBT

)
is greater than

a randomly chosen number in the interval [0, 1] or, otherwise, to reject it and
to revert back to the previous coordinates. By using a very low temperature T

in the Boltzmann factor, trial moves that substantially raise F̃ (positive ∆F̃ )
are heavily penalized, while moves that lower F̃ (negative ∆F̃ ) are always
accepted. The probability of acceptance of a trial move is kept at (50 ± 2)%
by adjusting the step size of the trial moves throughout each minimization
run.

In the above, kB is Boltzmann’s constant and T is a user-defined min-
imization parameter, referred to as the “computational temperature.” If T

is chosen to be the physical temperature of the RBC physiological environ-
ment, then the Monte Carlo simulation will over time reproduce the full ther-
mal ensemble of RBC shapes with its corresponding thermal distribution of
energies F . Although this can be useful in interpreting experiments where
thermal fluctuations are important (see Section 2.7.5), we shall for the most
part be interested in constructing phase and stability diagrams and looking at
the energy-minimizing shapes Smin. For these purposes, it is useful to set T

to a value much lower than the physiological temperature, so that each local
energy minimum can be followed independently.

A Monte Carlo run consists in starting with an initial configuration and
running randomly through the vertices of the mesh. One trial per mesh ver-
tex constitutes a “sweep.” The total number of sweeps, Nsweep, is an impor-
tant computational parameter. In practice, the energy F̃ goes through an
initial transient and then settles into a stationary random behavior with fluc-
tuations which are small if T is low. We disregard data from the transient
period and calculate the average

〈
F̃

〉
T

over a su;cient number of sweeps to

provide adequate statistics. Note that neither F̃min nor S̃min is directly attain-
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able from the Metropolis algorithm, since the algorithm relies on the use of a
non-zero T and, hence, cannot enforce strict minimization. However, a good
approximation to both can be had by setting T to a reasonably low value,
usually one tenth of room temperature or less (more in Section 2.6). The
values of Nsweep and T used are dependent upon the size of the system (as
measured by Nt, for example) and the type of operation under consideration.
There are two types of operations: (i) the preparation of the set of reference
surfaces S̃0 (Section 2.3.3) and (ii) the production of the minimum energy S̃

for a given S̃0 (Section 2.6). The values of Nsweep and T for each will be given
as the need arises.

In principle, one can vary T and Nt to obtain
〈
F̃

〉
T

as a function of T

and Nt and then extrapolate systematically to T = 0 and N−1
t = 0 to find

Smin and Fmin[Smin]. We have done this in a few special cases. In practice,
however, it is neither necessary nor feasible for the results presented here.
At the low computational temperatures we employ, the extrapolations (when
we can do them) result in only small changes. Furthermore, extrapolation on
Nt is only feasible for smooth shapes. In practice, we can use Nt values of
1280 and 5120 but the next step up at 20 480 is prohibitively time consuming.
Thus, we can only begin to extrapolate shapes which can be reasonably well
approximated by the Nt=1280 mesh, which is OK for smooth shapes like the
discocyte but excludes the highly spiculated echinocytes.

2.6
Predicted Shapes and Shape Transformations of the RBC

In this section we describe the results of numerically minimizing (see Sec-
tion 2.5) the overall free energy functional F [S0;S], Eq. (2.6), of the RBC
membrane for the parameter values listed in Table 2.2 and discussed in
Appendix A. In general, we have treated as variable (“control parameters”)
only two parameters, the volume Vms of the membrane-skeleton reference
shape and the reduced e=ective spontaneous curvature (or reduced e=ec-
tive area di=erence), which is by convention described in terms of the vari-
able m0 defined by Eq. (2.33). For each pair of values (m0, Vms) there may
be one or more local energy minima, corresponding to one or several me-
chanically stable membrane configurations. The lowest-energy minimizing
shape is the putative zero-temperature (T = 0) ground state. Other mini-
mizing shapes are metastable. The energies Fmin of the minimizing shapes
generally vary smoothly with the control parameters, thus forming a set of
sheets F

(α)
min(m0, Vms) indexed by the discrete superscript α. S(α)(m0, Vms)

denotes the minimizing shape associated with the sheet α at the phase point
(m0, Vms). The analogue of a thermodynamic phase diagram would be a plot
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over the (m0, Vms) plane of the ground-state shape class. Such a phase dia-
gram can, indeed, be constructed; however, it does not generally correspond
to what is seen in the lab. The reason is that the energy barriers between
the minima are generically of order κb ∼ 50κbTroom, as discussed in Sec-
tion 2.1.4, so metastable shapes are common in experiments.

As described generically in Section 2.1.6, distinct sheets can cross one an-
other. In addition, one sheet can merge into or branch o= from another along
lines of mathematical bifurcation. Thus, each minimum-energy sheet α per-
sists over some bounded region of the (m0, Vms) “phase space,” which we
call the region of stability of the “phase” or “shape class” α. The linear loci
in (m0, Vms) which outline this region are called stability boundaries (or
metastability boundaries) and constitute collectively the stability diagram of
the phase α. The minimizing shape S(α)(m0, Vms) is the model’s prediction
for the RBC shape of class α at the phase point (m0, Vms). S(α)(m0, Vms)
varies smoothly over the region of stability of the phase α; however, within
a single phase, the symmetry and other generic features of the shape do not
change. The shape classes α are closely related to the observational shape
classifications (Bessis 1973) introduced in Sections 2.1.1 and 2.2.3, as we
shall discuss in Section 2.6.1.

It is the aim of this section to describe the shapes, shape classes and stabil-
ity diagrams which arise from energy minimization. Section 2.6.1 provides
an overview of the minimizing shape classes and their relation to the Bessis
(1973) classification illustrated in Figs. 2.2 and 2.3. Section 2.6.2 provides a
generic discussion of the types of shape transitions that may be expected be-
tween di=erent shape classes. Section 2.6.3 introduces the “phase-trajectory
diagrams” which we constructed numerically in order to map out the vari-
ous shape classes and their stability boundaries. Finally, in Section 2.6.4 we
describe sequentially the 16 shape classes summarized in Table 2.3, their sta-
bility boundaries and their interrelations. With this information in hand, we
go on in Section 2.7 to discussion of the significant results and predictions
for RBC shapes and shape transitions which arise from this study.

2.6.1
Shape Classes

This section describes the nomenclature that we use to describe the shape
classes that show up in our minimizations. Table 2.3 summarizes this
nomenclature, introduces useful abbreviations, and provides links to illustra-
tive figures. Some of these named classes refer to a single α sheet. Examples
are the axisymmetric discocyte (AD) and the axisymmetric stomatocyte (AS).
For reasons discussed below, others identify a collection or superclass of dis-
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Table 2.3 Shape-class nomenclature. Each class is followed by its abbreviation and refer-
ences to corresponding illustrative figures later in the text.

Shape class Abbreviation Figure No.

1 Non-Axisymmetric Stomatocyte with
triangular invagination

NAS-3 2.25

2 Non-Axisymmetric Stomatocyte with
shallow invagination

NAS′ 2.26

3 Non-Axisymmetric Stomatocyte NAS 2.27

4 Axisymmetric Stomatocyte AS 2.28

5 Axisymmetric Discocyte AD 2.29 and 2.30

6 Non-Axisymmetric Discocyte NAD 2.29 and 2.31

7 Echinocyte I with 9 bulges E1-9 2.29, 2.32 to 2.34

8 Echinocyte I with 10 bulges E1-10 2.35

9 Echinocyte I with 11 bulges E1-11 2.36

10 Echinocyte I with 12 bulges E1-12 2.37

11 Knizocyte K 2.29, 2.38 and 2.39

12 Knizo-Echinocyte I, sub-class A KE1-A 2.29 and 2.40

13 Knizo-Echinocyte I, sub-class B KE1-B 2.41

14 Knizo-Echinocyte I, sub-class C KE1-C 2.42

15 Spiculated Shape II SS2 2.43

16 Spiculated Shape SS 2.44

tinct but related sheets α. Examples are the non-axisymmetric stomatocytes
(NAS, NAS′) and the spiculated shapes (SS and SS2).

Most, but not all, of these shapes occur as part of the normal SDE se-
quence, illustrated in Figs. 2.2 and 2.3; however, there is not a one-to-one cor-
respondence between the traditional SDE terminology of Bessis (1973) and
the largely symmetry-based nomenclature that we have adopted here. There
are several reasons for this. First, the traditional terminology is partially qual-
itative, whereas the classes α that emerge from the minimization process are
strictly defined and respect symmetry in a rigorous manner. Thus, classical
stomatocytes I and II are both axisymmetric and di=er only in the depth of
the “cup.” Both these shapes belong to the same axisymmetric stomatocyte
(AS) sheet and in our terminology must, therefore, carry the same α label.
By contrast, the stomatocyte III has a non-axisymmetric invagination; thus,
because there is a symmetry change in passing from a stomatocyte II to any
non-axisymmetric stomatocyte III (NAS) shape, these shapes belong to dis-
tinct minimization sheets α. The situation is further complicated because,
as Fig. 2.3 illustrates, non-axisymmetric stomatocytes can have several dis-
tinct symmetries, thus corresponding to di=erent sheets. Thus, there is not
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just one NAS sheet but, rather, a superclass of several distinct sheets of re-
duced symmetry. We lump these all these together as NAS and NAS′, each of
which has several distinct α sub-classes. A di=erent situation occurs for the
echinocytic shapes. The weakly non-axisymmetric shapes called echinocyte I
in the traditional terminology show up at T = 0 (see Section 2.7.5) with
strictly periodic oscillations of the discocyte perimeter, that is, with an n-
fold rotation axis at the position of the discocyte symmetry axis. Each of
these periodicities corresponds to a distinct α sheet. We call them collectively
echinocyte I (E1) but with an additional sublabel E1-n to distinguish the dis-
tinct periodicities. The echinocyte II and echinocyte III shapes exhibit com-
plex patterns of spiculation, some symmetric but others with no symmetry.
Each spicule pattern corresponds in the minimization to a separate sheet α.
We have grouped these spiculated shapes (SS) into two broad groupings, SS
and SS2, each of which contains many distinct sheets.

The classes summarized in Table 2.3 are distinguished principally by sym-
metry. The exceptions are NAS, NAS-3 and SS, which are grouped according
to their respective surface features. NAS actually includes a few apparently
symmetric shapes; however, it is hard to determine the values of m0 that
separate these symmetric shapes from adjacent asymmetric ones and they
all are discontinuously distinct from the main AS branch (see below). There-
fore, we have chosen to group them together. NAS-3 and SS do not have
obvious symmetries. In principle, shapes in the SS superclass could be di-
vided further into sub-classes according to the number and arrangement of
spicules; however, the number of such sub-classes is very large and the tran-
sitions between them are delicate and hysteretic, so we have chosen to group
them together.

2.6.2
Shape Transitions, Trajectories and Hysteresis

Shape transitions, such as those of the SDE sequence, occur in the lab when
some generalized applied force drives the red cell through a sequence of
distinct shapes. From our point of view, the forcing occurs via changes in
one or more of the control parameters which drive the mechanical system
along a one-dimensional trajectory in its generalized phase space (e.g., along
a line in (m0, Vms) in our example). If the driving is very fast, then the result-
ing time-evolution of RBC shapes can only be described by dynamics, and
the T = 0 stable shape branches or sheets described here have no immedi-
ate relevance. If the driving is very slow, then what is observed at any T > 0
is a slowly varying shape ensemble, in which all shapes – stable and unsta-
ble – contribute according to their thermal weight. However, on appropriate
intermediate time scales (which are relevant in the lab!) and at su;ciently
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low temperature, a sequence of identifiable shapes, each belonging to a spe-
cific sheet, may be seen. Such trajectories were previously described in Sec-
tion 2.1.6, where we also introduced the distinction between continuous (ct)
and discontinuous (dct) shape changes.

Our numerical shape calculations were carried out in a manner which
closely parallels this experimental situation. Once we found, at a particular
point (m0, Vms), a stable shape S(α)(m0, Vms), we would trace out the nearby
parts of the sheet α by moving to a nearby point (m0 +δm0, Vms +δVms) and
using S(α)(m0, Vms) as the starting configuration in the energy-minimiza-
tion routine. Note that our minimization technique is based on Monte Carlo
simulation (see Section 2.5), so it has its own computational temperature.

In the remainder of this section we describe what we see computationally
(and what we expect to observe in the lab) for trajectories which cross vari-
ous kinds of phase and stability boundaries. Figure 2.17 summarizes what
happens at several generic types of boundaries both at T = 0 and at T > 0.
The horizontal axis represents distance along the driven trajectory. On the
left side (“Discontinuous Transitions”), two distinct energy branches (sheets)
cross, one or both of which terminate at an instability (i). Thus, at T = 0
in the top example at the left, if one starts out on A where it is the lower
branch, the observed shape continues to change smoothly through the level
crossing right up to the instability, at which point there is a sudden jump
to a branch-B shape (well after the point where the energies crossed) along
with a corresponding decrease of energy. At T > 0 there is a region near the
instability (i), indicated by the shading, where the energy barrier between
branches A and B becomes comparable to kBT . A trajectory starting out on
A now drops to B at some intrinsically unpredictable point within the shaded
region. Sudden changes of shape like this are diagnostic of points of mechan-
ical instability of a metastable branch (“metastability boundaries”) and corre-
spond to discontinuous (dct) phase boundaries.33) If, on the other hand, the
system starts on the higher branch (middle example at the left), then there is
no change in shape class at the level crossing. The provisional stability of the
higher-energy branch is a example of metastability. Metastability e=ects lead
to a di=erence in the shape-transition point when the trajectory is reversed,
as already noted in Fig. 2.2, so that the sequence of shapes is di=erent in
the two directions (“hysteresis”). This kind of behavior is illustrated by the
example at the left of Fig. 2.17.

By contrast, the right side of Fig. 2.17 (“Continuous Transitions”) illus-
trates what happens where one sheet A bifurcates at a continuous phase
boundary to form a second sheet (typically of lower symmetry) of lower en-
ergy. The dashed continuation of A beyond the continuous transition (c) is

33) Of course, if the shaded region extends through the level crossing, then there will be
a region around the crossing where the state of the system can only be described as a
(restricted) thermal mixture of A and B branches.
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typically an unstable branch, corresponding to a saddle of the energy surface.
It is not accessible via Monte Carlo energy minimization. Thus, at T = 0 in
the top example at the right, the shape passes smoothly from A to B at the
transition. At T > 0 there is an interval (shaded) where an entire region
of the energy surface around the A and B stationary points is thermally ac-
cessible. When the system passes through this region, one expects to see
significant shape fluctuations, with representation in the thermal ensemble
of shapes A and B as well as shapes intermediate between them. Regions of
shape fluctuation are diagnostic of continuous (ct) phase boundaries. We
will return to this situation later in Section 2.7.5 in discussing observed
echinocyte I fluctuations. Although the change in symmetry at such a bi-
furcation occurs abruptly at T = 0, it is not so easy to pin down precisely
in practice. Partly, this is because the change is continuous, so it starts out
imperceptibly. More fundamentally, the fact that we are working at non-zero
temperature both computationally and in the lab means that there is an in-
trinsic “fuzziness” corresponding to the shaded region. In the middle exam-
ple at the right, the sense of the bifurcation has been reversed; again, the tran-
sition is smooth, with thermal fluctuations in the shaded region for T > 0.
The bottom example at the right illustrates the annihilation of one stable
and one unstable branch at an instability (i) followed by a sudden drop in
energy to some lower branch. It is this kind of structure which is typically
responsible for the instabilities following the level crossings at the left.

2.6.3
Phase-Trajectory Diagrams

We explored the sheets and stability boundaries computationally by fixing
the volume Vms of the skeletal reference shape S0 and then stepping up and
down incrementally in the e=ective-curvature (or e=ective-area-di=erence)
variable m0, while monitoring the overall energy and the minimizing shape.
In each step we used the previous minimizing shape as the starting point for
the next minimization, thus following a single sheet as far as possible and
mapping out a trajectory in the sense of the previous section. In this process
we generally kept the computational temperature su;ciently low to make
the fluctuation-dominated regions (shaded in Fig. 2.17) negligibly small. Sta-
bility boundaries were identified by locating the points in the trajectory at
which the shape changed class. Discontinuous (dct) transitions were easily
identified as abrupt shape changes accompanied by a jump to a lower overall
energy. Continuous (ct) transitions were more di;cult to pin down precisely,
since they did not involve any sudden change of shape or energy.

Figures 2.18 to 2.24 summarize these results in what we refer to as “phase-
trajectory diagrams” for a sequence of cytoskeletal volumes ranging from
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Fig. 2.18 Phase-trajectory diagram showing predicted shape transformations as a func-
tion of m0 at Vms = 100 µm3. On the vertical axis, m0 is a dimensionless measure of the
e=ective area di=erence between plasma-membrane leaflets. Shapes belonging to a given
class are grouped sequentially along a single vertical line and their range in m0 indicates
the region of stability of that class. There is no quantitative significance to the horizontal
spacings; however, the horizontal arrows indicate the occurrence (and type) of shape-class
transitions which take place as m0 is raised or lowered beyond the stability boundaries.
Numerical labels on selected points key to specific calculated shapes shown in later fig-
ures. The inset below summarizes the sequence of predicted transitions as m0 increases
(towards the right) or decreases (towards the left). Note the failure of reversibility through
the E1-n regions, which is associated with hysteresis e=ects.
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Fig. 2.19 Incomplete phase-trajectory diagrams for m0 at Vms = 110, 114, 116 and
118 µm3. We took partial data at these values of Vms only for the purpose of locating the
lower stability boundaries of the NAS and AD shape-class phases. The standard step-size
of ∆m0 = ±5 is indicated at the right.

Vms = 100µm3 to Vms = 155.8µm3. Consider as a representative example
Fig. 2.18. The vertical axis shows values of m0; the horizontal axis has no
quantitative significance. Each vertical line indicates the range of m0 over
which the corresponding phase is stable; thus, the endpoints of each line
lie on stability boundaries. The vertical lines are solid for the axisymmet-
ric phases and dashed for non-axisymmetric phases. They are labeled be-
low according to the conventions of Table 2.3. In exploring these trajectories
we used a step size in m0 of ±5, which determines the uncertainty in the
computed stability boundaries. Each circle indicates a point at which shape
computations were carried out. Certain special points have been numbered
for later reference. For example, the shapes corresponding to the AD points
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Fig. 2.20 Phase-trajectory diagram showing predicted shape transformations as a function
of m0 at Vms = 130 µm3. See text and caption of Fig. 2.18 for further information.

marked 1, 2 and 3 are shown in Fig. 2.30. The shading of the circles codes
the range of computational temperatures used according to the key provided.
The values of Nt indicate the fineness of the computational net (see below
and Section 2.5). Stepping up or down along a single line, that is, on a single
sheet, is reversible (no hysteresis). At the boundary of the range of stability
of each shape class, a transition to another class occurs, as marked by the
horizontal arrows which point to the new shape class and are labeled with
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Fig. 2.21 Phase-trajectory diagram showing predicted shape transformations as a function
of m0 at Vms = 148 µm3. This value of m0 is our best estimate for the physical value; it was
used in calculating the predicted erythrocyte shapes shown in Fig. 2.3. See text and caption
of Fig. 2.18 for further information. Additional details of the AD to E1-n region are provided
in Section 2.7.5 and Fig. 2.48.

the transition type (dct or ct). Thus, the range of the stable E1-9 phase termi-
nates above in a discontinuous transition to a spiculated SS shape and below
in a continuous transition to the axisymmetric discocyte (AD). On the other
hand, the axisymmetric discocyte phase terminates below when the shapes
become self-intersecting (unphysical) and above in a continuous transition
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Fig. 2.22 Phase-trajectory diagram showing predicted shape transformations as a function
of m0 at Vms = 152 µm3. As indicated, one shape in the AD class near the upper stability
boundary exhibited very slight undulations on the rim. However we have not grouped it
under E1-9 because we were unable to exclude thermal fluctuations as the cause of the
undulations (note that the corresponding boundary is continuous). See text and caption of
Fig. 2.18 for further information.

to E1-9. The slight o=sets of the two directions of the continuous transition
is presumably a computational artifact associated with the finite step size,
the di=erence in the mesh size, etc. Note that most transitions are discon-
tinuous.34) Note that the transition out of the spiculated SS class with de-
creasing m0 does not lead directly back to the E1-9 phase but, instead, passes
through E1-12 and E1-10 in a cascade of discontinuous transformations. The
box at the bottom of Fig. 2.18 summarizes the main shape-class transitions,
specifically indicating hysteretic e=ects.

34) Standard Landau theory (Tolédano and Tolédano 1987; Chaikin and Lubensky 1995)
shows that only transitions involving a symmetry which can be continuously broken are
allowed to be continuous.
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Fig. 2.23 Phase-trajectory diagram showing predicted shape transformations as a function
of m0 at Vms = 154 µm3. As indicated, one shape in the AD class near the upper stability
boundary exhibited very slight undulations on the rim. However, we have not grouped it
under E1-9 because we were unable to exclude thermal fluctuations as the cause of the
undulations (note that the corresponding boundary is continuous). See text and caption of
Fig. 2.18 for further information.

We have studied in some detail the cases Vms = 100, 130, 148, 152, 154
and 155.8µm3, the results of which are reported in Figs. 2.18, 2.20, 2.21,
2.23 and 2.24, respectively. These figures illustrate the phase-stability behav-
ior of all the major shape classes. In contrast, the cases Vms = 110, 114,
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Fig. 2.24 Phase-trajectory diagram showing predicted shape transformations as a function
of m0 at Vms = 155.8 µm3. As indicated, three shapes in the AS class near the lower stability
boundary may be slightly non-axisymmetric. However, we have not grouped them under
NAS because we were unable to exclude surface-triangulation roughness as the cause of
this asymmetry. See text and caption of Fig. 2.18 for further information.
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116 and 118µm3, shown in Fig. 2.19, have only been explored su;ciently
to allow determination of the lower stability boundaries of the AD and AS
shape classes. Similarly, the case Vms = 152µm3, shown in Fig. 2.22, has
only been explored su;ciently to allow determination of the boundaries of
shape classes that are not spiculated.

Each point (m0, Vms) in Figs. 2.18–2.24 is associated with three computa-
tional parameters, Nt, κb/kBT and Nsweep (not shown), which are, respec-
tively, the number of triangles used to approximate S, the normalized in-
verse computational temperature at which S is equilibrated, and the num-
ber of Monte Carlo sweeps. We have used either 1280 or 5120 triangles to
represent S, except for one point in Fig. 2.23 where we have used both. Gen-
erally, we have chosen to use 1280 triangles to represent smooth S’s and
to use 5120 triangles to represent S’s with sharper surface features. The
highest equilibration temperature for each point is either κb/kBT = 500
or κb/kBT = 48.3 (room temperature). The former is used mainly in the
determination of the regions of stability for the major non-spiculated shape
classes. In the case of the SS and SS2 classes, it is used only in the deter-
mination of the lower stability boundaries. Exploration of the region where
m0 ≥ 100 is complicated by the occurrence of numerous locally stable spic-
ulated shapes for the same Vms and m0. In order to make our computation
time feasible, we did not explore this region systematically. Instead, we lim-
ited our search to shapes at or near the absolute minima by equilibrating at
κb/kBT = 48.3 (room temperature) before raising κb/kBT to 500 and then
to 1000. The shapes obtained in this manner belong to the spiculated shape
classes (SS and SS2). In general, Nsweep ≥ 2 × 106 for the equilibration at
each temperature. Some parts of the NAS-3, NAS′, E1-10, E1-11, E-12 and
KE1-C shape classes are not important for normal red-cell shapes and, thus,
were not thoroughly explored.

