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Preface

1 his book deals with the applications of mathematics to the study of
normal and pathological physiological rhythms. It is directed toward
an audience of biological scientists, physicians, physical scientists, and
mathematicians who wish to read about biological rhythms from a
theoretical perspective.

Throughout this volume, we discuss many biological examples and
present selected mathematical models to emphasize main concepts. The
biological examples have been chosen to illustrate the great variety of
dynamic processes occurring in different organ systems. For most of the
biological examples, a definitive theoretical interpretation is impossible
at the current time. Consequently, the mathematical models are not
intended to be exact descriptions of the real biological system, but are
simplified approximations. We have tried to emphasize the main prin-
ciples and to present them in the simplest way possible. It will remain
for future researchers to determine whether more realistic models dis-
play the same dynamical properties as the simplified versions we present.

We assume a knowledge of calculus but try to explain all advanced
concepts and intend the text to be intelligible to nonmathematicians.
Equations are used sparingly, and we illustrate ideas with physiological
examples and graphs whenever possible. Although there are frequent
cross-references between chapters, the chapters are largely independent
of one another and do not have to be read in the sequence presented.
However, readers with little background in mathematics will need to
refer back to chapters 2 and 3 for explanations of unfamiliar concepts.
The Mathematical Appendix gives further details of some of the main
mathematical techniques together with examples and problems to
illustrate the application of these techniques in concrete situations.

Because of the large range of potential applications of the theory, it
has been impossible to give exhaustive references. Rather, we have tried
to give several key references for each topic to assist the reader in iden-
tifying the relevant literature. In order to preserve the flow of the text,
we have collected the references in the separate Notes and References
sections that follow each chapter.

Over the years we have benefited enormously from discussions and
collaborations with students and colleagues. In particular we thank
J. Belair, P. Dormer, A. Goldberger C. Graves, M. R. Guevara, U.
an der Heiden, S. A. Kauffman, J. Keener, A. Lasota, J. G. Milton,
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R. Perez, G. A. Petrillo, A. Shrier, T. Trippenbach, and A. T. Winfree.
J. G. Milton, S. Strogatz, J. Tyson, and A. T. Winfree made many use-
ful suggestions concerning presentation of the text, and J. G. Milton
suggested the main title. The figures were drafted by B. Gavin, and
S. James helped with the typing. We would like to thank Judith May
and Alice Calaprice of Princeton University Press for their help and
advice throughout the production of this book.

This book was partially written while LG was a visiting research
scientist at the University of California at San Diego and MCM was
a visiting professor at the Universities of Oxford and Bremen. We thank
H. Abarbanel and A. Mandell (San Diego), J. D. Murray (Oxford),
and H. Schwegler (Bremen) for their hospitality during this period of
time. Finally, we have benefited from research grants from the Natural
Sciences and Engineering Research Council (Canada), the Canadian
Heart Association, and the Canadian Lung Foundation.

Montreal
August 1987
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Chapter 1

Introduction:

The Rhythms of Life

x hysiological rhythms are central to life. Some rhythms are maintained
throughout life, and even a brief interruption leads to death. Other
rhythms, some under conscious control and some not, make their ap-
pearance for various durations during an individual's life. The rhythms
interact with one another and with the external environment. Varia-
tion of rhythms outside of normal limits, or appearance of new rhythms
where none existed previously, is associated with disease.

An understanding of the mechanisms of physiological rhythms re-
quires an approach that integrates mathematics and physiology. Of
particular relevance is a branch of mathematics called nonlinear dy-
namics. The roots of nonlinear dynamics were set by Poincare at the
end of the last century but have seen remarkable developments over the
past 25 years. Unfortunately, the main features of nonlinear dynamics
are usually presented in a format suitable for advanced students in
mathematics and are thus difficult for the practicing physiologist. Yet
many of the central ideas that are most relevant in physiology can be
expressed and illustrated in concrete physiological examples. This book
is intended to offer an introduction to recent advances in nonlinear
dynamics as they have been applied to physiology, in a format in-
telligible to a nonmathematician. However, we also hope that those
with a mathematical background will find the numerous physiological
examples of interest, and that some will even find the many poorly
understood phenomena in physiology which we discuss a stimulus for
future research. In this chapter we give a brief outline of this book and
summarize its themes by giving several physiological examples.

1.1 Mathematical Concepts

It is common to measure physiological observables as a function of
time. Four main mathematical ideas have been developed to charac-
terize such time series: steady states, oscillations, chaos, and noise.
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Since the pioneering research of Bernard, Cannon, and others, it
has become fashionable, if not obligatory, to discuss homeostasis near
the beginning of physiology texts. Homeostasis refers to the relative
constancy of the internal environment with respect to variables such as
blood sugar, blood gases, electrolytes, osmolarity, blood pressure, and
pH. The physiological concept of homeostasis can be associated with
the notion of steady states in mathematics. Steady states refer to a con-
stant solution of a mathematical equation. Elucidation of the mecha-
nisms that constrain variables to narrow limits constitutes a key area
of physiological research. As an example of a homeostatic mechanism,
consider the response to a quick mild hemorrhage in an anesthetized
dog (figure 1.1). Following the hemorrhage, reflex mechanisms are ac-
tivated which restore blood pressure to near equilibrium within a few
seconds.

Although the mean blood pressure is maintained relatively constant,
as we all know, the contractions of the heart are approximately peri-
odic. The periodic electrical activity of the heart can be visualized using
an electrocardiogram. Figure 1.2 shows an example of a normal elec-
trocardiogram. Likewise, all of us are familiar with the rhythms of
heartbeat, respiration, reproduction, and the normal sleep-wake cycle.
Less obvious, but of equal physiological importance, are oscillations
in numerous other systems—for example, release of insulin and lutein-
izing hormone, peristaltic waves in the intestine and ureters, electrical
activity of the cortex and autonomic nervous system, and constrictions
in peripheral blood vessels and the pupil. Physiological oscillations are
associated with periodic solutions of mathematical equations.

Hemorrhage [

Mean r145
arterial (•
pressure M25

r170 —
Arterial
oressure 1 3 0 ^

90
(mmHg)

1

1

Hemorrhage
(2ml/kg b.w.)

20 sec

1.1. Arterial and mean arterial pressure responses to a quick mild hemorrhage in a dog
anesthetized with sodium pentobarbital. From Hosomi and Hayashida (1984).
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1.2. Normal electrocardiogram. The P wave corresponds to atrial depolarization, the
QRS complex to ventricular depolarization, and the T wave to ventricular repolariza-
tion. One large box corresponds to 0.2 sec in the horizontal direction, and 0.5 mv in the
vertical direction. From Goldberger and Goldberger (1986).

Of course, we all know that close measurement of any physiological
variable will never give a time sequence that is absolutely stationary
or periodic. Even systems that are assumed to be stationary or periodic
will always have fluctuations about the fixed level or periodic cycle. In
addition, there are systems that appear to be so irregular that it may
be difficult to associate them with any underlying stationary or peri-
odic process. One potential source of physiological variability is the
fluctuating environment. As one eats, exercises, and rests, blood-sugar
levels and insulin levels respond in a characteristic fashion (figure 1.3).

C l o c k t i m e

1.3. Immunoreactive insulin (IRI) and blood glucose (BG) in ambulatory normal subjects
over a 48-hour period. Interrupted lines describe patterns for individual subjects; con-
tinuous lines show the group averages. Symbols: B = breakfast; L = lunch; Sk = snack;
D = dinner; Su = supper; E = 1 hour of walking exercise. From Molnar, Taylor, and
Langworthy (1972).
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Similarly, the blood pressure responds to the changes in activity and
posture. Physiological rhythms themselves can also act to perturb other
rhythms. An example is respiratory sinus arrhythmia in which the heart-
beat is quickened during inspiration. Although such variability is not
necessarily easy to deal with theoretically, its origin is often readily
understood.

More mysterious situations are those in which fluctuations are found
even when environmental parameters are maintained at as constant a
level as possible and no perturbing influences can be identified. For
example, the electroencephalogram measures average electrical activity
from the localized regions of the cortex and shows fluctuations over
time which are often quite irregular (figure 1.4). These situations afford
significant difficulties in understanding the mechanisms leading to the
irregularities.

Mathematics offers us two distinct ways to think about the irregu-
larities intrinsic to physiology. The more common of the two is noise,
which refers to chance fluctuations. For example, such chance fluc-
tuations are often associated with the opening and closing of channels
in neurons and cardiac cells that carry ionic current (figure 1.5). Al-
though "chaos" is often used as a popular synonym for noise, it has
developed a technical meaning that is quite different. Technically, chaos
refers to randomness or irregularity that arises in a deterministic sys-
tem. In other words, chaos is observed even in the complete absence
of environmental noise. An important aspect of chaos is that there is
a sensitive dependence of the dynamics to the initial conditions. This
means that although in principle it should be possible to predict future

'\iM*»^J^-A^^/\^^^^

1.4. Electroencephalogram recorded from a normal 17-year-old woman during natural
sleep. There are 14 Hz spindles, which are independent on either side. The top line shows
1-sec intervals. Simultaneous recordings from the eight electrode positions indicated on
the diagram are displayed. From Kiloh et al. (1981).
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1.5. Currents flowing through an individual potassium channel from a single cell from
dispersed AV node of rabbit heart. Short pulses of 2.4 pA amplitude at a resting potential
of — 20 mv. The histogram represents the distribution of current pulse durations and is
fitted by a single exponential. From Sakmann, Noma, and Trautwein (1983).

dynamics as a function of time, this is in reality impossible since any
error in specifying the initial condition, no matter how small, leads to
an erroneous prediction at some future time.

Some equations display dynamics that are not periodic and fluctu-
ate in irregular fashion. The existence of such equations was known to
Poincare and later mathematicians, but the recognition of these phe-
nomena has only recently emerged in the natural sciences. The impli-
cations of such phenomena in biology and physiology are a topic of
great current interest.

In practical situations, there are fluctuations about some mean value
or oscillations which are more or less regular. It is not a trivial problem
to go backwards from the observation of such dynamics to infer some-
thing about the underlying dynamical system.

Chapters 2 and 3 offer an introduction to the concepts of steady states,
oscillations, noise, and chaos in mathematics. We show how these prop-
erties can arise in equations and how transitions between different types
of dynamical behavior can occur. Since some of the material in chap-
ters 2 and 3 is elementary, those with some knowledge of mathematics
may wish to skip some of the sections. On the other hand, those with
a weaker background in mathematics and those who really do not like
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-FIRING THRESHOLD

Activity

time
1.6. Integrate and fire model. The activity rises to a firing threshold and then resets to zero.

to read about mathematical ideas can skip ahead to other chapters,
using chapters 2 and 3 as references as the need arises.

