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Abstract We present solutions for nutrient transfer to osmotrophs in the full range of flow regimes for
which solutions have been published, and we extend some of those solutions to new parameter domains and
flow environments. These regimes include stagnant water; steady, unitorm flow arising from swimming or
sinking; steady shear flows; and fluctuating shear from dissipation of turbulence, as well as the combined
effects of turbulence-induced shear and swimming or sinking. Solutions for nutrient fluxes cannot be carried
over from one flow regime to another. In all cases, however, mass transfer increases with cell size and with
flow velacity. Cell shape becomes particularly important at high flow velocities. For steady, uniform flow
arising from sinking or swimming, we find asymptotic analytic and numerical solutions from the engineer-
ing literature superior to those in more common use within oceanography. These engineering solutions sug-
gest flow effects an order of magnitude smaller than commonly supposed. A cell radius near 20pum is
needed before swimming or sinking can be expected to increase the flux of nutrients, such as nitrate or phos-
phate, substantially (by =50%) over the stagnant-water case. We find sound asymptotic solutions for the
case of linear shear and supplement them with numerical solutions of our own to cover the range of cell sizes
and shear rates of interest for phytoplankton. We extend them further to cover viscous shears from dissipat-
ing turbulence for cells smaller than the Kolmogorov scale (order of 1-6mm in the ocean). Our analysis
suggests turbulence effects an order of magnitude greater than previously postulated, with a cell size of
60pm needed to experience substantial gain. Cell rotation, whether induced by the propulsion mechanism in
swimming or passively by shear across the cell perimeter, will reduce the rate of nutrient transfer relative to
a non-rotating cell unless the axis of rotation parallels the direction of flow. Although in calm water
dinoflagellates by swimming are able to increase nutrient uptake, in strong turbulence they may not be able
to maintain a rotational axis paraliel to the direction of swimming or the direction of shear, resulting in a
relative reduction in flux. Conversely, large chains of diatoms and filamentous cyanobacteria that span the
radius of the smallest vortices are best able to take advantage of turbulence. Despite these deductions from
a diversity of analytic and numerical solutions, unequivocal data to test the contribution of advection to
nutrient acquisition by phytoplankton are scarce — owing, in large part, to the inability to visualize, record
and thus mimic fluid motions in the vicinities of cells in natural flows.

Introduction

Effects of small-scale fluid motions on diffusional fluxes of nutrients to bacteria and
phytoplankton have been reviewed several times (Gavis 1976, Roberts 1981, Lazier & Mann
1989, Mann & Lazier 1991, Kierboe 1993). It is thus worth asking why it might be worth-
while to visit them yet again. In the process of a review focused much more closely on
bacteria, we (Jumars et al. 1993) became aware of several inconsistencies in the published
treatments of solute fluxes to osmotrophs. Among the accumulated problems we encoun-
tered, one solution (Munk & Riley 1952) is often used for sinking cells while another (Berg
& Purcell 1977) is often used for swimming cells, despite the fact that both invoke the iden-
tical governing equation and boundary conditions and thus can neither apply to disparate
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processes nor both be correct. Unfortunately, we perpetuated several other inconsistencies.
In particular, we were not adequately aware of the diversity of field and laboratory flow
regimes for which solutions had been given or of the fact that competing solutions had been
published for some regimes. The principal purpose of our present review, therefore, is to lay
out the diversity of flow regimes plainly and to point out the best of the known solutions for
each specific case. We focus on those physical characteristics of the cell and its flow envi-
ronment that affect nutrient flux.

A secondary purpose is to specify, as accurately as can be done from the existing litera-
ture, the size of organism for which relative fluid motion begins to become important in
nutrient flux. It has been firmly established that, for diffusion coefficients typical of small
molecules in water (of order 10-5cm?s™!), 1-um long, freely-suspended bacteria cannot
experience any substantial flux enhancement from the fluid shear about them (Berg &
Purcell 1977, Lazier & Mann 1989, Logan & Dettmer 1989). Utilization of slowly diffusing
molecules, larger “cell” size or attachment to larger particles, however, can result in signifi-
cant benefit from relative fluid motion (Roberts 1981, Logan & Hunt 1987, 1988, Lazier &
Mann 1989, Logan & Dettmer 1989, Confer & Logan 1991). The ranges of sizes and diffu-
sion coefficients for which such enhancements can become important have been given
implicitly or explicitly in several treatments (Logan & Hunt 1987, 1988, Lazier & Mann
1989), but have sometimes been based on equations from inappropriate flow regimes. As
with many other real-world biological-physical interactions of interest, these substantial
enhancements of fluxes begin in an uncomfortable middle range of parameters for which
analytic solutions typically are not available. Our systematic exploration identifies flow
regimes and parameter values for which further numerical modelling and laboratory experi-
mentation would be profitable.

The role of fluid motion in the nutrition of planktonic autotrophs and osmotrophs is simi-
lar to its role in problems of heat and mass transfer long studied by civil and chemical engi-
neers. Since the governing equations and boundary conditions for the heat-transfer problem
and the dilute-solution mass-transfer problem are identical, heat-transfer theory is applicable
directly to the study of nutrient fluxes to planktonic osmotrophs. Most of the solutions we
present thus come from the engineering literature; we use, however, oceanographic (Appen-
dix I) rather than engineering convention for notation. In keeping with practice in physics
and engineering, we use square brackets to denote primary dimensions of length [L], mass
[M] and time [T]. To avoid confusion, we avoid the term “convection” and label any organ-
ized fluid motion as “advection”. In this review diffusion and molecular diffusion are syn-
onymous. Several inconsistencies have occurred because some authors used radii while
others used diameters as characteristic dimensions; for consistency, we give characteristic
cell sizes as radii. We work from stagnant fluids, through simple, steady shear flows to the
three-dimensional, rotational shear flows characteristic of dissipating turbulence. We warn
fluid dynamicists that we use the word “particle” exlusively for a solid object of finite di-
mensions suspended in the flow and not synonymously with a small parcel of water.

We focus on phytoplankton, because it spans the full size range of interest (from a few
micrometres to a few millimetres) and comprises a wide diversity of body, chain and colony
shapes. Our analysis also applies, however, to metazoan larvae and other free-living plank-
tonic osmotrophs. To save space we refer to the individual as a cell and leave implicit the
applicability to multicellular organisms of comparable sizes. We also leave imiplicit the con-
verse problem of solute leakage from a cell, although it is plain (Jumars et al. 1993, their
Fig. 1) that our results apply equally well there. The principal difference is a sign change in
the concentration gradient and hence in the flux direction; magnitudes of flow effects on such

72




NUTRIENT FLUXES TO PLANKTONIC OSMOTROPHS

fluxes are identical. We also caution that solutions frequently given for a point source or sink
cannot adequately describe the problem of solute leakage from or uptake by a cell; an impor-
tant aspect of fluid motion is the divergence of streamlines around cells.

Mass transfer to cells in stagnant water
Non-motile cells: pure diffusion

Rate of nutrient delivery into a planktonic cell at steady state proceeds at the rate of the
slower of two processes in the series, nutrient delivery to the cell membrane and transport
across the membrane. If the former is much faster, no nutrient-depleted layer develops -
around the cell. If the latter is faster, however, nutrient concentration at the cell surface
drops below its far-field level, thereby driving a faster delivery rate by diffusion.

The concentration distribution of a nutrient about a planktonic cell in either case is given
by the diffusion equation (Crank 1975),

o =V(DVC(), (Equ. 1)
ot )

where D is the diffusion coefficient [L2 T-'] and C is the concentration of the nutrient of
interest. The del operator (V) indicates partial derivatives in all three spatial dimensions
(e.g. in Cartesian co-ordinates 0/0x+8/0y+0/0z). In a heterogeneous environment like the
ocean, D varies in time and space (due to temperature and salinity). Since we are interested
in processes at the microscale, D for a given nutrient is assumed to be constant. Thus,
V(DVC) = DV?C.

At steady state (0C/0r = Q) the solution of Equation 1 for a sphere becomes:

c=2(G-C)+C, (Equ. 2)

where r, is the cell radius, r is the radial distance from the centre of the cell, C_ is the far-
field concentration and C;, is concentration at the cell surface. When uptake capacity into the
cell exceeds diffusional supply rate, Equation 2 indicates that there exists a nutrient-depleted
region in the vicinity of the cell (Koch 1971, Jumars 1993). For convenience, hereafter we
refer to this depleted region as the diffusional boundary layer and define it more specifically
as the region in which C<90% of the ambient concentration. By this definition it extends to
about nine cell radii away from the cell surface (Fig. 1 herein; Koch 1971, Jumars 1993).
The outer limit is arbitrary, since approach to background concentration is asymptotic. The
rate at which nutrients will be transported across this diffusional boundary layer can be esti-
mated from the characteristic diffusion timescale (z,),

tp =2 (Equ. 3)

where L_ is a characteristic length scale (e.g. the thickness of the layer). For a cell with a
radius of 10pum and a diffusional shell 90um thick, it will take ¢. 8s for a molecule such as
nitrate or phosphate (D of the order 10~ cm?s™!) to cross this layer.
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Concentration Fields Around Spherical Cells, 1o
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Figure 1 Concentration distributions of a given nutrient around cells (black circles) in three
different flow regimes: stagnant water (pure diffusion), uniform flow (i.e. cell swimming or
sinking in stagnant water; the cell is moving from right to left so flow is from left to right) and
shear flow (uniaxial extensional flow where E = (2, 0, 0; 0, -1, 0; 0, 0, -1). The third dimen-
sion can be visualized by rotation about the x axis. The left panel illustrates the concentration
field at distances up to 10 cell radii from the centre of the cell. The right panel is a “blow-up” of
the concentration field near the cell surface, up to a distance of 2 radii from the centre of the cell.
Concentration vaiues for the case of pure diffusion were obtained by solving Equation 1 at
steady state analytically. Values for the two other cases were obtained by solving Equation 11
numerically for Pe=1 to steady state (Appendix II). In the absence of fluid motion a diffusive
boundary layer (C<0.9C,) extends to about 9 cell radii from the cell surface. Uniform and shear
flows distort the boundary layer and steepen the concentration gradient in certain regions. Since
transport is dominated by the thinnest regions of the diffusional boundary layer, cells in uniform
or shear flow will experience enhanced fluxes compared to non-motile cells in stagnant water.

The diffusional flux of nutrients to a spherical cell (Q,) depends on the diffusion coeffi-
cient, the cell radius (r;) and the concentration gradient between the cell surface and the

ambient water,

Op = 47D (C, ~ Gp),

(Equ. 4)

There are only two means by which the cell can increase the flux to itself without relative
fluid motion: increasing r,, and lowering C, (Jumars et al. 1993). There are, however, limits
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on the increase achievable. As cell size increases, demand for nutrients increases more
rapidly (proportional approximately to ro2 cf. Roberts 1981) than does the diffusive flux.
In addition, for a given cell size, it is impossible to enhance the flux beyond its value for
C, = 0, when every molecule that reaches the cell surface is absorbed immediately.