Some data points in the SS class are associated with double-headed arrows.
The tails of these arrows indicate the starting shapes. Those data points in
the SS class not associated with double-headed arrows are the initial data
that made us realize the complication arising from the multiplicity of locally
stable spiculated shapes; we did not record the starting shapes of these initial
data.

2.6.4
Individual Shape Classes and Stability Diagrams

In the following subsections we present the stability diagram and some char-
acteristic shapes for each of the 16 shape classes. The stability boundaries
may be read o= from the phase-trajectory diagrams in the previous sec-
tion. Full stability diagrams are given for all the major phases; for several
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minor phases we have only incomplete data. Figure 2.45 displays a com-
posite of all the stability diagrams, so that their interrelations can be seen
more clearly. The circles represent calculated shapes; the labeling is consis-
tent with the phase-trajectory diagrams of Section 2.6.3. In some cases repre-
sentative shapes are shown in separate figures; in others, they are shown on
the stability diagram. Labeled shapes just outside the shaded stability range
indicate the shape class which follows the instability. The order of presenta-
tion, from the most stomatocytic, through the discocytic and ending with the
echinocytic phases, parallels the order in Table 2.3.

NAS-3
A locally stable non-axisymmetric stomatocyte with a triangular invagination
is found at Vms = 148µm3 and m0 = −60, as shown in Fig. 2.25. It has
no symmetry (the apparent three-fold axis is only approximate). The NAS-3
shape transforms discontinuously into the NAS class at the upper stability
boundary. The NAS-3 shape is similar in appearance to the experimentally
observed triangular stomatocyte shown in Fig. 2.3(B).

NAS′

A locally stable, shallow, non-axisymmetric stomatocyte with an ellipsoidal
invagination is found at Vms = 100µm3 and m0 = −60, as shown in
Fig. 2.26. It is mirror-symmetric with two mirror planes. This shape trans-
forms continuously into the axisymmetric AS class at the upper stability
boundary and discontinuously into the NAS class at the lower stability
boundary.

NAS: Non-Axisymmetric Stomatocytes
The stability diagram and representative shapes NAS(1) to NAS(17) of the
NAS class are shown in Fig. 2.27. NAS is a superclass consisting of a large
collection of locally stable non-axisymmetric stomatocytic sheets with simi-
lar changes in surface features as m0 is varied, notably the narrowing and
elongation of the initially oval invagination as m0 decreases. The NAS class
includes some mirror-symmetric shapes with one or two mirror planes. We
have not attempted to isolate these symmetric shapes from the non-sym-
metric ones because the continuous transformations between symmetric
and non-symmetric shapes make it di;cult to determine stability bound-
aries with precision. Shapes in the upper portion of the stability diagram,
such as NAS(1), NAS(2), NAS(4), NAS(7), NAS(8), NAS(11), NAS(12) and
NAS(15), resemble the stomatocyte II (c.f., Fig. 2.3(b)). Consider the shapes
at m0 = −60, namely, NAS(3), NAS(6), NAS(10), NAS(14) and NAS(17). A
comparison of these shapes reveals that only those with volumes in the range
130µm3 < Vms < 155.8µm3 exhibit the characteristic curved invagination
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Fig. 2.25 Incomplete stability diagram of the NAS-3 shape class. v indicates the reduced
volume (Eq. (2.3)) of the relaxed cytoskeletal shape S0. Inset shows the locally stable shape
found at Vms = 148 µm3 and m0 = −60. The three-fold rotation axis is only approximate.
This shape bears a striking resemblance to the triangular stomatocyte shown in Fig. 2.3B
and reported by Bessis (1972) (see also Section 2.2.3). At the next higher value of m0 the
shape became NAS.

of the classic stomatocyte III (c.f., Fig. 2.3(a)). In other words, the reference
shape S0 must be highly inflated but not fully spherical in order for shapes
resembling the stomatocyte III to occur. At the upper stability boundary, the
NAS shape class transforms discontinuously into the axi- and up-down sym-
metric AD class, if 100µm3 ≤ Vms < VAD/AS, or into the axisymmetric AS
class, if VAD/AS < Vms < 155.8µm3. The transition point VAD/AS is some-
where in the interval 130µm3 < Vms < 148µm3. The transformation into
the AS class is continuous at Vms = 155.8µm3, which corresponds to a
spherical S0.
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Fig. 2.26 Incomplete stability diagram of the NAS′ shape class. Inset shows the locally
stable shape found at Vms = 100 µm3 and m0 = −60. The symmetry group contains two
perpendicular mirror planes; the apparent axisymmetry is only approximate. At the next
higher/lower values of m0 the shape became AS/NAS, respectively.

AS: Axisymmetric Stomatocytes
The stability diagram and representative shapes AS(1) to AS(8) of the AS
shape class are shown in Fig. 2.28. The AS class consists of a single sheet of
shapes which strongly resemble the classical stomatocyte I (c.f., Fig. 2.3(c))
and are characterized by possessing axisymmetry but lacking up-down sym-
metry. At the upper stability boundary, the AS class transforms discontinu-
ously into the axi- and up-down symmetric AD class, except when S0 is spher-
ical, in which case the AS class transforms continuously into the K class. A
notable feature in the transformation from AS to K is that the convex side of
AS turns into the pinch of K, which corresponds to a change in shape from
the axisymmetry of AS to the mirror symmetry of K. At the lower stabil-
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Fig. 2.27 Distribution of order parameter values as a function of temperature, at three
cholesterol concentrations. Bi-modality in a plot reveals regions within the bilayer of di=er-
ent degrees of lipid order at that temperature and cholesterol concentration. (a) 5% choles-
terol, (b) 25% cholesterol, (c) 3 % cholesterol. Bi-modality is seen at lower cholesterol
concentration over a range of temperatures that decreases as the cholesterol concentration
increases.

ity boundary, the AS class transforms discontinuously into the NAS class if
100µm3 < Vms < 155.8µm3, continuously into the mirror-symmetric NAS′

class in the vicinity of Vms = 100µm3, and continuously into the NAS class
if S0 is spherical.
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Fig. 2.28 Stability diagram of the AS shape class. The region of stability is shaded. The shape
classes of selected points just outside the stability boundaries are indicated. Representative
shapes AS(1) to AS(8) are shown above the stability region. The numbering is keyed both
to the labeled points inside the stable region and to the corresponding points in phase-
trajectory diagrams Figs. 2.18 to 2.24.

AD: Axisymmetric Discocytes
The stability diagram of the AD shape class is shown in Fig. 2.29. The rep-
resentative shapes AD(1) to AD(8) are shown in Fig. 2.30. The AD class is
characterized by axisymmetry plus up-down symmetry. It includes a sub-
set of self-intersecting shapes located in the lower left corner of the sta-
bility diagram, where Vms � 114µm3. These self-intersecting shapes are
not physical; they come about because we did not implement global self-
avoidance of S. Upon crossing the lower stability boundary, AD transforms
discontinuously into NAS, if 114µm3 < Vms < VNAS/AS, or into AS, if
VNAS/AS < Vms < 154µm3. The transition point VNAS/AS between these two
regions is somewhere in the interval 130µm3 < Vms < 148µm3. AD trans-
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Fig. 2.29 Combined stability diagram of the shape classes AD, NAD, E1-9, K and KE1-A. The
representative shapes AD(1) to AD(8), NAD(1), E1-9(1) to E1-9(7), K(1) and K(2) and KE1-
A(1) are shown in Figs. 2.30, 2.31, 2.32 to 2.34, 2.38 and 2.39 and 2.40, respectively. The
shape classes of selected points just outside the stability boundaries are indicated. Note
that the transformation between AD and E1-9 and between AD and NAD are continuous.

forms continuously into the mirror- and up-down symmetric NAD with de-
creasing m0 in a narrow region about Vms = 154µm3. AD transforms con-
tinuously into the 9-fold and up-down symmetric E1-9 at the upper stability
boundary. As we did not investigate shape transformations in the narrow
band defined by 154µm3 < Vms < 155.8µm3, we have no information on
the shapes and the type of shape transformations that occur in that band;
therefore, the continuous transformations depicted in Fig. 2.29 between AD
and K and between AD and KE1-A are to be regarded as conjectural.

Figure 2.30 shows very clearly the progressive disappearance of the two
dimples and the general flattening of the AD shape with increasing m0.
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Fig. 2.30 Representative shapes AD(1) to AD(8) of the shape class AD. The numbering
is keyed both to the stability diagram Fig. 2.29 and to the corresponding points in phase-
trajectory diagrams Figs. 2.18 to 2.24.

Flattening of a discocytic RBC has also been observed experimentally in
the shape transformation from a discocyte to an echinocyte I induced by a
change in conformation of the transmembrane protein band 3 (Blank et al.
1994; Hoefner et al. 1994).

NAD: Non-Axisymmetric Discocytes
The stability diagram of the NAD shape class is shown in Fig. 2.29. The
representative shape NAD(1) is shown in Fig. 2.31. The NAD class is charac-
terized by up-down symmetry plus a single vertical mirror plane. The NAD
stability diagram consists of a small region about Vms = 154µm3 that abuts
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Fig. 2.31 Representative shape NAD(1) (upper) plus an NAD shape (lower) with doubled
values of Kα and µ. Both shapes are at Vms = 154 µm3 and m0 = 15. A laboratory image
of an NAD shape is shown as Fig. 2.3A (see also Section 2.2.3).

the lower right corner of the much larger AD stability region at a line of con-
tinuous transitions. NAD transforms continuously into the axi- and up-down
symmetric AD with increasing m0 and discontinuously into the axisymmet-
ric AS at the lower stability boundary.

NAD(1) is similar in appearance to the experimentally observed non-ax-
isymmetric discocyte shown in Fig. 2.3(A). Note, however, that the experi-
mental shape does not occur naturally. The experimental shape is obtained
by treating an osmotically swollen RBC with diamide and then osmoti-
cally shrinking it back to the normal volume (Fischer et al. 1981). The di-
amide treatment cross-links the spectrin tetramers of the membrane skele-
ton, which gives rise to two e=ects (Fischer et al. 1981): fixing S0 close
to a sphere and increasing the elastic constants Kα and µ. The fact that
we find an NAD shape at lower (physiological) values of Kα and µ only
when S0 is nearly spherical suggests that a requirement for the produc-
tion of a locally stable NAD is a nearly spherical S0. In a separate, ex-
ploratory series of calculations using values of Kα and µ double those
given in Table 2.2, we obtained another locally stable NAD shape quite
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Fig. 2.32 Representative shapes E1-9(1) (left) and E1-9(2) (right) at m0 = 125 and 85,
respectively and Vms = 100 µm3. Numbering keys to points in the stability diagram Fig. 2.29
and the phase trajectory diagram Fig. 2.18.

Fig. 2.33 Representative shapes E1-9(3), E1-9(4) and E1-9(5) (left to right) at m0 = 120,
110 and 100, respectively, and Vms = 148 µm3. Numbering keys to points in the stability
diagram Fig. 2.29 and the phase trajectory diagram Fig. 2.21.
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Fig. 2.34 Representative shapes E1-9(6) (left) and E1-9(7) (right) at m0 = 120 and 115, re-
spectively, and Vms = 154 µm3. Numbering keys to points in the stability diagram Fig. 2.29
and the phase trajectory diagram Fig. 2.23.

similar to NAD(1). This shape, shown together with NAD(1) in Fig. 2.31,
has a more pronounced asymmetry in its rim thickness than NAD(1), sug-
gesting that an increase in Kα and µ enhances the NAD shape asymme-
try.

E1-9: Echinocytes I
The stability diagram of the E1-9 shape class is shown in Fig. 2.29. The repre-
sentative shapes E1-9(1) to E1-9(7) are shown in Figs. 2.32 to 2.34. The E1-9
class is characterized by a 9-fold rotation axis plus up-down symmetry, re-
flecting the nine identical bulges that develop on the rim. The E1-9 shapes
are e=ectively discocytes for which a 9-fold periodic undulation of the rim
has broken the AD axisymmetry. The E1-9 stability diagram abuts the top
of the AD stability diagram. E1-9 transforms continuously into the axi- and
up-down symmetric AD with decreasing m0 and discontinuously into the
SS class at the upper stability boundary. The range of m0 values over which
E1-9 is locally stable decreases with increasing Vms and eventually vanishes
when S0 becomes spherical.

E1-10, E1-11 and E1-12: Echinocytes I
Incomplete stability diagrams of the E1-10, E1-11 and E1-12 classes, each
accompanied by a representative shape, are shown in Figs. 2.35 to 2.37, re-
spectively. E1-10, E1-11 and E1-12 are characterized by 10-, 11- and 12-fold
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Fig. 2.35 Incomplete stability diagram of the shape class E1-10. Inset shows a representa-
tive shape at Vms = 100 µm3 and m0 = 95. The shape classes of selected points just above
or below the narrow range of E1-10 stability are indicated.

rotation axes, respectively, in addition to up-down symmetry. These three
classes appear in shape transformations as m0 is decreased, starting from
the SS class. The E1-10/11/12 shapes are e=ectively discocytes for which a
10/11/12-fold periodic undulation of the rim has broken the AD axisymme-
try. The sketchy data suggest that the trend in the series of discontinuous
transformations from E1-12 to E1-9 is a decrease in the number of bulges
on the rim with decreasing m0. The interrelations between the AD and E1-n
phases are complex. It appears that the E1-n sheets bifurcate separately from
the AD sheet, as we shall discuss further in Section 2.7.5.

K and KE1-A: Knizocytes
Classically the term knizocyte (Bessis 1973) simply designates a triconcave
red-cell shape. Such shapes can have two-fold or three-fold symmetry. They
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Fig. 2.36 Incomplete stability diagram of the shape class E1-11. Inset shows a representa-
tive shape at Vms = 130 µm3 and m0 = 110.

appear in our calculations either as smooth shapes (K) or with varying de-
grees of echinocyte-I-type rippling of the margins (KE1). In our terminol-
ogy, K and KE1-A are superclasses containing both two-fold shapes with a
single mirror plane and shapes with a three-fold rotation axis. The stabil-
ity diagrams of the K and KE1-A shape classes are shown in Fig. 2.29. The
representative shapes K(1) and K(2) of the K class are shown in Figs. 2.38
and 2.39. The K(1) shape, at higher m0, appears to have three-fold symmetry.
The K class changes from monoconcave at low m0, for example, K(2), to tri-
concave at high m0, for example, K(1). Note the resemblance of these shapes
to the experimentally observed knizocyte shown in Fig. 2.3(C). The represen-
tative shape KE1-A(1) of KE1-A is shown in Fig. 2.40. Stability of these two
classes requires a spherical or nearly spherical S0. The K class transforms
continuously into the KE1-A cl ass at high m0 and continuously into the AS
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Fig. 2.37 Incomplete stability diagram of the shape class E1-12. Inset shows a representa-
tive shape at Vms = 100 µm3 and m0 = 110.

at low m0. The KE1-A class transforms discontinuously into the KE1-B class
at the upper KE1-A stability boundary.

KE1-B: Knizo-Echinocytes
The stability diagram and representative shapes KE1-B(1) and KE1-B(2) of
the KE1-B shape class are shown in Fig. 2.41. KE1-B is initially mirror-sym-
metric with a flattened, ellipsoidal base. This mirror symmetry is lost as nine
bulges develop on the rim of the base with increasing m0. Like K and KE1-A,
KE1-B shapes require a spherical or nearly spherical S0 in order to be lo-
cally stable. The constant surface feature of the KE1-B class is its pinch with
three bulges. KE1-B transforms discontinuously into SS2 and the mirror-
symmetric KE1-A upon crossing the upper and lower stability boundaries,
respectively.
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Fig. 2.38 Representative “knizocyte” shape K(1) at Vms = 155.8 µm3 and m0 = 80. This
shape is keyed to Figs. 2.24 and 2.29. A laboratory knizocyte image is shown as Fig. 2.3. Such
shapes are observed for human red cells under certain conditions (see also Section 2.2.3).

Fig. 2.39 Representative “knizocyte” shape K(2) at Vms = 155.8 µm3 and m0 = 60.
This shape is keyed to Figs. 2.24 and 2.29.

KE1-C: Knizo-Echinocytes
The incomplete stability diagram of KE1-C, together with a representative
shape, is shown in Fig. 2.42. KE1-C shapes have mirror symmetry. Shapes
with three-fold symmetry may also occur. KE1-C is another class that requires
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Fig. 2.40 Representative knizo-echinocyte shape KE1-A(1) at Vms = 155.8 µm3 and
m0 = 95. This shape is keyed to Figs. 2.24 and 2.29.

a spherical or nearly spherical S0 in order to be locally stable. KE1-C shapes
appear discontinuously as m0 is decreased, starting from the SS class. KE1-
C is characterized by shapes with four bulges on each of their three edges
plus mirror symmetry. KE1-C transforms discontinuously into KE1-B upon
crossing the lower stability boundary.

SS2: Spiculated Shapes
The incomplete stability diagram of the SS2 class is shown in Fig. 2.43 to-
gether with a representative shape. The SS2 class may possess mirror sym-
metry. It is yet another special class that requires a spherical or nearly spher-
ical S0 in order to be locally stable. The SS2 shape is characterized by the
emergence of a cluster of six spicules and a flattened base with nine bulges.
Five of the six spicules are arranged pentagonally, with the remaining one lo-
cated at the centre. SS2 transforms discontinuously into KE1-B at the lower
stability boundary.
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Fig. 2.41 Stability diagram of the KE1-B shape class. The insets show representative shapes
KE1-B(1) and KE1-B(2) and key to Figs. 2.24 and 2.29.
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Fig. 2.42 Incomplete stability diagram of the shape class KE1-C. Inset shows a representa-
tive shape at Vms = 155.8 µm3 and m0 = 100.

SS: Spiculated Shapes
The stability diagram and representative shapes SS(1) to SS(23) of the SS
shape class are shown in Fig. 2.44. SS is a superclass defined to include a
large collection of locally stable shapes with spicules and no obvious shape
symmetry. As m0 increases, the spicules becomes shorter, sharper and more
numerous, while the main body changes from a disc to an oval. This behav-
ior mirrors what is observed experimentally during echinocytosis. Compari-
son between the shape sequences at di=erent cytoskeletal reference volumes
shows that Vms (i.e., the shape of S0) drastically a=ects the distribution of
spicules on the main body. Noteworthy features include:
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Fig. 2.43 Incomplete stability diagram of the shape class SS2. Inset shows a representative
shape at Vms = 155.8 µm3 and m0 = 110.

• Spicules tend to appear at locations on S where the corresponding loca-
tions on S0 have a large positive mean curvature. Thus, when S0 is rel-
atively deflated (low Vms), spicules increasingly tend to congregate at the
rim of S, which corresponds to the part of S0 where the mean curvature
is most positive. Comparison of the shapes at m0 = 140, namely, SS(1),
SS(5), SS(10), SS(13) and SS(17), shows that S0 must be highly inflated for
the spicules on S to be regularly spaced like those on an echinocyte III.

• When S0 is spherical, the main body of the SS shapes is always oval, as it
is for the classical echinocyte III class, but never disc-like, as it is for the
classical echinocyte II class.
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Fig. 2.44 Stability diagram of the SS shape class. The region of stability is shaded. The
shape classes of selected points just outside the stability boundaries are indicated. Repre-
sentative shapes SS(1) to SS(23) are shown below the stability region. The numbering is
keyed both to the labeled points inside the stable region and to the corresponding points in
phase-trajectory diagrams Figs. 2.18 to 2.24.

• If Vms < 154µm3, the SS class transforms discontinuously into an
echinocyte I-like class (E1-10/11/12) at the lower stability boundary, as
indicated in Fig. 2.44. Otherwise, the SS class transforms discontinuously
into the AD or the KE1-C class. Therefore, Vms < 154µm3 is required
for our predicted shape transformations to agree with the experimental
observation that an echinocyte II transforms into an echinocyte I.

• We have not carried out a systematic investigation of the spicule distribu-
tions in the large SS superclass; nevertheless, it is interesting to note that
several of the images in Fig. 2.44 show that spicules tend to congregate.
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This behavior suggests that the interactions between spicule “excitations”
of the surface are weakly attractive at long distances and repulsive at short
distances.

Figure 2.45 summarizes the stability diagrams of all the major shape
classes. It will play a key role in the following discussion.

2.7
Significant Results and Predictions

This section highlights the significant conclusions that can be drawn from
the numerical membrane-mechanics results presented in Section 2.6. Our
calculations have mainly (but not exclusively) been carried out with the pa-
rameter choices given in Table 2.2 and discussed in Appendix A. Our quan-
titative conclusions are, therefore, contingent on these values being correct.
Some of these choices seem quite firm; however, others remain uncertain.
In Section 2.8, we will comment further on the extent to which our main
conclusions are robust against uncertainties in parameter values.

2.7.1
Observed SDE Shape Classes all Occur

The occurrence of the traditionally observed SDE shape classes is a necessary
condition for validation of the model. Given the many di=erent shape classes
that have been observed, the many sheets of locally stable shapes and the
dramatic sensitivity of shapes to small changes in control parameters, the
broad agreement of observed and predicted shapes is encouraging.

The fact that this agreement is obtained with “reasonable” parameter val-
ues is also notable. In particular, it follows from Eqs. (2.23) and (2.33) that

m0 =
2πRA

D0

(
∆A0

A0
+

D0C0

παb

)
, (2.101)

so that a change in the fractional area di=erence ∆A0/A0 of 1% produces
a shift in m0 of 105, that is, the whole range of the vertical axis in Fig. 2.45
corresponds to a fractional area change of about 2.5%, a number which is
in the range suggested by experiments, as we shall discuss further in Sec-
tion 2.8.5. Note that the sensitivity of RBC shapes to what appear to be small
changes in the fractional area di=erence arises because of the large ratio
RA/D0 in Eq. (2.101) and the fact that, in dimensionless form, it is m0 (or
equivalently C0, Eq. (2.33)) which sets the curvature scale.
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Fig. 2.45 Combined stability diagrams of the NAS, AS, AD, NAD, E1-9, K, KE1-A, KE1-B
and SS shape classes. Only inside the “most likely” region, 144 µm3 < Vms < 152 µm3,
does the sequence of predicted shapes agree with the observed SDE sequence of shape
transformations. The ascending trajectory (i.e., increasing values of m0) at Vms = 148 µm3

includes the shapes NAS(10), NAS(7), AS(3), AD(5), E1-9(3), SS(11) and SS(10). These
calculated shapes are compared with laboratory images of the SDE sequence in Fig. 2.3.