1.2 Mathematical Models for Biological Oscillators

There is a large literature that proposes many different types of mod-
els for the generation of physiological rhythms. The simplest type of
model is called an integrate and fire model. In such models a quantity
called the activity rises to a threshold leading to an event. The activity
then instantaneously relaxes back to a second lower threshold. This
process is represented schematically in figure 1.6. If the function deter-
mining the rise and fall of the activity between the two thresholds is
fixed, and if the thresholds are fixed, then a periodic sequence of events
will be generated at a readily determined frequency.

A physiological system that can be modeled by an integrate and fire
mechanism is the one controlling the micturition reflex. As time pro-
ceeds, the bladder fills and eventually micturition takes place. Then
the cycle starts anew. In the normal adult, micturition occurs 6-10
times/day with a voiding volume of 300-600 ml. However, pregnant
women and patients with serious bladder or prostatic pathology often
display increased frequency, reduced volume, and nocturia. In figure
1.7 we show the voided volume and micturition times recorded by a
patient with carcinoma of the bladder. We are unaware of detailed
quantitative studies or theoretical analysis of the micturition reflex or
its pathological variants. A variety of other systems have been modeled
by integrate and fire models, and we shall utilize such models in many
different points in the text.

Although integrate and fire models are frequently used in physiology
and will be discussed in several subsequent chapters, from a mathe-
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1.7. Micturition times and voided volume recorded by a patient with carcinoma of the
bladder. Data derived from Abrams, Feneley, and Torrens (1983).

matical perspective it is more common and usual to model biological
oscillators by nonlinear equations. Oscillations in such systems are
most often associated with limit cycle oscillations, which are oscillations
that are usually reestablished following a small perturbation. Nonlinear
equations are often needed to represent accurately the complexity and
structure of physiological systems.

Recent work has demonstrated that mathematical models for physi-
ological systems that display periodic dynamics can also sometimes
display irregular chaotic dynamics in some parameter ranges. As an
example, we show in figure 1.8a data from a girl suffering from chronic
myelogenous leukemia (CML). CML is a disorder in the production
of blood cells (hematopoesis) and generally characterized by a massive
increase in circulation of a type of white blood cells called neutrophils.
In the past two decades, clinical reports have established the existence
of an interesting periodic variant in which the peripheral neutrophil
counts oscillated around elevated levels with a period of 30-70 days,
depending on the patient. A mathematical model for the hematopoetic
control system exhibits periodic as well as chaotic dynamics, and an
example of chaotic dynamics for this system is shown in figure 1.8b.
In chapter 4 we present a summary of mathematical models of biolog-
ical rhythms which employ nonlinear equations. We show that such
models are capable of giving qualitative and sometimes quantitative
agreement with observed oscillatory behavior.

We do not attempt a systematic and comprehensive review of all the
research dealing with rhythmogenesis because the actual mechanisms
for rhythmogenesis in specific systems are generally controversial and
not well understood. Furthermore, many of the functionally important
characteristics of specific systems—for example, their response to per-
turbation and mechanisms for initiating and stopping oscillations—
can be analyzed in the absence of precise knowledge concerning the
mechanisms involved in the generation of the oscillations.
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1.8. (a) Circulating white blood cell counts versus time in a 12-year-old girl with diag-
nosed chronic granulocytic leukemia Redrawn from Gatti et al. (1973). (b) Chaotic dy-
namics obtained by numerically integrating a nonlinear delay differential equation
modeling hematopoetic control. From Mackey and Glass (1977).

1.3 Perturbing Physiological Rhythms

Physiological rhythms do not exist in isolation. Rather, they have
multiple interactions among themselves as well as with the external
and internal environment. From a functional perspective it is important
to analyze the mechanisms involved in initiating and stopping physi-
ological rhythms and the effects of single and periodic perturbations
of these rhythms. Clinically, there are many circumstances in which it
may be of practical importance to start, stop, or alter a rhythm.

Different physiological rhythms appear and disappear in different
stages throughout the lifetime of an individual. Cardiac and respiratory
rhythms begin in utero, and even a brief interruption of these rhythms
after birth is fatal. The menstrual rhythm is turned on during puberty
in females and continues for about thirty-five years, interrupted only
by pregnancy and lactation. The strong rhythmic contractions of the
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1.9. Phase resetting (lines 1 and 2) and
cessation of spontaneous activity (line
3) of SA nodal pacemakers from kit-
tens by brief subthreshold, depolarizing
pulses. The spontaneous activity is only
annihilated if the stimulus occurs over
a narrow range of stimulus amplitude
and phase. From Jalife and Antzele-
vitch (1979).

uterus during labor are initiated naturally about 38-42 weeks after
fertilization, or they may be mechanically or chemically induced.
Rhythmic peristaltic contraction and daily fluctuations of numerous
physiological parameters (e.g., temperature, urine production, blood
sugar) take place and we are barely aware of them. Other rhythms such
as locomotion, chewing, sleeping, and orgasm usually require active
initiation by the individual.

In chapter 5 we discuss several different ways that physiological
rhythms can be initiated and stopped. One way by which some rhythms
can be terminated is by delivery of a stimulus of critical magnitude
delivered at a critical phase of an ongoing rhythm. This is illustrated
in figure 1.9, which shows the effect of a depolarizing stimulus delivered
to a spontaneously oscillating preparation consisting of sinoatrial (SA)
cells (pacemaker tissue) from a rabbit heart. At most phases the stimulus
resets the rhythm, whereas over a narrow range of phases the oscillation
is annihilated. The recognition that some oscillations can be annihilated
by a single stimulus is an important conclusion based on a mathemat-
ical analysis of the properties of spontaneously oscillating systems. The
experimental observation of the stopping of the cardiac oscillator by
a single perturbing stimulus confirmed predictions based on theoretical
analysis that such behavior should be possible.
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The general problem of analyzing the effects of single as well as
periodic stimuli on physiological systems is of key interest for a number
of different reasons:

1. In a normal situation the amplitude, frequency, and phase of a
biological oscillator are generally under the control of inputs to the

1.0 sec
1.10. Recording of transmembrane potential from spontaneously beating aggregates of
cells from embryonic chick heart. Tn lines (b)-(e) the rapid brief upward deflection rep-
resents the artifact resulting from periodic stimulation with an intracellular microelec-
trode. (a) Control; (b) 2:1 phase locking; (c) 3:2 phase locking; (d) 1:1 phase locking;
(e) 2:2 phase locking, the stimulus falls at two different phase of the cycle; (f) 2:3 phase
locking. From Glass et al. (1984).
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oscillator. Thus, characterizing the effects of single and periodic stimuli
is of potential functional significance.

2. Pathologically occurring biological rhythms may sometimes be
generated or diagnosed by perturbation of an ongoing rhythm.

3. Perturbation of the rhythmic activity of a physiological oscilla-
tor can be used to derive information concerning the properties of the
underlying oscillation. Conversely, given the mathematical properties
of a model oscillator, it is possible to make predictions concerning the
expected experimental responses of the oscillator to single and periodic
perturbations as the stimulation parameters are varied.

In chapter 6 we consider the effects of single stimuli delivered to a
spontaneous oscillation. A single stimulus will generally reset an on-
going rhythm, but the resetting depends on both the amplitude and
phase of the delivered stimulus.

In chapter 7 the effects of periodic stimulation of physiological
rhythms are considered. In response to a periodic input, a physiological
rhythm may become entrained or phase-locked to the periodic stimuli.
In this case, there is a periodic rhythm so that for each N cycles of one
rhythm there are M cycles of the second rhythm. To illustrate, we show
the entrainment of action potentials from spontaneously beating ag-
gregates of ventricular cells from embryonic chick hearts to periodic
electrical stimulation (figure 1.10). In addition, at other stimulation fre-
quencies and amplitudes, stable phase-locked dynamics are not ob-
served. Instead, irregular aperiodic dynamics are observed (figure
1.11a). The relative phase of each stimulus is defined to be the time
from the preceding upstroke to the stimulus divided by the mean cycle
length in the absence of stimulation. If the phase of each stimulus is now
plotted as a function of the phase of the preceding stimulus, there is a
clear relation between the two (figure 1.11b). In this example the form
of the function in figure 1.11b indicates that the irregular dynamics are
associated with chaotic dynamics.

1.4 Spatial Oscillations

Throughout most of this book we do not explicitly consider the
spatial organization of the oscillations. A usual circumstance is that
oscillations spread in an orderly fashion from a pacemaker tissue, as
in the heart. However, in some circumstances simple wavelike propaga-
tion from a pacemaker is no longer found, and spatial properties of
oscillations must be considered. Chapter 8 deals with the organization
of oscillations in space.
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(a)

I.Osec

1.11. (a) Chaotic dynamics arising in the same preparation as in figure 1.10. (b) A plot
showing the phases (determined by measuring the time interval from the upstroke of the
action potential to each stimulus and dividing this by the intrinsic cycle length in the
absence of stimulation) of successive stimuli as a function of the preceding stimulus de-
rived from the same record from which the trace in (a) was taken. The original observa-
tion of chaos in this preparation is due to Guevara, Glass, and Shrier (1981). This figure
is from Glass, Shrier, and Belair (1986).

The key requirement for propagated activity is that the tissue in
question be excitable. This means that a stimulus (typically a de-
polarization of neural or muscular tissue) can spread to neighboring
tissue in a nondecrementing fashion. Excitability is found in both qui-
escent tissue and spontaneously oscillating tissue. In both cases, how-
ever, there is typically a refractory time following excitation during
which the tissue cannot be excited. There are consequences of this on
both the spatial and temporal properties of excitation. In one dimension
this leads to an orderly spread of excitation in the form of a traveling
wave. Two waves traveling in opposite directions will not pass through
each other, but rather annihilate each other. In addition, as stimulation
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frequency increases, conduction of each impulse is not possible, and it
often happens that some impulses are wholly or partially blocked. Such
phenomena are of clinical importance in cardiac tissue and possibly in
other excitable tissues such as smooth muscle. In higher dimensions
the spread of excitation is potentially more complex, and, in addition
to simple waves spreading in an orderly fashion from a point source,
other more complex patterns of propagation are observed.

In recent years, progress and interest in propagating waves have been
stimulated by studies of the Belousov-Zhabotinsky reaction, a chemical
reaction discovered in Russia in the 1950s that displays excitable
kinetics. One of the remarkable features of this reaction is that the
chemical reactants include a redox indicator, ferroin, which changes
color as the reaction progresses. As a consequence, it is possible to see
the progress of the reaction. When the reaction is prepared in a petri
dish, target patterns consisting of outwardly propagating concentric
circular waves are found initially (figure 1.12). These target patterns
appear to arise from a pacemaker, which is often a piece of dust or a
scratch in the petri dish, and the frequencies of the different pacemakers
can vary. In 1972 Winfree discovered that if the dish is tilted, the target
patterns may be destroyed and complex one-armed spiral geometries
result (figure 1.12). All the spirals in the same dish rotate with the same
velocity and can be easily observed visually.