Assuming delivery to a spherical cell by molecular diffusion and active uptake of
Michaelis-Menten form across the cell membrane, Pasciak & Gavis (1974) introduced a cri-
terion for recognizing transport limitation. They defined the parameter P to be the ratio
between diffusional delivery and maximal uptake rates,

14 4nryDK,,
v

max

P= , (Equ. 5)

where V, is the maximal uptake rate [mol cell”! T-!1 and K,, is the concentration at which
the uptake rate equals 2V, . When P is small, the cell has the capacity to absorb nutrients
much faster than the rate at which nutrients can diffuse towards the cell, and transport to the
cell membrane becomes limiting. When P is large, the maximal uptake rate is much slower
than diffusion, and for such an organism uptake rate will not be controlled by its physical
environment. Pasciak & Gavis (1974) applied this criterion to phytoplankton, for which val-
ues of K, and V, were known from laboratory experiments, and thereby established that
for some phytoplankton (mostly large cells) transport limitation can be significant. It has also
been suggested that under certain conditions uptake of carbon dioxide (Riebesell et al. 1993)
and iron (Morel et al. 1991) by phytoplankton and uptake of phosphate by cyanobacteria
(Mierle 1985) may become transport limited.

Determining whether uptake plays a role in limitation is clearly important but is outside
the scope of our review. For all subsequent analyses, we assume that the cell is a perfect
absorber, i.e. that cell-surface nutrient concentration (C,) equals zero. We do so for two rea-
sons. One is to provide an upper bound on the importance of fluid dynamic effects: if there is
no significant effect of fluid motion on uptake for a perfect absorber, then there can be none
for an imperfect one. The more obvious reason is for compactness. If kinetics of uptake are
known and suspected to be important, they can be included in the problem in the manner
shown by Pasciak & Gavis (1974, 1975).

Motile cells: swimming and sinking

Theory

Swimming and sinking are two mechanisms by which a phytoplankter can induce relative
fluid motion, steepen its surrounding solute gradients and hence increase the fluxes of nutri-
ents to itself. The nature of the flow in the vicinity of the cell is determined by its body
Reynolds number (Re). This Reynolds number describes the relative importance of inertial
forces compared to viscous forces,

UL,
Re = T‘ , (Equ. 6)

where U is the characteristic velocity, v is the kinematic viscosity [L2 T-!] and L . is the char-
acteristic length scale, in our case the cell radius (7). Since typical values of Re for plank-
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Table 1 Reynolds and Péclet numbers for swimming and sinking phytoplankton.

Swimming  Sinking

Cell radius  speed speed

Organism (m) (pms™)  (ums Y Re Pe Source
Prorocentrum marial-labouriae 6 171 0 1x10-3 1 Kamykowski et al. (1992)
Gyrodinium dorsum 16.5 330 0 5.4x107? 5.4 Kamykowski et al. (1992)
Dinophysis acuta 33 500 0 1.6x10? 16.5 Sommer (1988)
Coccolithus huxleyi 510 6.5 0 Jto15 1.5x105to 1.5x102to Smayda (1970)

9.7x10%  9,7x10 2
Coscinodiscus wailesii 70 0 81to347 5.7x10% w0  5.7t024 Smayda (1970)

2.4x10-2

tonic micro-organisms are well below unity (Table 1), their environments are dominated by
viscous forces, and inertial forces can be neglected.

In the presence of fluid motion the concentration distribution of the nutrient of interest
around an organism is given by

%tg +UVC = DV*C (Equ. 7)

where U is the three-dimensional velocity field. As a first approximation, we use Stokes’
solution for uniform, creeping flow past a stationary, rigid sphere (Leal 1992, Ch. 4) to
describe the flow field around cells swimming or sinking in stagnant water. To permit ana-
lytic determination of the velocity field and concentration distribution in the neighbourhood
of the cell, we assume spherical shape and sufficient spacing between cells to preclude inter-
actions among them.

The boundary conditions applied to Equation 7 are:

C=0atry, and (Equ. 8)
C=C forr-—e, (Equ. 9)

These boundary conditions set an upper bound for the calculated flux. The flux of a given
nutrient (@) to the cell is determined by the integrated concentration gradient normal to the
cell surface:

= -D[nvCid
0 (Equ. 10)
4
where A is the cell surface and n is an inward unit vector normal to it.

Much of the information and insight about key parameters that determine the concentra-

tion distribution in the presence of fluid motion can be obtained via nondimensionalization,

without the need to solve the differential equation. Defining U *=u ct = ¢ C_and X",
Y', Z" = x/ry, y/ry, 2/r,, the nondimensional form of Equation 7 at steady state becomes

Pe(R'V"C") = v C", (Equ. 11)

where each asterisk denotes a nondimensional variable. Corresponding boundary conditions
are:
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C'=0ar=1 (Equ. 12)
C'=lasr— e, (Equ. 13)

for r* the nondimensional radial distance from the centre of the cell ("= r/ry) and Pe, the
dimensionless Péclet number. The Péclet number indicates the effectiveness of advective
transport compared with diffusive transport through the fluid over the specified length scale:

_Un
D

Pe , (Equ. 14)
where U is the characteristic velocity (swimming and sinking velocities in the case of motile
cells). Diffusion dominates transport when Pe < 1, and advection dominates when Pe > 1.
Note that while Reynolds numbers for swimming and sinking planktonic micro-organisms
are always smaller than unity, Péclet numbers for large cells can be larger (Table 1). Again,
the body Reynolds number of an organism will determine the flow field in its vicinity while
the Péclet number will determine the concentration field of nutrients and hence the fluxes.

Since Pe is the only nondimensional parameter arising from the steady-state form of
Equation 7, any desired nondimensional quantity determined by the concentration field,
namely the nondimensional flux, will be dependent solely on Pe. A measure of this flux is
the Sherwood number, Sh (its heat-transfer analogue being the Nusselt number, Nu), which
is the ratio between the total flux of nutrients arriving to the cell surface in the presence of
fluid motion (Q) and the purely diffusional flux (Q,): '

. -D:[ nvCiA

Sh=— = —F1 4 .
Qp 4mD(C, -~ Cy)

(Equ. 15)

Sh thus indicates relative enhancement of flux due to advection. In the case of a spherical cell
in stagnant water 0 =, and Sh= Shy=1

In the engineering literature the Sherwood number is commonly defined alternatively in
terms of the mass-transfer coefficient, k, [L T-'] as Sh=2kry/D. In this case, Sh,=2. The
mass-transfer coefficient is the ratio between the mass flux per unit of area and the concen-
tration gradient between the boundary of interest and the environment (Cussler 1984,
Rohsenow & Choi 1961). It can be determined empirically and varies with flow regime and
shape of the body. This definition has been adopted in oceanographic applications but in the
form Sh = kr)/D (Shy,=1, e.g. Logan & Hunt 1987, 1988). The difference arises from selec-
tion of the diameter versus the radius as the characteristic length scale. For the same reason,
and hence by the same factor, definition of the Péclet number in the engineering literature
often differs from the oceanographic convention, i.e. in the engineering literature it is often
Pe=2Ury/D. To reduce confusion among oceanographic readers, we have converted all for-
mulas extracted from the engineering literature to the oceanographic convention of Equa-
tions 14 and 15 (Appendix I). We make this point and our parameterizations explicit because
factors of two based on choice of diameter versus radius as the characteristic dimension have
caused some mischief in past comparisons.

In order to examine the effect of fluid motion on nutrient flux a functional relationship
between Sh and Pe is sought. First it is necessary to find a solution to Equation 11 that satis-
fies the boundary conditions 12 and 13. Unfortunately, this problem is too complex to permit
exact solution over the full range of Pe. One way to approach it analytically is to derive
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asymptotic solutions for limiting values of Péclet numbers. Asymptotic relations between Sh
and Pe have been derived for the two extreme cases, Pe << 1, when advective effects are
relatively minor compared to pure diffusion and Pe >> 1, when the effect of molecular diffu-
sion may be neglected everywhere except for a thin boundary layer at the fluid-cel] interface.
The major difference between the two is the nature of the dependence of the concentration
distribution on flow geometry and hence the nature of the dependence of Sh on Pe. For low
Péclet number, the concentration distribution near the body is governed by molecular diffu-
sion and is therefore relatively insensitive to flow geometry within that region. Cell surface
relief smaller than 0.17, in dimension can have no great effect in this regime. At large dis-
tance from the body, however, the form of the velocity field determines the concentration
field, so overall body shape and orientation can be influential. At large Péclet number, on the
other hand, the effect of molecular diffusion is limited to a very thin layer around the cell,
and therefore the concentration distribution will be very sensitive to the flow field in the
vicinity of the cell (Leal 1992). Here, small-scale relief on the cell surface can have pro-
found effect. For this reason, flux will be much more sensitive to fine-scaie details of cell
shape at high Pe than at low.

20
10 Steady, Uniform Flow
(sinking or steady swimming) A
\
5 <
Sh
3 N,
AN, -
2 e\\(.\? """ .7
? (C.: ...... -
o
Eg. 16 oL EQ'\
0001 001 01 1 10 100 1000
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Figure2 Sherwood number (Sh) as a function of Péclet number (Pe) for celis moving at a con-
stant velocity in stagnant water or cells fixed in a uniform flow (Re << 1). Equation 16 was
derived by Acrivos & Taylor (1962) for Pe << 1 and Equation 17 was derived for Pe >> 1 by
Acrivos & Goddard (1965). Clift et al. (1978) suggested Equation 18 as a fit to their numerical
results; we use it for the region of intermediate Pe for which analytic solutions are not available.
Berg & Purcell (1977) obtained their relation numerically, but provided no explicit equation.
For reasons detailed in the text and in Appendix II, we believe Berg & Purcell’s (1977) relation
(their Fig. 4) to be inaccurate.

Asymptotic solutions for Equation 11 in the case of steady, uniform, laminar flow and the
corresponding boundary conditions (12, 13) yield two relations between Sk and Pe (Fig. 2).
For Pe << 1 (Acrivos & Taylor 1962)

Sh=1+%Pe+ %Pe2 In(Pe) + O(Pe2) ) (Equ. 16)

For Pe >> 1 (Acrivos & Goddard 1965)
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Sh = 0.6245P¢’ + 0461 + o(1) » (Equ. 17)

where O(x) is read as “of order x”, meaning >0.5x but <5x, the precise coefficient varying
with the details of the situation, and o(x) indicates a term much smaller than the term in
brackets. Equations 16 and 17 were derived for the case of heat transfer from a spherical
particle and were given in the form of the Nusselt number (Nu). For detailed considerations
of the use of asymptotic techniques in the analysis of heat-and-mass transfer problems and
for lucid derivations of the above solutions we refer the reader to Leal (1992).

Péclet numbers for many if not most phytoplankton fall outside the region for which ana-
Iytic solutions are available (Table 1). Numerical solutions that include the region of our in-
terest were published by Clift et al. (1978) and Masliyah & Epstein (1972). The former
suggested the following relationship for Sk, valid for ail Pe in creeping (Re <0.1), uniform
flow:

Sh=4(1+(1+2Pe)t). (Equ. 18)

So long as very low Re is maintained, the above formula agrees within 0.7% in the region
0.001<Pe<0.1 (Equation 16) and within 2% of the analytic solution (Equation 17) in the
region 100< Pe <5000.