2.7.2
Reference Shape S0 of the Membrane Skeleton is an Oblate Spheroid

Figure 2.45 shows the combined stability diagram of the classes NAS, AS,
AD, NAD, E1-9, K, KE1-A, KE1-B and SS for relaxed membrane-skeleton vol-
umes between Vms = 100µm3 (the discocyte) and and Vms = 155.8µm3 (the
sphere). Examination of this plot shows that the observed SDE sequence, il-
lustrated in Figs. 2.2 and 2.3, is predicted to occur only in a narrow range
of volumes centered at Vms ≈ 148µm3 (v = 0.950). The lower limit of this
range, at Vms ≈ 144µm3 (v = 0.925), is the intersection point of the up-
per stability boundaries of NAS and AS; the upper limit, at Vms ≈ 152µm3

(v = 0.976), is the intersection point of the lower stability boundaries of
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E1-9 and SS. The correspondence of observed and predicted shapes within
this range is illustrated in Fig. 2.3, where laboratory images of shapes from
the SDE sequence are compared with the seven representative predicted
shapes NAS(10), NAS(7), AS(3), AD(5), E1-9(3), SS(11) and SS(10) from the
sequence of shape transformations at Vms = 148µm3, obtained by increas-
ing m0 from −60 to +140 (see Fig. 2.21). The unstressed shape S0 with
Vms = 148µm3 is shown in Fig. 2.7.

How sensitive is the width of this allowed region to the poorly determined
nonlinear coe;cients a3, a4, b1 and b2 in Eq. (2.28)? The lower limit is quite
insensitive, because, at the point where the upper stability boundaries of the
NAS and AS classes intersect, the membrane skeletons of corresponding
shapes in the two class are only weakly strained and remain in the linear
elastic regime. On the other hand, the upper limit is in principle dependent
on the nonlinear terms, since shapes in the SS class do experience large non-
linear strains. Nevertheless, this dependence is not expected to be strong,
since this limit is set by the lower stability boundary of SS, where the corre-
sponding shapes are the least strained of the class. Any change in the other
parameters of F will, of course, shift the positions of both limits.

Various authors (Zarda et al. 1977; Evans and Skalak 1980; Fischer et al.
1981; McMillan et al. 1986; Li et al. 2005) have speculated that the unstressed
shape of the membrane skeleton may be either a sphere (v = 1) or, on the
other hand, a replica of the discocytic shape of the RBC (v ≈ 0.6); however,
these speculations do not seem to be based on strong evidence. Our results
suggest that both these limiting cases are unlikely. If the unstressed shape
were discocytic, we predict from our results at Vms = 100µm3 (Fig. 2.18)
that the stomatocyte I stage would not be part of the main sequence of shape
transformations and that there would not be spiculated RBC shapes resem-
bling echinocytes II and III. While these predictions depend on the shape
of S0, they do not depend on a3, a4, b1 and b2. If the unstressed shape were a
perfect sphere, we predict from our results at Vms = 155.8µm3 (Fig. 2.24)
that the discocyte would not occur in the main sequence of shape trans-
formations and that there would not be spiculated RBC shapes resembling
echinocytes I and II. These predicted shape disappearances are the direct
result of S0 becoming a sphere and do not depend on a3, a4, b1 and b2.
Our results suggest that the most likely unstressed shape of the membrane
skeleton is an oblate spheroid (a sphere flattened at the poles) with a reduced
volume in the range 0.925 ≤ v ≤ 0.976. Such a shape is not unreasonable.
It is consistent with recent experiments by Fischer (2004) which show that
the erythrocyte retains “shape memory” after tank treading. It is known that
the immature RBC (reticulocyte) has a highly irregular, folded shape (Bessis
1973). We expect, therefore, that the unstressed shape of its membrane skele-
ton is highly irregular. As the RBC matures and enters the circulatory system,
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the cumulative e=ect of the incessant deformation it experiences most likely
molds the unstressed shape of its membrane skeleton into a regular, roughly
spherical shape. That a discocyte is unstable when the unstressed shape is a
sphere has been predicted independently Li et al. (2005); however, their re-
sults must be taken with some reservation, given the flaw in the numerical
method they used to approximate the bending energy of the plasma mem-
brane (see Section 2.3.5).

2.7.3
Predicted Hysteresis and Fluctuation E=ects in RBC Shape Transformations

It is clear from phase-trajectory information (Figs. 2.18 to 2.24) and the com-
posite stability diagram (Fig. 2.45) that over large regions of the phase dia-
gram several di=erent shapes are locally stable simultaneously. Furthermore,
as we have seen, the energy barriers separating these local energy minima
are frequently (but not always) large on the scale of kBTroom, so excited-state
branches are often metastable on experimental timescales. In this situation
the boundaries between shape classes on specific experimental trajectories
through the phase diagram – and, indeed, even the sequence of shape classes
seen – may be history dependent. In addition, in regions near continuous
shape transitions and in other regions where the shape-energy landscape
is flat (on the scale of kBTroom), observable shape fluctuations are predicted.
Thus, the model makes testable predictions about hysteresis and fluctuations
along specific trajectories.

Consider in this connection the SDE sequence of shape transformations
predicted by the model in starting at low m0 in the stomatocyte range and in-
creasing m0 through the discocyte and into the echinocyte range versus start-
ing in the echinocyte range and decreasing m0 through the EDS sequence.
For the sake of specificity we choose Vms = 148µm3 and consider variation
of m0 only, as would be produced by slowly adding to the solution one of the
echinocytogenic or stomatocytogenic agents listed in Table 2.1. Predictions
for such a cyclic trajectory can be read o= from Fig. 2.21. Assume that the
starting shape is in the NAS superclass at m0 = −60. The predicted stable
shape here is a curved invagination with a single mirror plane (NAS(10) in
Fig. 2.27). As m0 is increased, this shape will transform most likely continu-
ously into one with two mirror planes (NAS(9)) and on to the axisymmetric
or nearly axisymmetric shapes NAS(8) and NAS(7). Then, near m0 = 0, we
predict a discontinuous (abrupt) transition to the AS class followed shortly
by another discontinuous transition to the axisymmetric discocyte class AD,
which has a wide region of stability at this value of Vms. The transition out
of the AD class and into E1-9 at m0 ≈ 100 is predicted to be continuous
and, therefore, likely to involve appreciable shape fluctuation in the transi-
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tion region (more in Section 2.7.5). Finally, around m0 ≈ 115, we predict
a discontinuous transition to the spiculated SS superclass of shapes, with
a central body which is at first elliptical but becomes progressively more
spherical as m0 increases. This sequence of transformations is illustrated
in Fig. 2.3, with a schematic representation of the energy sheets. By contrast,
the reverse trajectory is expected to be somewhat di=erent. We predict that,
upon decreasing m0, the shape remains in the SS superclass until m0 ≈ 105
and then goes through E1-10 before reaching E1-9 at or close to the continu-
ous transition back to to the discocyte AD. The energy landscape is rather flat
in this region (see Section 2.8.5) and the E1-n sheets are close together, so the
sequence may be masked by thermal fluctuations, although the hysteresis in
the SS class should be clear. Further decrease of m0 brings about a discon-
tinuous transition to the axisymmetric stomatocyte at m0 ≈ −10 followed by
another discontinuous transition to NAS at m0 ≈ −25 (note the significant
hysteresis at both these transition boundaries).

The upshot is that, overall, the same major shape sequence is expected
in the ascending and descending trajectories. This is consistent with exist-
ing observations. Nevertheless, there are di=erences in the predicted shape
classes (the appearance of E1-10 in the descending trajectory only35)) and
quantitative di=erences in the locations of some transition boundaries.

The sequence of these shape transitions was fixed by our choice of the re-
laxed cytoskeletal volume Vms; however, the type of transition (continuous or
discontinuous) and the corresponding predictions of hysteresis in the phase
boundaries and specific regions of large fluctuation are new. To the best of
our knowledge, no systematic experimental work on these issues has yet ap-
peared in the published literature. We hope that our studies will stimulate
such work. Numerical comparison of predicted transition boundaries with
experiment will require finding ways of quantitating the changes in m0, that
is, the changes in the area di=erence ∆A0 of the plasma membrane (as-
suming, of course, that C0 remains fixed). We will comment on this in Sec-
tion 2.8.5. Nevertheless, such qualitative features as the type of transition
and the presence or absence of observable fluctuations should not be hard to
see.

In private correspondence, Fischer (2006) has reported careful qualitative
observations of RBC shape sequences of the type described here. The level
of agreement with our predictions is good but not complete. The principal
discrepancies are in details of the stomatocyte transitions. If these di=er-
ences hold up, they may signal the necessity of further fine-tuning of our
parameter choices.

35) In fact, as we will see in Section 2.7.5, there is a narrow region where the true ground state
is E1-10 but the energy barriers are su;ciently low so that at Troom the shapes present as
a fluctuating thermal mixture of E1-9 and E1-10.
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On a more general note, we end this section by pointing out that shape
multiplicity – the coexistence of several di=erent mechanically stable shapes
under the same conditions – and related hysteresis e=ects have not been
significantly discussed in the RBC shape literature. We hope that we have
demonstrated the importance and usefulness of considering these issues.
Indeed, there are suggestions in the literature that hysteretic e=ects involv-
ing branches outside the main SDE sequence may have been observed. A
pertinent experimental example that has received scant attention is the occa-
sional transformation of a stomatocyte II to a triangular stomatocyte instead
of a stomatocyte III (Bessis 1972), which indicates that the triangular stom-
atocyte and the stomatocyte III have overlapping regions of stability. Indeed,
the theoretical counterpart to the triangular stomatocyte, NAS-3 of Fig. 2.25,
is found at the same Vms and m0 as the theoretical counterpart to the stoma-
tocyte III, NAS(10) of Fig. 2.27.

2.7.4
Strain Distribution over the Membrane Skeleton

In addition to determining the shapes that minimize F , our data allow us
to calculate the distribution of the area strain α and the shear strain β

over each shape. We show in Fig. 2.46 the predicted strain fields α and β

for the seven calculated shapes of Fig. 2.3 at Vms = 148µm3. Stomato-
cytic shapes are typically highly dilated at the centre of the invagination
and highly sheared and compressed near the rim of the invagination. The
rest of the surface is only weakly strained. Spiculated shapes, on the other
hand, typically have large dilation at the top of each spicule, large shear
strain in the spicule neck region and significant compression in the main
body.

The qualitative behavior of the membrane skeletal strain distribution over
an echinocyte III shape can be visualized without resorting to equations.
The presence of a more-or-less uniform distribution of similar spicules over
the echinocyte body means that one can understand the strain distribu-
tion by looking at a single representative spicule, as illustrated in Fig. 2.47.
The initially flat, unstressed patch of membrane skeleton is represented
by the equally-spaced concentric rings at the left. When this patch is de-
formed at constant overall area to fit over the spicule (Fig 2.47), a pro-
cess which is driven by the positive value of C0 in the bending energy,
the central region (7) must stretch and the outer regions (1 + 2) must
contract to provide the area for the out-of-plane deformation, both with-
out significant shear. By contrast, in the intermediate regions (3–6) the
dominant deformation is shear, accompanied by some stretch towards the
apex (6) and some compression towards the base (3). The expected mem-



188 2 Red Blood Cell Shapes and Shape Transformations

Fig. 2.46 Distributions of the strain fields α (stretch) and β (shear) over representa-
tive shapes belonging to some of the major shape classes. These shapes all have Vms =
148 µm3 and correspond to the ascending sequence marked in Fig. 2.45 and illustrated in
Fig. 2.3 a-g. Note the relatively low strain values for the non-spiculated shapes. As a conse-
quence, these shapes are relatively insensitive to the nonlinear elasticity, Eq. (2.28). Spicules
are characterized by large positive α at the tips, large β along the sides, and large negative α

at the base and are, therefore, sensitive to nonlinear elastic parameters (see Section 2.8.3).

brane skeletal strain in the vicinity of the spicule apex bears a striking
qualitative similarity to the observed membrane skeletal strain in the vicin-
ity of the tip of a RBC tongue aspirated into a micropipette (Lee et al.
1999).
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Fig. 2.47 Expected membrane-skeletal strain in the neighborhood of a spicule of an
echinocyte III. When the flat unstressed patch at the left is deformed to fit over the spicule
shown above the central region (corresponding to the tip of the spicule) is expanded, the
outer region (corresponding to the base) is contracted and the middle region (correspond-
ing to the sides) is sheared.

2.7.5
Large Thermal Fluctuations at the AD-to-E1 Boundaries

Our calculations suggest that, when the normal discocyte is pushed towards
the echinocytic side, the first shape transition is into one of the E1-n shape
classes, characterized by the development of relatively weak regularly-spaced
undulations around the disc boundary. These shapes have been shown in
Fig. 2.3 and in Figs. 2.32 to 2.37. In particular, at our preferred cytoskele-
tal volume Vms= 148µm3, we might expect (see Fig. 2.21) the AD shapes to
transform to E1-9 via a continuous (ct) transition before developing spicules
to enter the SS class (dct) and similarly on a descending trajectory only with a
small region of E1-10. In the lab, however, this detailed sequence is not seen.
Indeed, as Fig. 2.3(e) suggests, none of the clearly periodic E1-n structures
are identifiable. Instead, the initial smooth axisymmetric discocyte seems to
go through a series of slowly-fluctuating shapes, characterized by “lumpy” ir-
regularities, mostly but not entirely confined to the region of the disc bound-
ary and on a scale which could roughly be 1/9 or 1/10 of the red-cell circum-
ference, before suddenly developing the well-defined, fixed spicules charac-
teristic of the SS phase. We argue in this section that this apparent discrep-
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Fig. 2.48 Energy branches AD, E1 and SS at Vms = 148 µm3. The notations c and i denote
a continuous transition and an instability boundary, respectively. Vertical dotted arrows in-
dicate the shape class following the instability. The inset gives the local structure near the
E1-9-to-E1-10 boundary (note the very narrow range in both energy and m0). The sketch
below shows the probable interrelations of the AD, E1-9 and E1-10 branches. The dotted
lines indicate stationary branches which are local saddle points and, therefore, do not show
up in Monte Carlo studies: At the left is the unstable continuation of the AD branch; at the
right is a “wing structure” of the type shown in Fig. 2.17.

ancy probably reflects the e=ects of normal thermal fluctuations and is, in
fact, a validation of the model.

Figure 2.48 shows a plot of the energies of the various shape branches as
a function of m0 through this region. Note that a term linear in m0 has been
added to the energy in order to make the topology of the plot easier to see.
Such a term does not a=ect the vertical o=sets. The key point is the scale of
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the energy di=erences between the various branches through this region, as
illustrated most clearly in the inset.

Note that at m0 = 110.00, where the descending E1-10 reverts discon-
tinuously to E1-9, the o=set of the energy levels is about 0.004κb. This run
was made at a computational temperature of kBTcmpt ∼ 0.001κb, so the fact
that the transition occurred at the next step shows that the energy barrier is
also on this scale. By contrast, the thermal energy scale kBTroom ∼ 0.02κb

is larger by a factor of about 20×. Clearly, at m0 = 110.00, the room-
temperature ensemble is a thermal mixture of E1-9 and E1-10 and a range of
other nearby shapes without well-defined symmetries. By the same logic, we
would not expect any sharp E1-9 to E1-10 or E1-10 to E1-9 transitions at room
temperature as m0 is slowly changed, only a graded cross-over. Because our
Monte Carlo method can only find the energy minima and does not generally
allow us to probe the energy maximum between them, it is not immediately
clear over how large a range of m0 this ensemble behavior is predicted to
persist. However, some insight is possible if we make the working assump-
tion that the scale of local variation of the energy surface is given roughly by
the o=set of the E1-9 and E1-10 energies. Thus, at m0 = 115 the o=set is
0.25κb, only a factor of 10 larger than the room-temperature thermal energy,
suggesting that thermal fluctuations are likely important at least in the range
m0 = 105–115.

So far we have discussed only the E1-9 and E1-10 branches; however, it is
probable that the AD branch is also close in energy over much of this region.
The transition between AD and E1-9, which takes place in the range m0 =
95–100, is predicted to be continuous. Near this transition, a simple Landau-
theory analysis (see below) suggests that, at the transition, the AD branch
switches character from a local minimum to a saddle and the whole energy-
sheet structure is very flat over a range of m0 above and below the T = 0
transition point. Indeed, if we adopt the above estimate for the width of the
region over which the energy surfaces are flat (i.e., have energy variation
less than, say, 10κbTroom), then it is quite possible that thermal fluctuations
may be relevant at room temperature over a range between m0 = 90 and
m0 = 115, where the spiculated SS shapes first come in.

It is possible to construct a Landau model for the energies in this region
of the form

F (x, y) = F0 +
1
2
r1x

2 +
1
4
u1x

4 +
1
2
r2y

2 +
1
4
u2y

4 + sx2y2, (2.102)

where x and y are order parameters associated with the E1-9 and E-10 phases,
respectively, and r1 ∼ (m1 − m0), r2 ∼ (m2 − m0), with m1 < m2. At low
values of m0, where r1 and r2 are both positive, the symmetric (AD) state
with x = y = 0 has the lowest energy. However, as m0 increases above m1,
there is a continuous transition to a state (E1-9) with x �= 0, y = 0 and then
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later (for appropriately chosen parameters) to a state with x = 0, y �= 0 via a
discontinuous transition. The topology of this sequence of phase transitions
is shown in the lower sketch of Fig. 2.48, where the dotted lines show en-
ergies of unstable stationary points. Such a model is at least consistent with
the Monte Carlo results.

2.8
Discussion and Conclusions: The Future

The key ingredients of this work include the formulation of a mechanical
model based on the composite structure of the red-cell membrane and the
specification of the energetics of this model by means of an energy func-
tional, Fm[S0;S], of the membrane shape S and the shape S0 of the relaxed
membrane skeleton. We have argued that this functional depends on a small
number of material moduli, most of which can be inferred from independent
experiments. Finally, we have described a numerical method for finding red-
cell configurations which are mechanically stable, that is, which correspond
to local minima of the energy functional Fm at fixed area and volume.

We have found – perhaps somewhat surprisingly – that, despite the sim-
plicity of the model, there is large collection of distinct minimum-energy
surfaces corresponding to di=erent shape classes, which overlap and inter-
leave with one another, cross one another and bifurcate from one another
as the principal control parameters of the system are continuously varied.
Each of these sheets has its own region of stability and, because the distinct
energy minima are often (but not always) separated by energy barriers sig-
nificantly larger than the thermal energy kBTroom, there are many regions
of the phase (shape) diagram over which a stable, ground-state shape can
coexist for experimentally long times with one or more shapes belonging
to higher-energy, metastable sheets. Knowing the basic geometry of these
sheets and the magnitudes of the energy barriers which separate them, we
can then make predictions about the specific sequence of shapes that a red
cell will pass through as the control parameters of the system are changed on
timescales which are long compared to hydrodynamic relaxation times but
still short compared to the times required for full thermodynamic relaxation.
This overall structure seems likely to be robust, even if future experiments
should require some modification of the form of the energy functional or of
the material parameters.

This concluding section is devoted to discussion of the significance and
limitations of the kind of shape-mechanics calculations described above.
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2.8.1
Validation of the Bilayer–Couple Hypothesis

In a seminal paper Sheetz and Singer (1974) proposed what they dubbed the
“bilayer–couple hypothesis” as an explanation for the SDE transformations.
It was known at the time that the erythrocyte plasma membrane was asym-
metrical in the sense that the compositions of the inner and outer leaflet were
di=erent. Sheetz and Singer proposed in a purely qualitative way that various
amphipathic compounds bind preferentially into the outer leaflet (“crena-
tors,” that is, what we have called echinocytogenic agents in Table 2.1) or the
inner leaflet (“cup-formers,” that is, what we have called stomatocytogenic
agents), thus causing a bending moment tending to promote evagination or
invagination, respectively. In our terminology this is equivalent to the iden-
tification of the area di=erence ∆A0 as the primary driving force in the SDE
transformations.36) The original proposal was formulated in connection with
a pure bending model of the plasma membrane and made no mention of the
membrane skeleton. We now know that without the membrane skeleton the
region in phase space of high m0 would be dominated by budding and vesic-
ulated shapes (Waugh 1996; Iglič 1997; Wortis 1998) rather than echinocytes,
so that, in its original form, the bilayer–couple mechanism was incomplete.
On the other hand, the insight that the bending tendency, expressed quan-
titatively as the parameter C0 or m0 in our model, is the basic driving force
behind the SDE transformations is, in our view, correct. Thus, in the broader
sense, our study may be regarded as a final validation of the original Sheetz-
Singer mechanism.

Although this mechanism was proposed more than 30 years ago, until now
there has not been a quantitative demonstration that the observed shapes and
shape transformations can, indeed, arise in detail from the bilayer–couple
mechanism. The main reasons for this 30-year hiatus were, initially, the lack
of a specific mechanical model for the shape mechanics and, when that was
available, the lack of su;cient computational power for testing it. Realistic
model testing, as we have done in this study, involves intensive calculations
of shapes that need not be axisymmetric (such as echinocytes). Computers
commonly available before the late 1990s were not powerful enough to per-
form such a task in a reasonable time. Our ability to explore quantitatively
the implications of a specific mechanical model has made possible a remark-
able level of validation of the bilayer–couple mechanism. The fact that the
shapes and shape transformations of the SDE sequence seen in experiments
do appear in the membrane-mechanics calculations in a detailed and highly

36) Equivalently, one can imagine inducing the bending moment by substituting big-headed
(or small-tailed) amphiphiles in the outer leaflet to increase C0 with no change of leaflet
area (or the reverse in the inner leaflet to decrease C0), since ∆A0 and C0 enter together
in the driving parameter m0 (or C0).
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non-trivial way provides very strong evidence for the validity of the bilayer–
couple mechanism as the driving force for shape change.

Further testing of the bilayer–couple mechanism and the mechanical
model will need to focus on quantifying the link between the concentration
of each echinocytogenic (or stomatocytogenic) agent and specific changes in
the mechanical moduli. We hope and believe that detailed tests of this type
will be forthcoming and that they will pin down further the values of the
parameters that govern the shape mechanics. We believe that the interplay
between theory and experiment must play a central role in this e=ort. In
particular, it will be important to have a computer program that is able to
predict shapes based on given mechanical-parameter inputs. We hope that
we have supplied a model for such a program.

2.8.2
Generalized Phase Diagrams and Trajectories

In this presentation we have focused on the e=ective spontaneous curva-
ture C0 of the plasma membrane (as encoded in the dimensionless vari-
able m0) as the primary driving force in the SDE transformations and on
the relaxed volume Vms as an important (but unknown) parameter neces-
sary to characterize the membrane skeleton. This reduces the e=ective phase
space to two dimensions. The further assumption that addition of shape-
changing agents influences only C0 means that all experimental “trajecto-
ries” are along the vertical direction in our standard (m0, Vms) phase space.
These assumptions have provided convenient restrictions on the range of pa-
rameter values over which we have needed to make computations; however,
they are certainly oversimplifications.

Any parameters appearing in the energy functional Fm[S0;S] can in prin-
ciple be regarded as variable, thus providing additional dimensions to a gen-
eralized phase space and corresponding generalized phase and stability dia-
grams. The poorly determined values of the skeletal elastic moduli µ and Kα

are good examples, as are the nonlinear coe;cients a3, a4, b1, b2, etc. (Simi-
larly but less relevantly, perhaps, more parameters describing the shape of S0

could be introduced.) Although we have not explored such additional dimen-
sions in any systematic manner, some comments on sensitivity to the mate-
rial parameters regarded as fixed in Table 2.2 are provided in the next section.
If and when the predictions (Sections 2.6 and 2.7) of our particular model are
found to be in disagreement with experiment, it will become important to ex-
amine a range of the less-well-determined material parameters.