1.12. Waves of chemical activity in an excitable medium, the Belousov-Zhabotinsky reac-
tion. On the left are target patterns that propagate outward from a point source; on the
right are spiral waves, which rotate in clockwise and counterclockwise orientations. The
first observation of spiral waves of chemical activity was in Winfree (1972). Figures pro-
vided by A. T. Winfree.
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The importance of this reaction is that it appears to typify the spatial
modes of organization in living, excitable biological tissue. For example,
it has been suggested that "reentry" phenomena in cardiology are anal-
ogous to the spiral morphologies in the Belousov-Zhabotinsky reaction.
In three dimensions, even more complex geometric organizations of an
excitable medium have been found.

1.5 Dynamical Disease

The human body is a complex, spatially and temporally organized
unit. In many different diseases, the normal organization breaks down
and is replaced by some abnormal dynamics. We have proposed that
these diseases, characterized by abnormal temporal organization, be
called dynamical diseases. Over the years, this theme has provided a
central rationale for our research and for that of others interested in
the application of mathematics to the study of human disease.

Throughout the book we offer examples drawn from diverse physi-
ological systems in which abnormal dynamics appears to be associated
with disease. In such situations, we anticipate that appropriate math-
ematical formulations of the relevant physiological control system will
display qualitative changes in the dynamics associated with the onset
of the disease.

Though it is undoubtedly true that normal, intact physiological con-
trol systems can be shown to undergo such transitions in vitro and/or
in animal models, we must recognize that in many of the clinical
situations in which abnormal dynamics occur there are also preexis-
ting pathological structural abnormalities as well as changes in the
physiological control parameters. The interplay between the structural
and control parameter alterations in producing abnormal dynamics is
a complex problem requiring detailed analysis in individual cases. We
believe that detailed mathematical analysis of abnormalities associated
with disease is needed, but this view is not currently popular among
physicians or medical researchers.

In chapter 9 we deal specifically with the study of dynamical disease
and the difficulties inherent in practical application of the concepts of
nonlinear dynamics to medicine. From this discussion it will be clear
to the reader that the general approach that is taken throughout the
book is still at an early stage of development, and that concrete appli-
cations to medicine are rudimentary. Yet it is our hope that the poten-
tial utility of understanding the dynamics of disease will be evident,
and that future researchers will channel their efforts in these directions.
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Notes and References, Chapter 1

This chapter provides an introduction and summary of the main themes of
the book. For detailed discussions and references, the appropriate chapters of
the book should be consulted. There are, however, a number of previous books
and reviews which treat specific topics that may be of interest to readers of
this book.

The origin of modern nonlinear dynamics is in the original papers of Poin-
care (1881, 1882, 1885), which can be found in his collected works (Poincare
1954). The recent recognition of the importance of chaos was greatly stimu-
lated by the review of May (1976). This paper, as well as many others, can be
found in the collections of Cvitanovic (1984) and Hao (1984). There has been
a recent proliferation of books on nonlinear dynamics, chaos, and related fields.
The texts by Arnold (1983), Guckenheimer and Holmes (1983), Lasota and
Mackey (1985), and Devaney (1986) have a rigorous mathematical approach.
More physically oriented are texts by Berge et al. (1984), Schuster (1984), and
Thompson and Stewart (1986). An engaging and nontechnical introduction to
chaos is given by Gleick (1987). To date there have been no texts dealing with
chaos in biological systems. However, earlier treatments of nonlinear oscilla-
tions in biology can be found in Pavlidis (1973) and Winfree (1980, 1987a,b).
Several recent reviews and collections of papers deal with mathematical ap-
proaches to oscillation and chaos in biological and related systems (Olsen and
Degn 1985; Holden 1986; Othmer 1986; Koslow, Mandell, and Schlesinger
1987; Rensing, an der Heiden, and Mackey 1987).

The papers of Bernard (1878) and Cannon (1926, 1929), with their discussion
and elaboration of the concept of homeostasis, make fascinating reading. A
comprehensive listing of papers dealing with physiological rhythms is clearly
impossible, but the following references may be consulted as starting points in
various areas:

Autonomic nervous system: Polosa 1984
Blood diseases: Wintrobe 1976; Mackey 1979a,b
Cardiac arrhythmias: Bellett 1971; Goldberger and Goldberger 1981

Marriott and Conover 1983; Zipes and Jalife 1985
Central pattern generators: A. H. Cohen, Rossignol, and Grillner 1988
Circadian: Wever 1979; Moore-Ede and Czeisler 1984; Strogatz 1986
Electrical activity of the cortex: Kiloh et al. 1981
Hormonal system: Knobil 1974; At water et al. 1980
Intestinal system: Weisbrodt 1981; Christensen and Wingate 1983; Wingate

1983
Peripheral blood vessels: Siegel et al. 1984
Pupil: Stark 1984
Respiration: Benchetrit, Baconnier, and Demongeot 1987
Tremor: Findley and Capildeo 1984
Ureters: Constantinou 1974
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The spatial organization of oscillations, with particular emphasis on chemi-
cal and cardiac systems, is extensively reviewed in Winfree (1987b).

An early recognition of the importance of oscillations in human disease can
be found in the books by Reimann (1963) and Richter (1965). For the original
exposition of the concept of dynamical diseases, see Mackey and Glass (1977),
and Glass and Mackey (1979a). Elaborations of this concept are to be found
in Mackey and an der Heiden (1982), Guevara et al. (1983) an der Heiden and
Mackey (1988), and Mackey and Milton (1987). Several papers dealing with
rhythms in psychiatry are collected in Wehr and Goodwin (1983).



Chapter 2

Steady States,
Oscillations, and Chaos in
Physiological Systems

1 his chapter provides an introduction to the mathematical concepts
of steady states, oscillation, and chaos as applied to physiological sys-
tems. In section 2.1 we introduce differential equations and describe
the dynamics found in the equation for exponential growth and decay.
In section 2.2 we discuss steady states in differential equations, and in
section 2.3 we discuss oscillatory solutions of differential equations.
The concept that transitions (called bifurcations) can occur between
different modes of dynamic organization as parameters are changed is
introduced in section 2.4. A different type of mathematical model, called
a finite difference equation, can also be used as a model for biological
dynamics. In section 2.5 we discuss finite difference equations and il-
lustrate the concepts of steady states, oscillation, chaos, and bifurcation
in this class of models. The material in this chapter is of an introductory
nature. Readers who are not familiar with this material need not read
it in one sitting but can use it as a reference as the need arises.

2.1 Variables, Equations, and Qualitative Analysis

Theoretical analyses of physiological systems attempt to develop
equations that describe the time evolution of physiological variables,
for example, blood gas concentrations, pupil diameter, membrane po-
tential, or blood cell concentrations. Mathematical models developed
to express the time evolution of systems are often written as differential
equations, such as

where the independent variable x is a function of time t, and dx/dt
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represents the rate of change of the variable x (with respect to t) given
by the function / . A solution of the differential equation (2.1) gives x
as a function of time, designated x(t), starting from some initial condi-
tion at t = 0, x(t = 0) = x0.

One way to solve a differential equation is by direct integration. As
an example, consider the simple differential equation,

dx

It
= A — yx, (2.2)

where / and y are constants (sometimes called parameters). In this
equation it is useful to consider X to be a rate of production and y to
be a rate of decay. From equation (2.2) we find directly that

(2.3)

By substituting equation (2.3) into equation (2.2), an equality is ob-
tained, demonstrating that equation (2.3) is a solution of equation (2.2).
The situation with X = 0 is the familiar exponential decay if y > 0, or
exponential growth if y < 0. The graph of the solution of equation (2.2)
is shown in figure 2.1 for a situation in which X and y are greater than
0. Starting from any initial condition, then lim,^^ x(t) = X/y.

In this example, it is possible to integrate the equation directly to
give an analytic solution. The physical sciences place great emphasis

X(t)

time
2.1. Exponential decay shown by the solution of equation (2.2) as a function of time
starting from two different initial conditions.
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on obtaining analytic solutions to differential equations, with a conse-
quent emphasis in applied mathematics courses on mathematical tech-
niques to integrate differential equations analytically. Since biological
systems are generally described by nonlinear differential equations (i.e.,
the right-hand side of the differential equation contains nonlinear terms),
for which no analytic solution is available, alternative techniques to
the analytic integration of differential equations must often be sought
in the study of biological problems. Moreover, biological systems are
so complex that it is generally impossible to specify exactly the dynam-
ical equations describing the system. Thus the dynamical equations
must generally be considered as approximations and may not have the
same validity as differential equations in the physical sciences as, for
example, Newton's equations, Maxwell's equations, or Schrodinger's
equation.

One alternative technique involves the numerical solution of the dif-
ferential equation, which was pioneered by Hodgkin and Huxley in
1952 in their beautiful studies of the squid axon. Such techniques are
now routinely employed to study the properties of equations that model
electrical activity of neural and cardiac tissue. In addition to using
numerical techniques, it is frequently possible to deduce important
qualitative properties of the solutions of nonlinear equations without
explicitly solving them. Examples of such qualitative properties are the
number and the stability of solutions of the equations. These qualita-
tive analytic methods are of major importance in the analysis of bio-
logical dynamics.

2.2 Steady States

The physiological concept of homeostasis refers to the tendency to
maintain a relatively constant internal milieu in the face of changing
environmental conditions. Homeostasis can be associated with the no-
tion of stable steady states in mathematics. A steady state (also called
equilibrium point or fixed point) is a set of values of the variables of a
system for which the system does not change as time proceeds. For
models formulated in terms of a differential equation like equation (2.1),
a steady state x* is a solution of the differential equation at which
dx/dt = 0. For example, x* = X/y is a steady state of equation (2.2). A
steady state is stable if, after a small perturbation away from the steady
state, the solution returns to the steady state as t —• oo. The observa-
tion that the blood pressure was reestablished following a small per-
turbation in figure 1.1 is an indication that the steady state can be
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described mathematically as a stable steady state. Likewise, for y > 0
in equation (2.2), the steady state x* = A/y is a stable steady state, and
following a perturbation away from this steady state, the solution x(t)
returns to the steady state as time proceeds. The solution of any one-
dimensional differential equation like equation (2.1) will always ap-
proach a steady state or become infinite as t —> oo. Starting at some
initial point x0, x will monotonically increase if/(x0) > 0 and will mono-
tonically decrease if/(x0) < 0. The increase (or decrease) will continue
until a steady state is reached or until t -> oo.