Application of the theory to swimming and sinking cells

Most classes of marine phytoplankton are motile (Sournia 1982). The most thoroughly studied
motile phytoplankters are the dinoflagellates; their swimming speeds range from 50 to
500 ums-! (Throndsen 1973, Sournia 1982). A non-motile phytoplankter can sink or rise due to
density differences between itself and the surrounding fluid and thus also experience a velocity
relative to its environment. For cells of a given size, measured sinking speeds are usually
slower than swimming speeds and range from 0 to 347ums™! (Smayda 1970, his Table VII).
To illustrate the effect of swimming or sinking on the concentration distribution of a given
nutrient we solved Equation 11 with the corresponding boundary conditions (12, 13) numeri-
cally for Pe =1 (Fig. 1; Appendix II). For both high and low Pe, a disproportionate amount of
the total flux takes the path of least resistance. As can be seen by inspection of Equation 10, nu-
trient transport will be dominated by the thinnest regions of the diffusional boundary layer,
where diffusion can proceed by far the fastest; characteristic diffusion time varies with the
square of this thickness (Equation 3). Hence, total flux arriving to the cell will be larger com-
pared with the purely diffusional flux despite the thickening of the diffusional boundary layer at
the “rear” of the cell. Again, some swimming modes may help to “shed” this thickened bound-
ary layer or to thin the thinnest regions even further compared with steady, uniform, Stokes’
flow past a sphere. Interestingly enough, it has been reported that chemoreceptors on the cell
surface of the motile bacterium Escherichia coli are clustered at the pole of the cell rather than
being evenly or randomly distributed (Maddock & Shapiro 1993). Such clustering may in-
crease the efficiency of detection, especially if the receptor-rich patch is located at the “lead-
ing” pole of the cell (Parkinson & Blair 1993) or where a flagellum locally thins the boundary
layer. The advantage is greatly decreased detection time. Berg & Turner (1995) observed that
tumbles tend to randomize cell orientation of E. coli and that runs of each orientation are of
similar duration. They therefore concluded that patches of chemoreceptors at one pole of the
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cell do not serve as the bacteriuin’s “nose”. Clustering of chemoreceptors or uptake sites at the
poles or at other sites of local boundary-layer thinning, however, may still be an effective strat-
egy for other organisms with different modes of swimming.

In order to quantify the enhancement of flux due to swimming and sinking, for the full
range of Pe values and cell sizes, we use the solutions for mass transfer in steady, uniform
flow - namely Equations 16-18. The only differences in our proposed solutions for sinking
versus swimming (Fig. 3) arise from differences in the dependence of settling versus swim-
ming speeds on cell size and hence the dependence of Pe and Sk on cell size. We base swim-
ming speeds on the relationship,

Uswimming = 0"‘()Bv (Equ. 19)
100 -
Swimming or Sinking
in Stagnant Water
----- Sinking ‘
_—— Swimming |
Sh 10}
d- .
7/ b /',
1 ETHE 100 1000

Cell radius, rp (um)

Figure 3 Sherwood number (Sh) as a function of cell radius (ry) for swimming and sinking
cells. Both swimming and sinking velocities are functions of cell size; Stokes’ equation was used
to calculate sinking velocities and the relation U= ar was used to calculate swimming veloci-
ties. We caution that some correlations between cell size and swimming velocity are very weak;
we use them only for illustration. Dashed lines represent sinking cells and solid lines represent
swimming cells where: a, sinking cells Ap=0.01; b, swimming cells U=0. 16(2r,)046
(Kamykowski et al. 1992, R* = 0.32, based on 5 species, ranging in size (ry) from ¢. 13 to
30 pm); ¢, swimming cells U = 93(2r)*¢ (Sommer 1988, r =0.38, based on 19 species, ranging
in size (ry) from c¢. 1 to 40um); d, sinking cells Ap=0.1; and, e, swimming cells
U=30.66(2ry)"-'6 (Kamykowski et al. 1992, R =0.79, based on 9 species, ranging in size ry
from c. 8 to 25pm). To calculate Sh we used equation 16 for Pe < 0.01, Equation 18 for
0.01 < Pe < 100 and Equation 17 for Pe > 100. The diffusion coefficient for the calculations of
Pe was taken to be 1x10-5cm2s~!. The gray segments of curves a, d, and e mark regions for
which swimming and sinking velocities extrapolated from the given relations become unrealistic.
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which was obtained by Sommer (1988) from the empirical data of Throndsen (1973) and
Sournia (1982) and by Kamykowski et al. (1992) from the empirical data of Kamykowski &
McCollum (1986). Coefficients o and B vary among species, where 0 < 3 < 2. We use this
function as an example but are aware that for some species its fit is poor. For sinking veloci-
ties we used Stokes’ equation for sinking spheres (not to be confused with Stokes’ solution
for the flow field),

287 (p. - p)
Usinking = _—_'9“;—‘—' , (Equ 20)

where g is the gravitational acceleration constant (980cms2), p. and p are the densities of
the cell and fluid, respectively [ML-], and p is dynamic viscosity (approximately
0.01gem™'s~!; for more accurate values as a function of temperature and salinity see Jumars
et al. 1993). Excess densities (p,—p) used for the calculations were 0.1 and 0.01gem™ (Van
Ierland & Peperzak 1984). The diffusion coefficient (D) for nutrients such as nitrate and
phosphate is O(10-%)cm?s~!. For calculations of Péclet number, D was taken to be
Ix10 % cm?s™!.

For both swimming and sinking, nondimensional mass transfer to the cell depends
directly (but not necessarily linearly) on cell size and cell velocity relative to the water and
inversely on the diffusion coefficient, as implied from the relationship between Sk and Pe.
Realistic swimming or sinking speeds do not increase substantially the flux of nutrients such
as nitrate or phosphate to small cells (Fig. 3). Critical cell sizes for which swimming and
sinking begin to become important (to be conservative, we consider a substantial enhance-
ment as an increase of 50% or more of the flux) will vary with the parameters determining
the specific dependence (Table 2).

Table 2 Predicted cell radii for 50 and 100% increase in flux, based on equations 16~18.

Predicted cell radius (mm)

Mode of motility 50% increase in flux 100% increase in flux

Swimming, U = 30.66(2r,)"'¢ 12 22

Swimming, U = 93(2r,)0% 15 44

Swimming, U = 0.16(2r,)*4 25 61

Sinking, Ap = 0.1 25 39

Sinking Ap = 0.01 54 84

Turbulence-induced shear 63-100 (calculated 167-202 (calculated

(e = 10-%cm?sec™?) from the lower and upper from the lower and upper
limits for interpolation; limits for interpolation;

(see Fig. 6) (see Fig. 6)

Motility, however, may become beneficial for small cells if larger molecules are consid-
ered. Amon & Benner (1994) have shown that high-molecular-weight, dissolved, organic mat-
ter (HMW DOM; molecules smaller than 0.1pum but larger than 0.001 um) is more readily
remineralized by bacteria than low-molecular weight DOM (molecules smaller than 0.001 um).
Diffusion coefficients (at 20°C) for HMW DOM can range from c.10-%cm?s! to c.
10-8cm?s™! (estimated from the size cut-off for HMW DOM following Cussler 1984). For a bac-
terium 0.45um in radius, swimming at 20pms~! will not appreciably enhance the flux
of molecules having a diffusion coefficient O(10-%)cm?s™! but will increase the flux of
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molecules with a diffusion coefficient O(10-})cm?s~! by 80%. The predicted contribution of

advective flux also depends on ambient temperature through the latter’s effect on the diffusion
coefficient of the solute (Cussler 1984) and on viscosity (Korson et al. 1969) and thus on sink-
ing velocities and velocity gradients in the vicinity of the cell. While mixotrophy and particle
feeding are outside the scope of our review, we note that the diffusion coefficients used to char-
acterize Brownian motion of particles are far smaller than diffusion coefficients for molecules,
so that fluid motion may have substantial effect (Shimeta 1993, Shimeta et al. 1995).

The theory we have applied (i.e. Equations 16~18) is at odds with previous, widely cited
theory that examined the utility of swimming and sinking in enhancing nutrient fluxes. Munk
& Riley (1952), who examined effects of sinking on nutrient absorption by phytoplankton
cells of varying shapes, applied an analytic solution derived by Kronig & Bruijsten (1951)
for spheres in uniform flow at Pe << 1:

Sh =1+ 4Pe+06Pe*. (Equ. 21)

Other solutions were not available to them at the time. For the first-order approximation, the
correlation they used agrees with Equation 16. For larger values of Pe, Munk & Riley (1952)
used the empirical relationship given by Kramer (1946), which is valid only for Re > 1 and
therefore not for sinking phytoplankton. No explicit relation between Sk and Pe was given by
Munk & Riley (1952) for the region of intermediate Péclet numbers. Their estimates for that
region were obtained by interpolation between the analytical and empirical relationships.

Berg & Purcell (1977), who examined the effect of swimming on nutrient uptake, solved
Equation 11 with boundary conditions 12 and 13 numerically. They did not provide an equa-
tion for the relation between relative increase in mass transfer and Péclet number, but their
model results suggested that for Pe << 1 the increase in nutrient flux is proportional to Pe?,
while for the case of Pe>1 (though they did not examine the increase of flux beyond
Pe = 10) the flux is proportional to Pe'3. Berg & Purcell (1977) argued that the increase of
flux in the neighbourhood of U=0 must depend on an even power of U since it cannot
depend on the direction of the motion and cannot have a singularity at U/ =0. The total non-
dimensional flux, integrated over the whole surface area of a spherical cell, however, does
not depend on the direction of the flow - only on the magnitude of the velocity (as implied
from the relation Sh =f(Pe)), and therefore we find no particular reason to argue for depend-
ence of an even power. Moreover, the shape of the curve implied by Berg & Purcell’s corre-
lations (the exponent of Pe going from 2 to 3, i.e. a sigmoidal curve) implies an inter-
mediate Péclet number for which the fractional increase of flux (8Sh/0Pe) is maximal. Since
we are dealing exclusively with small Re, changes in the flux as a function of Pe are
expected to be gradual and monotonic. We cannot find any physical basis for steeper change
at any particular velocity, cell size or diffusion coefficient. We speculate on the source of the
discrepancy between Berg & Purcell’s (1977) numerical solution and the analytical solution
or our numerical solution in Appendix II.

Berg & Purcell’s estimate for the increase in the nondimensional flux due to advection is
higher than predicted by Equation 18 in the region Pe > 0.04 (Fig. 2). For example, Berg &
Purcell estimated ¢. 76% increase in the flux for Pe = 1 while Equation 18 and the results of
our numerical model (Fig. 1; Appendix II) predict an increase of 22 and 21 %, respectively.
In order to double the flux of nutrients to the cell, the Péclet number should be of the order
2.5 according to Berg & Purcell (1977) and 13 according to Equation 18 (Fig. 2). Estimates
of the effect of swimming on nutrient transfer (Roberts 1981, Goldman 1984, Sommer 1988,
Lazier & Mann 1989, Mann & Lazier 1992) that were calculated from the graphical presen-
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tation of Berg & Purcell (1977) must, therefore, over-estimate the contribution of motility to
nutrient fluxes. Rather than endangering Berg & Purcell’s central conclusion that swimming
will be ineffective in enhancing the flux of rapidly diffusing (D = 10~cm?s"') nutrients to
bacteria, the analytic solution makes it even more unassailable.