In addition, it is far from clear that shape-changing chemical agents act
exclusively on m0. Although driving via m0 may well be the dominant e=ect,
it is likely that these agents have some concentration-dependent influence on
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the material moduli and even on the cytoskeletal parameters. If such influ-
ences are present, then slowly changing the concentration of one chemical
agent drives the system along a trajectory in the generalized phase space
which is still one-dimensional but no longer along a single phase-space axis.
Thus, the analysis of shape-change sequences along the lines of Section 2.7.3
would require the appropriately generalized stability diagrams.

2.8.3
Sensitivity of Results to Variation of Elastic Parameters

We have emphasized in Section 2.3.4 that many variables enter the shape
problem in dimensionless, scale-invariant combinations. Any parameter
changes which a=ect these combinations will modify the predicted RBC
shapes and shape transitions. Such potential changes are relevant, since sev-
eral of the parameters we have listed in Table 2.2 are not well determined by
independent experiments, as discussed in Appendix A. We focus in this sec-
tion on the skeletal elasticities, as these appear to be among the more-poorly
determined parameters.

2.8.3.1 E=ects of Varying µ

We have tested the e=ect of varying the shear modulus µ while preserving
the relation Kα = 2µ (see Appendix A). We find that increasing µ from
2.5µJm−2 to 6–9µJm−2 (the range of estimates from micropipette aspira-
tion experiments) causes the region of stability of the NAD class to spread
to lower values of Vms. Of course, the boundaries of all other shapes classes
also shift. Thus, the AS → AD shape-class transformation with increasing
m0 in the range 144µm2 � Vms � 152µm2 (see Fig. 2.3) is replaced by
an AS → NAD → AD shape-class sequence, which is inconsistent with ob-
servation. On the other hand, halving the value of µ to 1.25µJm−2 causes
the disappearance of shapes resembling echinocytes I, II and III. In place of
echinocytic shapes, shapes with several long arms appear as m0 increases.
In particular, the AD → E1-9 shape-class transformation at µ = 2.5µJm−2

is replaced by a transformation from the AD class to a class of starfish-like
shapes not seen in experiments.

2.8.3.2 Higher-Order Nonlinear Elastic Terms
A crucial part of our model is the inclusion of higher-order nonlinear elas-
tic terms in the Taylor expansion of fms(α, β), Eq. (2.26), in order to harden
the membrane-skeletal elasticity at moderate-to-large values of the strains α

and β. As discussed in Appendix A, the coe;cients a3, a4, b1 and b2 of these
additional terms are not measured directly but have been fitted in a rather
crude manner to a high-deformation approximation. It may prove possible
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to extract the values of these parameters by using techniques based on op-
tical tweezers (Hénon et al. 1999; Sleep et al. 1999; Dao et al. 2003; Lim et
al. 2004a; Lim et al. 2004b; Mills et al. 2004; Li et al. 2005) or the optical
stretcher (Guck et al. 2001); however, this has not yet been done, and in any
case these additional terms a=ect only the finer details of highly strained
shapes. Specifically, they a=ect the size and shape of spicules belonging to
shapes in the SS superclass and the size, shape and orientation of the invagi-
nations of shapes corresponding to the lower half of the NAS superclass.

We have tested the e=ects of eliminating these higher-order terms by set-
ting a3, a4, b1 and b2 to zero. We find that the elimination of these terms
has no drastic e=ect on shapes with surface features that are rather smooth:
shapes resembling the stomatocytes III, II and I, discocytes and echinocytes
I of the experimental SDE transformations continue to remain locally stable.
This insensitivity to the higher-order elastic terms is not unexpected, since
for smooth shapes (e.g., shapes (a) to (e) in Fig. 2.3) cytoskeletal deforma-
tions remain in or near the linear-elastic regime, as is clear from Fig. 2.46.
On the other hand, the e=ect of eliminating the higher-order terms on shapes
in the spiculated shape classes (e.g., Fig. 2.3(f) and (g)) is significant. In the
absence of nonlinear hardening of the skeletal elasticity, the bending elastic-
ity of the plasma membrane begins to dominate for these spiculated RBCs,
thus forcing significant regions of the membrane skeleton to undergo large
and rapidly-varying local stretch and shear deformations. Spiculated shapes
exhibit large variations of fms in the large-deformation regime. If the higher-
order terms are eliminated, thereby weakening the in-plane elasticities, we
would expect the shape to exhibit bending-dominated behavior, characterized
by the formation of small spherical buds joined via narrow necks to a larger
body (see Fig. 2.5). We were not able to study directly the locally stable spic-
ulated shapes resulting from elimination of the higher-order terms. The rea-
son for this is that, without the hardening e=ect of the higher-order terms,
our program finds (in this region of the stability diagram) only non-physi-
cal, numerical artifacts whose triangular surface elements fail the checks for
shape regularity that are built into our program. This comes about because
we are e=ectively constrained to a maximum of 5120 triangles in the compu-
tational mesh, which provides insu;cient resolution to represent the small
buds that would occur in the absence of the higher-order terms.

2.8.4
Understanding the Action of Shape-Change-Inducing Agents

Some important shape-change-inducing agents for the SDE transformations
were listed in Table 2.1; a more extensive list is provided in Wong (1999).
Many, if not all, of these e=ects can now be understood qualitatively, based
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on the simple bilayer–couple picture that m0 (or C0) is the principal driving
force (Steck 1989). Thus, it follows from Eqs. (2.23) and (2.33) that agents
which act to increase either the area di=erence ∆A0 or the spontaneous cur-
vature C0 will be echinocytogenic, while those which act to decrease these
quantities will be stomatocytogenic. For example, any compound added
to the solution which partitions preferentially into the outer leaflet of the
plasma membrane will tend to increase ∆A0 and is expected to be echinocy-
togenic, while any compound which partitions to the inner leaflet will be
stomatocytogenic. Similarly, any large-headgroup amphipath will have an
echinocytogenic e=ect if it partitions to the outer leaflet (thus increasing C0)
and a stomatocytogenic e=ect if it partitions to the inner leaflet (thus de-
creasing C0), and the reverse for amphipaths with large tails and/or small
heads.

It is easy in this context to understand quantitatively the e=ects of many
amphipathic drugs. Recall from Section 2.2.1 that the inner leaflet of the
plasma membrane is rich in negatively charged lipids. It follows that pos-
itively charged (cationic) amphipaths will tend to partition preferentially
into the inner leaflet, thus increasing its area, decreasing ∆A0 and act-
ing as stomatocytogenic agents, in agreement with Table 2.1. By contrast,
negatively charged (anionic) amphipaths are expected to be echinocyto-
genic. Similarly, cholesterol is known to partition preferentially to the
outer leaflet (Steck et al. 2002), so, when added to the solution, it acts
echinocytogenically, as shown in Table 2.1. Finally, hypertonic salt is pre-
sumed to screen the negative charges of the inner leaflet, thus decreas-
ing its area relative to that of the outer leaflet and acting echinocytogeni-
cally.

Some e=ects are less easy to explain. It is known, for example, that the
lipid asymmetry of the leaflets is maintained by ATP-dependent flipases.
Thus, if the red cell is deprived of ATP, passive lipid redistribution be-
tween the leaflets is expected, leading to a change of ∆A0. However, the
sign of this e=ect – whether it should be echinocytogenic (as it is) or the
reverse – is not clear without further understanding of the specific mecha-
nisms. The pH e=ect also remains open. One simple hypothesis would be
that pH titrates lipid charge groups. If this were applied to the negatively
charged inner-leaflet membranes, we would expect acidic pHs to neutralize
the inner leaflet, thus decreasing its area. But this e=ect would be echinocy-
togenic, quite the opposite of what is observed. Indeed, work by Gedde et
al. (1995) and Gedde et al. (1997) has shown that lipid asymmetry and the
presence of inner-leaflet titratable groups do not have any strong connec-
tion to the pH e=ect. On the other hand, earlier works by Elgsaeter et al.
(1986), Stokke et al. (1986a) and Stokke et al. (1986b) have shown that the
membrane skeleton expands in vitro in response to high cytoplasmic pH,
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suggesting that the e=ect may be associated with the membrane skeleton
rather than the plasma membrane. A possible mechanism for this has been
proposed by Mukhopadhyay et al. (2002). Recent work (Gedde et al. 1999)
suggests that competing e=ects are at work. The full mechanism of the pH
e=ect has not yet been definitively established. Glass surfaces are known to
modify the local pH, so it is presumed that the glass e=ect and the pH e=ect
are related.

2.8.5
Experimental Quantitation of m0

Our model predicts a specific, quantitative correspondence between each
shape and a corresponding value of m0. Thus, for any observed shape we can
infer a corresponding value of m0. In order to test such a model, it is nec-
essary to have an independent measurement of m0 or, equivalently, to have
a second mechanical prediction – beyond the erythrocyte shape – which can
be compared with experimental results.

While this program has not been carried out for our model, a simi-
lar test has been carried out recently by Kuzman et al. (2004). These au-
thors performed micropipette aspiration on a series of strongly echinocytic
cells. By measuring the length of the membrane projection pulled into
the pipette as a function of aspiration pressure and fitting to a mechan-
ical model very similar to ours, they inferred 150 ≤ m0 ≤ 225.37) The
lower end of this range is in rough agreement with our value of m0 =
140 for the echinocyte III-like SS(10) shape of Fig. 2.44. This agreement
should probably be regarded as somewhat fortuitous, since Kuzman et al.
(2004) used bending and elastic moduli somewhat di=erent from ours38) and
solved their model in an approximate manner using a parametrized spicule
shape.

Several older studies (Lange and Slayton 1982; Ferrell et al. 1985; Chi and
Wu 1990) estimated the relative area di=erence between the two leaflets of
the plasma membrane. These estimates are, at best, semi-quantitative. Fur-
thermore, the quantity that was estimated in these studies is the actual rel-
ative area di=erence ∆A/A0 rather than the initial or preferred relative area

37) The quantity denoted ∆a0 in Kuzman et al. (2004) is equivalent to our m0/4π. The fit is
shown in Fig. 8 of the cited reference.

38) The parameters that di=er in values from ours are the volume VRBC, the shear modulus µ,
the stretching modulus Kα = 2µ and the non-local bending modulus κ. They used
VRBC = 109 µm3, µ = 6 µJm−2 and κ = (8 × 10−19 J)/π, whereas we used VRBC =
100 µm3, µ = 2.5 µJm−2 and κ = (4 × 10−19 J)/π. Their use of large values of µ and
Kα but without our nonlinear terms may be regarded as a way of e=ectively capturing
the elastic hardening at large deformation, as is relevant for the spicules. How e=ective
this form may be at capturing the variation of fms over the full echinocyte III membrane
skeleton is not clear.
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di=erence ∆A0/A0. If the nonlocal bending modulus κ were large, these
two quantities would be the same; however, because αb ∼ 1, the most one
may hope for is that they should be similar in scale. Specifically, Lange and
Slayton (1982) estimated that the actual relative area di=erence required for
echinocytosis is about 1%. Ferrell et al. (1985) estimated that the actual rela-
tive area di=erence required to induce stage III echinocytes is (1.7 ± 0.6)%.
Chi and Wu (1990) estimated that the actual relative area di=erence required
to induce stage III echinocytes is (3.2± 0.2)%. All these estimates are in the
same general range and suggest that area di=erences of the order of a few
percent are required for echinocytosis. Our value of m0 = 140 for the SS(10)
shape, which corresponds via Eq. (2.101) to ∆A0/A0 = 1.3%, is entirely con-
sistent with this range.

Ideally, of course, one would like to be able to “dial” m0 systematically
by making controlled changes in the chemical environment. Comprehen-
sive reviews of the biochemical e=ects of various chemical agents on the
plasma membrane may be found in Deuticke et al. (1990), Schreier et al.
(2000) and Boon and Smith (2002). However despite some qualitative suc-
cess, as discussed in the previous section, quantitative control over m0 in
the lab has not been achieved. To do so would require a quantitative, pre-
dictive understanding of the chemical and physical determinants of the area
di=erence ∆A0 and the spontaneous curvature C0, which is not yet avail-
able. Thus, as of this writing, it is not possible to prepare a red cell with a
known m0, to observe its shape and to compare with theory.

In practice what is done is simply to add slowly to the extracellular solu-
tion measured quantities of some shape-change inducing agent and to watch
over time as the shape evolves. Interpreting such experiments is complicated
by the di=erent timescales that influence the observations. Consider the ef-
fects of exogenous amphipathic drugs, whose qualitative action we think we
understand (see Section 2.8.4). When such agents are added to the exterior
solution, they partition first into the outer leaflet of the plasma membrane
and then, by a flip-flop process, into the inner leaflet, from which they equi-
librate finally with the interior solution. The eventual equilibrium distribu-
tion of the drug is controlled by the relative a;nity of the additive for the
di=erent leaflets; however, the time to reach equilibrium and the state of
the system during relaxation depend on the rates for each of the transport
processes. Thus, if the flip-flop is slow, the drug may build up in the outer
leaflet during the initial part of the process, causing a transient echinocytic
e=ect, even if the equilibrium distribution favors the inner leaflet and pro-
duces stomatocytosis at long-enough times (Isomaa et a. 1987). In general,
the processes which control interleaflet lipid (and drug) transport are both
active and passive. In the normal resting state the asymmetric lipid distri-
bution of the RBC is maintained by ATP-dependent phospholipid translo-
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cases (Alberts et al. 2002) which appear to respond on scales of 10–20 min-
utes. Passive transport, which can be driven both by di=usive gradients and
by membrane tension, induces shape change on one-minute time scales.
The time scale for the hydrodynamic processes of purely mechanical shape
equilibration are a few seconds. Other relevant time scales include the time
for mixing the drug in the solution and the time for partitioning between the
solution and the adjacent leaflet. Assume for simplicity that the mixing and
partitioning times are fast and consider the sequence of events after drug
addition. For times shorter than one second, cell shapes are controlled by
membrane dynamics. For times between one second and one minute, one
sees a transient sequence of shapes corresponding to a changing ∆A0(t), as
the drug equilibrates passively between leaflets. For times between one and
ten minutes, one may hope to observe the equilibrium shape correspond-
ing to the passively equilibrated ∆A0. This would be the relevant range for
confirming the equilibrium-shape predictions, if it were possible (which it
is not!) to calculate m0 from the drug concentration in solution. Finally, on
time scales longer the 10 minutes, the lipid translocases would start to have
an important e=ect on m0. Analogous dynamical e=ects have been observed
in pipette aspiration experiments (Raphael and Waugh 1966; Artmann et al.
1997; Svetina et al. 1998; Raphael et al. 2001; Kuzman et al. 2004).

2.8.6
E=ects of Lateral Inhomogeneity of the Red-Cell Membrane

The membrane-mechanics model we have used assumes spatial homogene-
ity of the plasma membrane and the membrane skeleton. This approxima-
tion breaks down at su;ciently short length scales. As long as the scale of
inhomogeneity remains small on the scale of variation of the shape topogra-
phy, coarse-graining arguments suggest that homogeneity should remain a
good approximation. Among the shapes we have treated, it is the echinocytes
which have the sharpest spatial features, with spicules on the scale of several
tenths of microns.

Inhomogeneities in the composition of the plasma membrane may be
of two types: those that form spontaneously by active or passive processes
unrelated to membrane shape and those that occur in response to mem-
brane stresses such as local curvature. Of the former type are the so-called
“rafts” which have received much attention in the recent literature (Simons
and Ikonen 1997; Jacobson et al. 2007). Most, but not all, of these are on
scales smaller than 0.1µm and need not concern us here, although it would
be interesting to know whether they congregate preferentially at spicules or
stomatocytic invaginations. An example of the latter type would be the mi-
gration of large-head lipids to regions of significant positive curvature such
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as the apex region of spicules. This tendency of molecules to segregate to
relieve steric stresses must, of course, be balanced against the entropically-
driven tendency towards uniform mixing. There is some experimental evi-
dence for e=ects of both kinds. First, Rodgers and Glaser (1991), Rodgers
and Glaser (1993a), Rodgers and Glaser (1993b) and Welti and Glaser (1994)
have observed regions of inhomogeneity larger in size than 0.1µm in the
membranes of rabbit RBCs. They found that domains enriched in either
phosphatidylcholine or phosphatidylserine form in intact membranes not
subjected to an inducing agent, suggesting that these lipid domains occur
naturally. In addition, when they exposed intact membranes to CPZ, a flu-
orescent and stomatocytogenic compound, they observed the formation of
CPZ-enriched domains. Rodgers and Glaser osmotically swelled the CPZ-
laced RBCs to spheres because they needed simple cell geometries for fluo-
rescence imaging. Thus, it is not known whether or not the CPZ-enriched
domains form preferentially in the invaginations of the stomatocytes. Sec-
ondly, a recent study by Baba et al. (2004) of echinocytosis of human RBCs
induced by poly (ethylene glycol)-cholesterol (PEG-Chol) found that the dis-
tribution of PEG-Chol in the plasma membrane changes from uniform at
the echinocyte I stage to non-uniform at the echinocyte II stage. They found
that PEG-Chol is located preferentially at the spicules of an echinocyte II
shape, that is, in the regions with the largest positive curvature. It remains to
be seen whether all echinocytogenic chemical compounds have such e=ects.

The results of Rodgers and Glaser and Baba et al. suggest that the model of
the plasma membrane may eventually need to take into account the e=ects of
coupling between curvature and membrane composition. This improvement
would not be di;cult to accomplish theoretically; however, such a model
would introduce additional unknown parameters and does not appear to be
necessary to account for the main features of the SDE sequence.

The membrane skeleton maintains its fixed connectivity on the time scales
of shape observations, so that it is not subject to segregation e=ects like the
plasma membrane; however, its intrinsic inhomogeneity is on the scale of
the cytoskeletal spectrin mesh (see Section 2.2.2), which is on the order of
0.1µm. Thus, at the smallest spicule sizes we are treating, the approximation
of continuum elasticity is already at or close to its limit. At shorter scales such
as those occurring near sphero-echinocytosis (Section 2.2.3), it will certainly
break down. Thus, in our opinion, it is likely that the vesiculation which is
observed at sphero-echnocytosis and sphero-stomatocytosis is the result of a
budding of the plasma membrane between the cytoskeletal anchor proteins
when the inverse of the e=ective curvature Ce=

0 reaches the mesh size.
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2.8.7
Membrane Mechanics of RBCs of Other Mammals

The structure and behavior of red cells belonging to other mammalian
species are often (but not always) similar to those of humans. Similari-
ties include the composite quasi-two-dimensional structural organization of
the membrane, the discocytic shape under normal physiological conditions
(there are some exceptions like camels and llamas) and the gross shapes
(di=erences do exist in the finer surface features) and shape transforma-
tions (spiculation or cupping) induced by echinocytogenic or stomatocyto-
genic agents (Jain and Kono 1972; Jain and Keeton 1974; Jain 1975; Smith
et al. 1980; Smith et al. 1982). These similarities should allow the model
proposed in this study to be used in analyzing the biomechanics of other
mammalian RBCs, provided that the mechanical parameters specific to each
species are known. The shear moduli for a few mammals other than hu-
man have been estimated. They include the rabbit, the rat, the opossum and
the llama (whose RBCs are not discocytic) (Waugh and Evans 1976; Waugh
1992). These moduli were obtained using the micropipette aspiration tech-
nique and under the assumption of local area incompressibility of the mem-
brane skeleton. Micropipette aspiration probes the nonlinear in-plane elas-
ticities at high deformation (see Appendix A). Therefore, the measured shear
moduli for the aforementioned mammals should not be equated to the linear
modulus µ of Eq. (2.27). The RBC area and volume for the rabbit, mouse, rat
and hamster have also been measured (Waugh 1992). There are currently to
our knowledge no measurements of the other mechanical parameters (see
Table 2.2) for mammals other than humans. It is hoped that this work will
stimulate experiments to probe in detail the membrane mechanics of other
mammalian RBCs. However, at present the ingredients for detailed testing
of our approach on other mammalian species do not appear to be available.

2.8.8
Summary

In summary, we have proposed a continuum elastic model of the RBC that is
the most general and realistic to date. The essential features of this model are
(i) the inclusion of the plasma-membrane bending elasticity and the mem-
brane skeletal stretch and shear elasticities, (ii) the inclusion of higher-order
nonlinear elastic terms in the Taylor expansion of the membrane-skeletal
strain-energy density fms and, on the calculational side, (iii) an e=ective nu-
merical method for representing simultaneously the membrane shape and
cytoskeletal conformation in three dimensions without any prior assumption
of shape symmetry.
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The total free energy F of our model contains two unknown control pa-
rameters, m0 (or, equivalently, C0) and Vms. The former governs the bending
tendency of the plasma membrane; the latter characterizes the unstressed
shape of the membrane skeleton. We assume that an observed RBC shape
is a locally stable shape that minimizes F at given values of m0 and Vms.
In practice, the minimization of F can only be performed numerically. We
have chosen to minimize F over a computational mesh using a Monte Carlo
technique. By performing minimizations systematically over a range of in-
creasing and decreasing values of m0 at fixed Vms, we have mapped out
the ranges of stability of a number of distinct shape classes. We have been
able to deduce from this sheet structure the predicted sequence of shapes
and shape transformations as m0 is changed by echinocytogenic and/or
stomatocytogenic agents. By matching this sequence to the observed SDE
transformations, we have inferred that the unstressed membrane-skeletal
shape of the RBC is likely to be an oblate spheroid with a volume in the
range 144µm3 � Vms � 152µm3 (i.e., a reduced volume in the range
0.925 � v � 0.976). The fact that it is possible to make this match pro-
vides a detailed validation of the Sheetz–Singer bilayer–couple hypothesis.
Our results show further that hysteresis is generally to be expected in any
cycle of shape transformations, and we are able to make specific predictions.
Finally, we have made the first comprehensive predictions of the area and
shear strain fields over every RBC shape of the SDE sequence.

These predictions are partly generic, and in this respect we believe that
they will prove robust. However, they are dependent in detail on the values
of material moduli some of which are poorly determined. We will not be sur-
prised if further experiments lead to some fine-tuning of the moduli. This
process will likely involve a careful interplay of theory and experiment. On
the one hand, this model makes specific predictions which may or may not
be falsified by experiment. On the other hand, the measurement of mechan-
ical moduli involves the observation of shape change, so the interpretation of
experiments will increasingly require theoretical input of the type illustrated
here.

We hope that the analytical framework developed here will both provoke
and make possible future experiments. A start in this direction has already
been made by Khairy et al. (2007), who have used urea to weaken the red-cell
membrane skeleton and have analyzed the resulting morphological changes
by corresponding shape calculations of the type described here.

In closing we wish to acknowledge the assistance and encouragement we
have received for this project over the last two decades from Myer Bloom,
David Boal, Evan Evans, Tom Lubensky, Narla Monads, Erich Sackmann, Ted
Steck and other participants in the now-terminated program of the Canadian
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Institute for Advanced Research entitled “The Science of Soft Surfaces and
Interfaces.”