2.3 Limit Cycles and the Phase Plane

Biological systems do not always approach steady states, but may
sometimes oscillate. Many people are familiar with oscillations that
can arise in differential equations such as those representing the motion
of a pendulum, or a satellite in the earth's gravitational field. In these
physical systems, if one ignores friction, then, following a perturbation
induced by injecting energy into the system, the oscillation is different
from the original oscillation. Thus the amplitude of oscillation of an
ideal pendulum (no energy dissipation due to friction) will generally be
changed following a perturbation to the pendulum.

However, the situation may be quite different in physiological sys-
tems. The effects of perturbation of an oscillating physiological system
can be illustrated by considering the effects of a brief electrical shock
delivered to an aggregate of spontaneously beating cells derived from
the ventricles of an embryonic chick heart. In response to a brief elec-
trical stimulus, there is a resetting of the phase of subsequent action
potentials, but the original cycle time is reestablished within several
beats, as shown in figure 2.2. The reestablishment of the rhythm fol-
lowing the stimulus indicates that the rhythm is stable. Since the term
"steady state" refers to an unchanging state (not an oscillating one) the
rhythm shown in figure 2.2 is not a steady state, and another concept
is needed.

The requisite concept was provided by Poincare in his study of dif-
ferential equations with two variables. In such equations it is possible
to have an oscillation that is reestablished following a small perturba-
tion delivered at any phase of the oscillation. Poincare called such
oscillations stable limit cycles.

We illustrate the concept of limit cycle oscillations by giving a simple
mathematical example. Define a polar coordinate system in which the
variable r measures the distance from the origin, and <f> measures the
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(a)

z.2.

500 msec

2.2. (a) Aggregates (about 100 m/i in diameter) of spontaneously beating heart cells de-
rived from the ventricles of 7-day-old embryonic chicks. All cells in a single aggregate
are electrically coupled and beat with the same intrinsic frequency. Photograph provided
by A. Shrier. (b) Transmembrane potential from an aggregate showing spontaneous elec-
trical activity and the effect of a 20-msec, 9-nA depolarizing pulse delivered through an
intracellular microelectrode. The control cycle length is To and the perturbed cycle length
T. From Glass et al. (1984).

angular coordinate (see figure 2.3a). Consider this pair of differential
equations:

dr
— = ar{\ - r), a > 0
at (2.4)

It
= 2n
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In this system of equations, <fi increases at a rate 2n, and dr/dt is a
quadratic function of r, independent of <f>. For r(t) > 1, we have dr/dt < 0,
and conversely for 0 < r(t) < 1 it is clear that dr/dt > 0. Consequently,
for any initial condition r0 =£ 0, lim r(t) = 1. Since this is a polar coor-
dinate system, we can take the values of 4> modulo 7%, which means
that any value of </> satisfying 0 < </> < 2n is considered equivalent to
(j) + 2nn, where n is a positive integer. Therefore, for any initial condi-
tion (except r0 = 0), as time proceeds the solution r(i) will approach the
circle defined by r = 1, with a period of oscillation equal to 1. The set
of initial conditions for which r(t) approaches the limit cycle as t ->• oo
is called the basin of attraction of the limit cycle.

This dynamic behavior can be graphically viewed in the (r, <fi) plane
by sketching the time evolution of r and <p. Equation (2.4) defines the
rate of change in the r and (f> coordinates at each point in the (r, </))
space. We represent this rate of change by the vectors determined from
equation (2.4) at several points in the (r, <p) plane (see figure 2.3b). By
taking the resultant vector at each point in space and following from
one vector to the next, we can trace out the path followed by r and <fi
as time proceeds. This path, called the trajectory, is shown in figure
2.3c, starting from several different initial conditions. The sketch of the
dynamics in the two-dimensional plane in figure 2.3c is often called the
phase plane portrait. From an examination of the phase plane we see
that any initial condition, with the exception of the origin /• = 0, will
approach the cycle at r = 1 in the limit t —> oo. This cycle is reached
in the limit t —> oo from points not on the cycle at t = 0, hence the
name limit cycle.. Limit cycles are not possible in linear systems or in
one-dimensional ordinary differential equations.

Since the first description of two-dimensional radially symmetric
differential equations with limit cycles was given by Poincare, we
propose that these systems be called Poincare oscillators. If it is assumed
that a biological oscillator is associated with a limit cycle oscillation,
then it is possible to make a number of predictions concerning the
properties of the biological oscillator without knowing the detailed
equations of motion (see chapters 5, 6, and 7).

2.4 Local Stability, Bifurcations, and
Structural Stability

The local stability of a steady state or limit cycle is determined by
perturbing with small stimuli. If a steady state or limit cycle is reestab-
lished, then they are stable. If, on the other hand, a small perturbation
induces a change in the dynamics so that the original dynamics are not
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reestablished, then the steady state or limit cycle is called unstable. In
practical situations, there will always be small environmental pertur-
bations continuously buffeting any biological system, so any observed
steady state or oscillation must necessarily be locally stable. In equation
(2.4), the origin r = 0 is a steady state since at that point dr/dt = 0.
However, any small perturbation away from this steady state will lead
eventually to the stable limit cycle at r = 1. Thus the steady state at
r = 0 is unstable.

In equations describing biological systems there are typically one
or more parameters needed to describe the system, the environment,
and their interaction. As parameters change, the local stability of the
steady states and cycles may change. Any value of a parameter at which
the number and/or stability of steady states and cycles change is called
a bifurcation point, and the system is said to undergo a bifurcation.
From a mathematical perspective, initiating and stopping oscillations
in physiological systems may be associated with bifurcations in the
associated mathematical models. As an example, consider the cessation
of respiration, which can be brought about by lowering the CO2 and
raising the O2 by hyperventilation (see chapter 5). In an appropriate
mathematical model, there should be loss of stability of an oscillating
solution. We say there is a bifurcation in the mathematical model at
the appropriate levels of blood gases.

To this point, we have only considered the local stability of steady
states and cycles. Another type of stability is associated with the stabil-
ity of the basic structure of the equations and the biological system
they represent. Given an arbitrary small perturbation to a system of
equations, if the main qualitative features remain unchanged (i.e., the
topology of the system does not change), the equations are called
structurally stable. Since in biological systems the parameters in the
equations for the dynamics of key systems—if they can ever be known—
would certainly be different in different individuals, it seems reasonable
to assume that these equations for dynamics in physiological systems
are structurally stable. The importance of structural stability in math-
ematical models of biological systems has been forcefully argued by
the topologist Thom. Since small changes in parameters lead to quali-
tatively different dynamics at bifurcation points, systems are not struc-
turally stable at bifurcation points.

2.5 Bifurcation and Chaos in Finite
Difference Equations

In figure 1.11 we plotted the phase of a periodic stimulus delivered
to spontaneously beating cells as a function of the phase of the preceding
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stimulus. Thus this system can be approximated by the equation

xi+1=S(Xi), (2.5)

where xt is the phase of the rth stimulus, and S is a function that relates
the value of xi + 1 to x{. Equation (2.5) is a finite difference equation.

To illustrate the properties of finite difference equations, we choose
a simple functional form for S in equation (2.5). We assume the function
S is a quadratic function, so

xi+l = axt{\ - x;) 0 «S a ^ 4. (2.6)

The graph of this equation is shown in figure 2.4 for several values of
a. The single maximum characteristic of this equation is similar to the
experimentally determined curve shown in figure 1.11b. Thus it is not
unreasonable to expect that an understanding of the dynamics of
equation (2.6) might be helpful in understanding the dynamics in the
experimental situation shown in figure 1.11. In a finite difference
equation, once an initial condition x0 is chosen, then the subsequent
value x1 can be determined. Then, in a similar fashion x2, x3,... can
be calculated. The computational process of determining the value xi + 1

from xi is called iteration. Iteration of finite difference equations may
be accomplished either graphically or numerically.

Graphical iteration of finite difference equations is simple and illus-
trated in figure 2.4. Choose some initial condition x0, and determine
xy from the graph. Then this value of xl can be used to find x2 using
the same procedure, and the process continues. Graphical iteration is
often useful in the first analysis of a problem. If a more exact solution
is needed, the finite difference equation can be numerically iterated,
and sequences generated by finite difference equations are easily cal-
culated on digital computers. In fact, computer algorithms for the
numerical integration of differential equations utilize finite difference
equation approximations to the differential equations.

The concepts of steady states and oscillations are also useful in the
study of finite difference equations. A steady state x* is a value for
which xt = xi+1 = x* or

x* = S(x*). (2.7)

For the quadratic map of equation (2.6) there are two steady states,
x* = 0 and x* = (a — I)/a. In figure 2.5a the values x approach a steady
state x* = 1/2 for a = 2 in the quadratic map (equation 2.6). A cycle
of period n is defined by

xi + n = Xi and xi+j ^ xt for j = 1 , . . . , n - 1. (2.8)

Figures 2.5b and 2.5c illustrate cycles of periods 2 and 4, respectively.
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2.4. Graphical solution of equation (2.6). (a) A steady state; (b) a cycle of period 2; (c) a cycle of period 4; (d) chaos.
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2.5. Time series showing the solution of equation (2.6). (a) A steady state; (b) a cycle of period 2; (c) a cycle of period 4; (d) chaos
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Stability of steady states and cycles implies restoration of steady states
and cycles, respectively, following a small perturbation.

As parameters change in finite difference equations, bifurcations (i.e.,
changes in qualitative dynamics) are found. One type of bifurcation is
a pitchfork or period-doubling bifurcation, in which a stable cycle of
period n becomes unstable and a new stable cycle of period 2n is
generated as a parameter is varied (see Appendix). One of the remark-
able features of the quadratic finite difference equation (2.6) is that as
a increases, successive period-doublings occur. Thus, as a increases
through the range 3.0 < a < 3.57 .. ., stable cycles of lengths 1, 2, 4,
8, 16, 32, 64 , . . . are generated. In figure 2.5 we illustrate cycles of length
1, 2, and 4 (a cycle of length 1 is simply a steady state).

Figure 2.6 shows a bifurcation diagram that is generated by numer-
ically iterating equation (2.6) and displaying several hundred succes-
sive values of xt after transients have died away. The range of values
of a for which each successive period doubled orbit is found becomes
smaller as the length of the period increases, as shown in figure 2.6.

2.95

2.6. A bifurcation diagram showing the distribution of the values of x as a function of
a for equation (2.6). Figure provided by J. Crutchfield.