Our results (Fig. 3) indicate that there is no one mechanism that is always more beneficial
in enhancing the flux, and call into question Gavis's (1976) conclusion that swimming is
more effective than sinking in reducing diffusional transport limitation. Other factors, such
as the cost of swimming and the risk of being transported away from the euphotic zone when
sinking rapidly, should be taken into account, however, when the benefits of each mode are
considered. Dependence of swimming speed on cell size varies with mode of self propulsion,
i.e. planar wave motion, helical wave motion or a combination of both. For instance, cells
driven by a flagellum beating with a helical wave rotate as they swim (Chwang & Wu 1971,
Brennen & Winet 1977). Smaller cells tend to have higher rotational velocities that slow
their translational velocities compared to larger cells. As cell size increases, however, drag
increases, too, and larger cells that may escape the problem of rotation face increasing drag,
which tends to reduce their translational velocities. Thus, for a phytoplankter using this
mode of swimming there is an intermediate size for which swimming speed is maximal
(Brennen & Winet 1977, Kamykowski & McCollum 1986). Sinking speeds may also deviate
from the predicted relation with cell size. Empirical data on sinking speeds as a function of
cell size indicate that the slope can be smaller than the value of 2 predicted by Stokes’ law,
no doubt the result of a correlation between size and excess density (Waite et al. 1992). Sink-
ing or rising speeds may vary with nutrient and light conditions (Culver & Smith 1989) and
depend on the growth phase of the cell (Eppley et al. 1967, Smayda 1970). Among the ma-
jority of planktonic diatoms, nutrient-depleted cells sink more rapidly than nutrient-
replete cells (Titman & Kilham 1976, Smetacek 1985, Waite et al. 1992). Within a species
there may be variations in sinking speeds of a factor of two or more with varying nutritional
status of the cell, accompanied by relatively small changes in cell size (Jackson & Lochmann
1993). We have applied those correlations, nevertheless, to demonstrate that effects of sink-
ing and especially swimming on the flux of nutrients cannot be generalized. and that the
dependence of Sh on cell size will vary with the mode of motion (Table 3).

Effects of self-induced rotation vary with orientation of the rotational axis and with Pe.
Rotation, if strong, can reduce advective contribution to flux when it causes streamlines to
curve and sometimes even to close. Water can circulate around the cell longer before being
replaced by new water. Advective flux to a rotating, swimming cell will decrease relative
to a non-rotating swimmer, however, only if the cell has a component of translation in a
direction perpendicular to the axis of rotation, and the decrease will be most important at
high Pe when advection dominates transport. At low Pe diffusion is the dominant transport
mechanism, and rotation will distort the diffusive boundary layer around the cell by shearing
water parcels in its vicinity (as a result of the no-slip boundary condition at the cell surface).

Table 3 Dependence of Sh on cell radius for swimming and sinking
cells and for neutrally buoyant cells suspended in turbulent water.

Flow generated by Pe<<1 Pe>>1
Swimming Sh « ro"'" Sh o ,Ou 913
where 0<fi<2 where 0< <2
Sinking Sh o r} Sher,
Turbulence/shear Sh o ry Sh oc rj?
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This distortion of the diffusive layer can increase diffusional flux relative to a swimming,

non-rotating cell. The effect, however, will probably be very small. The axis of rotation of
dinoflagellates propagating in a helical wave is parallel to the direction of motion. By our
arguments such a swimming mode will still provide a flux advantage across the full Pe
range, and it appears to carry little cost for most ciliary and flagellar mechanisms (Purcell
1977, Raven 1982, Raven & Richardson 1984, Fenchel 1987) unless very high speeds (in
terms of body lengths per unit of time) are achieved (Mitchell 1991).

Our and prior applications of the same flow field (Stokes’ flow) to both swimming and
sinking are, at best, rough approximations. Swimming and sinking cells differ in the near-
cell details of flow streamlines around them. While streamlines around sinking cells closely
resemble Stokes’ flow, in the near field, streamlines around swimming cells may differ
(Keller & Wu 1977) and will vary among species, depending on the mode of swimming.
Precise determinations of flow fields around swimming cells require numerical models and
observations specific to each case. Our application of Stokes’ flow is clearly most question-
able for swimming at high Pe. Motions near swimming appendages will be unsteady, thin-
ning the diffusional boundary locally. Because the diffusion time scale varies with the square
of diffusion distance, such thinning is disproportionately important relative to unsteady thick-
ening in other regions. Hence at high Pe we will underestimate the true Sk and advective
contribution to the flux. Since the details depend on local thinning, there can be no general
solution; specific solutions will be time dependent and will also be highly dependent on the
mode of swimming and the shape of the cell. In short, flux to swimming cells appears to be
a fertile ground for detailed numerical simulation.

Effect of shape on the nutrient flux

Among phytoplankton, relatively few species are spherical. Morphological diversity in
nature suggests that each form has a slight advantage in a particular set of conditions (Munk
& Reilly 1956, Sournia 1982). Grazing, drag and nutrient absorption are the commonly sug-
gested selective factors leading to the observed diversity (Sournia 1982). The non-
dimensional flux to a body of an arbitrary shape (i.e. its Sh) is defined as the total flux
arriving to the cell surface in the presence of fluid motion normalized to the purely
diffusional flux arriving to a sphere with an equivalent surface area (Leal 1992). A general
solution for mass transfer to a body of arbitrary shape in steady flow for Pe << 1 was given
by Brenner (1963):

Sh - 1 1 2 2
Sho = 1+ $StPe + $StofPel nPe +0(Pe?) (Equ. 22)

where f is the dimensioniess drag on the body [f=(drag force)/6nur,U,, with f=1 for a
sphere] and Sh,, is the mass transfer to the shape of interest in the case of pure diffusion and
depends upon the geometry of the body. Sk, can be estimated for each shape from theory
(Clift et al. 1978, their table 4.2) or by experiment.

Dimensionless drag, f, depends on orientation of the body relative to its direction of
motion. From experience at high Re, one might assume that a sinking cell would orient itself
such that the drag is maximized (for example, that a cylindrical cell would sink with its
largest projected area perpendicular to the falling axis). For Re < 0.1, however, the initial
(arbitrary) orientation will be kept during sinking (McNown & Malaika 1950) unless weight
is unevenly distributed in the cell (Hutchinson 1967, Sournia 1982). Values and expressions
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for the resistance of spheroids in uniform flow were given by Happel & Brenner (1965, their
table 4-26.1) and Clift et al. (1978, their table 4.1).

For Pe >> 1 the relationship Sh = cPe' holds for rigid bodies of arbitrary shapes where
the coefficient ¢ varies with the geometry of the body but is always of order unity
(Friedlander 1957, Clift et al. 1978, Leal 1992). For the intermediate region of Péclet num-
bers, numerical results for spheroids were published by Masliyah & Epstein (1972). These
correlations between Sh and Pe are only valid, however, for simple, smooth shapes without
spines, horns and sharp corners (Leal 1992). Spines and horns are common among
phytoplankton and may have important roles in altering flow fields around cells and thus
fluxes to cells. It is commonly thought that eddy formation does not occur at Re < 1, but
eddy formation has been demonstrated within a corner formed by two intersecting planes in
creeping flow (Jeffrey & Sherwood 1980). Eddies will reduce the contribution of advective
transport since they will cause water to remain longer within that region before being
replaced. These studies may have relevance to some diatoms such as Thalassionema and
Asterionella species that form star-shaped colonies or zigzag bands of colonies. Also perti-
nent to sinking chains is the study by Dorrepaal & O’Neill (1979) for the case of uniform
Stokes” flow past two parallel, separated cylinders with flow direction perpendicular to the
line joining their centres. They found that fluid always moves through the gap separating the
two cylinders but that eddies form for gap widths smaller than 0.0446 times the cylinder
radius. This observation is also relevant to the study of suspension feeders. Interestingly, in
the evolution of chain formation in planktonic diatoms, colonies show a tendency to become
more and more disjointed, while conserving appreciable stiffness (Beklemishev 1959). The
most straightforward interpretation is that cells thereby avoid each other’s depleted
diffusional boundary layers and allow flow between cells.

Observations. nutrient uptake by motile cells in stagnant water

We know of remarkably few attempts to test these theories even in the engineering context.
Empirical data obtained from electrochemical measurements for large values of Pe are in good
agreement (within 4 %) with Equation 17 (Kutateladze et al. 1982). We are not aware of similar
experiments for intermediate and low Péclet numbers. Experiments with live organisms are
even harder to conduct. While batch cultures are often maintained without agitation, the
parameters needed to test the theory are not measured. Furthermore, it is a fallacy to regard
unstirred vessels as stagnant. It is difficult to avoid circulation due to thermal gradients without
deliberate water jacketing and prevention of evaporation, as anyone who has tried to measure
slow settling velocities knows. Conversely, without stirring, cultures can become inhomogen-
eous both in cell concentrations and in nutrient concentrations. It is thus difficult to make valid
assumptions about velocity and concentration fields in typical batch culture.

Nutrient fluxes on the scale of interest are difficult to detect. Therefore a common
approach is to measure nutrient uptake by cells. Nutrient uptake is sensitive to physiological
state of the cell and depends on conditions under which cells have been grown (Dortch et al.
1991). It represents a lower bound on flux to the cell and reflects an increase in flux quanti-
tatively only so long as the uptake system is not saturated. Moreover, experimental errors
may often be comparable in magnitude to the predicted enhancement of flux, especially if
test organisms are very small.

Testing the contribution of swimming and sinking to flux in laboratory settings is subject
to added logistical difficulties. Canelli & Fuhs (1976) attempted to examine the effect of
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sinking on phosphorous uptake by the diatom Thalassiosira fluviatilis by drawing an analogy
with cells held on a filter through which a constant volumetric flow rate of nutrient medium
passed. The flow regime in this experiment cannot be described by Equations 16-18 and is
more analogous to the flow of pore waters through sediments (i.e. may be more relevant for
diatoms experiencing pressure-driven flows in the benthos or in planktonic particle aggre-
gates). This study demonstrated an effect of advection, but its results cannot be related quan-
titatively to natural fluid motions on single cells in the water column.

Mass transfer to cells in steady shear flow
Theory

Non-motile cells in steady shear flow

Another flow field that a cell can encounter is steady shear. Steady shear flow is associated
with viscous dissipation of small-scale turbulence and with flows created in shear tanks to
study nutrient uptake by phytoplankton and bacteria. It also holds for viscous sublayers (e. g.
bottom boundary layers). By definition, a steady shear flow is one in which dU/8t = 0 and

UKX) =V +GX, (Equ. 23)

where V is the mean velocity vector, G=VU is the velocity gradient tensor (Gij =0U./0X))
and X is a position vector (we use standard tensor notation, e.g. Spiegel 1959). From the
point of view of a non-swimming, non-sinking planktonic osmotroph, only the relative veloc-
ity component (GX) is important. The velocity gradient (G) can be decomposed into two
components (Lighthill 1986), rotation rate (Q=Qij= 0.5(6Ui/6Xj—8U_i/6Xi)) and rate of
strain (E=E; = 0.5(0U/0X; + 0U/oX)):

G=Q+E. (Equ. 24)

Unlike self-induced rotation, which is typically parallel to the direction of motion, as in the
case of dinoflagellates swimming in helical wave motion, a shear flow causes the cell to ro-
tate with an axis of rotation perpendicular to the velocity gradient (Fig. 4). While the strain-
ing motion of the flow acts to reduce the thickness of the boundary layer around the cell and
thus to enhance the flux of nutrients (Fig. 1), rotation will weaken the effect of advection on
nutrient flux because it acts to close streamlines, making them less effective in carrying nu-
trients to the cell (Batchelor 1979). Thus in a shear flow, the net contribution of advection
will be determined by the ratio |Q}/ |E|.