Appendix A
Material Parameters and Related Experiments

In this appendix we collect material pertaining to the numerical values of
important parameters which enter the cell-shape calculations. The choices
made for these parameters are crucial in that the results (for example, the
phase diagrams) are complex and relatively small changes in (some) param-
eters can have profound e=ects. The final choices for these parameters are
summarized in Table 2.2. As will become evident below, many of these pa-
rameters have been determined by di=erent methods at di=erent times with
levels of agreement which are less than fully satisfactory. We will try to clar-
ify, as far as we are able, the reasons for the disagreements and our rationale
for choosing the values shown in Table 2.2. We have tried to make clear in
the text the level of robustness of each of our principal results to changes in
input parameters. Finally, we note that these are biological materials and a
certain level of variability is entirely normal.

A.1
Geometry: Cell Area and Volume

Table 2.4 gives a sampling of area and volume measurements over the last
40 years with associated references and some notes. Observe that the natu-
ral variability is about ±10%. We have chosen in Table 2.2 the representative
values V0 = VRBC = 100µm3 and A0 = ARBC = 140µm2, which leads
to RA = 3.34µm from Eq. (2.1). Because of the scaling discussed in Sec-
tion 2.3.4, V0 enters the shape problem only via the (dimensionless) reduced
volume v = 0.642, as defined by Eq. (2.3).

A.2
Plasma Membrane Moduli

The bending moduli κb and κ of the RBC plasma membrane have been
estimated experimentally. The experimental techniques used to extract κb in-
clude flicker spectroscopy (Brochard and Lennon 1975; Zilker et al. 1987;
Zeman et al. 1990; Peterson et al. 1992b; Zilker et al. 1992; Strey et al.
1995; Humpert and Baumann 2003), micropipette aspiration of flaccid
RBCs (Evans 1983), tether formation from the RBC membrane (Waugh
and Bauserman 1995; Hwang and Waugh 1997) and local pulling of the
RBC membrane using the tip of an atomic force microscope (Sche=er et al.
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Table 2.4 A chronologically-ordered compilation of some previous measurements of area
and volume for unfractionated adult blood samples in isotonic solutions at room temper-
ature (20–25 ◦C) and pH = 7.4. The sample size is given in the form: number of subjects
from whom blood was drawn / combined total number of cells. Each entry in columns 3
and 4 is given as: mean (±) standard error of mean (±) population standard deviation.

Reference Sample Area
(
µm2

)
Volume

(
µm3

)
size

Mean SEM SD Mean SEM SD

Canham and Burton
(1968)a)

7 /1016 138.1 17.4 107.5 16.8

Evans and Fung (1972)b) 1 / 50 135 16 94 14

Jay (1975)c), d) 7 / 788 136.9 0.5 104.2 0.6

Jay (1975)c), e) 7 / 843 133.4 0.5 98.1 0.6

Fung et al. (1981)b) 14 /1581 129.95 0.40 g) 15.86 97.91 0.41g) 16.16

Linderkamp and
Meiselman (1982)f)

5 / 200 134.1 13.8 89.8 12.7

Nash and Meiselman
(1983)f)

/ 160 137 5.5 99 5

Linderkamp et al. (1983)f) 10 / 400 134.3 6.1 13.5 88.4 3.8 12.8

Linderkamp et al. (1986)f) 5 / 150 132.1 6.7 14.1

Linderkamp et al. (1986)f) 10 / 300 94.9 5.0 13.7

Stadler and Linderkamp
(1989)f)

10 / 400 137.1 6.7 14.8 90.5 4.4 13.2

Waugh et al. (1992)f) 1 / 65 135 10 93 12

Linderkamp et al. (1993)f) 10 / 300 137.1 6.7 90.5 4.4

Engström and
Löfvenberg (1998)h)

10 / 500 141.4 3.0 105.7 3.3

Ruef and Linderkamp
(1999)f)

10 / 400 132 9 101 11

a) Manual tracing of diametrical cross-sections of cells hanging vertically from the underside of
microscope coverslips photographed edge-on.

b) Determination of geometries of cells by interference holography.
c) Digital tracing of diametrical cross-sections of cells hanging vertically from the underside of

microscope coverslips photographed edge-on.
d) In Ringer solution without albumin.
e) In Ringer solution with albumin.
f) Video recordings of geometries of micropipette-aspirated cells.
g) From the text of Fung et al. (1981); values given in the abstract of Fung et al. (1981) are

di=erent (1.03 µm2 for A and 1.06 µm3 for V ).
h) Digitized images of diametrical cross-sections of cells hanging vertically from the underside

of microscope coverslips viewed edge-on.
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2001). The resultant estimates of κb are listed in Table 2.5. Except for the
flicker spectroscopy estimates, the estimates of κb shown in Table 2.5 are
in good agreement. The di=erences may be due to the di=erent theoretical
assumptions in the analyses of these experiments. In addition, it has been
proposed by Strey et al. (1995) that the smaller estimates given by flicker
spectroscopy of RBC membrane fluctuations at short wavelengths (Zilker
et al. 1987; Zilker et al. 1992) may be related to active (ATP-driven) motion
of the RBC membrane (Tuvia et al. 1998). Cuvelier et al. (2005) recently
hinted at the possibility of estimating the κb of the plasma membrane us-
ing yet another technique, based upon the coalescence of two tethers pulled
from the RBC membrane. Currently κ has been estimated only once, in a
study of tether formation from the RBC membrane by Hwang and Waugh
(1997), who obtained κ = (3.8 × 10−19 J)/π. The values of κb and κ quoted
in Table 2.2 are based on studies of tether formation from the RBC mem-
brane (Waugh and Bauserman 1995; Hwang and Waugh 1997), which use
the full ADE model Eq. (2.22) in the analysis. Finally, the Gaussian modu-
lus κg has not been measured. The topological character of this term (Sec-
tion 2.3.2) makes it di;cult to approach. One possibility would to be to find a
way of comparing the energies of topologically di=erent shapes, for example,
before and after a fission event. Another would be to find a way of measuring
the local boundary torque density, Eq. (2.70).

A.3
Membrane-Skeleton Moduli

A.3.1 Linear Moduli µ and Kα

Considerable uncertainty still attends the values of the linear moduli Kα

and µ. Older estimates for these moduli based on micropipette aspiration of
of intact RBCs (see Hochmuth (1993) for a review) give typical numbers in
the range µ ∼ 6–9µJ/m2, appreciably larger than the value µ = 2.5µJ/m2

we have adopted in Table 2.2. These estimates are based on fitting experimen-
tal data to the uncorrected, weak-deformation form Eq. (2.27). Furthermore,
they are often based on analysis done under the assumption that the mem-
brane skeleton is locally incompressible, Kα = ∞, so α = 0 everywhere.39)

Both of these assumptions are of doubtful validity.
Recent experiments by Discher et al. (1994), Discher and Mohandas (1996)

and Lee et al. (1999) have conclusively disproved the assumption of local
area incompressibility of the membrane skeleton. In addition, these authors
found that λ1 and λ2 in the aspirated region of the RBC actually depart sig-

39) The attractive feature of assuming local incompressibility is that it allows µ to be deter-
mined without the need to measure the variation of the principal extension ratios λi over
the aspirated region of the RBC.
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Table 2.5 Experimental estimates of the bending modulus κb of the human red blood cell
plasma membrane.

Reference κb

(
×10−19 J

)
Method

Flicker spectroscopic analysis of

Brochard and
Lennon (1975)

0.13 – 0.3 (1) correlation functions for thickness fluctuations
at two di=erent points;

Zilker et al. (1987) 0.34 ± 0.08 (2) Fourier modes (with wavelengths 0.5–1.0 µm)
of RBC membrane deformation amplitudes in
the normal direction;

Zeman et al.
(1990)

≤ 2–3 (3) long-time decay of the autocorrelation function
of thickness;

Zilker et al. (1992) 0.23 ± 0.05 (4) Fourier modes (with wavelengths 0.25–3 µm)
of RBC membrane deformation amplitudes in
the normal direction;

Peterson et al.
(1992b)

1.4 / 4.3 (5) the thickness fluctuation profile along a
diameter;

Strey et al. (1995) 2 – 7 (6) the first three azimuthal Fourier modes of
fluctuations of the rim (wavelengths
comparable to cellular dimensions); and

Humpert and
Baumann (2003)

1.0 – 1.9 (7) the power spectra and autocorrelation
functions of fluctuations of the cell center and
cell rim.

Evans (1983) ≤ 1.8 Micropipette aspiration of flaccid RBCs.

Tether formation from the RBC membrane:

Waugh and
Bauserman (1995)

2.0 – 3.0 (1) pulling tethers from RBC membranes at
constant force;

1.8 – 2.7 (2) relaxation of tethering force at constant tether
length;

Hwang and
Waugh (1997)

2.0 ± 0.6 (3) relaxation of tethering force at constant tether
length; and

2.0 (4) pulling tethers from RBC membranes at
constant velocity.

Sche=er et al.
(2001)

2.07 ± 0.32 Pulling RBC membranes locally using an
atomic force microscope.

nificantly from unity. The small-deformation regime applies for λi = 1 + δi

with |δi| � 1, in which case α2 ≈ (δ1 + δ2)2 and β ≈ (δ1 − δ2)2/2 and
there is no ambiguity about the definitions of the moduli. The problem arises
because in the micropipette experiments (and, also, for the more-extreme
echinocyte and stomatocyte shapes) there are regions of the red cell where
the δi’s are not small, so terms of order δ3 and higher may become impor-
tant. The terms α2 and β in Eq. (2.27) constitute a particular choice of such
higher-order terms; however, there is no fundamental reason to expect na-
ture to conform to this choice. That is, of course, the reason we have adopted
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the more-general expression Eq. (2.28). In summary, we regard these mi-
cropipette-based values of µ as unreliable both because they incorrectly as-
sume incompressibility and because they infer a low-deformation modulus
from a high-deformation experiment. If we are correct in thinking that the
moduli harden at high deformation, it seems likely that inferring linear mod-
uli from high-deformation experiments will over-estimate their values.

More recently, Kα and µ have been measured in the linear (or purportedly
linear) regime by a di=erent set of techniques, as summarized in Table 2.6.
The estimates of Hénon et al. (1999), Guck et al. (2001) and Lee and Discher
(2001) are based on intact RBCs, whereas the others are not. Note that there
are no experimental estimates of Kα for intact RBCs. The estimates of Kα

given by Lenormand et al. (2001) and Lenormand et al. (2003) are for bare
membrane skeletons. It is not clear to what extent they may be regarded
as applying to the intact RBC, since the physical and chemical conditions
experienced by the skeleton in these two situations are quite di=erent.

We first discuss estimates not based on intact RBCs. The analyses of Lenor-
mand et al. (2001) and Lenormand et al. (2003) assume a homogeneous

Table 2.6 Recent estimates of Kα and µ using techniques other than micropipette
aspiration.

Reference Kα

(
µJ/m2

)
µ

(
µJ/m2

)
Method

Hénon et al.
(1999)

2.5 ± 0.4 Pulling two beads attached to a discocytic
or nearly spherical swollen RBC in
diametrically opposite directions using
optical tweezers.

Sleep et al.
(1999)

200 Pulling two beads attached to a
saponin-lysed spherical ghost in
diametrically opposite directions using
optical tweezers.

Guck et al.
(2001)

13 ± 5 Applying optical stress fields using an
optical stretcher to stretch osmotically
swollen spherical RBCs.

Lee and
Discher
(2001)

1–10 Tracking thermal fluctuations of
fluorescent beads 40 nm in diameter,
attached to actin directly within ghosts or
indirectly via glycophorin C outside RBCs.

Lenormand
et al. (2001)

4.8 ± 2.7 2.4 ± 0.7 Pulling three beads attached to the
periphery of a bare membrane skeleton in
di=erent directions using optical tweezers
at an osmolality of 25 mOsm/kg.

Lenormand
et al. (2003)

9.7 ± 3.4 5.7 ± 2.3 Same as previous but at an osmolality of
150 mOsm/kg.
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linear elastic stress field over the triangular region formed by three beads
attached to the periphery of a membrane skeleton. This assumption is ques-
tionable near the bead attachment points, where the deformation can be ap-
preciable. How good the assumption of linear elasticity is depends critically
on the area of the region a=ected by nonlinear elastic e=ects and the magni-
tude of fms in that region. If the nonlinear-elastic area is negligible compared
to the linear-elastic one and if fms of the nonlinear-elastic area is not signif-
icantly above the linear elastic limit, then one can safely neglect nonlinear
elastic e=ects. The value of µ quoted by Sleep et al. (1999) is much larger even
than the micropipette-based values. We surmise that there is some system-
atic problem, although we can only speculate as to the cause. First, this mea-
surement is based on RBC ghosts permeabilized by saponin, a process which
may change the properties of the cytoskeletal proteins significantly. Further-
more, the analysis is based on the work of Parker and Winlove (1999), who
used Eq. (2.27) with the unrealistic assumption of local area incompressibil-
ity of the membrane skeleton. Finally, the regions near the bead attachment
points are highly stressed and likely to be in the large-deformation regime,
where the e=ective in-plane elastic moduli harden significantly.

Next, we turn to the estimates based on intact RBCs. Lee and Discher
(2001) find a broad but still reasonable range for µ through an analysis of
the root-mean-square in-plane displacement of beads attached to the mem-
brane skeleton. They assume that the bead displacements arise entirely from
thermal fluctuations. It is not known whether or not ATP-dependent fluctu-
ations (Tuvia et al. 1998) might be important for their analysis. Guck et al.
(2001) produce small displacements by use of a so-called optical stretcher, a
technique which avoids the point forces which occur in experiments based
on optical tweezers and which complicate the analysis because of possible
local nonlinearities. Unlike optical tweezers, the optical stretcher applies an
optical stress field to the RBC membrane. This stress field is caused by the
momentum transfer from two opposed unfocussed laser beams which are
used to trap a RBC. Guck et al. (2001) used the optical stretcher to stretch
osmotically swollen spherical RBCs into ellipsoids. Their analysis of the cell
deformation gives a value for µ (purportedly in the linear elastic regime) that
is somewhat higher than the range found in micropipette aspiration, which
operates in the nonlinear elastic regime. This higher value may occur be-
cause of problems with their analysis: In treating the RBC membrane as a
thin shell, they neglect the bending energy of the plasma membrane and do
not separate the area compressibility of the plasma membrane from that of
the membrane skeleton. These two area compressibilities operate at very dif-
ferent energy scales, as discussed in Section 2.3.5. In addition, they may have
failed to take into account the important e=ects of FV , the energy required
to change the RBC volume from that set by the osmolarity of the suspend-
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ing medium (see Sections 2.1.3 and 2.3.1). A spherical, turgid RBC has an
elevated internal pressure that puts the RBC membrane under isotropic ten-
sion, according to the law of Laplace. In deforming the RBC shape from
a sphere to an ellipsoid, the RBC volume will decrease. When the volume
of a turgid RBC is forced to decrease there is a corresponding rise in the
concentration of osmotically active molecules trapped inside the RBC. This
increases the osmotic pressure di=erence across the RBC membrane accord-
ing to the van’t Ho= equation, Eq. (2.10), and, hence, increases the isotropic
tension the RBC membrane is subjected to. Neglecting this rise in isotropic
tension may artificially inflate the apparent value of µ to the higher value
found by Guck et al. (2001). Finally, Hénon et al. (1999) investigate stretching
of discocytic RBCs and nearly spherical RBCs using optical tweezers. Their
value for µ, although consistent with our expectation, is also based on some
questionable analysis. Specifically, they neglect the bending energy of the
plasma membrane, assume local area incompressibility of the membrane
skeleton, approximate the RBC membrane as two parallel independent discs
with no stress at the edge in the case of a discocytic RBC and do not quantify
the e=ects of point forces on the membrane skeletal deformation near the
bead attachment points. All of these issues could a=ect the quoted results
significantly.

In summary, we remain somewhat skeptical of all the new estimates of µ.
Our simulation value µ = 2.5µJ/m2 (see Table 2.2) agrees with the work
of Hénon et al. (1999) on intact RBCs and is consistent with Lee and Discher
(2001) and Lenormand et al. (2001). We prefer a value lower than the mi-
cropipette-aspiration range because it gives the correct sequence of shapes
in the SDE sequence (see Section 2.8.3).

This situation for the RBC membrane-skeleton stretch modulus Kα is un-
satisfactory from an experimental point of view in that there are no mea-
surements for intact cells. The measurements of Lenormand et al. (2001)
and Lenormand et al. (2003) on isolated skeletons suggest that Kα is roughly
a factor of two greater than µ. This relation Kα = 2µ has also been predicted
for models in which the membrane skeleton is approximated as a triangular
network of springs (Hansen et al. 1996; Boal 2002). On this basis we have
adopted the value Kα = 5µJ/m2 for our simulations.

A.3.2 Nonlinear Terms
Given the uncertainty surrounding the linear moduli, it is not surprising
that the nonlinear parameters a3, a4, b1 and b2 which occur in Eq. (2.28) are
poorly characterized. The basic issue is to reconcile the weak linear moduli
of Hénon et al. (1999) and Lenormand et al. (2001), which are necessary to
model the observed SDE sequence, with the higher values, µ ≥ 6µJ/m2,
which have been inferred from micropipette aspiration experiments at high
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Fig. 2.49 (a) Elastic energy density fms(α, β) of the membrane skeleton, Eq. (2.28), with the
parameter choices of Table 2.2. The e=ect of the nonlinear terms is to harden the elasticity
at high deformation. (b) Shown for comparison at α = 0 is the straight line corresponding
to a linear elasticity with the high-estimate value µ = 6 µJ/m2 (see text).

deformation, as analyzed under the assumed constraint α = 0 (incompress-
ibility). Our point of view in selecting the parameters of Fms, Eq. (2.28), is to
adopt the low values of the linear moduli but to postulate nonlinear terms
which “harden” the elasticity at higher deformation su;ciently to make it
broadly compatible with the pipette-aspiration experiments (see below). Fig-
ure 2.49 shows a plot of our assumed elastic energy density, fms(α, β), with
µ = Kα/2 = 2.5µJ/m2 and the nonlinear coe;cients given in Table 2.2.
It is relatively flat near the origin, due to the small linear moduli, but rises
rapidly at larger strains. By way of comparison, Fig. 2.49 includes in the plane
α = 0 a plot of a purely linear elasticity fms(α = 0, β) = βµ with the higher,
micropipette-based modulus, µ = 6µJ/m2. This line lies above the energy-
density surface for β < 1.9 but below it thereafter. Our red-cell simulations
sample a range from |α|, β ≤ 0.1 for the normal discocyte to |α|, β ∼ 0.3 for
highly deformed shapes (see Section 2.7.4).

To represent the high-deformation regime we have adopted a form pro-
posed by Discher et al. (1994) and Mohandas and Evans (1994) in connection
with pipette-aspiration experiments,

fms =
KN

2

[
(λ1λ2)2 +

2
n(λ1λ2)n

]
+

µN

2
(
λ2

1 + λ2
2

)
(2.103)

or, equivalently, with a shift of origin so that fms(α = 0, β = 0) = 0,
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fms =
KN

2

[
(α + 1)2 +

2
n(α + 1)n

−
(

1 +
2
n

)]
+ µNβ(α + 1), (2.104)

where an irrelevant40) term linear in α has been omitted. KN and µN are,
respectively, e=ective stretch and shear moduli at large deformation. The op-
erational definition of a large deformation is

∣∣λ1, 2 − 1
∣∣ � 0.5, that is, a

uniaxial stretching or compression in a principal direction of at least 50%,
as discussed in related work of Lee et al. (1999). Note that KN and µN do not
reduce to the linear elastic moduli in the limit λi → 1. Discher et al. (1994)
performed fluorescence imaging of the membrane skeletal deformation of
the RBC projection aspirated into a micropipette. They determined experi-
mentally that KN ≈ 2µN and 1 ≤ n < 2; however, they did not determine
the actual values of KN and µN. They argue that, e=ectively,

µ ≈ µNKN

µN + KN
, (2.105)

where µ is the older micropipette-based e=ective value of the linear shear
modulus discussed in the previous section. Thus, to represent the high-
deformation data, we have taken n = 1 along with KN/2 = µN = 9µJ/m2

(corresponding to µ ≈ 6µJ/m2).
In choosing the nonlinear parameters, a3, a4, b1 and b2, our aim is to con-

struct Eq. (2.28) so that it interpolates between the weak linear elasticity dis-
cussed in the previous section and the strong e=ective elasticity described
by Eq. (2.104). The values listed in Table 2.2 provide such an interpolation,
as illustrated in Fig. 2.50, which compares (i) Eq. (2.104) with the parame-
ters given in the previous paragraph; (ii) Eq. (2.28) with the parameter values
shown in Table 2.2; and (iii) the purely linear elasticity model Eq. (2.27) with
the weak linear moduli.41) Di=erent interpolations could easily be made, and
they would provide energy densities somewhat di=erent from ours, depend-
ing on the range of strains to be compared. Note, however, that the strains
|α|, β ≤ 0.3, which are relevant to the SDE shapes, do not probe significantly
into the high-deformation regime, so the e=ect of any such change on the
predicted shapes would be expected to be small. In closing we stress that,
from our point of view, it is not the specific values of the nonlinear parame-
ters that are important but the general shape of the elastic-energy-density sur-
face fms(α, β). The weak linear elastic moduli are necessary to reproduce the
proper SDE sequence. Changing the nonlinear parameters will only modify
significantly the strongly echinocyte and stomatocyte shapes.

40) The integral of α over S0 gives the total membrane area,
∫

S0
dA0 α =

∫
S0

dA = A0,

which is fixed. Thus, any term linear in α simply adds a shape-independent constant to
the total energy.

41) The shear part of Eq. (2.104) remains significantly stronger than the nonlinear shear we
have used for 0 ≤ α, β ≤ 1, as shown in Fig. 2.50 (right). Nevertheless, the nonlinear
shear increases as β2 and always dominates at su;ciently large β, e.g., for α = 0 the
crossover occurs near β = 3.47.
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Fig. 2.50 Di=erent representations of the stretch and shear parts of the elastic en-
ergy density. Left: (a) Stretch part of Eq. (2.104). (b) Fully nonlinear stretch, fstretch =
Kα
2

(
α2 + a3α3 + a4α4

)
. (c) Linear stretch, fstretch = Kα

2
α2. Right: (a) Shear part of

Eq. (2.104). (b) Fully nonlinear shear, fshear = µ
(
β + b1αβ + b2β2

)
. (c) Linear shear,

fshear = µβ. Parameter values of Table 2.2 are used for (b) and (c). For (a), KN/2 = µN =
9 µJ/m2 = 45 κb/µm2.

We hope that further experiments will in the future clarify the values of the
linear elastic constants and the nonlinear parameters of the RBC membrane.
As mentioned above, we believe that such experiments are best carried out
in situ on intact red cells, for example, by techniques such as those of Guck
et al. (2001) applied to flaccid RBCs. Insofar as such experiments infer the
elastic parameters by observing shape deformations, the analysis will of ne-
cessity require a mechanical model of the membrane. We believe that the
techniques described in this work will prove useful in this analysis.