Steady States, Oscillations, and Chaos 33

Call Aan the range of values of a over which a stable cycle of period
n is present. For the quadratic map (equation 2.6) it has been shown
numerically that

lim —^- = 4.6692016 . . . . (2.9)

It is even more remarkable that this ratio is independent of the precise
analytic form of the map, as long as the map has a single quadratic
extremal point (maximum). The number 4.6692016 . . . is called Feigen-
baum's constant.

As a continues to increase in the range 3.57 . . . < a < 4, stable
periodic orbits with other periods are found (see figure 2.6). These
periodic orbits appear in a well-defined sequence called the U (for
universal) sequence (see Appendix). In addition to the stable periodic
orbits, "chaotic" dynamics are also observed.

Although a number of mathematical definitions for chaos have been
proposed, we try to give the main conceptual notions without technical
details. Two main features characterizing chaos must be fulfilled: (1)
For some parameter values, almost all initial conditions give rise to
aperiodic dynamics; (2) arbitrarily close initial conditions display inde-
pendent temporal evolution as time proceeds. Thus there is a sensitive
dependence on initial conditions.

Since an initial condition is known only to some finite degree of
accuracy, it is impossible to predict dynamics beyond a certain time in
the future since minute differences in initial conditions may have major
effects on future temporal evolution. The similarity of the function in
figure 1.11b to the quadratic function, combined with the observation
of aperiodic dynamics, has led to the interpretation of these dynamics
as chaotic (see chapter 7).

Another situation in which many believe that chaotic dynamics can
be found is in differential equations modeling atmospheric dynamics.
As Lorenz has so delightfully observed, if the solutions of these equa-
tions are indeed chaotic, then prediction of the weather too far in
advance would be impossible, since an arbitrarily small perturbation
(such as the flapping of the wings of a butterfly) could alter the weather
on the other side of the globe at some future date. This so-called but-
terfly effect is often given as a graphic illustration of the operation of
chaos. The time scale over which meteorological predictions can be
made is not known at this time, though we all have the suspicion that
it may be rather short!

In laboratory situations, one can envisage setting up experiments in
which measurements must be performed at some later time. If the
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experimental system was "chaotic," there would be large variability in
the measured quantities. It is unlikely that such variability would be
considered acceptable by the experimenter (or a reviewer), and initial
conditions would likely be manipulated until one obtained "reproduc-
ible" results.

2.6 Summary

This chapter provides an introduction to the key mathematical
concepts used in this book. Steady states are solutions of differential
equations or finite difference equations that are constant in time.
Periodic solutions (called cycles or oscillations) of such equations may
also be found. Solutions that are reestablished following a perturba-
tion are called stable. In addition, aperiodic, chaotic dynamics, charac-
terized by a sensitive dependence on initial conditions, can be found
in both deterministic differential and finite difference equations. Tran-
sitions between different modes of dynamic organization are called
bifurcations.

Notes and References, Chapter 2

2.1 Variables, Equations, and Qualitative Analysis
Hodgkin and Huxley (1952) called the attention of electrophysiologists to the

importance of mathematical modeling and the attention of mathematicians to
the richness of the nonlinear problems to be found in biology with their elegant
and Nobel Prize-winning study of the process of excitation in the squid giant
axon. Their studies included the numerical integration of a partial differential
equation using desk calculators. Similar modeling approaches (but using dig-
ital computers) have been taken to provide understanding of ionic mechanisms
in many other tissues—for example, the process of excitability in cardiac tissue
(McAllister, Noble, and Tsien 1975; Noble 1983, 1984) and hormonal release
from pancreatic /?-cells (Chay and Rinzel 1985). Throughout the text we give
many additional examples of nonlinear models in physiology.

2.3 Limit Cycles and the Phase Plane
Our modern understanding of the origin and behavior of limit cycles rests

on the seminal work of Poincare (1881, 1882, 1954) in his study of differential
equations with two variables. The systems that we have dubbed "Poincare os-
cillators" have also been called X-m systems (Kopell and Howard 1973). The
particular example of a Poincare oscillator in equation (2.4), called a radial
isochron clock by Hoppensteadt and Keener (1982), has been used in a model-
ing context by a number of investigators (Winfree 1975, 1980; Guevara and
Glass 1982; Hoppensteadt and Keener 1982; Keener and Glass 1984).
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The embroyonic chick-heart preparation, initially studied by DeHaan (1967),
has been used as a model system to study cardiac oscillations by a variety of
individuals (DeHaan and Fozzard 1975; Scott 1979; Guevara, Glass, and Shrier
1981; Van Meerwijk et al. 1983; Clay, Guevara, and Shrier 1984).

2.4 Local Stability, Bifurcations, and Structural Stability
A good general reference to the concepts in this section is Hirsch and Smale

(1974). For an interesting and lively discussion of the potential relevance of the
concept of structural stability in biology, see Thom (1970). However, see also
Arnold (1983) and the references therein for information about the potential
loss of robustness of structural stability as dimensionality is increased.

2.5 Bifurcation and Chaos in Finite Difference Equations
The term "chaos" in its present meaning was introduced by Li and Yorke

(1975). However, the significance of such behavior in the natural sciences was
recognized earlier; the work of Lorenz (1963) in meteorology is particularly
insightful. For references to early studies of the quadratic map, see May (1976).
Both Grossman and Thomae (1977) and Feigenbaum (1978) recognized the geo-
metric convergence of the period doubling sequence and numerically computed
that the limit in equation (2.9) is 4.6692016 . . . . An analytic estimate of this ratio
has been given by May and Oster (1976, 1980). The universal (U) sequence was
initially described by Metropolis, Stein, and Stein (1973).



Chapter 3

Noise and Chaos

rLxperimental observation of physiological systems often reveals data
that are not constant in time and do not show regular periodicities.
Such irregularity is often associated with noise, or random stochastic
fluctuations that are in principle completely unpredictable except in a
statistical sense. For example, noise may be due to random thermal
fluctuations or other environmental influences. In contrast to noise is
chaos, which arises in deterministic systems. In section 3.1 we discuss
Poisson and random-walk processes that are normally associated with
noise. In section 3.2 we consider chaotic behavior that may be found
in simple finite difference equations and show that sometimes such
chaotic behavior can mimic behavior normally attributed to noise. We
present several examples in which unambiguous interpretation of the
dynamics as being either due to noise or to chaotic behavior is not
now possible. In section 3.3 we consider several techniques that have
been used to identify chaotic dynamics. Two recently applied statistical
measures of chaos are the Liapunov number and dimension, which are
discussed in section 3.4.

3.1 Poisson Processes and Random Walks

To introduce the notions of noise and random processes, we consider
three examples taken from neurophysiology in which dynamics have
been modeled by simple random processes.

In figure 1.5 the current flowing through a single membrane ion
channel is shown. The discrete jumps are believed to correspond to
individual openings of channels in a region of nerve membrane. In
figure 3.1a the membrane depolarizations (called miniature end-plate
potentials) from frog muscle are shown. Each depolarization is asso-
ciated with the presynaptic release of a quantum containing approxi-
mately a thousand molecules of the neurotransmitter acetylcholine.
Finally, figure 3.2a shows a record of action potentials in a nerve cell
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3.1. (a) Time sequence showing miniature end plate potentials recorded from the neuro-
muscular junction of the frog in the presence of 10 ~6 molar prostigmine bromide,
(b) Inter-event histogram for miniature end-plate potentials in the neuromuscular junc-
tion of the frog. The exponential decay was taken as evidence of a Poisson process.
From Fatt and Katz (1952).

in the cochlear nucleus of an anesthetized cat. Simple mathematical
models employing random processes have been proposed to explain
these data.

The simplest model for a random process is a Poisson process. In a
Poisson process it is assumed that the probability for an event to occur
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3.2. (a) Firing of a neuron in the cochlear nucleus of a cat under moderate dial-urethane
anesthesia. From Rodieck, Kiang, and Gerstein (1962). (b) A fit to the inter-spike his-
tograms for the unit in (a) using equation (3.5). From Gerstein and Mandelbrot (1964).

in a very short time increment dt is R dt, where the probability R is
independent of the previous history, and the probability of two or more
events occurring in the increment dt is negligible.

To illustrate a Poisson process, consider a radioactive substance
placed in a chamber equipped with a device for detecting and counting
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the total number of atomic disintegrations (events) N(t) that have oc-
curred up to a time t. The initial amount of the substance must be
sufficiently large so that there is no significant decrease in the mass
during the time of observation. Clearly, N(t) can only assume integer
values. We repeat this experiment many times, terminating each when
the first disintegration takes place. If we denote the probability that
no disintegrations have taken place in a given experiment up to time
t by P0(t), P0(t) = prob{N(t) = 0} and assume that individual disinte-
grations are independent of each other, then the probability Po will
satisfy the differential equation,

R P ( t ) ( 1 1 )

from which we immediately find (see equation 2.2)

P0(t)=Ce~Rt, (3.2)

where C is some arbitrary constant. Since the probability that no dis-
integrations have taken place at time t = 0 is 1, the constant C must
be 1. Thus

P0(t) = e-Rt. (3.3)

This type of argument may be continued to derive further properties
of the Poisson process. The probability that there are exactly k events
in a time interval t, Pk(t) is

Pk(t) =
 {R

jfe^R'. (3.4)

Moreover, the probability that the interval between an event and the
(k + l)st following event lies between t and t + At is pk(t)At, where

f-*<. (3.5)
Equation (3.4) is referred to as the Poisson distribution, whereas equa-
tion (3.5) is the probability density associated with the Poisson process.
From equation (3.5) it is easy to compute that the average time be-
tween events for a Poisson process is (l/R), and the variance is (1/-R2).
Figure 3.3a shows Pk{t) as a function of t for k — 0, 1, and 2, while
figure 3.3b shows Pk(t) as a function of k for Rt = 0.1, 1.0, and 10.

Experiments in which inter-event histograms are exponentials are
often interpreted to imply that a Poisson process is operating. Thus
channel openings (figure 1.5) and miniature end-plate potentials (figure
3.1) are attributed to the operation of Poisson processes, since the
experimental data are well fit by a single exponential. However, because
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3.3. (a) Probabilities Pk(t) versus Rt for a Poisson process, (b) Plots of Pk(t) versus k
for a Poisson process with Rt = 0.1, 1.0, and 10. From Lasota and Mackey (1985).
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there can be correlations between events that will not be identified
from the analysis of the inter-event distribution, it is necessary to
determine multiple event statistics but most studies do not undertake
such analyses. Although the simple Poisson process is an excellent
model for radioactive decay, it is not surprising that statistical analy-
sis of the data in physiological systems often reveals significant dis-
crepancies from the statistics of a Poisson process.