The governing equation for the concentration distribution around a cell in a linear, steady
shear flow is again the dimensionless Equation 11 with the boundary conditions (12, 13),
where U” is the nondimensional velocity field of the shear flow. We define the characteristic
velocity of the shear flow (| U| , and hence the Péclet number of the cell, in terms of the
shear rate E:

.rhear)

'Ul.rhear = EL(.‘ and (Equ 25)
L 2
P, Cshear = EDC s (Equ 26)
86



NUTRIENT FLUXES TO PLANKTONIC OSMOTROPHS

Rotation of a Cell in Stagnant Water
Due to Its Swimming Mechanism

Rotation of a Non-Motile Cell
Due to Fluid Shear
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Figure 4 Rotation of cells due to swimming and fluid shear. While cells swimming with a
flagellum in a helical wave motion tend to rotate so that their axis of rotation parallel the direc-
tion of translation, non-motile cells suspended in a simple shear flow rotate with their axis of
rotation perpendicular to the flow direction. In the latter case rotation will weaken the effect of
shearing on nutrient flux relative to a non-rotating cell in shear. Passive, flow-induced rotation
causes streamlines around the cell to curve or even close, making them less effective in carrying
nutrients.

where the shear rate is defined as
1
E = [E| = (E;E;)" . (Bqu. 27)

The dimensions of a shear rate [T~'] can be easily intuited by noting that a shear is a differ-
ence in velocity [LT-!] across a distance [L]; division eliminates the length scale and yields
the rate. Its magnitude can be estimated from measurements of kinetic energy dissipation
rate of the flow (g,[L? T-3]) since for any given shear flow

& = 2VE,E;, (Equ. 28)

1

£z £)2
and thus E=|—1I =071|-] , (Equ. 29)
2v v

where v is the kinematic viscosity (L? T-!). The characteristic length scale (L ) is taken again
to be the cell radius (7).

The simplest shear flow is steady with all components of the rate of strain tensor (E,.j)
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equal to zero except E,=E, =Q= (y/\/2) (e.g. U=(yy, 0, 0); Leal 1992). This flow is not
applicable directly to the upper mixed layer in the field but is of interest because many labo-
ratory experiments on the effects of shear on planktonic micro-organisms have been per-
formed in Couette devices that produce such shear flows and because laminar sublayers of
the boundary layers above the sea bed and surrounding objects in the sea do have this struc-
ture. A correlation between Sh and Pe for one-dimensional, steady shear flow was obtained
by Frankel & Acrivos (1968) (see also Leal 1992) for Pe << 1:

Sh=1+ o.zs[%] + o( Pe_,z,,e,,,) . (Equ. 30)

After transforming to our previously defined E and Pe

shear’
3 1
Sh=1+031Pe},,, + o(Pef,,mr) . (Equ. 31)

Because the axis of flow-induced rotation is perpendicular to flow direction, at high Péclet
number - when rotation is strong and closed streamlines are formed around the cell - Sk
asymptotically approaches 4.5 as Pe — « (Frankel & Acrivos 1968).

In nature, however, flow experienced by very small cells is a three-dimensional linear
shear field whose orientation relative to the cell shifts continually. Solutions for mass trans-
fer in more general, steady, linear shear were derived by Batchelor (1979) for limiting cases.
For Pe << 1 and any pure straining motion (Q =0):

1
Sh=1+0236Pel,,,, (Equ. 32)

where the numerical coefficient is accurate within 3%. The essence of pure straining motion
at the scale of the cell is that the net hydrodynamic force acting on the cell is zero, i.e. there
is relative motion between the cell surface and the fluid but there is no net force that causes
the cell to rotate or translate. When the ratio |Q| /|E| < 1 and Pe << 1,

Sh=1+034Pe,,, , (Equ. 33)

where the error in the numerical coefficient does not exceed 10%. When the ratio
|Q| /|E| > 1 and Pe << 1, only shear rate in the direction parallel to the axis of rotation
(E,) contributes to advective flux:

2 H
Iy Em :
Sh=1+ 0.4(—5—] = 1+023Pe? (Equ. 34)

shear >

where we use Batchelor’s (1979) assumption that Euf ~ E?/9. This relation stems from the
observation that there are nine terms like E 2 in the expression for E2. Thus it should provide
a lower bound on Sh.
For Pe >> | and pure straining motion, the relatien between Sh and Pe becomes (within
an error of < 1%)
1

Sh=09P¢},,,, . (Equ. 35)

88




NUTRIENT FLUXES TO PLANKTONIC OSMOTROPHS

20

10 Steady Shear Flow -

5
Sh

2

; Eq. 32 PSSt € oy

Eq. 34
0.01 0.1 1 10 100 1000
Peshear

Figure 5 Sherwood number (Sh) as a function of Péclet number (Pe) for non-motile celis sus-
pended in a steady, linear shear. Solid lines are based on analytic solutions derived for Pe <<'1
and Pe >> 1. Equations 32 and 34 were derived for cells in linear shear in the absence of rota-
tion and in the presence of strong rotation, respectively, for Pe << 1 (Batchelor 1979). At small
values of Pe molecular diffusion is the governing transport mechanism, and rotation will have no
significant inhibitory effect on advective flux. At large Pe, however, strong rotation partially
suppresses advective flux as indicated by the difference between the results of Equation 35,
which was derived for the non-rotating case and Equation 36, which was derived for strong
rotation (both by Batchelor 1979). Sk values for 0.1 < Pe < 90 were obtained numerically for
the case of uniaxial, extensional flow (filled circles; Appendix II). The curve fitted to the
numerical values (for 0.1 < Pe < 90) is of the form Sh = 0.63Pe%* +0.82 (not shown). Based
on the scheme used for the model, we estimate the absolute error in our numerical solution for
small Pe to be < 0.005. For large Pe the estimated error is predicted to be < 1% of Sh. We are
not aware of any general analytic or numerical solutions for the region 0.01 < Pe < 100, in
which many marine osmotrophs fall. Therefore, estimates of Sk for that region were obtained by
interpolation for each of the two cases (i.e. pure straining motion and shearing motion in the
presence of strong rotation). Interpo'ations assume a function of the form S# = a+bPe", where ¢
for each case falls between the limits of its values for the interpolation through the low-Pe solu-
tion at Pe=0.01 (Sh=1.004+0.32P¢"” in the absence of rotation (lower dashed line);
Sh=1.002 +0.21Pe* in the presence of strong rotation (lower dotted line)) and the high Pe
solution at Pe = 100 (Sk = 0.883 +0.71Pe'” in the absence of rotation (upper dashed line); Sh =
0.921 +0.47P¢'" in the presence of rotation (upper dotted line)). The region between these two
interpolation {imits is marked in gray. Open circles denote the empirical data of Purcell (1978),
who studied heat transport from spheres in a steady, two-dimensional, pure straining motion
(i.e. no rotation). Explanations for the discrepancies between the analytical results, our numeri-
cal mode! for high Pe values and Purcell’s results are given in the text.

For Pe >> 1 when rotation and strain both act,

shear >

1
1Bl ) |
Sh=097| 2201\ ~067Pe (Equ. 36)

again making the same assumption about the relation between E and E. Equations 35 and 36
demonstrate the relative reduction in mass transfer owing to rotation at high Pe (Fig. 5). We
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are not aware of published analytic or numeric solutions for intermediate values of Pe; there-

fore for the region 0.01 < Pe < 100 our plotted values for Sh were obtained by interpolation
through the low-Pe solution at Pe =0.01 and the high-Pe solution at Pe =100 (Fig. 5). Our
interpolations assume conservative functional form, i.e. Sh=a+bPef, where ¢ falls
between the limits of its values for high and low Pe and a and b are chosen to fit the two
endpoints. We also obtained Sh values for the region 0.1 < Pe < 90 by solving the problem
numerically for the case of pure straining motion (Figure 5; Appendix II). When rotation is
not zero, the problem becomes three-dimensional, and we do not attempt even numerical
solution here. For 0.1 < Pe < 10 our numerical results fall in the region between the two in-
terpolation limits obtained for purely straining flow (Fig. 5). For larger Pe, Sh values pre-
dicted by our numerical model are higher than the upper interpolation limit. One explanation
for this discrepancy is that Equation 35 provides only a first-order approximation for the
increase in flux. We are not aware of higher-order expansions for the case of shear flow but
we expect that such solutions will include terms of order smaller than Pe'3 (e.g. a constant,
as in the case of the higher-order expansion for uniform flow (Equation 17)). A function of
the form Sh=0.9Pe'3 + ¢ was fitted to our numerical results in the region 50 < Pe < 90,
suggesting that a constant of 0.56 should be added to Equation 35.

Laboratory experiments

Validation of the theory in an engineering context

Measurements of mass transfer in shear flow are consistent with theory for large Pe (i.e.
Shoc Pe!'3; Kutateladze et al. 1982). The value of the proportionality constant suggested by
the data, however, is 10% smaller than suggested by Equation 35. This discrepancy is not
surprising since the experimental setup (fixed sphere in a shear flow) did not exactly mimic
the case of a sphere suspended in an ambient shear flow for which Equation 35 was derived
(Kutateladze et al. 1982).

Empirical results that include the region of intermediate Pe (Fig. 5) were provided by
Purcell (1978), who performed an experiment to study the transport of heat from a spherical
particle suspended in a steady, two-dimensional, purely straining shear (i.e. no rotation).
The sphere in his experiments was immersed in a fluid of high viscosity, and the velocity
field was established by four counter-rotating cylinders. From the temperature difference
between the surface of the heated sphere and the fluid, he obtained a relationship between
heat transfer and shear. Purcell’s results indicate that, for Pe << 1, Sh is proportional to Pe?,
This disagreement between theory and experimental results may be the result of the sensitiv-
ity of mass transfer at small Pe to flow geometry at large distances from the body. Shear in
Purcell’s experiment was disturbed by boundaries about eight radii from the sphere, while
the analytic solution considers an unbounded flow field (Batchelor 1979). Nevertheless,
Purcell’s results have been used by several authors to predict the effect of turbulence on
fluxes of nutrients to suspended osmotrophs (Lazier & Mann 1989; Jumars et al. 1993). We
(Jumars et al. 1993) compounded confusion by finding good fit of Purcell’s (1978) data to an
inappropriate equation, i.e. one derived for Stokes’ flow past a sphere (Clift et al. 1978;
their equation 3-49), before we had encountered the full diversity of low-Re flow regimes of
interest in questions of nutrient flux to and from cells. We further failed to transform Clift et
al.’s equation to our definitions of Pe and Sh.
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Nutrient uptake in steady shear

Very few experimental data are available for testing this theory in an oceanographic context.
Logan & Dettmer (1989) investigated the effect of a laminar shear on leucine uptake by bac-
teria for shear rates ranging from E=0s"! to E~ 565! (0<y < 80s™!), although for shear
rates of E>35s7! the fluid became unstable and could no longer be considered laminar.
Shear rates were estimated from simple engineering relations for stirred vessels (Logan &
Dettmer 1989, Van Duuren 1968). The model for simple, steady, shear flow (Equation 31)
predicts an increase of 3% in leucine flux (D, ., . =7x10"6cm?") for a cell with a radius of
0.45 pm exposed to a shear rate of 35s~!. Uptake by bacteria exposed to shear, however, did
not increase compared with uptake by bacteria suspended in stagnant fluid. Instead, high
shear rates seemed to impair leucine uptake. Shear rates used in this experiment were far
above any typical values encountered by bacteria in the ocean (shear rates in the mixed layer
varying from 0.01 to 1s7!), and the observed inhibition of uptake by shear may have resulted
from stress or even mechanical damage.