Appendix B
Symmetry Sets the Form of Elastic Energies

This appendix aims to provide a brief but self-contained primer on the so-
called “Landau” (symmetry) arguments that underlie the forms of the bend-
ing energies Fsc and Fg, Eqs. (2.14) and (2.15), and the stretch and shear
energies Fms, Eqs. (2.27) and (2.28).
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B.1
Local Bending Energy

The argument starts at Eq. (2.19) and asks what form the local bending-en-
ergy density fb(r) can have that is consistent with (i) Euclidean invariance
and (ii) in-plane membrane isotropy, which is a consequence of the assump-
tion that the plasma membrane is in the isotropic fluid (Lα, smectic-A)
phase.42) There are, of course, many ways to run such an argument. What
follows is one of the simplest.

The idea is to build fb from quantities which characterize the local shape
in a way which respects Euclidean invariance (the energy should not depend
on where S is or how it is oriented) and membrane isotropy (one direction
is as good as another in an isotropic 2D fluid). To parametrize S locally, con-
struct the local tangent plane at r and let (x1, x2) be Cartesian coordinates in
this base plane. The local shape of any smooth S can be represented as the
perpendicular displacement h of S from the base plane (the “Monge repre-
sentation”),

h(x1, x2) =
1
2
Cijxixj +

1
3!

Dijkxixjxk + . . . , (2.106)

with summation over repeated indices. The coe;cients Cij , Dijk, and so on
depend on r and parametrize the local shape of S in a way that respects Eu-
clidean invariance, so that we may write schematically f(r) = f [{Cij(r)},
{Dijk(r)}, . . .].43) It is easy to verify that Cij is just the curvature matrix (Ap-
pendix C). It can be made diagonal by a proper choice of the coordinate axes.
The diagonal elements are just the principal curvatures Ci. Thus, with no
loss of generality, we can write

h(x1, x2) =
1
2

(
C1x

2
1 + C2x

2
2

)

+
1
3!

(
D1x

3
1 + D2x

3
2 + D3x

2
1x2 + D4x1x

2
2

)
+ . . . , (2.107)

where now C1 ≡ C11, D1 ≡ D111, etc. Notice that, if the surface is smooth
on some scale R (typically, for us, the scale RA of the whole cell or that
of smaller surface features such as spicules), then we expect that h/R is a
function of x1/R and x2/R with coe;cients of order unity. Thus, we expect
Ci ∼ 1/R, Di ∼ 1/R2, etc.

The key question now is, “What combinations of the coe;cients Ci, Di,
etc., can appear in fb?” To approach this question, we organize the possibil-
ities in powers of 1/R. At zeroth order, there is always a shape-independent

42) If the membrane were in a phase with additional in-plane order, e.g., smectic-C, then
additional terms would appear.

43) Note that higher-order coe;cients like D encode information about the spatial derivatives
of the curvature tensor C and are in this sense superfluous once C(s1, s2) is given.
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constant, which plays no role in shape selection. At first order, there are only
the terms in C1 and C2. Second-order invariants are C2

1 , C2
2 and C1C2 plus

the four Di, so

fb[{Ci}, {Di}, . . . ] = κ0 + κ1C1 + κ2C2 + κ3C
2
1 + κ4C

2
2 + κ5C1C2

+ κ6D1 + κ7D2 + κ8D3 + κ9D4 + . . . , (2.108)

where the coe;cients κi are material moduli. Now an additional argument
comes into play. If we want surfaces related by x1 ↔ x2 to have the same
energy, then we must require that κ1 = κ2, κ3 = κ4, κ6 = κ7 and κ8 = κ9.
Finally, the requirement that the reflected surfaces x1 ↔ −x1 and x2 ↔ −x2

have the same energy forces κ6 = κ7 = κ8 = κ9 = 0. The upshot is that
through order 1/R2 there are only four independent terms, proportional
to 1, (C1 + C2), (C2

1 + C2
2 ) and C1C2.44) After a redefinition of moduli,

κb ≡ 2κ3, C0 ≡ −κ1/2κ3, κg = κ5 − 2κ3, these terms correspond precisely
to the terms in Fsc + Fg. Note that we have not invoked h ↔ −h as a sym-
metry (i.e., Ci ↔ −Ci, Di ↔ −Di, etc.), which e=ectively interchanges the
inside and outside of the membrane. Such a symmetry, if it existed, would
eliminate the energy term proportional to (C1 +C2), that is, it would require
C0 = 0. Typically, however, for the plasma membrane C0 �= 0, reflecting the
compositional asymmetry of the two leaflets noted in Section 2.2.

When the energy depends on the curvature only via the local invariants
through second order, then stability places certain conditions on the moduli
κb and κg. Thus, it is easy to show that,

A1

2
(
C2

1 + C2
2

)
+ A2C1C2 + A3

(
C1 + C2

)
+ constant

=
A1

2
(
C1 + C2 − C0

)2 +
(
A2 − A1

)
C1C2 + constant

=
(A1 + A2)

4
(
C1 + C2 − C∗

0

)2 +
(A1 − A2)

4
(
C1 − C2

)2 + constant.

(2.109)

It is clear from the second line that κb = A1 and κg = A2 − A1. It is clear
from the third line that A1 ± A2 ≥ 0 is required for stability. It follows that
2κb ≥ −κg ≥ 0.

Of course, all this makes sense only if the higher-order terms in Eq. (2.108)
are smaller than the ones we have retained. To address this question, we
must comment on the scale of the moduli κi. The origin of the bending en-
ergy is the elastic energy associated with material strains inside the bilayer.
These strains scale with D/R, where D is the thickness of the plasma mem-
brane. The scale for the strain-energy density is set by KA, so we expect indi-

44) At order 1/R3, there are four additional terms, (C1 + C2)3 and C1C2(C1 + C2)2 plus
the coe;cients of the two even symmetric fourth-order terms, E1(x4

1 +x4
2) and E2x2

1x2
2.
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vidual terms in Eq. (2.108) to go as KA(D/R)n. Thus, for example, at second
order in 1/R, we expect κb ∼ κg ∼ D2KA ∼ 8 × 10−18 J, with higher-order
terms smaller by the generic ratio D/R.45)

B.2
Local Elastic Energy of Stretch and Shear

The argument starts at Eq. (2.26) and asks what parameters describe the local
elastic deformation and how does one characterize the dependence of the lo-
cal elastic energy density fms on those parameters in such a way as to respect
rotation invariance and membrane isotropy. The discussion is a two-dimen-
sional version of the elasticity theory covered in standard texts such as Og-
den (1984), Mase and Mase (1999), Başar and Weichert (2000) and Holzapfel
(2000). It occurs in treatments of membrane elasticity such as Evans and
Skalak (1980).

Consider a particular point r0 of S0 which maps under elastic deformation
to a point r of S. Any infinitesimal 2D neighborhood of undeformed mem-
brane skeleton about r0 maps continuously to a corresponding infinitesimal
neighborhood (generally deformed) of r. Let (a1, a2) and (x1, x2) be local
orthogonal coordinates on initial and final patches, centered on r0 and r, re-
spectively. Any mapping of the undeformed skeleton S0 onto the surface S

is characterized locally by a linear map x = Ma (i.e., xi = Mijaj , with the
usual summation convention), which we shall refer to as the deformation
matrix. The 2×2 matrix M varies, generally, from point to point over the
skeleton and may be regarded equivalently as a function of r0 or of r. We
suppose that the mapping S0 → S is one-to-one. It follows that M is real
and nonsingular. We can assume without loss of generality that the coordi-
nate axes have been chosen so that det M > 0. Note that M is not generally
symmetric, so that, although it has eigenvectors, those eigenvectors cannot
be assumed orthogonal. A sequence of two successive skeletal deformations,
M1 followed by M2, is equivalent to the single deformation M2M1, which
expresses the composition law for local deformations.

Because the mapping is nonsingular, the polar decomposition theo-
rem (Ogden 1984) guarantees that M can be represented uniquely in either
of two alternative forms, M = RU = VR, where R is a pure 2D rota-
tion (R =

[
cos θ sin θ
− sin θ cos θ

]
, R−1 = RT ) and the matrices U and V are real,

symmetric and positive definite. Because it is real symmetric, U can be di-
agonalized by an orthogonal transformation of the form, ST US =

[
λ1 0
0 λ2

]
,

45) This estimate of κb is a bit high compared to the measured value (see Table 2.5). The
reason lies in certain numerical factors to which this crude dimensional argument does
not do adequate justice (Wortis and Evans 1997).
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where S is a rotation matrix built from the eigenvectors of U and the eigen-
values λi are positive (and similarly for V). Thus,

M = RS
[
λ1 0
0 λ2

]
ST , (2.110)

showing that M can always be regarded as the result of a rotation followed
by a simple stretch/compression along orthogonal axes followed by a second,
independent rotation. The eigenvalues λi are just the principle extension
ratios introduced above Eq. (2.24). Note that

detM = λ1λ2, (2.111)

since the rotation matrices do not contribute.
The assumption, Eq. (2.26), of a local elastic energy density means that fms

depends locally on M at each point of the membrane skeleton, fms[M]. How-
ever, mappings of M which are pure rotations (without stretch/compression)
are “isometric” in the sense that they do not change distances and should not
cost elastic energy. Thus, we impose the condition that fms[R] = fms[1] = 0
and, more generally, that

fms[RM] = fms[M], (2.112)

which states that the energy density associated with a general local defor-
mation M is unchanged by a subsequent arbitrary rotation R.46) Equa-
tion (2.112) is a functional equation which restricts the form of the depen-
dence fms[M].47) The unique solution of this functional equation is the re-
quirement that the energy density must depend on the combination MT M,
fms[MT M]. Note that MT M is symmetric, so that the net result of apply-
ing the condition (2.112) is to reduce the number of real variables on which
fms can depend from the four parameters of M to the three parameters of
MTM, which may be thought of as the two principle extension ratios and
the rotation angle associated with S in Eq. (2.110). It is common in the liter-
ature to use in the place of MT M the equivalent quantity u ≡ 1

2 (MT M−1),
which is called the (Cauchy) strain tensor and has the form,

uij =
1
2

(
∂xk

∂ai

∂xk

∂aj
− δij

)
. (2.113)

Note that the strain tensor measures the change in length of the infinitesimal
vector da as it is transformed under deformation into the new vector dx,

2da · u · da = 2uijdaidaj = dxidxi − daidai = dl2 − dl20. (2.114)

46) This condition is sometimes referred to as “objectivity” in the elasticity literature.
47) A direct analogue is the requirement, q(Rv) = q(v), that defines a scalar function q of

a vector v. The solution of this functional equation is that q must depend on v only via
v2 ≡ vT v.
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The condition of membrane isotropy, which has not yet been applied, takes
the form,

fms[MR] = fms[M], (2.115)

similar to Eq. (2.112) but now with the rotation preceding the deformation.
Combining this with the consequence of rotation invariance gives,48)

fms[RT MT MR] = fms[MT M], (2.116)

for an arbitrary rotation R, which means that fms can only depend on ro-
tational invariants of the symmetric matrix MT M. These invariants can be
taken as

trMTM = λ2
1 + λ2

2 and det MTM = (detM)2 = λ2
1λ

2
2. (2.117)

They are equivalent to the area and shear strains, Eqs. (2.24) and (2.25), in
the form,

α = detM − 1 and β =
1

2detM

(
trMT M − 2 detM

)
, (2.118)

which have been chosen for convenience to vanish in the unstrained state
λ1 = λ2 = 1.

We have established at this point the general form, fms(α, β), for the lo-
cal elastic energy. Convention assigns zero energy density to the unstrained
state, fms(0, 0) = 0, and suggests a series development in positive powers
of α and β. The further requirement that the unstrained state should be the
energy minimum eliminates any term linear in α, so the leading terms in
the expansion are β and α2, both of which are quadratic in the deviations
δi = λi − 1 from the unstrained state. These two lowest-order terms are the
basis of the “linear” elastic model, Eq. (2.27), which defines the linear mod-
uli µ and Kα. The higher-order elastic terms of Eq. (2.28) simply extend the
power series.

Appendix C
Di=erential Geometry and Coordinate Transformations

This appendix contains a review of some basic results from di=erential ge-
ometry and curvilinear coordinate transformations. It provides notation and
results useful for other parts of this article. Good texts on this subject in-
clude do Carmo (1976), Kreyszig (1991) and Spivak (1979). In what follows

48) It is easy enough to directly identify detM as one invariant satisfying both Eqs. (2.112)
and (2.115), since detM = detRM = detMR. The problem is the second invariant.
Although trRM = trMR, it is not generally true that trRM = trM. It is for this
reason that it is necessary for the argument to identify the dependence on MT M before
applying Eq. (2.115).
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we use bold face for 3D (physical) vectors and adopt the convention that re-
peated indices are summed unless explicitly indicated to the contrary.

C.1
Basic Results from Di=erential Geometry

Consider a two-dimensional manifold S embedded in three-dimensional
space and labeled by a general set of coordinates (s1, s2) (see Fig. 2.51).49)

Suppose that the (3D) vector function R(s1, s2) gives the position of each
surface point. Then,

Yα ≡ Yα

(
s1, s2

)
≡ ∂R

∂sα
≡ ∂αR (2.119)

defines a pair of (generally unnormalized) tangent vectors at (s1, s2). If S

is closed, as it is for red-cell shapes, then we will assume for simplicity that
the labeling of the coordinates has always been chosen locally so that Y1 ×
Y2 points along the outwardly directed unit normal n̂. The length dl of the
infinitesimal in-plane vector dl = Yαdsα satisfies dl2 = gαβdsαdsβ with

gαβ ≡ Yα · Yβ , (2.120)

which identifies gαβ = (g)αβ as the metric tensor and shows that gαβ is
symmetric and gαα (not summed) is positive. It will be convenient to denote
the inverse of the metric tensor by raised indices, gαβ ≡

(
g−1

)
αβ

. It is easy

to show that |Y1 × Y2|2 = det g ≡ g, so g > 0 and

n̂ =
1√
g
Y1 × Y2. (2.121)

The element of area is given by

dA = |Y1 × Y2|ds1ds2 =
√

g ds1ds2. (2.122)

It will be useful in what follows to introduce the antisymmetric matri-
ces (Lomholt and Miao 2006),

εαβ =
√

g

[
0 1

−1 0

]
and εαβ =

1√
g

[
0 1

−1 0

]
, (2.123)

which satisfy εαβεβγ = −δα
γ . It is not hard to verify that εαβ = gασεστgτβ ,

so the metric tensor may be used to raise and lower indices of the ε tensors
in a fluent manner. This notation allows us to write compactly,

Yα × Yβ = εαβn̂. (2.124)

49) We use superscripted coordinates because the di=erentials (ds1, ds2) will turn out to be
contravariant (see below). The full rationale for sub- and superscript notation for co- and
contravariant quantities is given following Eq. (2.136). However, we will use the notation
consistently throughout this Appendix, even before its significance has been established.
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Fig. 2.51 General curvilinear coordinates (s1, s2) on the surface S defined by R(s1, s2)

embedded in 3D space. The unit normal vector n̂ points outward. The area element dA
is defined by the infinitesimal coordinate increments (ds1, ds2). The covariant tangent vec-
tors Y1,Y2 are directed locally along the coordinate axes. The corresponding contravariant
vectors Y1,Y2 defined by Eq. (2.126) also lie in the tangent plane but are directed perpen-
dicularly to the edges of dA in the sense of increasing sα.

It is important to introduce the conjugate (contravariant) pair of in-plane
vectors Yα ≡ gαβYβ , which satisfy

Yα · Yβ = gαβ and Yα · Yβ = δβ
α, (2.125)

where (as in the text) we adopt the convention of writing the arguments of
the δ-function up or down in such a way as to preserve covariant fluency. Any
vector in the tangent plane can be expressed as a linear combination of Y1

and Y2 or, alternatively, of Y1 and Y2. Finally, it will be useful to have(
n̂ × Yα

)
= εαβYβ and

(
n̂ × Yα

)
= εαβYβ . (2.126)

This completes the discussion of geometry at a single point. We now pass
to the discussion of the way these quantities change in moving to nearby
points.

Coordinate derivatives of the tangent vectors have, in general, both in-
plane and out-of-plane components, so it is always possible to write,

Yαβ ≡ ∂βYα = ∂αYβ = ∂α∂βR = Γγ
αβYγ − Cαβn̂, (2.127)

in which the coe;cients Γγ
αβ and Cαβ are manifestly symmetric under the

interchange α ↔ β. The quantities Γγ
αβ are called Christo=el symbols. They

are directly related to coordinate derivatives of the metric tensor, since
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∂γgαβ = ∂γ

(
Yα · Yβ

)
= Yαγ · Yβ + Yα · Yβγ = Γδ

αγgδβ + Γδ
βγgδα,

(2.128)
which leads to the useful relation,

∂αg = 2gΓβ
αβ . (2.129)

Equation (2.128) can be inverted to give

Γγ
αβ =

1
2

(∂αgβδ + ∂βgαδ − ∂δgαβ) gδγ . (2.130)

We are now in a position to calculate the coordinate derivatives of the nor-
mal vector, which are related to the curvature tensor. By taking directly the
derivative of Eq. (2.121) and using Eq. (2.129), we find n̂ · ∂αn̂ = 0, so

∂αn̂ = − 1√
g

(C1αn̂ × Y2 + C2αY1 × n̂) = CαβYβ = C β
α Yβ , (2.131)

where C β
α ≡ Cαγgγβ ≡ (C) β

α . Equation (2.131) is called the Weingarten
relation and defines the usual geometric curvature tensor, C, whose eigen-
values can be identified (see below) with the principal curvatures introduced
in Section 2.3.4. Note that, although Cαβ is always symmetric under α ↔ β,
the curvature tensor is not. On the other hand, symmetry does guarantee that
C β

α = Cβ
α, so we can write Cβ

α , with the indices aligned, without ambiguity.
It is convenient to define

K ≡ det C = C1C2 (Gaussian curvature) (2.132)

and

H ≡ 1
2
tr C =

1
2
(C1 + C2) (mean curvature). (2.133)

Because C is a 2 × 2 matrix, it follows that

C2 − 2HC + K1 = 0, so tr C2 = 4H2 − 2K. (2.134)

Finally, we will need an additional relation connected to the third derivatives,
∂α∂β∂γR. Because these derivatives are manifestly invariant under permu-
tation of indices, we find by using Eq. (2.127)

∂α

(
Γδ

βγYδ − Cβγn̂
)

= ∂β

(
Γδ

αγYδ − Cαγn̂
)

= ∂γ

(
Γδ

αβYδ − Cαβn̂
)
,

(2.135)
which is one form of the so-called Codazzi relations.

C.2
Coordinate Transformations and Covariant Notation

It will be useful now to discuss the manner in which various quantities trans-
form under (locally) nonsingular coordinate changes, s′α = s′α(s1, s2) (we
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assume for simplicity that the direction of the local normal n̂ is not changed).
Under coordinate changes some quantities remain invariant in the sense
that Q′(s′1, s′2) = Q(s1, s2). Such quantities are said to be scalar under
coordinate transformation. This designation is unrelated to spatial-rotation
properties: normal scalars, vectors, and so on, can all be “scalar” under coor-
dinate change. Note that physical fields (densities, orientational fields, etc.)
are scalar in this sense, since they do not change value when the labeling of
the surface is reparametrized. By contrast, sub- or superscripted quantities
like Yα and Cαβ vary under coordinate change. Such indexed quantities are
defined to be “tensors” when their transformation under coordinate change
is controlled by the Jacobian matrix,

Jαβ ≡ ∂s′α

∂sβ
, or its inverse, J−1

αβ ≡ ∂sα

∂s′β
. (2.136)

We adopt the usual convention of using lower and upper indices to denote,
respectively, co- and contravariant “tensor” quantities in the sense that, under
coordinate transformation, first-rank (rank 1, single-index) tensor quantities
transform as

Q′
α = QβJ−1

βα and Q′α = JαβQβ , (2.137)

and similarly with additional indices (higher-rank tensors). It is easy to show
that the tangent vectors Yα and the metric tensor gαβ are covariant, while
the infinitesimal displacement vector dsα = (ds1, ds2) and the inverse of the
metric tensor gαβ are contravariant. Furthermore, we verify that the metric
tensor and its inverse may be used to raise and lower indices consistently,
according to

Qα = gαβQβ and Qα = gαβQβ , (2.138)

so that, for example, Yα = gαγYγ with Yα · Yβ = gαγYγ · Yβ =
gαγgγβ = δα

β . Note that mixed tensors of second rank have the property
that, under coordinate change, they transform according to

M ′α
β = JαᾱM ᾱ

β̄J−1
β̄β

and M ′ β
α =

(
JT

)−1

αᾱ
M β̄

ᾱ JT
β̄β , (2.139)

where T denotes the transpose. In either of these forms, it follows from
Eq. (2.139) that the trace, the determinant and all the eigenvalues of M are
invariant under coordinate changes, a property we will need below.

The transformation behavior of derivatives requires particular care. Di=er-
entiation of a scalar is straightforward,

∂′
αQ′ =

∂

∂s′α
Q =

∂sβ

∂s′α
∂

∂sβ
Q =

(
∂βQ

)
J−1

βα , (2.140)

so that ∂αQ is a covariant rank 1 tensor according to the definition Eq. (2.137).
Eq. (2.119) is an example (note that R is a scalar). On the other hand, dif-
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ferentiation of a rank 1 tensor does not produce a tensor quantity, since, for
example,

∂′
αQ′

β = ∂′
α

(
Qβ̄J−1

β̄β

)
=

(
∂′

αQβ̄

)
J−1

β̄β
+ Qβ̄∂′

αJ−1
β̄β

=
(
∂ᾱQβ̄

)
J−1

ᾱαJ−1
β̄β

+ Qβ̄

∂2sβ̄

∂s′α∂s′β
. (2.141)

The first term on the right looks like a second-rank covariant tensor but the
second term is non-tensorial, so we must conclude that ∂αQβ is not a tensor
quantity. It turns out, however, that the modified expression,

DαQβ ≡ ∂αQβ − Γγ
αβQγ , (2.142)

is a second-rank covariant tensor. Proving this requires verifying that

D′
αQ′

β ≡ ∂′
αQ′

β − Γ′ γ
αβQ′

γ

=
(
∂ᾱQβ̄ − Γγ

ᾱβ̄
Qγ

)
J−1

ᾱαJ−1
β̄β

≡ DᾱQβ̄J−1
ᾱαJ−1

β̄β
. (2.143)

Using Q′
β = Qβ̄J−1

β̄β
from (2.137) and ∂′

α = J−1
ᾱα∂ᾱ converts (2.143) into

the Q-independent condition,

Γ′ γ
αβ = Jγγ̄Γγ̄

ᾱβ̄
J−1

ᾱαJ−1
β̄β

+ Jγγ̄
∂sγ̄

∂s′α∂s′β
, (2.144)

which in turn follows from Eq. (2.130). Note that Eq. (2.144), which gives
the transformation properties of the Christo=el symbols under coordinate
change, shows that Γγ

αβ fails to transform as a (mixed) third-rank tensor be-
cause of a second-derivative term similar to that which appears in (2.141).
Indeed, it is a cancellation between these two non-tensorial terms which
conspires to allow DαQβ to transform as a (covariant) tensor. In a similar
manner, one shows that

DαQβ ≡ ∂αQβ + Γβ
αγQγ (2.145)

transforms as a mixed tensor, covariant in the first index but contravariant in
the second. A useful special case is the identity,

DαQα =
1√
g
∂α

(√
g Qα

)
, (2.146)

which make use of Eq. (2.129). Equations (2.142) and (2.145) define the so-
called covariant derivatives of co- and contravariant first-rank tensors, respec-
tively. Covariant derivatives of higher-rank tensors may be handled in a sim-
ilar manner. Thus,

DαQβγ ≡ ∂αQβγ − Γδ
αβQδγ − Γδ

αγQβδ (2.147)

and

DαQβγ ≡ ∂αQβγ + Γβ
αδQ

δγ + Γγ
αδQ

βδ (2.148)



224 2 Red Blood Cell Shapes and Shape Transformations

can be shown to transform as third-rank tensors. The general rule for all
mixed and higher-order tensors is that each lower (covariant) index comes
in with a −Γ term, while each upper (contravariant) index comes in with
a +Γ. Combining all these definitions (including DαQ ≡ ∂αQ for scalars)
produces a general definition of a covariant derivative operation Dα which
acts on tensor quantities of rank n to consistently produce corresponding
tensor quantities of rank (n + 1) with an additional covariant index α. The
operation of the covariant derivative thus defined obeys the usual chain rule,
so that, for example, Dα(QPβ) = (DαQ)Pβ+Q(DαPβ) and Dα(QβγP γδ) =
(DαQβγ)P γδ + Qβγ(DαP γδ), and so on, as long as the contracted indices
are an upper-lower pair.