Another model, based on integrate and fire models, can help account
for inter-event histograms seen in neuronal activity. In neurons, synap-
ses receive both excitatory and inhibitory inputs from presynaptic
neurons. If it is assumed that these inputs arrive randomly and sum
linearly over time, and that the changes can be considered to be con-
tinuous rather than discrete, then the resulting process is called a
random walk (or, alternatively, diffusion, Brownian motion, or Wiener
process) (figure 3.4). The distribution of inter-spike intervals corresponds
to the distribution of intervals for the first passage of time to the
threshold. In this case, the probability density p(t) for the inter-spike
intervals is

3l2l(") + b\ (3.6)

'////Ait F L ECTO R /////

0 1280 2560
STEPS

3.4. Typical random walks in one dimension in computer simulation of the model of the
firing times for cochlear neurons. From Gerstein and Mandelbrot (1964).
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where a is a parameter associated with the difference between threshold
and the resting potential, the parameter b reflects differences in the
arrival rates of excitatory and inhibitory inputs, and k is a normal-
ization constant. Adjustment of the parameters a and b gives good
agreement with the inter-spike interval histogram for a neuron in the
cochlear nucleus of the cat (figure 3.2b). Although there is a peak in
the histogram at about 15 msec, there is considerable variation in the
inter-spike intervals, which is accounted for by the theoretical curve.

3.2 Noise versus Chaos

As we have pointed out, data sets with exponential inter-event his-
tograms are commonly interpreted within the framework of random
Poisson processes. However, the distinction between noise and chaos
is neither necessarily clear nor sometimes even possible. Indeed, given
almost any one-dimensional probability density, it is possible to con-
struct an infinite number of (deterministic) finite difference equations
whose iterates are chaotic and which have the given density. This means
that observation of a given inter-event density alone cannot be used
to infer the dynamics underlying the time series being considered.

As a simple example of this fact, we consider a finite difference
equation specifically constructed to have an exponential probability
density. Successive iterates of the finite difference equation,

ti+1= - - ln|l - 2exp(-JRt,)|, (3.7)

(see figure 3.5a) can be rigorously shown to have the stable density

p{t) = ReRt, (3.8)

which is the same as the Poisson process probability density given in
equation (3.5) for po(t). Figure 3.5b shows a time series generated from
equation (3.7), with R = 3. To illustrate that such time series do indeed
have the exponential density given by equation (3.7), figure 3.5c shows
the numerically determined density of this time series. Therefore, ob-
servation of exponential probability densities is not sufficient to identify
a process as a Poisson process. Plotting a given value as a function of
the preceding value may show the underlying structure if the process
is generated by a one-dimensional finite difference equation as in equa-
tion (3.7). However, identification of chaos in higher-dimensional deter-
ministic systems is difficult, and no simple techniques can be given.

Two biological examples illustrate the problems involved in distin-
guishing between noise and chaos in data sets having nonexponential
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3.5. (a) A plot of the function in equation (3.7) with R = 3. (b) The times series generated
by iterating the function in (a), (c) The associated probability density. This is a chaotic
process with an exponential probability density.
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densities. One deals with cell cycle times and the other with the survival
of leukemia patients.

From data obtained from cultured cells, it has been proposed that
some time after birth a random event takes place within each cell that
is necessary for mitosis to take place. In this random transition cell
cycle model, once the random event occurs, cell division will take place
a time Ts later. The probability that a cell drawn at random from a
large population has divided at time t after birth, that is, po(t), is
simply

Po(t) = 0 for t < Ts,

po{t) = Re-R('-T') for t>T s .

Thus the fraction of cells in the population that has not divided by
time t from its birth, denoted by <x(t), is

a ( t ) = l - P po(u)du, (3.10)
J 1 s

from which we compute

a(t) = 1 for t < Ts
(3.11)

which is in fairly good agreement with the data (see figure 3.6a) except
in a narrow range of times near Ts. In addition, the data allow one
to examine a second statistic, fi(t), which is the fraction of sister-cell
pairs having cell-cycle differing by at least a time t. The random transi-
tion model predicts that

P(t) = e-Rt, (3.12)

which is also in agreement with the data (figure 3.6a).
An alternative hypothesis is that there exists a chaotic (but deter-

ministic) intracellular mitotic oscillator that times the cell cycle. Utiliz-
ing a simple specific formulation of this model containing only two
parameters (remember that the random transition model also contains
two parameters, R and Ts), data for the duration of the cell cycle in
a variety of cellular populations have been analyzed. In every case, this
deterministic chaotic model provides as good a fit to the data, as does
the random transition model, shown in the example of figure 3.6b. Is
it noise, or is it chaos?

As a second example in which data may be interpreted from either
a random or deterministic viewpoint, consider the survival statistics of
patients with chronic myelogenous leukemia (CML) following diagnosis
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3.6. Statistical properties of the cell cycle. a(f) represents the fraction of those cells in a
population that have not divided by time t from their birth as a function of time, and (l(t)
is the fraction of sister-cell pairs having cell-cycle times differing by at least a time t.
(a) Fits to the data usi»g the random transition model of Smith and Martin (1973). (b)
Fits to the data using the model of Mackey, Santavy, and Selepova (1986). Adapted
from Mackey, Santavy, and Selepova (1986).
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(figure 3.7). These statistics are customarily described by an exponen-
tial function of the form in equation (3.3), or a linear sum of expo-
nentials, even though there is a pronounced hump or shoulder in the
data at short times following diagnosis. These exponential fits to the
survival data are then taken as an indication that patients die at random
with a constant probability per unit time following diagnosis.

As an alternative, a simple finite difference equation model for the
production of white blood cells has been proposed. This model in-
corporates the known feedback control of white blood-cell production
with the added assumption that CML is marked by a slow but in-
exorable increase in the maximal white blood-cell production rate.
Under these assumptions, the model indicates that as the disease pro-
gresses, an initially stable but slowly increasing white blood-cell density
eventually becomes unstable and starts to oscillate wildly, as noted
clinically (see figure 1.8). What is even more interesting, once the maxi-
mal white blood-cell production rate passes a critical threshold level,
the system is predicted to become extinct (the patient dies) at a time
that is, in theory, totally predictable given a precisely known initial
condition.

However, because of the extreme sensitivity of the evolution of this
model to initial conditions, there will be a statistical distribution of

o
Q.

o

Years from Diagnosis

3.7. Survival time statistics for patients with chronic myelogenous leukemia. Although
some interpret this to indicate a random death, the data are better fit using the deter-
ministic model of Lasota and Mackey (1980).
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the survival times in a population, given a distribution of the patients'
clinical states at diagnosis. The model predicts that the fraction of the
population of CML patients surviving a time t from diagnosis is equal
to exp( — kt"), where n — 3/2 and k is a parameter depending on the
model. Thus the predictions of the model are in very close agreement
with the survival data of figure 3.7, which were fit (solid line) by the
same function with

k = 0.16 (months)^151 and n = 1.51.

Furthermore, for large populations this surviving fraction is indepen-
dent of the distribution of initial states.

This prediction has several interesting features. First, it is based on
a totally deterministic model for the dynamics of white blood-cell pro-
duction. Second, it provides a much more accurate description of the
available statistical survival data than does the assumption of purely
random death at a constant probability per unit time. However, the
most interesting aspect is related to the fact that CML survival curves
seem to be relatively unaffected by the use of various therapeutic mea-
sures involving the use of chemo- and/or radiotherapy. Because these
cytotoxic tools will have the effect of resetting the levels of proliferating
cell populations, their lack of effect on the survival statistics of a popu-
lation has a ready interpretation within the context of this deterministic
model. That is, the statistical properties of the survival times of a popu-
lation are insensitive to the distribution of the initial states in spite of
the fact that the use of these cytotoxic agents to manipulate these ini-
tial conditions may have a dramatic effect on the survival time for a
given individual. Specifically, in a given patient the use of these various
therapies may dramatically shorten or prolong his or her lifespan.

In conclusion, given some dynamic process—be it deterministic chaos
or a stochastic process such as the Poisson process or a random walk—
it is frequently possible to compute the associated probability density.
However, the inverse operation of determining the dynamic process
leading to a given probability density does not have a unique solution.
Thus an exponential probability density for inter-event times cannot
be used to establish that the underlying dynamic process was a Poisson
process without careful assessment of other statistical features of the
dynamics.

3.3 Identification of Chaos

The recent widespread recognition that naturally occurring systems
(physical, chemical, or biological) can display chaos has led to attempts
to identify chaos in the laboratory and in situ. Several hundred papers,
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mostly after 1980, have been published with this objective. However,
the identification of "chaos" in practical situations is difficult. In ex-
perimental systems, noise will interact with the dynamics governed by
the intrinsic equations determining the evolution of the system. Thus
experimental systems by definition have stochastic inputs and pre-
sent difficulties for theoretical interpretation. The possibility of viewing
processes previously classified as noise as deterministically chaotic is
confounded by the existence of this noise in the system under study
(including measuring devices). Furthermore, even in deterministic equa-
tions there are a number of different formal definitions for chaos, and
it is important to recognize that chaos is often defined differently from
paper to paper. In view of the current difficulties in this area, we briefly
describe several different methods now being used to identify chaos.

Power Spectrum

One of the best known and most frequently applied statistical mea-
sures to characterize complex time series is the power spectrum, which
gives a decomposition of a complex time series into a superposition of
sinusoidal oscillations of different frequencies. The power spectrum at
a given frequency is proportional to the square of the coefficient of the
sine wave of that frequency.

Power spectra have been obtained for numerous physiological vari-
ables such as heart rate, blood pressure, tidal volume, electroencepha-
logram, and tremor. Typically, the power spectrum has one or more
peaks corresponding to the main frequencies present in the signal.
In addition to these main peaks, other frequencies may be present but
at lower amplitude, and there is often power over a broad band of
frequencies.

Broad-band power spectra, perhaps with superimposed peaks, are
often associated with chaotic dynamics. Unfortunately, "noise" is also
associated with broad-band spectra, and consequently the presence of
a broad-band spectrum is not adequate to establish chaos as opposed
to noise.

Poincare Map

In chapter 2 we discussed the representation of nonlinear dynamics
by differential equations. Integration of these equations gives trajec-
tories in phase space. A Poincare map is established by cutting across
the trajectories in a region of phase space with a surface one dimension
less than the dimension of the phase space (e.g., with a line if the phase
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space is two-dimensional). The function that gives the return to this
surface on subsequent crossings is a finite difference equation, which is
sometimes called the first return map or Poincare map.