In a later study, Logan & Kirchman (1991) investigated the effect of fluid shear
(E<1.5s"! for y<2.157") on leucine uptake by natural assemblages of marine bacteria.
Their results showed no significant (less than 10% departure from unstirred vessels) en-
hancement of leucine uptake at shear rates 0 < E < 1. Their results agree with the model
prediction (Equation 31) that for organisms of typical bacterial size laminar shear is ineffec-
tive at increasing uptake of molecules with a diffusion coefficient of the order
103-10%cm?s!. Their experimental error (standard deviation being 5% to 32% of the
mean), however, is larger than the increase in the flux predicted by Equation 31; therefore,
the experiment cannot provide a strong test of the theory.

Few experimental data are available for larger organisms. Pasciak & Gavis (1975) stud-
ied NO; uptake by a cylindrical diatom (Ditylum brightwellii), with an equivalent spherical
radius of about 41um, when suspended in a controlled shear tank (i.e. Couette device) at
0<E<8.5s! (0<y<12s7"). Their fitted curve suggests a Michaelis-Menten type rela-
tionship between relative uptake and shear rate with a maximal increase in relative uptake (c.
9%) at a shear rate E~5s"'. As mentioned above, shear rates larger than 15! are probably
higher than encountered in nature. For more realistic shear rates they observed 2% increase
in relative uptake at a shear rate E~0.35s"!. The simple shear model (Equation 31) predicts
an increase of 24% in the fotal flux of NO; to the cell surface (D, = 1.9x% 10cm?s™!, Li
& Gregory 1974). The offset between expenmental results and theory may result from some
combination of greater saturation of the uptake system under conditions of shear (predicted
flux, therefore, over-estimating uptake), failure of the theory to include the shape effects of
non-spherical cells and experimental error, whose magnitude was not provided. In sum-
mary, there are no published data that show statistically significant departure from model
predictions for simple shear flow, but no strong tests have been performed.

Mass transfer to cells in turbulent water
Non-motile cells in turbulent flow

Turbulence acts to mix water and increase rates of momentum, heat and mass transfer. Tur-
bulence is strongly intermittent in amplitude, space and time and is always dissipative.
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Kinetic energy is transferred from large, turbulent eddies into smaller ones and then is dissi-
pated as heat by viscous friction. The length scale of the smallest eddies associated with the
turbulent flow is known as the Kolmogorov length scale, n (Tennekes & Lumley 1972),

!
n= [—S—J s (Equ. 37)
where € is the turbulent kinetic energy dissipation rate [L? T-3] and v is the kinematic viscos-
ity (approximately 0.01cm?s2). Organized rotational motions of the fluid in the absence of
particles are thought not to exist below this scale. Typical values of the energy dissipation
rate in the oceanic upper mixed layer range from 107 to 10~ cm?s™3 (Oakey & Elliott 1982,
Gargett 1989, Brainerd & Gregg 1993). Thus, in the upper mixed layer the Kolmogorov
scale is on the order of 1-6mm. Above the Kolmogorov scale, the flow is turbulent (i.e.
irregular and dominated by inertial forces), while below it viscosity dominates, resulting in
laminar shear (Table 4). Another feature of the turbulent flow field below the Kolmogorov
length scale is that the statistical state of small-scaie fluctuations is considered to be homoge-
neous, isotropic and practically steady (Monin & Yaglom 1975).

Table 4 Characteristic flow fields at large distance from the cell, dominant transport mechanisms and proposed
solutions for nutrient tranfer to cells.

Dominant
Scalings Flow regimes transport mechanisms Relevant equations
Re<<1, ry<<n,, Pe<<1 Steady, laminar shear Molecular diffusion Equation 48
Re<<1,ryxn,, Pex1 Steady, laminar shear Molecutar diffusionand  No solution
laminar advection available (see Fig. 6)
Re<<1,m,<r,<n, Pe>1  Statistically steady, laminar Laminar advection No solution
shear available (see Fig. 6)
Re<1, rgn, Pe>>1 Statistically steady, laminar ~ Laminar advection Equation 49
shear
Rex1, ry=n, Pe>>1 Transitional flow (between  Laminar and turbulent Outside the scope of
laminar and turbulent) this review. Do not
Re>1, ry>n, Pe>>1 Turbulence Turbulent advection attempt to apply our

equations

Hence, ambient flow in the vicinity of phytoplankton and bacteria (except for large chains
of diatoms and filamentous cyanobacteria) can be very well approximated as a linear shear
field. Based on published field measurements of micro-structure Lazier & Mann (1989) sug-
gested that the smallest energy-containing eddies have a length scale larger by a factor of
5-10 than the Kolmogorov scale and proposed that a coefficient of c¢. 10 should be used with
the right side of Equation 37. A major limitation in addressing the role of turbulence in the
nutrition of planktonic osmotrophs is the rarity of flow measurements at microscopic levels.
Current knowledge of the flow regime in the vicinity of planktonic micro-organisms is based
solely on theoretical arguments and on measurements of flow at macroscopic levels. Accept-
ing Equation 37 as representing the size of the eddies below which the flow field can be well
approximated as a laminar shear field will not result in a large error, however, so long as the
cells in question are much smaller than n produced by Equation 37.

A second relevant length scale addresses the smallest variations in the ambient concentra-
tion field. It was introduced by Batchelor (1952) but has seen far less frequent application
than Equation 37:
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2

2\4
Ny = [Q—j . (Equ. 38)

This length scale is smaller than the Kolmogorov scale because diffusion coefficients
are smaller for molecules such as nutrients [O(10~cm?s7!)] than for momentum
[0(10-2cm?s!)]; mass transfer requires displacement of molecules, while momentum can be
transferred in successive molecular collisions without as much net displacement. This length
scale separates the region in which the principal transport mechanism is shearing motion
versus diffusion (Table 4). At length scales larger than n, but smaller than 1, temporal
changes of the velocity field are slower than the Kolmogorov time scale of (v /)2, and the
flow is considered to be statistically steady (Table 4). Below this scale, molecular diffusion
dominates transport and has a characteristic time scale L2/D (where L_is a characteristic
length scale). If we choose L_ to be (vD?/g)!’4, then the characteristic timescale of diffusion
becomes (v/g)!/2. This result 1mphes that below 1, diffusional adjustment is faster than vari-
ations in the flow, and the flow can therefore be approximated as steady shear. In the mixed
layer, ), may range between 32pum and 180um (assuming a kinetic energy dissipation rate
of 102 to 105 cm? s3 and D = 1 x 1079).

A turbulent flow field is often decomposed into its mean (e.g. over an ensemble of meas-
urements) and fluctuating components as

U=U+u'. ‘(Equ. 39)
The strain tensor can be decomposed similarly as
E=E+e¢'. (Equ. 40)

Since in a turbulent flow

E E << e,je,j (Equ. 41)

(Tennekes & Lumley 1989), the relation between shear rate and kinetic energy dissipation
rate is effectively

€= 2ve e (Equ. 42)

I/

For isotropic turbulence (e;; =e; €;=¢y i=j, k=l, and the mean rate of extension equals
zero), only one component of the stram tensor is needed to describe the relationship between
€ and shear rate. The relationship between the r.m.s rate of extension in a fixed direction and
€ was given by Taylor (1935),

! ;
(¢8)’ —026( ) (Equ. 43)

2

e %(312) . (Equ. 44)

and, (311) =

The local axis of rotation, however, changes over time. A relation between the mean rate of
extension parallel to the local axis of rotation ((E,)) and € was given by Batchelor (1980),

{
7 2
<Em> = 6415 S(%) , (Equ. 45)
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where S is a skewness factor of the rate of extension in a fixed direction. Its values range

from 0.3 to 1, based on measurements in various turbulent flows and over a wide range of
Reynolds numbers (Batchelor 1980). Since the measures for oceanic turbulence are € and v,
we define the characteristic velocity and hence Pe in terms of those parameters:

1

[AY;
Umrlmlence = (;J ) (Equ. 46)
(e 2
and P, Crurbulence = E(;) . (qul. 47)

We are not aware of solutions for mass transfer to particles suspended in turbulent flow
for small or intermediate values of Pe. For cells smaller than n,, (which by definition means
Pe < 1), however, the flow can be assumed to be steady. In addition, since in isotropic
turbulence the ratio between E utence B9 Qppionce is_of order 1, Equation 33 (steady shear
flow at Pe << 1, where E/Q < 1) can be used to describe mass transfer to cells suspended in
turbulent water. After replacigg Pe,,, with Pe, .. using Equation 42 to convert E
(=e,.]eij) to terms of €/v, Equation 33 becomes

1
Sh=1+029Pe, uience - (Equ. 48)

For cells larger than n, but smaller than n, Equation 36 (for Pe >> 1) can be used after con-
verting E| to terms of € and v, according to Equation 45 (Batchelor 1980). Batchelor (1980)
used §= 0.6 to solve for mass transfer to spherical particles in statistically steady (but not
necessarily homogeneous), turbulent flow:

1
Sh = 0.55Pe} puience - (Equ. 49)

The leading coefficient in this equation will vary by 20% depending on the choice of S. We
caution that varying definitions of shear rate (and hence Pe) have been used. In several

30
20
Sub-Kolmogorov Shear from
10 Dissipating Turbulence
Sh (neutrally buoyant, o
5 non-motile celis) <
3
2 /,;7
001 01 1 10 100 1000
P Ciurbulence

Figure 6 Sherwood number (Sh) as a function of Péclet number (Pe) for non-motile cells suspended
in turbulent water. For Pe << | (i.e. cells smaller than n,) we used Equation 48 for steady shear flow,
and for Pe >> | we used Equation 49, which was derived for statistically steady shear flow. For
0.01 < Pe < 100, Sh values were obtained by interpolation (gray area) as described in Figure 5 where
the lower limit for interpolation is given by Sh =1.014 + 0.15P¢'? and the upper limit is given by the
line Sh = 0.955 +0.344Pe's,
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studies, a less rigorously defined shear rate was related to € by an arbitrary leading coeffi-
cient of 0.5 (e.g. Bowen et al. 1993, Jumars et al. 1993). In the absence of analytic or nu-
meric solutions for intermediate values of Pe, Sh values used here for the region 0.01 <
Pe < 100 were obtained by interpolation (Fig. 6).