Various formulae may be conveniently written using the covariant deriva-
tive. Thus,

DαYβ = −Cαβn̂ (Eq. (2.127)) (2.149)

Dαn̂ = C β
α Yβ (Weingarten) (2.150)

Dαgβγ = Dαgβγ = 0 (Eq. (2.128)) (2.151)

DαCβγ = DβCαγ (Codazzi) (2.152)

Dαεβγ Dαεβγ = 0 (2.153)

It is useful to define Dα ≡ gαβDβ and

∆ ≡ DαDα =
1√
g
∂α

(√
g ∂α

)
, (2.154)

which is called the Laplace–Beltrami operator.

C.3
Physical Quantities

Physical quantities are invariant under coordinate change. We will be dealing
with physical fields which live on the 2D surface S defined by R = R(s1, s2)
embedded in 3D space. Suppose that Q(s1, s2) is a physical scalar field over
S. It is natural to define the generalized in-plane gradient of Q by the prop-
erty,

dQ ≡ ∂αQ dsα ≡ ∇Q · dR, (2.155)

for arbitrary infinitesimal surface displacement dR = Yαdsα. It follows that

∇Q =
(
∂αQ

)
Yα =

(
DαQ

)
Yα =

(
DαQ

)
Yα =

(
YαDα

)
Q, (2.156)

which is a physical vector in the tangent plane and explicitly invariant under
coordinate transformations. The last equality of Eq. (2.156) suggests defining
the physical-vector di=erential operator,
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∇ = YαDα = YαDα, (2.157)

Now, suppose in a similar way that W(s1, s2) is a physical vector field over
S. Generally W may have components in the tangent plane and normal to it,

W = W βYβ + W⊥n̂. (2.158)

Coordinate derivatives of W are easy to calculate using the chain rule and
Eqs. (2.149)–(2.152) above,

∂αW = DαW =
(
DαW β

)
Yβ + W⊥C β

α Yβ +
(
− CαβW β + ∂αW⊥

)
n̂.

(2.159)
Combining Eqs. (2.157) and (2.159), we evaluate the generalized divergence
of W,

∇ · W =
(
YαDα

)
W = DαWα + 2HW⊥. (2.160)

An important example of this relation is when W = ∇Q, so
(
∇Q

)α = DαQ

and ∇ ·∇Q = ∆Q.
An important relation which we shall quote but not prove (Spivak 1965) is

a generalization of Gauss’s law. Suppose that Σ is a patch of curved surface
with perimeter ∂Σ. Let dl be an element of ∂Σ and p̂ ≡ pαYα be the in-
plane unit vector normal to dl. Suppose that T(p̂) is a 3D physical vector
with the invariant form T(p̂) = Tαpα, then∫

∂Σ

dl T(p̂) =
∫

∂Σ

dl Tαpα =
∫

Σ

dADαTα. (2.161)

Note in this relation that the physical vectors Tα can have both in-plane and
out-of-plane components.

We end this section with a small piece of unfinished business: the geo-
metric identification of the eigenvalues Cγ of the curvature matrix. It fol-
lows from Eq. (2.149) that C β

α is a mixed rank 2 tensor under coordinate
transformations, so its eigenvalues are coordinate independent by virtue of
Eq. (2.139). Thus, without changing the eigenvalues, we are free to go to co-
ordinates which are locally Cartesian, gαβ = δαβ , so that C β

α becomes sym-
metric and then to rotate coordinates to make it diagonal, Cαβ = Cαδαβ . In
these coordinates Eq. (2.131) now reads ∂αn̂ = CαYα (not summed). It then
follows that the magnitude of the change dn in n̂ as sα increases by dsα is
given by the angular deviation dθ of the normal, so dn = Cαdsα = dθ = dsα

Rα
,

where Rα is the local principal radius of curvature of S in the direction α (see
Eq. (2.17)) and Cα = 1

Rα
.

C.4
Variational Approach to Membrane Mechanics

Although we have focussed on a Newtonian, force-based approach to equi-
librium membrane mechanics, it may be useful here to collect some results
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which find application in the variational approach to vesicle shapes. Suppose
that we start with some initial membrane shape R(s1, s2) and consider a
new shape derived from it by small variations of the surface in the normal
direction,

R′ ≡ R + δR ≡ R + ηn̂, (2.162)

where η = η(s1, s2) is small and will be treated to linear order in what fol-
lows. The infinitesimally deformed surface R′ is labeled by the same coordi-
nates (s1, s2) but has its own geometry, which di=ers at order η from that of
R. Thus, the new tangent vectors are

Y′
α ≡ Yα + δYα ≡ ∂αR′ = ∂α

(
R + δR

)
= Yα + ηC β

α Yβ +
(
∂αη

)
n̂, (2.163)

where we have used Eq. (2.131). A short calculation based on Eq. (2.120) then
shows that the change in the metric tensor defined by g′αβ ≡ gαβ + δgαβ is

δgαβ = 2ηCαβ , (2.164)

from which the change δg in g ≡ detg is

δg = 4ηH g, (2.165)

where we have used the general relation,

δ ln det M = trM−1δM. (2.166)

It is now easy to calculate the variation δA of the surface area defined by

A′ ≡
∫

S′
ds1ds2

√
g′ ≡ A + δA,

δA =
∫

S

dAη(2H), (2.167)

which gives Eq. (2.21) for the leaflet area di=erence ∆A[S] in the special case
where η(s1, s2) is equal to the constant o=set D0 between the neutral planes.

Linear variations of the geometric variables determine the change in the
variational functional Fvar, Eq. (2.38), the stationarity of which is required for
mechanical equilibrium. Assume, for example, that Fpm has the form of the
sum of Eqs. (2.14) and (2.15),

Fpm =
∫

S

dAf(H,K) =
∫

S

dA
[κb

2
(
2H − C0)2 + κgK

]
. (2.168)

Then,

δFvar = δFpm + ΣδA − ∆PδV

=
∫

S

ds1ds2√g
[
η(2Hf) + δf

]
+ ΣδA − ∆PδV, (2.169)
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with δf = κb

(
2H −C0)δ(2H) + κgδK. Thus, to evaluate the variation δFvar,

all that is needed are the four geometrical variations δA, δV, δ(2H) and δK.
The first of these is given by Eq. (2.167). The remaining variations may be
evaluated by using the techniques outlined above. The results are

δV =
∫

S

dAη (2.170)

δ(2H) = − 2η
(
2H2 − K

)
+ gαβΓγ

αβ∂γη − gαβ
(
∂α∂βη

)
(2.171)

δK = − 2ηH
(
8H2 − 3K

)
+

(
2Hgαβ + Cαβ

)(
∂α∂βη − Γγ

αβ∂γη
)
. (2.172)

By use of these expressions in Eq. (2.169), the equilibrium condition may be
written in the form,

0 = δFvar

=
∫

S

dA
[
2H

(
Σ +

κb

2
(
2H − C0

)2
)
− ∆M

−M
(
4H2 − 2 detC

)
− ∆P

]
η + boundary terms, (2.173)

where integration by parts has been used to transfer the derivatives away
from the shape variations η. For a closed vesicle, the boundary terms vanish
and the shape equation (2.67) reemerges. This variational approach was used
in the original derivation by Ou-Yang and Helfrich (1987a) (see also Ou-Yang
and Helfrich (1987b), Ou-Yang and Helfrich (1989), Capovilla and Guven
(2002) and Fournier (2007)).

Appendix D
Mechanical Equations of Membrane Equilibrium

In this appendix we present details of some of the membrane-mechanics cal-
culations that have been outlined in Sections 2.4.2 and 2.4.3. We will make
free use of general curvilinear coordinates and the results of Appendix C. We
start by demonstrating the decomposition of boundary stresses and their re-
lation to the stress tensor. In Appendix D.2 we develop the form of the stress
tensor for a simplified model of the fluid membrane with bending rigidity
and we show how force and moment balance leads to equations identical to
those derived variationally by Ou-Yang and Helfrich (1987a). Inclusion of the
Gaussian-curvature term is discussed in Appendix D.3. Appendix D.4 devel-
ops the treatment of the deformation matrix M in curvilinear coordinates.
These results are applied to the membrane skeleton in Appendix D.5, where
they allow the stress tensor to be derived from the elastic-energy functional.
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Finally, in Appendix D.6, we derive explicit equilibrium-shape equations for
axisymmetric geometry, first for the plasma membrane only and then for the
composite membrane.

D.1
Decomposition of the Stress Tensor for Membranes

As in three-dimensional materials, internal stresses in a membrane produce
boundary forces which act on an arbitrary membrane patch Σ (Fig. 2.12).
As in Section 2.4.2, we define T(p̂) to be the force per unit length acting
locally at a point (s1, s2) on the boundary of Σ. The vector p̂ is the outwardly
directed in-plane normal to the boundary element locally at (s1, s2). The total
force on Σ due to the boundary stresses is given by

FΣ =
∫

∂Σ

dl T(p̂), (2.174)

where dl is the arc length along the boundary ∂Σ. We will now demonstrate
that T(p̂) can be decomposed as in Eq. (2.50),

T(p̂) = pαTα, (2.175)

where p̂ = pαYα = pαYα (Yα are the local tangent vectors of Appendix C)
and the vectors Tα are independent of p̂.

Consider (Fig. 2.52(a)) a small triangular patch bounded by a curve c and
the two coordinate curves, sα = constant, which cross one another at the
point P . We will be taking the limit as c approaches P and the patch becomes
small. In this limit, the curvature of the sides contributes only higher-order
terms in the (infinitesimal) lengths, dl, dl1, dl2, and we may write,

p̂ dl + ν̂αdlα = 0, (2.176)

where p̂ and ν̂α are the outward-pointing in-plane unit normals. The normal
vectors ν̂α are just normalized versions of the contravariant tangent vectors
(Fig. 2.51), ν̂1 = −Y2/

√
g22 and ν̂2 = −Y1/

√
g11, so, by comparing coef-

ficients of Y2 in Eq. (2.176), we find dl1 = p2

√
g22 dl and dl2 = p1

√
g11 dl.

In the same limit, force equilibrium of the triangular patch gives us

T(p̂) dl + T(ν̂α) dlα = 0. (2.177)

Substituting for dlα, we find(
T(p̂) + T(ν̂1)p2

√
g22 + T(ν̂2)p1

√
g11

)
dl = 0. (2.178)

By defining the p̂-independent quantities, T1 = −T(ν̂2)
√

g11 and T2 =
−T(ν̂1)

√
g11, we arrive finally at Eq. (2.175). A further expansion of the tan-

gential components of Tα in terms of the tangent vectors gives (Eq. (2.51)),

Tα = TαβYβ + Tα
⊥ n̂. (2.179)
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Fig. 2.52 Notation for membrane-patch calculations. (a) Infinitesimal triangular patch
bounded on sides 1 and 2 by the coordinate axes and on the third side by the curve c.
The corresponding outwardly directed in-plane unit normals ν̂1, ν̂2 and p̂ are shown. This
geometry is required for the argument in Sec. D.1. (b) Infinitesimal parallelogram patch
bounded on all four sides by the coordinate axes. The outwardly directed in-plane unit nor-
mal vectors p̂i are shown. This geometry is required for arguments in Sections D.2 and
D.5.

D.2
Stress Tensor for the Helfrich Model

In this section we derive the form, Eq. (2.64), of the stress tensor for a uni-
form isotropic fluid membrane with an isotropic (Helfrich) bending rigidity.
There is a large class of microscopic membrane models which lead to the
same form of stress tensor, only with di=erent prescriptions for calculating
the material parameters κb and C0 in terms of microscopic quantities. All
such models have two features. One is membrane fluidity, that is, the ab-
sence of resistance to static in-plane shear stresses; the other is some form
of stress-density profile across the thickness of the membrane, which is the
microscopic origin of the bending moment M, Eq. (2.61). The derivation of
Eq. (2.64) is, of course, model dependent. The simplest such model and the
one we adopt for our derivation is that of a stack of infinitesimally thin in-
dependent sheets or layers, each of width dz and with an isotropic in-plane
tension t(z, s1, s2)dz. We label each layer by its (fixed) perpendicular dis-
placement z from the reference surface R(s1, s2) which will characterize the
membrane at the macroscopic level, so that the layer labeled by z has the
shape,

R(z, s1, s2) = R(s1, s2) + zn̂(s1, s2), (2.180)

parametrized by the same transverse labels (s1, s2) in each layer. The overall
thickness of the stack (i.e., the range of z) must be small on the scale of all
relevant radii of curvature in order that the eventual 2D continuum descrip-
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tion (e.g., Eq. (2.14)) should make sense. Note that the position z = 0 of the
reference surface within the stack is at this point arbitrary. We will find be-
low that there is a natural choice – the so-called “neutral surface” – for this
position.

The tension distribution t(z, s1, s2) depends on the molecular structure of
the membrane and also on the local state of membrane bending. In princi-
ple, t(z, s1, s2) must emerge from a microscopic calculation based on spe-
cific molecular and/or material properties and the way in which these vary
both across the thickness (z) of the membrane and along its surface (s1, s2).
Luckily, however, we will need for our purposes only generic behavior. Note
that, in order that the stack be able to produce a local bending moment when
deformed, it is necessary that the tension in each layer be able to respond lo-
cally to the stretching or compression caused by changes of local curvature,
so in general ∂t/∂sα �= 0, unlike the situation for Eqs. (2.46) or (2.56). At first
sight it may appear surprising that the layer tensions, although isotropic, are
generally non-uniform, despite the fact that the model purports to describe
a fluid membrane. The point is that the membrane has a thickness on the
molecular scale, and its molecular constituents can and do transfer stresses
over distances comparable to their dimensions. The z-dependent stresses in-
duced by membrane bending cannot be relieved by fluid motion in individ-
ual layers, since the molecules of the membrane span a significant fraction
of its thickness. Thus, the non-uniformity in t(z, s1, s2) results from lateral
non-uniformity of the bending deformations of the membrane and the distri-
bution in z of the bending stresses. For similar reasons, there are also forces
acting between the layers in the normal direction, the net e=ect of which is to
produce a non-zero normal component of the stress tensor Tα

⊥, which was
absent for the soap film, Eq. (2.54).

The variation t(z) across the thickness of the stack must have two generic
properties in order that the membrane mechanics should correspond to
those of the Helfrich model. First, there must be a state of relaxed equi-
librium (neutral) whenever the mean curvature takes on a value such that
2H = C0. This reflects the existence of a spontaneous curvature. Note that
even in this “relaxed” state there is generally a non-trivial stress profile t0(z)
across the membrane stack, for example, if the lipid heads are large and the
tails small, then the pressure will be large in the head region (i.e., less ten-
sion) and small in the tail region (more tension). Relaxed equilibrium means
that there is no local bending moment in this state, so

∫
dz zt0(z) = 0, a con-

dition which requires a specific choice for z = 0 called the neutral surface.
Second, when 2H moves away from this relaxed value, the stresses in the
membrane must scale as 2H − C0, so that overall

t(z) = t0(z) + (2H − C0)t1(z) (2.181)

and
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M ≡
∫

dz zt(z) = κb(2H − C0) with κb ≡
∫

dz zt1(z), (2.182)

which is the same as Eq. (2.61) of the text, only now with an explicit pre-
scription giving the bending modulus κb in terms of the stress profile. It
is not obvious that the change in the membrane stress profile should scale
only or even principally with the isotropic quantity (2H −C0). Indeed, other
measures of membrane geometry may also appear (one of which we will con-
sider in Appendix D.3). However, if terms beyond Eq. (2.181) do occur, then
the membrane cannot be described in terms of the spontaneous curvature
model, Eq. (2.14).

We turn now to the geometry of the layered stack. Note that, if D is
the membrane thickness, then the stress changes in the membrane are
expected to be proportional to D(2H − C0), a ratio which must be small
in order that a two-dimensional representation of the membrane should
make sense. On this basis we expect t1 ∼ t0D. A simple model would be
t(z) = t0(z)

[
1 + A(2H − C0)z

]
; however, this is not required for what fol-

lows. Of course, Equation (2.182) contains only the first term in what is more
generally an expansion in powers of the small ratio D(2H −C0). The higher
terms are expected to be small and we will neglect them in the following,
thus justifying an expansion in powers of zC.

Because of the o=set from R(s1, s2), the di=erential geometry of layer z

will di=er from that of the reference surface. Thus, although the local nor-
mals agree, n̂(z) = n̂, the tangent vectors di=er,

Yα(z) =
∂R(z)
∂sα

= Yα + zC β
α Yβ , (2.183)

from Eq. (2.131). It follows from Eq. (2.183) that

gαβ(z) = Yα(z) · Yβ(z) = gαβ(1 − z2K) + 2z(1 + zH)Cαβ (2.184)

and, therefrom, that√
g(z) =

√
g

[
1 + 2zH + z2K + O

(
z3

)]
(2.185)

gαβ(z) = gαβ
(
1 − 3z2K

)
− 2z (1 − 3zH) Cαβ + O

(
z3

)
(2.186)

Yα(z) =
(
1 − z2K

)
Yα − zCα

β Yβ + 2z2HCα
β Yβ + O

(
z3

)
, (2.187)

in which terms of order z3 and higher have been dropped. Using these equa-
tions, we arrive at the useful relation,√

g(z)Yα(z) =
√

g
[(

1 + z2H
)
Yα − zCα

βYβ
]
+ O

(
z3

)
, (2.188)

in which the coe;cient of z2 conveniently vanishes.
We are now in a position to calculate the net force on the small (multilayer)

membrane patch defined by the coordinates (s1
0, s

2
0) and (s1

0 +ds1, s2
0 +ds2),

as shown in Fig. 2.52(b). The net boundary force on this patch is the sum of
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contributions Fn, n = 1, 2, 3, 4, from the four sides. Each of these forces can
be evaluated both at the macroscopic level and at the microscopic level of the
multilayer-membrane model. Thus, at the macroscopic level,

F1 = dl1T(p̂1) = dl1
(
p̂1

)
α
Tα

=
√

g ds1T2 =
√

g ds1
(
T2

‖ + T 2
⊥n̂

)
=

(
F1

)
‖ +

(
F1

)
⊥, (2.189)

where we have used the relations dl1 = ds1√g11 and p̂1 =
√

g/g11 Y2. On
the other hand, the in-plane part of F1 can be calculated by adding up the
tensions from the individual layers of the model membrane,(

F1

)
‖ =

∫
dz dl1(z)t(z)p̂1(z) = ds1

∫
dz t(z)

√
g(z) Y2(z)

= ds1√g

∫
dz t(z)

[(
1 + z2H

)
Y2 − zC2

βYβ
]
, (2.190)

where we have used Eq. (2.188) for the last line. It is convenient to define the
integrals (see Eq. (2.182),

T0 = T0(s1, s2) ≡
∫

dz t(z) and M = M(s1, s2) ≡
∫

dz zt(z), (2.191)

corresponding to the net densities of force and bending moment across the
membrane. This allows us to write Eq. (2.190) in the form,(

F1

)
‖ = ds1√g

[(
T0 + 2HM

)
Y2 −MC2

βYβ
]
. (2.192)

Comparison of Eqs. (2.189) and (2.192) now permits T2
‖ to be written in

terms of the quantities T0 and M. The same calculation may be done for the
force F2. The overall result is the identification,

Tα
‖ = (T0 + 2HM)Yα −MCα

β Yβ . (2.193)

The definition,

τ0 ≡ T0 + 2HM− κb

2
(
2H − C0

)2
, (2.194)

leads finally to

Tα
‖ =

(
τ0 +

κb

2
(
2H − C0

)2
)
Yα −MCα

β Yβ , (2.195)

which is equivalent to the Helfrich stress tensor, Eq. (2.64), but with the nor-
mal component Tα

⊥ still undetermined.
At this point in the argument it is still unclear both why τ0 as defined

by Eq. (2.194) is uniform (Eq. (2.67))50) and why the normal component

50) Indeed, the definition Eq. (2.194) appears quite arbitrary at this point. Its only significance
lies in the fact that Eq. (2.67) requires that this particular combination of terms be spatially
uniform.
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of the stress tensor is given by Tα
⊥ = ∂αM (Eq. (2.63)). Both these rela-

tions are a consequence of the conditions of mechanical equilibrium for the
patch. The arguments are given in general form in the text51) at Eqs. (2.49)
(leading to Eq. (2.53) and thereby to Eq. (2.67)) and Eq. (2.57) (leading to
Eq. (2.63)), respectively. It may be of pedagogical value to rephrase these ar-
guments in terms of the equilibrium of the infinitesimal patch shown in
Fig. 2.52. We carry through the calculation for the force equilibrium only,
leaving the corresponding torque equilibrium as an exercise for the reader.
Equation (2.189) gave the expression F1 = ds1√g T2, which is to be evalu-
ated at s2 = s2

0 + ds2. A similar treatment for F3 gives the same expres-
sion but with a minus sign, which is to be evaluated at s2 = s2

0. Thus,
F1 + F3 = ds1ds2 ∂2

(√
g T2

)
. Including the contributions from the 2 and

4 edges and adding in the pressure force gives for translational equilibrium
of the patch,

Fnet = ∆P n̂ +
4∑

n=1

Fn = ds1ds2 ∂α

(√
gTα

)

= dA (∆P n̂ + DαTα) = 0, (2.196)

where in writing the last equality, we have made use of Eq. (2.146). Equa-
tion (2.196) rederives Eq. (2.53). In evaluating Eq. (2.53) to reach Eq. (2.67),
it is useful to use the chain-rule property of the covariant derivative, so

DαTα = Dα

(
TαβYβ + Tα

⊥n̂
)

=
(
DαTαβ

)
Yβ + Tαβ

(
DαYβ

)
+

(
DαTα

⊥
)
n̂ + Tα

⊥
(
Dαn̂

)
. (2.197)

Collecting normal and in-plane components of Eq. (2.53) then leads to

∆P − TαβCαβ + DαTα
⊥ = 0 and

DαTαβ + Tα
⊥Cβ

α = 0. (2.198)

Substituting the Helfrich stress, Eq. (2.64), and making liberal use of the
di=erential relations Eqs. (2.149)–(2.154) from Appendix C leads to the Ou-
Yang equations, Eq. (2.67), for membrane-shape equilibrium. These equa-
tions may, of course, be derived directly from the free energy functional us-
ing the variational approach(Capovilla and Guven 2002; Lomholt and Miao
2006; Fournier 2007), as discussed in Appendix C.4.