The Poincare map derived from a continuous time system can be
used to analyze the dynamics. Thus the observation of a Poincare map
consistent with chaotic dynamics is evidence for chaos in the experi-
mental system. The data in figure 1.11 correspond to a Poincare map
for the periodically stimulated cardiac aggregate (see chapter 7). In
some systems in which it is difficult or impossible to measure the evolu-
tion of all the relevant variables in time, a single variable is sometimes
measured, and the value of this variable is plotted as a function of its
value at some earlier time. The Poincare map in this two-dimensional
embedding of the time series can then be determined.

Routes to Chaos

We have described the sequence of bifurcations present in the qua-
dratic map as the parameter a is varied. In some instances it has been
possible to observe the same sequences of bifurcations even in situa-
tions in which there is not a well-worked-out theory. For example,
observation of a period-doubling bifurcations followed by irregular dy-
namics is taken as evidence that the irregular dynamics are chaotic.

The strongest evidence for chaotic behavior comes from situations
in which there is a theory for the dynamics that shows both periodic
and chaotic dynamics as parameters are varied. Corresponding ex-
perimental observation of theoretically predicted dynamics, including
irregular dynamics for parameter values that give chaos in the deter-
ministic equations, is strong evidence that the experimentally observed
dynamics are chaotic. The experiments on periodically stimulated heart
cells represent one situation in which such an analysis has been possible
(see chapter 7).

Liapunov Number and Dimension

Recent work in nonlinear dynamics has developed quantitative mea-
sures for the characterization of complex dynamics. The two most
popular of these measures are the Liapunov number and dimension,
which are, respectively, measures of the degree of regularity and the
geometry of the dynamics. Although a full discussion of these measures
is necessarily highly technical, we briefly discuss them in the next sec-
tion because of the growing importance of these measures to charac-
terize nonlinear dynamics.



50 Chapter 3

3.4 Strange Attractors, Dimension,
and Liapunov Numbers

The mathematical concepts related to the characterization of chaos
can be addressed either from the standpoint of differential equations or
finite difference equations. In our discussion here, we restrict ourselves
to differential equations but note that extension to finite difference
equations is possible. An attractor is a set of points S such that for
almost any point in the neighborhood of S the dynamics approaches S
as t approaches infinity. Thus the stable steady states and stable limit
cycles discussed in chapters 1 and 2 are attractors. These attractors
have a very simple geometric structure (figure 3.8). Specifically, a stable
steady state is a point (dimension 0) and a stable limit cycle is a closed
nonintersecting curve (dimension 1). It is also possible to have a two-
dimensional attractor. An example is an attractor that is a torus (i.e.,
the surface of a doughnut). The trajectory in this case can wind around
the torus an infinite number of times, filling the surface but never inter-
secting itself (figure 3.8). This situation is called quasiperiodicity and is
considered in chapter 7.

In the above examples, the attractors have simple geometries with
integral dimensions. They are not "strange." Yet it is now widely recog-
nized that attractors can be found which have weird geometrical prop-
erties, and in 1971 Ruelle and Takens proposed that such attractors be
called strange attractors. Since definitions of strange attractors vary,
depending on the author, we prefer to avoid a technical discussion of
strange attractors but give illustrative examples to give some insight
into what the term "weird" geometry means.

V
D=O D=l

3.8. Attractors of integral dimen-
sion. For a stable steady state D =
0, for a limit cycle D = 1, and for

D - 2 quasiperiodicity D = 2.
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One way to think about strange attractors is to imagine what hap-
pens to a little ball of dough embedded in pastry as one makes some
delicious pate feuilletee (used in making classic French pastry). To help
us visualize the ball of dough, we will dye it purple, but this will not
alter its taste in our gebacken experiment. The pastry is made by rolling
out the dough, covering it with a thin layer of butter, folding it up, and
then rolling it out again. The purple ball will get stretched out and
twisted around into a very complicated geometry even after a few itera-
tions of the rolling, buttering, and folding process (figure 3.9). However,
it is hard to observe this geometry. One way to partially observe the
geometry is to slice through the dough to examine the purple layer in
some particular cross section. If this were done, there would be some
convoluted purple-dough areas in the cross section.

To draw the analogy with nonlinear dynamics, we imagine differential
equations with three or more variables. If there are N variables, then
any condition is represented by a point in this ^-dimensional phase
space and the evolution in time is represented by a trajectory. One can
now take a small volume of points in the phase space (analogous to
the purple ball of dough in the example above) and see how the points
in the ball evolve and disperse as time proceeds. In the case of chaotic
dynamics, the ball of points may eventually stretch out to cover some
or all of the attractor and may have a strange geometry. In contrast

2
3.9. Schematic picture of the strange geometry en-
countered in the baking of puff pastry (pate feuilletee
As the pastry is rolled out and folded over, a ball
of pastry initially in the center gets stretched out into
a convoluted sheet.
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with the pastry dough, the volume covered by the initial ball of points
may decrease (this is what happens in dissipative systems).

Recent experimental evidence shows that strange geometries can be
observed in experimental systems in physiology. Aihara and colleagues
have studied the effects of periodic sinusoidal stimulation of sponta-
neously oscillating giant neurons from squid. At given phases of the
sinusoidal-forcing function, they record the voltage V and its time de-
rivative dV/dt. When this is done for certain stimulation frequencies and
amplitudes, they observe complex folded geometries similar to what is
observed for strange attractors in nonlinear differential equations ex-
hibiting chaotic dynamics (figure 3.10).

Clearly, it would be nice to have some quantitative method to char-
acterize the geometries of strange attractors. One that has been pro-
posed recently and is now in a state of active development is the
dimension. Steady states, limit cycles, and quasiperiodic attractors are
associated with an integral dimension (figure 3.8). Yet since early in this
century, mathematicians have dealt with pathological sets that are asso-
ciated with a nonintegral dimension. Such sets have been called fractals
by Mandelbrot, who has written extensively on the importance of frac-
tals in understanding geometric aspects of natural sciences. In order to
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3.10. Stroboscopic plots in which V and dV/dt are plotted at different phases of a sinu-
soidal forcing of a squid giant axon. The current is 1.5 fiA, the forcing frequency is
270 Hz and the intrinsic frequency of the neuron is 200 Hz. From Aihara et al., (1986).
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illustrate what the term "fractal" means, we must adopt a definition
of dimension, and a number of different ones have been proposed.
Probably the simplest is the capacity dimension. Consider a set of
points in N-dimensional space. Let n(e) be the minimum number of N-
dimensional cubes of side e needed to cover the set. Then the dimension
of the set is

d = lim
log n(e)

olog(l/e)'
(3.13)

For example, to cover a line of length L, «(s) = L/s and d is readily
computed to be 1. Similarly, for a square of side L we have n(e) = L2/s2

and d = 2. To visualize a set that has a fractional dimension, consider
the construction shown in figure 3.11. Take a line of unit length. Chop
away the middle third. Now chop away the middle third of the two
remaining pieces. Next chop away the middle third of the remaining
four pieces. After this process is repeated an infinite number of times,
the set of points remaining is called a triadic Cantor set. To compute
the dimension, let m be the number of times the cutting operation takes
place, so e = (l/3)m If m = 0, then n(e) = 1; if m = 1, then n(e) = 2; if
m = 2, then n(e) = 4; and, in general, n(e) = 2m. Applying equation (3.13)
we readily compute d = log 2/log 3 = 0.630 . . . .

Nonmathematicians may consider this discussion of fractals to be
useless mathematical gibberish. Yet it is now clear that nonlinear sys-
tems can have strange attractors that are fractals. Moreover, Mandel-
brot and others have proposed that anatomical structures, such as the

I I I I I I

Illl

3.11. The triadic Can to r set. Each line is derived from the one above by deleting the
middle third of each segment. The dimension is .6309 . . . . F r o m Mandelbrot (1982).
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circulatory system and the lungs, may display fractal geometry. The
analysis of fractal aspects of anatomy and dynamics is just beginning
and is sure to be an area of much more intensive development.

Another quantitative measure to characterize strange attractors is
the Liapunov number, which can be determined from consideration
of the evolution of a small ball of points in phase space. As time pro-
ceeds the small ball (in N-dimensions) will become ellipsoidal with
principal axes r;(f). Then the Liapunov numbers are

(3.14)

where the A,-(t) are ordered from largest to smallest. Kaplan and Yorke
conjectured that the dimension of strange attractors can be computed
from the Liapunov numbers.

To this point we have avoided a discussion of the connection between
chaos, strange attractors, dimension, and Liapunov numbers. The use
of the terms is sometimes confusing and varies from author to author.
The approach of Grebogi and colleagues seems clearest. They use the
term "chaos" to reflect the dynamics of a system, and "strange at-
tractor" to characterize the geometry of the attractor. A chaotic system
is one for which typical orbits on the attractor have a positive Liapunov
exponent. A strange attractor has weird geometry such as fractional
dimension or nondifferentiability. This distinction seems important be-
cause using the above definitions, chaotic dynamics can have attractors
that are not strange, and, conversely, nonchaotic dynamics can display
strange attractors.

There is currently active research underway on the development of
practical algorithms that can be used to compute numerically the di-
mensions and Liapunov numbers given the values of some variable as a
function of time. Applications in biology include analysis of electroen-
cephalograms and electrocardiograms. Unfortunately, the algorithms
being used have many potential pitfalls and their convergence proper-
ties are currently not well understood. In particular, two aspects still
need careful theoretical analysis: (1) the requirements for the size of the
data set being analyzed, and (2) the effects of noise, large derivatives,
and geometry of the attractor. Because of these difficulties, unam-
biguous interpretation of published reports is difficult. Any claim for
"chaos" based solely on calculation of dimension or the Liapunov num-
ber without additional supporting evidence such as well-characterized
bifurcations or a believable theory must be viewed with extreme skep-
ticism at present.
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3.5 Summary

Random processes are often characterized by their inter-event histo-
grams. For example, it is well known that in the Poisson process the
inter-event histogram is an exponential function. We have shown that
chaotic systems can also give rise to exponential inter-event histograms.
Thus it is not a simple matter to distinguish between noise and chaos,
and it is possible that irregular dynamics in many systems that have
been ascribed to noise may in fact be due to chaotic processes in de-
terministic systems. Several methods that have been used to identify
chaotic dynamics are discussed. This is an area of very active current
research. Clear operational definitions that can be used to evaluate the
relative contributions of noise or chaos in a given experimental record
are not now available.