Application to the ocean

Turbulent kinetic energy dissipation rate (g) in the ocean shows great variability in both
space and time, making the choice of a representative value of the shear experienced by cells
challenging and maybe unwise. Within the mixed layer, successive estimates of € differ by
an order of magnitude (Shay & Gregg 1986). Turbulent kinetic energy dissipation rates are
high at the surface and decay with depth, often decreasing by an order of magnitude per
meter (Brainerd & Gregg 1993). Dissipation rates vary daily, seasonally and annually. Fur-
thermore, in the near-surface zone, values of € obtained a few hours apart may differ by
three orders of magnitude (Brainerd & Gregg 1993). Turbulence can be beneficial if cells
are suspended in high shear long enough to allow appreciable enhancement of nutrient flux.
Since published values of estimated turbulent kinetic energy dissipation rates are time aver-
aged, one must know the distribution function of € in order to estimate the fraction of the
time that a cell is exposed to a given shear. The distribution function of dissipation estimates
drawn from surface mixed layers is nearly lognormal (Osborn & Lueck 1985, but see
Yamazaki & Lueck 1992) and is parameterized by x, _and szmc, the mean and the variance
of Ine. The latter is a measure of the intermittency of the turbulence. For example, taking a
value of the variance in the upper mixed layer 521n5= 1.5 (Baker & Gibson 1987), the dissi-
pation rate will have a value equal to or smaller than the mean 73% of the time (Shimeta
1993). Because of the strong intermittency of turbulence, its effect on flux will vary greatly
in space and time and will probably be more significant in coastal zones, where turbulence is
more intense, than in the open ocean. '

If we assume a characteristic value of € in the surface layer to be 10-2cm?s-3, theory sug-
gests that turbulence in the ocean will favour large-celled competitors. The critical cell size
for 50% increase in the flux (D =1x10"cm?s™!) at this dissipation rate ranges between
63-100pum (Table 2). Planktonic bacteria (other than filamentous blue-greens) and small
flagellates are well below this limit, while large cells, chains and colonies are above it.
These calculations indicate a stronger effect of turbulence than previously supposed. Assum-
ing a diffusion coefficient D=2 x 10 cm? s-!, Lazier & Mann (1989) calculated, based on
the experimental results of Purcell (1978), an increase in the flux of only 2% for cells 50um
in radius in the presence of strong turbulence (¢ = 10-%2cm?sec3) - while the model we use
suggests an increase a full order of magnitude greater (18-32%; Fig. 6).

The behaviour of celis in turbulent flow is not well known but is likely to vary strongly
with shape. Since large cells, chains and colonies are the ones expected to benefit most from
turbulence, a better understanding of their behaviour in turbulent flow is needed. Whether
chains are straight, bent, rigid or flexible will affect their behaviour in shear flow and hence
their nutrient fluxes and competitive abilities. For instance, the period of rotation of perma-
nently bent, threadlike particles is appreciably lower than that of straight particles (Forgacs
& Mason 1959). If this disparity holds in the pelagic environment, one may expect straight
chains to experience reduced flux compared to bent chains. In both theoretical and empirical
results Van de Ven & Mason (1976) showed that the behaviour of chains of equal-sized
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spheres in simple shear flow depends on whether the units in the chain touch each other. A

straight chain of touching units will rotate as a rigid body when exposed to shear while a
chain of non-touching spheres will change length periodically with their orientation. Curved
chains that are not rigid will bend. Although the units in chains of non-touching spheres were
not attached directly to each other by means of thin, flexible threads (as in the case of some
diatom species), but were held together by means of electrostatic and van der Waals forces,
and although the results of their study are limited to Poiseuille flow and short chains (up to 5
units), they are intriguing in the light of the diverse morphologies of chains observed in
nature and the evolutionary trend in diatom chain formation toward non-touching cells. De-
tails of spacing within chains will alter the way that turbulence and bending “pump” nutrient-
replete water between the cells of chains.

There are no measurements of nutrient uptake by cells suspended in controlled turbulence
that can be tested against this theory. Results from experiments done in bottles placed on
shaker tables and plankton wheels or stirred with stir bars do not provide strong insight about
turbulence effects since the nature of the flows and the magnitudes of shear are neither well
quantified nor related to nature. Savidge (1981), who investigated the effect of turbulence on
uptake rate of phosphate and nitrate by the diatom Phaeodactylum tricornutum, used an
oscillating grid to produce turbulence. Unfortunately, neither shear rate nor energy dissipa-
tion rate was determined, and no information was provided about sizes of cells or the magni-
tude of experimental error. Oscillating-grid turbulence shows extreme spatial variability, the
dissipation rate falling off as the fourth power of distance from the grid (Brumley & Jirka
1987). Therefore, no quantitative conclusions can be drawn from this experiment. Better
indication at high Pe comes from chemical engineering experiments on dissolution rates of
particles in turbulent, stirred flows. These data have been reviewed and summarized by
Batchelor (1980), who found good fit to the predictions.

Translational motion in turbulent water

Swimming and sinking in turbulent water

The solutions presented so far for mass transfer in the presence of turbulence-induced shear
assumed that the cells were suspended without translation in turbulent water. In the real
ocean, however, cells in turbulent water may swim or sink. The resultant flow field can be
expressed as a superposition of steady translational motion and shear (Batchelor 1980). Total
nutrient transfer to motile cells, for large Pe, becomes (Batchelor 1980):

U.y r ] at
Sh=a 2.25(r~5—) +5.1s2(3( /v)’) (Equ. 50)

The coefficient o depends on the ratio 5r,e, /U, (Where the asterisk indicates that only the
component of the swimming or sinking velocity paraliel to the axis of rotation is used. It
varies between 0.495 (when 5r,e,,/U,, — =, i.e. pure shearing motion of Equation 49) and
0.545 (when 5rpe, /U= 0, i.e. pure translational motion as given by the firsi-order
approximation of Equation 17). As mentioned previously, if a cell is rotating and closed
streamlines are formed, translational motion will contribute to the flux in proportion to the
magnitude of its component in the direction paralle! to the axis of rotation. If isotropic turbu-

96



NUTRIENT FLUXES TO PLANKTONIC OSMOTROPHS

lence is assumed, however, the cell is continually reoriented, and the mean value of the com-
ponent of translational motion parallel to the axis of rotation equals zero. Thus in turbulent
water, as soon as the shear-induced rotation rate reaches a critical magnitude (€2 = U rPe"”/
ry, wWhere Pe =r,U /D), swimming or sinking will have no appreciable effect on transfer of
nutrients (Batchelor 1980). Even if the swimming mechanism imparts rotation parallel to the
instantaneous swimming direction, high turbulence intensities may overwhelm the rotational
component and effectively randomize the direction of translation.

A common observation, both spatially and temporally, is that small, motile phytoplankton
cells tend to predominate in stratified, calm, oligotrophic water while large cells (mainly dia-
toms) prevail in turbulent, nutrient-rich water (Margalef 1978, Malone 1980, Mann 1992).
Dominance of flagellates in calm water is probably a result of their ability to increase nutri-
ent uptake through swimming ~ both from reaching layers of higher nutrient concentration
and within any particular nutrient concentration from relative motion. In turbulent water, on
the other hand, dinoflageliates may not be able to maintain a rotational axis parallel to the
direction of the swimming or to the direction of the shear flow; thus they will suffer a rela-
tive reduction in nutrient flux. Predicted critical velocities below which swimming is no
longer effective in enhancing the flux are of the same order of magnitude as maximal swim-
ming velocities measured for dinoflagellates (Figure 7). Thus swimming, especially for
large dinoflagellate cells, may not contribute significantly to flux under natural turbulence.
There is increasing evidence that dinoflagellates are sensitive to strong shear. Under condi-
tions of vigorous turbulence cells may suffer mechanical damage. Loss of flagella, changes
in swimming behaviour, and growth-rate inhibition have been observed for several species
of dinoflagellates exposed to straining motion in the laboratory (Thomas & Gibson 1990 a,
b, 1992, Berdalet 1992).

300F
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Figure 7 Critical velocities below which swimming or sinking cannot significantly af-
fect the flux in turbulent water, as a function of cell size. Critical velocities were calcu-
lated based on Batchelor (1980) U_.. . = (PIND)E/v)¥, with energy dissipation rate
(¢) taken to be 1x102cm?s™>, D to be 1x105cm?s™! and v to be 1x10-2cm?s"!. For
cells swimming or sinking more slowly (grey area under the solid line) turbulence so

dominates the advective contribution to the flux that swimming or sinking is ineffectual.
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Flow-induced rranslational motion

Cells and chains of sizes near the Kolmogorov scale may exhibit passive translational motijon
due to a lift force induced by curvature of the flow. Passive migration can increase total mass
transfer because it adds an additional component of relative velocity between the cell and
its surrounding water and facilitates encounter of cells with “new” water (i.e. changes C.).
The idea of translational motion induced by turbulence stems from observations of the
migration of rigid, neutrally buoyant particles in Poiseuille flow (a nonlinear shear flow with
6u,./6xj # constant, i#j, such as in pipes and blood vessels) at particle Reynolds numbers as
low as 1073 (Sergé & Silbergberg 1961, Karnis et al. 1963). Nonlinearity of the flow due to
wall effects and small but non-negligible inertial forces (Goldsmith & Mason 1967, Leal
1980) impart the lift force that causes migration. Flexible particles show similar behaviour
even at smaller Reynolds numbers as a result of lift due to shear deformation (Goldsmith &
Mason 1961, Karnis et al. 1963). The direction of the migration of neutrally buoyant parti-
cles in Poiseuille flow is to the region of minimal shear, while the direction of migration of
non-neutrally buoyant particles depends on whether the particles lead or lag the local undis-
turbed motion (Leal 1980). Since a similar phenomenon has also been predicted in
unbounded flows (Saffman 1965a) it may be relevant for large cells in turbulent water.

To calculate the translational velocity that results from curvature of the flow, we assume
a one-dimensional flow field of one Fourier component with the length scale of the smallest
energetic eddy. This simplification is suitable for our purpose since the turbulent flow fieid is
assumed to be isotropic. We assume a free-stream flow velocity,

. [ 2my
Uﬂow = SSID(T) . (Equ. 51)

where 8 is the Kolmogorov scale of velocity ((ev)!"#), n is the Kolmogorov length scale, and
¥ is the spatial variable. Transverse (to the streamline) velocity of the phytoplankter due to
lift is (Saffman 1965a, b, McLaughlin 1991)

Utransverse = 0343AU | Regppqy (Equ. 52)

where Re,,, is the Reynolds number of the particle based on the turbulence-induced shear
and is defined as

2 (U
Regpoar = _’%(__(;;va . (Equ. 53)

Equation 52 is independent of rotation, and the error is of order Re << 1. AU is the relative
velocity between the flow speed at the centre of the particle (when the particle is removed)
and the speed of the particle. The difference in the flow velocity and the particle velocity
arises from the nonlinearity of the shear flow. Equation 52 holds only when the cell is not
motile or if Re based on its swimming or sinking velocity (Re,) is much smaller than the
square root of the cell Reynolds number based on shear velocity (Re,,,)- McLaughlin
(1991) expanded Saffman’s analysis to cases in which Re > \/Resh or a0d demonstrated that
migration velocity increases as the ratio \/Resh o Re, increases. If we assume a typical shear
rate for strong turbulence to be ¢. 0.5 s!, for a cell 50pm in radius Re,,,. becomes O(102).

Re for sinking cells is typically smaller than 10-2 (Table 1), and Equation 52 can be used to
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calculate the translational velocity due to flow curvature. Re for swimming cells can be
larger, and the corrections to Equation 49 suggested by McLaughlin (1991, his table 1)
should be used.