51) It is, of course, possible to calculate directly the intrinsic moment for the layer model,
Nint =

∫
dl dz (zn̂)×

(
t(z)p̂(z)

)
→

∫
dl n̂× p̂

∫
dz zt(z) at lowest order in z, so that

the argument leading to Eq. (2.63) gives directly T α
⊥ = ∂β

∫
dz zt(z).
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D.3
Inclusion of Gaussian Curvature

The simple fluid-membrane model described in Appendix D.3 does not give
rise to Gaussian curvature e=ects. If a Gaussian curvature term of the form
of Eq. (2.15) is present, generalization is required of the restricted treatment
of torques in Section 2.4.2 at Eq. (2.62) and the following material. Thus,
generally, the intrinsic boundary torque has the form,

Nint =
∫

∂Σ

dl N(p̂) =
∫

∂Σ

dl pαNα =
∫

∂Σ

dl pα

(
NαβYβ+Nα

⊥n̂
)
, (2.199)

where N(p̂) is the linear density of boundary torque and the representation
in terms of the direction-independent components Nα follows from a cal-
culation in full parallel to that given for Tα in Appendix D.1. What N(p̂)
represents physically is the torque per unit edge length produced by the vari-
ation of the 3D material stress across the thickness of the membrane. Such a
torque can have no normal component, so Nα

⊥ vanishes identically.52) Thus,
by use of Gauss theorem,

Nint =
∫

Σ

dADα

(
NαβYβ

)
=

∫
Σ

dA
[(

DαNαβ
)
Yβ −NαβCαβn̂

]
, (2.200)

so torque equilibrium, Nnet = 0 (Eq. (2.60)), now requires,

NαβCαβ = 0 and (2.201)

DαNαβ = Tα
⊥εαγgγβ , (2.202)

where we have assumed that the stress tensor is symmetric. Equation (2.202)
is equivalent to

Tα
⊥ = εαβgβγDσNσγ . (2.203)

Equation (2.201) places a constraint on the form of Nαβ . The simple Helfrich
form, Eq. (2.62), for the torque density gives N(p̂) = Mn̂×p̂ = MpαεαβYβ ,
so Nαβ

Helfrich = Mεαβ , from which it is easy to see that Eq. (2.201) is satisfied
and Eq. (2.203) reduces to Eq. (2.63).

What happens when the Gaussian contribution, Eq. (2.15), is added to the
Helfrich model? Recall that the Gauss–Bonnet theorem guarantees that this
addition cannot in any way a=ect the equilibrium shapes of closed vesicles of
fixed topology. It can be shown by variational methods (Capovilla and Guven
2002; Lomholt and Miao 2006; Fournier 2007) that there is no change in

52) The argument depends only on the fact that the edge is assumed to be cut normally to the
tangent plane, so that the normal vector n̂ is parallel to the exposed edge at each point of
the boundary. The net torque due to the strip of edge dl is dl

∫
dz(R + zn̂) × t(z, p̂),

where t(z, p̂) is the force density profile. Note that
∫

dzt(z, p̂) ≡ T(p̂), so the first term
is already included in Eq. (2.58) and it is only the second term which is part of Nint.
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form of the stress tensor Tα, that is, Eq. (2.64) remains valid. However, the
torque-density tensor acquires an additional term,53)

Nαβ = Mεαβ + κg

(
2Hδα

γ − Cα
γ

)
εγβ . (2.204)

Note that the extra term continues to satisfy Eq. (2.201). At first sight these
two statements might appear inconsistent, since Eq. (2.203) suggests that
a change in Nαβ must produce a corresponding change in Tα

⊥ . What avoids
this inconsistency is a property of the added term in Eq. (2.204): Dα(Cγ

γεαβ−
Cα

δε
δβ) = 0 by virtue of Eqs. (2.152) and (2.153). The upshot is that the

Gaussian curvature term does not a=ect the shape equations, which only
involve the stress tensor. The only way the Gaussian term can a=ect mem-
brane shapes is via membrane boundaries, at which the response to applied
torques does depend on κg via Eq. (2.204). It follows that it is only possible
to infer values of κg from equilibrium membrane-shape observations in the
presence of open boundaries.54)

The simple model used in Appendix D.2 of isotropic layers with a dis-
tribution t(z) of in-plane tensions cannot produce Gaussian-curvature ef-
fects. To incorporate such e=ects in a layer model, it is necessary to allow
in-plane anisotropy and to write for the layer stress tensor density tα(z) =
tαβ(z)Yβ(z) + tα⊥(z)n̂. As discussed earlier, since the molecular constituents
of the membrane transfer stress over distances comparable to membrane
thickness, the z-dependent stresses induced by membrane bending cannot
be relieved by fluid motion in individual layers. Thus, for anisotropic bend-
ing C1 �= C2, in general we might expect tαβ to be anisotropic. Since tαβ is
isotropic for a flat membrane, to first order in curvature we may write,

tαβ(z) =
[
t0(z) + (2H − C0)t1(z)

]
δα
β + µ1(z)

[
2Hδα

β − Cα
β (z)

]
, (2.205)

where the first term is the previous isotropic part t(z), Eq. (2.181), and the
second term represents a new anisotropic term generically comparable in
magnitude to the t1(z) term of the isotropic part. It is straightforward to
show that the anisotropic term produces the new term in Eq. (2.204) for the
intrinsic torque density with the microscopic prescription κg =

∫
dz zµ(z).

The only problem is that this same term also produces additional contribu-
tions in the stress tensor Tα which, if present, would violate the condition
(arising from the Gauss–Bonnet theorem ) that a Gaussian term in the en-

53) NHelfrich(p̂) has a magnitude which is independent of p̂ and always points along the
edge. Both of these isotropy properties are compromised by the added term in Eq. (2.204).
Note, however, that, when the two principal curvatures are equal (so C is proportional
to the unit matrix), then Nαβ ∼ εαβ , so p̂ · N(p̂) = 0 and isotropy is restored. This
conditional isotropy reflects membrane fluidity.

54) This statement assumes that topology is fixed, as it is for highly insoluble lipids. By con-
trast, for systems like microemulsions, in which topology change via the solution is al-
lowed on experimental time scales, the Gaussian modulus can a=ect the equilibrium dis-
tribution of shapes and is observable.
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ergy cannot influence the membrane stresses. Thus, it is not hard to repeat
the calculations, Eqs. (2.189)–(2.193),

Tα
‖ =

∫
dz tαβ(z)

√
g(z)
g

Yβ

=
∫

dz tαβ(z)
[(

1 + 2zH
)
Yβ − zCβ

γ Yγ + O
(
z3

) ]
. (2.206)

At leading order, the anisotropic part of the stress tensor generates a new
term of order z (membrane thickness),(∫

dz µ1(z)
) (

2Hδα
β − Cα

β

)
Yβ . (2.207)

Thus, the condition
∫

dz µ1(z) = 0 must be satisfied in order that the stress
tensor be independent of µ1. This condition, which must arise from the mi-
croscopic mechanics, is presumably related to 3D membrane fluidity. Finally,
at order z2, we find,

∆Tα
‖ = 4Hκg

(
Hδα

β − Cα
β

)
Yβ . (2.208)

The cancellation of these terms requires counter-terms of order z2 in
Eq. (2.205). The physical origin of these cancellations is buried in the mi-
croscopic material mechanics, which is beyond the scope of this discussion.

D.4
Deformation Matrix M in Curvilinear Coordinates

We next consider membrane mechanics for the composite membrane con-
sisting of the fluid plasma membrane coupled to the membrane skeleton.
To treat the mechanics of the membrane skeleton in a more general way
than was done in Section 2.4.3, we will need to be able to express the lo-
cal deformation matrix M introduced in Appendix B in a properly covariant
manner. M expresses the linear deformation of a small (infinitesimal) local
patch of membrane near the arbitrary point (s1

0, s
2
0) during the transforma-

tion of the cytoskeleton from its undeformed configuration R0 to its final
deformed configuration R. It will be convenient to treat this neighborhood
as (locally) flat and to write

R0

(
s1, s2

)
− R0

(
s1

0, s
2
0

)
= X0 = ai

(
s1, s2

)
âi

(
s1

0, s
2
0

)
, (2.209)

where the two Cartesian unit vectors âi define the local tangent plane of the
undeformed shape R0 at (s1

0, s
2
0). A similar representation of the deformed

patch is given by

R
(
s1, s2

)
− R

(
s1

0, s
2
0

)
= X = xi

(
s1, s2

)
x̂i

(
s1

0, s
2
0

)
. (2.210)
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Note that the 3D planes defined by the unit vectors âi and x̂i are generally
di=erent and that the choices of Cartesian axes in these planes are arbitrary
and unrelated. The covariant tangent vectors are given by (Eq. 2.119)

Yα =
∂R
∂sα

=
∂xi

∂sα
x̂i ≡ Yαix̂i, so x̂i = Y α

i Yα. (2.211)

The corresponding contravarient tangent vectors must obey Yα · Yβ = δβ
α

(Eq. (2.125)), so we may conclude

Yαi =
∂xi

∂sα
and Y α

i =
∂sα

∂xi
, (2.212)

and similarly for the tangent vectors Y0α and Yα
0 of the undeformed shape.

Orthogonality and completeness of the tangent vectors lead to the useful
relations

YαiY
β
i = δβ

α and YαiY
α
j = δij . (2.213)

The relation xi = Mijaj which defines the deformation matrix connects the
Cartesian coordinates of points of X and X0 which map into one another,
that is, points with the same labels (s1, s2). It follows that

Mij =
∂xi

∂aj

∣∣∣
s

=
∂xi

∂sα

∂sα

∂aj
= YαiY

α
0j , (2.214)

where we have used Eq. (2.212) at the last step. Note that the ordering of the
lower/upper indices in Eq. (2.214) is significant, because raising the index
of Yα involves the metric tensor g while lowering the index of Y0

α involves
the metric tensor g0. Mij is explicitly dependent on the arbitrary choices of
Cartesian axes âi and x̂i; however, in the calculation of physical quantities
this dependence will disappear. Thus, for example, it is easy to show from
Eq. (2.214) that

λ1λ2 = detM = |Y1
0 × Y2

0| =
√

g

g0
=

dA

dA0
and

(
λ2

1 + λ2
2

)
= trMT M = trg g−1

0 , (2.215)

which allow the area and shear strains Eqs. (2.118) to be expressed in terms
of the metric tensors.

It is sometimes convenient to represent the matrix M covariantly, which
can be done in in terms of either the undeformed or deformed bases. Thus,
for example, Mij = YαiM

α
βY β

j with Mα
β = Y α

0jYβj . Functions of M like
the Cauchy strain tensor Eq. (2.113) may also be expressed in terms of the
tangent vectors. For example, direct calculation shows that

uij =
1
2

(
Y α

0igαβY β
0j − δij

)
, (2.216)
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where g is the metric tensor of the deformed surface. Equivalently, in the
undeformed representation, one finds

uαβ ≡ Y0αiuijY0βj =
1
2
[
gαβ − (g0)αβ

]
, (2.217)

which generalizes Eq. (2.114) to curvilinear coordinates in that 2uαβdsαdsβ =
dl2 − dl20.

D.5
Stress Tensor for the Membrane Skeleton

The stress tensor Tαβ
ms of the membrane skeleton is needed in order to com-

pute the normal force Q, Eq. (2.76), which acts between the plasma mem-
brane and the membrane skeleton and, thus, to carry through the program
outlined in Section 2.4.3 to find the equilibrium shape of the composite
membrane. The so-called constitutive relations which connect the stresses
Tαβ

ms to the strains α and β, Eqs. (2.24) and (2.25), or, equivalently, to the lo-
cal elastic deformation matrix M (Appendix B.2) are implicit in Eq. (2.28) for
the elastic energy Fms or in the expression for the local elastic energy density
fms(M) (Appendix B.2). In this section we show how to derive Eq. (2.80) for
Tαβ

ms which expresses this connection. In the remainder of this section we
will drop the subscript “ms” on the stress tensor to simplify the notation.

Consider an infinitesimal membrane skeletal patch (Fig. 2.52(b)) defined
by the coordinates (s1

0, s
2
0) and (s1

0 + ds1, s2
0 + ds2). The change δF in the

elastic energy of this patch under a change of mapping from X0 → X to
X0 → X + δX (in the notation of Eqs. (2.209) and (2.210)) can be calculated
in two di=erent ways. On the one hand,

δF = dA0
∂fms

∂Mij
δMij , (2.218)

where δMij = δ(YαiY
α

0j) = Y α
0jδYαi = Y α

0j

[
x̂i · ∂(δR)

∂sα

]
. On the other hand,

this change in energy must be equal to the work done by the boundary forces
acting on the deformed patch as it moves from its position under the defor-
mation X to its position under X + δX. This work may be calculated by
adding up contributions, δWn, from the four boundaries:

δW =
4∑

n=1

δWn = Fn · δRn =
4∑

n=1

dlnT(p̂n) · δRn, (2.219)

where Fn is the force acting at the midpoint of side n and δRn is the corre-
sponding displacement under δX. It will be convenient to define the stress
tensor,55)

55) Tij may be viewed as the stress tensor in the local Cartesian coordinates defined by the
unit vectors x̂1, x̂2 of Appendix D.4.
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Tij ≡ YαiT
αβYβj , so Tαβ = Y α

i TijY
β
j . (2.220)

In this notation, for example, F1 = dl1T(p̂1) =
√

g11 ds1(p̂1)αTαβYβ =√
g ds1Y 2

i Tijx̂j , where we have used p̂1 =
√

g/g11Y2 and Eq. (2.211). Com-
bining the contributions from sides 1 and 3 gives (to lowest order in ds1, ds2)

δW1 + δW3 =
√

g ds1Y 2
i Tijx̂j · (δR1 − δR3) = dATijY

2
i x̂j ·

∂(δR)
∂s2

,

(2.221)
where we have used dA =

√
g ds1ds2 and δR(s1

0, s
2
0) = 0. Adding in the

contributions from sides 2 and 4, we obtain

δW = dA TijY
α
i x̂j ·

∂(δR)
∂sα

. (2.222)

Equating δW and δF and noting dA/dA0 = detM (Eq. (2.215)), we arrive
finally at the key formula,

Tij =
1

detM
Mik

(
∂fms

∂Mjk

)
. (2.223)

To evaluate Eq. (2.223) we need the chain rule, ∂fms
∂Mjk

= ∂fms
∂α

∂α
∂Mjk

+
∂fms
∂β

∂β
∂Mjk

, plus Eq. (2.118) and the identities, Mik
∂(detM)

∂Mjk
= detM δij and

∂(trMT M)
∂Mjk

= 2Mjk. The result is

Tij =
(

∂fms

∂α

)
δij +

1
(detM)2

(
∂fms

∂β

) [
MikMjk − tr

(
MT M

)
δij/2

]
,

(2.224)
from which we find from Eq. (2.220)

Tαβ =
(

∂fms

∂α

)
gαβ +

1
(1 + α)2

(
∂fms

∂β

) [
gαβ

0 − (1 + α)(1 + β)gαβ
]
,

(2.225)
which is given in the text as Eq. (2.80).

D.6
Shape Equations Under Conditions of Axisymmetry: Some Examples

We will derive in this section explicit shape equations for fluid membranes
with bending rigidity in axisymmetric geometries. The parametrization, il-
lustrated in Fig. 2.12, involves as surface coordinates the arc length s along
a line of longitude and the azimuthal angle φ. The radial distance from the
symmetry axis is r and θ denotes the angle of the surface away from the
radial direction, so that

dr

ds
= cos θ. (2.226)
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In the general curvilinear notation of Appendix C, we take (s1, s2) ≡ (s, φ),
so Y1 = ŝ and Y2 = rφ̂. It then follows that

g = gαβ =
[
1 0
0 r2

]
with g = r2 and

C = Cα
β =

[
Cm 0
0 Cp

]
with Cm =

dθ

ds
=

d sin θ

dr
, Cp =

sin θ

r
, (2.227)

so 2H = trC = Cm + Cp and detC = CmCp. The only non-vanishing
Christo=el symbols are Γ2

12 = Γ2
21 = 1

r
dr
ds and Γ1

22 = −r dr
ds . Because of

axisymmetry, all these quantities depend on s alone and are independent
of φ. It follows from Eq. (2.227) that

dCp

dr
=

1
r

(
Cm − Cp

)
, (2.228)

which is, again, a consequence of axisymmetry.
First, we consider the simple fluid membrane with bending rigidity, as

treated in Section 2.4.2, where we derived two forms of the shape equations,
the general Ou-Yang equations, Eq. (2.67), based on the stress-tensor anal-
ysis, and the more-restrictive Helfrich equation, Eq. (2.69), based on axial
force balance in the axisymmetric geometry. The Ou-Yang equation, which
is generally a partial di=erential equation in the two surface variables (s1, s2),
becomes for the axisymmetric geometry an ordinary di=erential equation in
the arc length variable s, since 2H = Cm(s) + Cp(s) and

∆M =
1√
g

d

ds

(√
g

d(2H)
ds

)
=

κb

r

d

ds

(
r
d(Cm + Cp)

ds

)
. (2.229)

With this relation substituted, Eq. (2.67) along with Eq. (2.226) and the def-
initions Eq. (2.227) of Cm and Cp become a system of four ordinary di=er-
ential equations for the four variables Cm(s), Cp(s), r(s), and θ(s) which
can be solved simultaneously for the equilibrium shape. The Helfrich equa-
tion (Deuling and Helfrich 1976) which, in the notation of the present section
takes the form,

κb
d

dr
(Cm + Cp) =

1[
1 − (rCp)2

][
κb

(
(Cp − C0)2 − C2

m

)
Cp + 2τ0Cp − ∆P

]
, (2.230)

constitutes a first integral of this system under conditions such that the axial
tension vanishes (e.g., for a closed vesicle).

Next, we derive shape equations for an axisymmetric composite mem-
brane consisting of a fluid membrane of the Helfrich type described above56)

56) It may be useful to remind the reader here that, in both Eq. (2.230) above and what follows
below for the composite membrane, the area-di=erence elasticity Eq. (2.16) is still absent.
To include this e=ect requires the further replacement of C0 by Ce=

0 , Eq. (2.41).
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but now associated with an elastic membrane skeleton of the type described
in Section 2.4.3 which is also axisymmetric. For simplicity, we will imagine
that the unstrained shape S0 of the membrane skeleton is a planar disk,
whose center is coincident with the pole P of Fig. 2.12 and which is then
deformed in an axisymmetric manner to fit onto the patch and allowed to
come to elastic equilibrium. Such a geometry is relevant, for example, to cal-
culation of the shape of echinocytic spicules and has been discussed in this
context by Mukhopadhyay et al. (2002). Suppose that the radial variable of
the undeformed patch is denoted s0 with s = s0 = 0 at the pole P. Then,
the elastic state of the membrane skeleton when it is deformed to conform
to the patch is completely specified by giving the mapping s(s0) (or equiva-
lently s0(s)) with fixed φ = φ0. The principal axes of the strain are now the
coordinate axes (s, φ), and it is easy to see that the principal extension ratios
(Section 2.3.3 and Appendix B) take the form,

λ1 =
ds

ds0
and λ2 =

r

s0
, (2.231)

from which the strain invariants α and β, Eqs. (2.24)–(2.25), can be calcu-
lated. The stress tensor can be calculated from Eq. (2.225) (Eq. (2.80)) and
turns out to be diagonal in the (s, φ) representation by virtue of the axisym-
metry, Tms = (Tms)α

β =
[

τ1 0
0 τ2

]
with,

τ1 =
∂fms

∂α
+

∂fms

∂β

1
2

(
1
λ2

2

− 1
λ2

1

)

and

τ2 =
∂fms

∂α
+

∂fms

∂β

1
2

(
1
λ2

1

− 1
λ2

2

)
, (2.232)

which are equivalent to Eq. (2.79). Note that Eq. (2.231) allows λ1, λ2, α, β, τ1

and τ2 all to be expressed in terms of the two unknown functions s0(s)
and r(s).

The general equations for equilibrium of the membrane skeleton have
been derived in Section 2.4.3 as Eqs. (2.76)–(2.77). In the axisymmetric case,
these equations become, respectively,

Q = τ1Cm + τ2Cp

=
∂fms

∂α

(
Cm + Cp

)
− ∂fms

∂β

1
2

(
1
λ2

1

− 1
λ2

2

)
(Cm + Cp

)
(2.233)

0 = DαTα
β ≡ ∂αTα

β + Γα
αγT γ

β − Γγ
αβTα

γ

=
dτ1

ds
+ (τ1 − τ2)

1
r

dr

ds
, (2.234)
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in which we have inserted explicitly the Christo=el symbols from below
Eq. (2.227). Equation (2.233) expresses the normal pressure Q on the cy-
toskeleton due to the plasma membrane (positive when pointing outward),
whose negative is the corresponding pressure of the cytoskeleton on the
plasma membrane. It is not hard to show that Eq. (2.234) expresses axial
force balance for the infinitesimal slice of membrane skeleton between s to
s+ds. To complete the treatment of the composite membrane, it is now nec-
essary to incorporate the cytoskeletal tensions, Eqs. (2.232) or (2.233), into
the membrane-shape equations, as discussed at the end of Section 2.4.3.
This can be done in two ways. On the one hand, one can make the sub-
stitution ∆P → ∆P − Q in the Ou-Yang equation (2.67). Alternatively, one
can add the cytoskeletal tension τ1 to the axial force balance, Eq. (2.68), as
Tp̂ → Tp̂ + τ1.57) This change implies the replacement τ0 → τ0 + τ1 in
Eqs. (2.69) and (2.230).

A full set of equations for the axisymmetric shape problem of the com-
posite membrane requires five equations for the five unknown functions
s0(s), Cm(s), Cp(s), r(s) and θ(s). Three of these are provided as previously
by Eq. (2.226) and the expressions, Eqs. (2.227), for Cm,p. The fourth is
Eq. (2.234). The final equation is the shape equation, either in the Ou-Yang
form Eq. (2.67) with ∆P → ∆P − Q or in the (once-integrated) Helfrich
form Eq. (2.230) with τ0 → τ0 + τ1. By way of illustration, for linear elasticity
(Eq. (2.27)), Eqs. (2.234) takes the particularly simple form,

d

ds

[
Kα

(
r

s0

ds

ds0
− 1

)
− µ

2

{(
ds0

ds

)2

− s2
0

r2

}]
=

µ

r

dr

ds

[(
ds0

ds

)2

− s2
0

r2

]
,

(2.235)

while τ0 → τ0 + Kα

(
r
s0

dr
ds − 1

)
− µ

2

[(
ds0
ds

)2

− s2
0

r2

]
in the Helfrich equa-

tion (2.230).

57) Note that in this context Eq. (2.68) applies to the composite membrane, so the normal
forces Q and −Q between the plasma membrane and the membrane skeleton are internal
forces.
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