In our case, the r.m.s. relative velocity that arises from the curvature of the flow is the
second term of the Taylor expansion for particle velocity:

219 2
AU = i(—") 9 (Equ. 54)
4{n
r 2
Thus, Ulranxverse = 349(72—) \)Rexhear ’ (Equ 55)
or Ulmnsverxe — 3 4)’(? l aUﬂ”W K (Equ 56)
9 n Vv o

For an organism 50-100um in radius in turbulent water with € =0(1072)cm?s™3 the trans-
verse velocity is about 10-2-10~ body lengths s~'. The direct contribution of shear-induced
lift to the advective flux will strongly depend on cell size and will become important only
when cell size is of order 1. Our calculations suggest that migration due to curvature of the
flow is potentially important in laboratory experiments but is probably of limited relevance
to the pelagic environment.

Conclusions and prospects

Nutrient fluxes to planktonic osmotrophs in the presence of fluid motion depend on three sets
of physical characteristics: the flow regime, the size and shape of the cell and the diffusion
coefficient of the nutrient of interest. Solutions for the advective contribution to flux clearly
do not carry over from one flow regime to another. Careful attention should be given, there-
fore, when comparing theoretical results with experimental or field data. For example, theo-
retical predictions derived for a cell in three-dimensional, isotropic turbulence cannot be
tested directly by experiments in Couette flow devices. Advective flux in a given flow field
will also be affected by the behaviour of the cell, e.g. rotation or deformation of flexible
chains. Direct observations of behaviours of cells in shear flows or even of behaviours of
cells while sedimenting, however, are practically non-existent.

A recurring theme is the potential effect of rotation on flux for all but one orientation,
i.e. rotation about an axis parallel to the flow. We are not aware of any measurements of the
magnitude of the rotation effect at any Pe. It could be explored in stagnant water and linear
shear with slight modification of the approach of Purcell (1978) and seems important to an
understanding of the ecology of dinoflagellates in particular. A key question is whether
dinoflagellates in the presence of steady shear of varying magnitudes or of even gentle turbu-
lence can maintain a rotational orientation that does not hinder nutrient exchange. It seems
likely, however, that dinoflagellates are ill suited for experimentation in the Couette devices
that are typically used to mimic some turbulence effects. At low shears their tendencies to
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swim in more or less straight lines will cause them to interact frequently with the walls, and
at high Pe they should suffer reduced fluxes from rotation for any rotational orientation that
is not perfectly aligned with the curved plane of shear.

The contribution of advection to nutrient flux will increase with cell size. For nutrients of
small molecular sizes, such as nitrate, phosphate, glucose or individual amino acids, fluid
motion will have small effect on the flux to small planktonic organisms, such as bacteria, but
will be important for large phytoplankton cells and osmotrophic larvae. Chains and fila-
ments, in particular, are expected to experience enhanced relative motion if their lengths
approach the Kolmogorov scale. Fluid motion can be very significant, however, to small
cells that feed on large dissolved molecules or colloids as implied from the inverse depend-
ence of Sk on the diffusion coefficient. The dependence of Sk on cell size differs among the
mechanisms by which relative motion can be induced (Table 3). Hence, optimal cell size will
vary with this changing dependence (Jumars et al. 1993). This result may provide one expla-
nation for the existence of such a wide range of phytoplankton sizes. While the theory that
relates cell size and mass transfer is well developed, there is clear need for more laboratory
experiments. The size range that has been examined so far is very narrow and limited to
small cells, mainly bacteria.

A striking feature of the phytoplankton community is its diversity of shapes and
morphologies. Analytic solutions for mass transfer to shapes other than spheres are limited
to spheroids and cylinders. Solutions for more complex shapes require numerical modelling.
It has been suggested that spines and horns, common features in many phytoplankton spe-
cies, are devices that increase drag and thereby decrease sinking speeds or are means to
thwart grazers (Sournia 1982). An additional function of horns and spines may be to increase
the effective size of cells without changing volume or gross catabolic rate, so that absolute
length will exceed the Kolmogorov scale or at least Batchelor’s (1952) diffusional length
scale (Table 4). Chain formation can serve a similar purpose, especially if cells are held
apart from each other so that their diffusionally depleted layers do not overlap. While cells in
a chain can remain as small units, the total length of the chain may be long enough to expe-
rience the curvature of a turbulent flow and gain benefit from the relative difference in veloc-
ity. Terminal cells would experience the greatest relative motion, and chain flexibility would
influence absolute amounts of motion experienced and their time variation.

Although most osmotrophs live at low Reynolds numbers with viscous forces smoothing
out velocity gradients, the potential flow fields experienced by cells are varied, and compa-
rably diverse strategies can be used by cells of various species to alter their physical environ-
ments and hence their diffusional fluxes. In such an unsteady environment as the upper
mixed layer there is no one strategy that will maximize nutrient transfer to the cell at all
times or for all cell sizes.
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Appendix I Notation

Symbol Definition Dimensions
A cell surface 1.2
c concentration of a given nutrient mol L7
C. ambient concentration, far from the cell surface mol L}
G concentration at the cell surface mol L3
C* dimensionless concentration (cic) dimensionless
D diffusion coefficient LT
E rate of strain tensor T-!
E shear rate E = |E| T!
E; the ij component of the strain rate tensor T!

1 (6(],- av, ]

Ep=o| ot =L

2\ 8X;  ox;
E mean shear rate T!
E, component of the strain rate tensor parallel to the direction of rotation T
e perturbation strain rate T!
e; the {j component of the perturbation strain rate tensor T

1 all," aujl
&y = =) ——
) [axj oX;
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Symbol Definition Dimensions

f nondimentional drag on the cell dimensionless

G velocity gradient tensor T!

G, the if component of the velocity gradient tensor T

g gravitational acceleration LT?

k mass transfer coefficient LT!

K, concentration at which uptake equals 172V, molL-?

L, characteristic fength scale L

n unit vector inward normal to the body surface dimensionless

P ratio between diffusion and maximal uptake rates (Pasciak & Gavis 1974) dimensionless

Pe Péclet number, Fe= %“ dimensionless
EL

Pe, . Péclet number in shear flow, Pe= D( dimensionless
(e

Pe,pinee  PEclet number in wrbulence, Pe = —‘L’)—(;) dimensionless

(4] total flux arriving to the cell in the presence of fiuid motion mol cell! T+

o, purely diffusional flux mo!l cell”t T-!

r radial distance from the centre of the cell L

ry cell radius L

r¥ nondimensional radial distance from the centre of the cell dimensionless

Re Reynolds number. The ratio between inertial and viscous forces, Re= yf—l dimensionless
. . . . UswimmingLr . .

Re, Reynolds number of a cell based on its swimming velocity, Re= - dimensionless

ELL
Re,,... Reynolds number of a cell based on the shear flow, Re= . dimensioniess
Q0 _kn
Sh Sherwood number, S = 0, =D dimensionless
D

Sh, Sherwood number in the case of pure diffusion dimensioniess

t characteristic time scale for diffusion T

U characteristic velocity (U = U,, U,, U,) LT

U velacity field LT!

U* dimensionless velocity field (U/U) dimensionless

U mean velocity LT

U, far-field velocity LT!

Uiking sinking velocity LT

U, ivming swimming velocity LT

U, swimming or sinking velocity LT!

U Component of swimming or sinking velocity parallel to the axis of rotation LT

Uur characteristic velocity of the shear flow LT!

U, sverse velocity of passive migration LT!

L/ — characteristic velocity of sub-Kolmogorov turbulent flow LT

i perturbation velocity LT

v mean free velocity of the shear flow LT

L maximal uptake rate mol cell”! T~

X position vector X = (x,, X,, X;) = (%, ¥, 2) -

£ kinetic energy dissipation rate of the flow LT

n Kolmogorov length scale (of the smallest eddies associated with the shear flow) L

m, Batchelor length scale (of the smallest fluctuations in the concentration field) L
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Symbol Definition Dimensions
y shear rate for simple shear flow T-!
v del operator that indicates partial derivatives in three spatial dimensions; L

. . , 2,8.,8

in Cartesian co-ordinates, o oy %
V* dimensionless del operator dimensionless
I dynamic viscosity ML T
v kinematic viscosity 27!
Q rotation rate tensor T!

O = 1{ 8y, ou;

Q,.j the §j component of the rotation rate tensor, <% = 2 E - ax, T-!
p density of the medium in which cells are immersed ML-
P, mean density of the cell ML-3
9 Kolmogorov scale of velocity LT!

Appendix 2 Advection-diffusion model

We solved numerically for concentration distributions of nutrients around a spherical cell at
low Reynolds number under unidirectional flow and linear shear (Re <<1). The concentra-
tion field around the cell for both flow regimes is given by Equation 7 with the boundary
conditions 8 and 9, where, for spherical co-ordinates,

2. 1 8(,8C 1 o(..aC 1 &cC
\% C=7—a—(r a— + 3 —| sinf—— +—2‘—2‘—T
r“ or r ) r°sin6 30 r°sin“0 o

,0C boCc § ac
F—+——+ —
or r 0 rsind o

and VC=

The velocity field U depends on the flow regime. For unidirectional, uniform flow past a
sphere, U is composed of two components, U, and U,, where (Leal 1992)

3 1 3 1
U ={1-—+— 0 and Uy =|1-— - — sinB .
"\ ( P 2r3)cos nd Uy ( y 4r3)m

Since the problem is axisymmetric, velocity and concentration do not depend on the second
angular co-ordinate, ¢ (6/0¢ = 0). The velocity field of the shear flow (uniaxial extensional
flow where E = (2,0,0; 0, -1, 0; 0,0,-1) also comprises two components, U, and UO, where
(Leal 1992)

5 3 2 ( 1).
U =|r-—+—=|3cos*0 -1} and U, = -3 r - — IsinBcosH .
r ( 2r? 2r4)( ) 0 rt

For each flow field, we nondimensionalized by cell radius, free velocity (far from the cell)
and concentration at the domain boundary. Due to symmetry, only one-half the domain was

106




NUTRIENT FLUXES TO PLANKTONIC OSMOTROPHS

computed, with an additional no-flux boundary condition at the angular boundary
BCI8 =0at 6 =0, n). In order to increase resolution near the cell the radial independent
variable r was replaced by the variable p = In(r). The grid (u-6 co-ordinates) was composed
of 231 points with constant radial separation (Ap) and 101 points with constant angular sepa-
ration (A8). Computation of the concentration at each point was marched in time using up-
wind difference. The first-order spatial derivative was calculated from central differencing
and the second-order spatial derivative was calculated using ADI (alternating direction im-
plicit) following Press et al. (1992, Ch. 19). The model was run until satisfactory steady
state was reached, i.e. when the change in Sh was smaller than 10-4 for one nondimensional
time step (rOZ/D). Boundary conditions 9 cannot be applied as given in the text since 7 = o« is
not part of the domain. Therefore we used C(r,,,) = 1-(1/r,,,), the value obtained from the
analytic solution for pure diffusion. The solution for the problem with this boundary condi-
tion will converge to the exact solution as grid size increases toward infinity. For small Pe
we chose the domain boundary to be O(100r,) and tested model sensitivity to it by doubling
domain size. For large Pe values the domain we needed was of 0(1000r,) since the effect of
the cell on the concentration field extends to a larger distance. Berg & Purcell (1977) used a
similar model but with a smaller domain (H. Berg, pers. comm.). Our sensitivity analysis
with our own model suggests that their domain might not extend far enough to include the
flow variation contained in-Stokes’ solution. We believe that this truncation of the flow and
concentration field is the principal reason for the discrepancy between their model and the
asymptotic analytic solutions and our numerical model.
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