Notes and References, Chapter 3

3.1 Poisson Processes and Random Walks
For a discussion of stochastic processes associated with noise, any text in

probability theory can be consulted. We recommend Feller (1968). Fitting of
interevent histograms to exponentials is a standard procedure in neurophys-
iology and can be found in many places. We have given examples from Fatt
and Katz (1952), who studied miniature end-plate potentials in frog neuro-
muscular junction, and Sakmann, Noma, and Trautwein. (1983), who studied
ion channel openings in heart cells. Van der Kloot, Kita, and Cohen (1975)
discuss discrepancies between the predictions of the Poisson process and ex-
perimental data for the temporal distribution of miniature end-plate potentials
in neuromuscular junction. Gerstein and Mandelbrot (1964) utilized random-
walk models for the inter-event distributions of cochlear neurons.

3.2 Noise versus Chaos
The observation that deterministic finite difference equations can give rise

to exponential densities is due to Lasota and Mackey (1985). J. A. Smith and
Martin (1973) analyzed mitosis using the random transition cell-cycle model.
Mackey (1985) and Mackey, Santavy, and Selepova (1986) proposed the alter-
native hypothesis of a deterministic cell-cycle model. Survival statistics of pa-
tients with chronic myelogenous leukemia are taken from Wintrobe (1976) and
have been fit by Burch (1976) to an exponential function and a sum of expo-
nentials. Lasota and Mackey (1980) fit these data to a model with deterministic
chaos.

3.3 Identification of Chaos
Power spectral analysis is frequently performed in physiology. Representa-

tive papers include power spectra of the heart rate (Kitney and Rompelman
1980; Akselrod et al. 1981; Kobayashi and Musha 1982), respiration (Goodman
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1964), electroencephalogram (Rapp et al. 1986), and tremor (Findley and
Capildeo 1984).

For an early discussion of the separation of noise and chaos in experimental
data, see Guckenheimer (1982). A discussion of the different methods being used
to determine chaos from experimental data is in Crutchfield et al. (1980),
Swinney (1983), and Abraham, Gollub, and Swinney (1984). In addition, recent
collections of papers have several contributions dealing with these problems
(Cvitanovic 1984; Hao 1984; Mayer-Kress 1986).

For discussions of the use of the Poincare map to analyze dynamics in
differential equations, see Smale (1967), Guckenheimer and Holmes (1983), and
Lasota and Mackey (1985). Different routes to chaos are described in Eckmann
(1981).

3.4 Strange Attractors, Dimension, and Liapunov Numbers
Since this is a rapidly developing and controversial area, readers will have

to look for the most up-to-date information on their own. A start is provided
in Ruelle and Takens (1971), Kaplan and Yorke (1979), Farmer, Ott, and Yorke
(1983), Grassberger and Procaccia (1983), Grebogi et al. (1984), Eckmann and
Ruelle (1985), Wolf et al. (1985), and Kostelich and Swinney (1987). The collec-
tion of papers by Mayer-Kress (1986) is an excellent summary of the state of
the art in 1986. For computations of the dimension of the EEG, see Babloyantz
and Destexhe (1986), Dvorak and Siska (1986), Rapp et al. (1986), as well as
several papers in the volumes edited by Mayer-Kress (1986) and Koslow,
Mandell, and Schlesinger (1987).

Mandelbrot (1977, 1982) coined the term "fractal," and his enthusiastic cele-
bration of these curious mathematical objects has captured the imagination of
mathematicians and physicists. To find out why, consult the beautiful volume
by Peitgen and Richter (1986). Attempts to apply these concepts in biology
are just getting started (Goldberger et al. 1985; Grebogi et al. 1985; West and
Goldberger 1987).
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Mathematical Models

for Biological Oscillations

A large literature exists that proposes many different models for the
generation of physiological rhythms. This chapter summarizes the main
classes of mechanisms that have been proposed for biological oscil-
lators and illustrates them with representative data. In section 4.1 we
describe principles involved in the generation of pacemaker oscillations.
Then, in section 4.2, we discuss the generation of motor rhythms by
central pattern generators. Two of the proposed mechanisms for cen-
tral pattern generators are mutual inhibition and sequential disinhibi-
tion, which are discussed in sections 4.3 and 4.4. One of the main
control mechanisms in the body involves negative feedback. In section
4.5 we show that such systems can lose stability, with resulting stable
oscillations. Systems with mixed positive and negative feedback are
considered in section 4.6. Such systems can display both oscillatory
and chaotic dynamics.

4.1 Pacemaker Oscillations

Many physiological rhythms are generated by a single cell or by
electrically coupled isopotential cells that are able to generate oscil-
lating activity in isolation or in the presence of a constant input. We
refer to such cells or groups of cells as pacemakers.

Pacemaker oscillations are believed to play a role in generating oscil-
latory behavior in the heart, smooth muscle, many hormonal systems,
and neurons. Though we would like to distill the vast literature on
pacemaker oscillations into a few simple mechanisms or principles,
this is impossible since it appears that there are different mechanisms
underlying rhythmogenesis in different systems. It remains unclear
whether this reflects the true situation or represents an early assess-
ment that will change in light of future experimental work.
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We illustrate the formulation of models of pacemaker oscillations
by briefly discussing a mathematical model due to Huxley for the pe-
riodic generation of action potentials in the squid giant axon in a low-
concentration extracellular calcium solution. As shown by Hodgkin
and Huxley in 1952, the action potential is generated as a result of
changing time- and voltage-dependent membrane conductances to so-
dium and potassium. In the squid giant axon, as in other cells, there
is relatively high concentration of sodium and low concentration of
potassium in the extracellular fluid, relative to the intracellular me-
dium. If the membrane were permeable to only a single ionic species,
the transmembrane potential would reflect the net flow of this single
species, and the resulting equilibrium potential for that ion could be
computed using the Nernst equation. For example, when considering
sodium, there would be a net flow of sodium ions into the cell until
the electrical potential set up due to the influx of sodium ions counter-
balanced the diffusion of sodium into the cell that is due to its con-
centration gradient. At the Nernst equilibrium potential there is still
diffusion across the membrane, but the inward and outward ionic fluxes
are equal. By the convention of measuring all potentials relative to the
extracellular fluid, the sodium equilibrium potential is positive while
the potassium equilibrium potential is negative.

If / is the applied membrane current, then Hodgkin and Huxley
assumed that

/ = CdV/dt + gNa(V - Vm) + gK(V - VK) + g,(V - Vt), (4.1)

where C is the membrane capacitance, V is the membrane potential,
gNa, gK, and gt are the membrane conductances to sodium, potassium,
and the leakage ions, respectively, and VNa, VK, and Vl are the corre-
sponding equilibrium potentials. The richness of the problem arises as
a result of the highly nonlinear dependence of the conductances on
time and membrane potential.

To characterize these nonlinearities, Hodgkin and Huxley employed
the voltage-clamp technique in which a current is applied to maintain
the transmembrane potential at a predefined constant value. Under
this voltage-clamped condition, dV/dt = 0, and it is possible to record
single ionic currents by using a variety of pharmacological agents. They
showed that during a maintained depolarization (positive excursion of
the membrane potential away from the resting potential of the squid
giant axon membrane, there is a maintained elevation in the potassium
conductance and a transient increase in the sodium conductance. Hodg-
kin and Huxley were able to characterize completely the dependences
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of the membrane conductances on time and membrane potential, and
the brilliance of their work was demonstrated when all of these factors
were combined with equation (4.1). With a specified applied current
(/), they were able to integrate numerically (using desk calculators!) the
resulting set of ordinary differential equations to demonstrate that the
equations accurately predicted the time course of the action potential
and many other excitable phenomena (figure 4.1).

Thus, under normal conditions, generation of an action potential
is accomplished by a depolarization of the membrane, leading to an
increase in the membrane conductance to sodium and a consequent in-
crease in the inward movement of sodium. If this sodium influx is suf-
ficient to counteract the effects of the outward movement of potassium
ions, it will lead to further depolarization of the membrane past the
threshold, and to even more depolarization (the Hodgkin cycle). The
inactivation of the sodium conductance, in concert with the maintained
elevation of the potassium conductance due to the depolarized state
of the membrane, results in the return of the membrane potential to
its resting value. Under conditions of low extracellular calcium, the
relative values of the sodium and potassium conductances are shifted
with respect to membrane potential in a way that leads to the spon-
taneous initiation of the Hodgkin cycle and repetitive generation of
action potentials.
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4.1. Numerical integration of the Hodgkin-Huxley equations showing the components
of membrane conductance during a propagated action potential. Fom Hodgkin and
Huxley (1952).
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4.2. Calculated action potentials for Purkinje fiber, (a) The action potential in the top
panel was initiated by a depolarization to — 50 mv. The middle panel shows the time
course of Hodgkin-HuxIey-type variables xl and s, which control outward currents ix

and iK, respectively (lower panel). The pacemaker depolarization is due to the decrease
in the iK current. Parameter values are appropriate for 2.7 mM [K] o . From McAllister,
Noble, and Tsien (1975). (b) Reconstruction of Purkinje fiber pacemaker activity using
the DiFrancesco-Noble (1984) equations. Computed action potential is shown above
and the computed variations in the gates controlling iK(x) and if(y). Note that the
x-variable is comparable to that shown in (a). However, the increase in the y-variable
here (controlling inward Na flow) is in complete contrast to the decrease in the s-variable
(controlling outward potassium flow) in (a). Parameters values are appropriate for
4 mM [K] o . From Noble (1984).
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The techniques developed by Hodgkin and Huxley have been em-
ployed in many other systems to study the mechanisms of rhythmogen-
esis, notably the mechanisms for cardiac rhythmogenesis. In cardiac
preparations, the smaller size of cells, combined with the difficulties in
obtaining a well-perfused preparation of intact cells, complicate the
experiments. There have been major problems associated with defining
the mechanisms underlying the depolarizing transition during the so-
called pacemaker potentials. In principle, at least two mechanisms can
give rise to this transition: (1) a decrease of the outward potassium
conductance, or (2) an increase of the inward sodium conductance. In
1975 McAllister, Noble, and Tsien proposed that the main contribu-
tion to the cardiac pacemaker potential was associated with the former
(figure 4.2a), but current evidence found by DiFrancesco and Noble
seems to indicate that the major contribution to the pacemaker poten-
tial is due to an inward current carried by sodium or some other ion
(figure 4.2b).

The difficulties with the application of the voltage-clamp technique
to cardiac cells partially results from the large number of different ionic
currents that exist in cardiac pacemakers. Whereas in squid nerve there
were two principal currents (sodium and potassium) that could be sep-
arated, in cardiac cells there are many more (more than ten), and the
experimental and theoretical problems are proportionally greater. Even
in nerve, the current experimental evidence indicates the presence of
many different ionic mechanisms.

In the past few years, it has become clear, from both experimental
and theoretical work, that many pacemakers capable of displaying reg-
ular periodic oscillation also may have irregular dynamics, as physio-
logical parameters, or parameters in mathematical models, are varied.
To illustrate this interesting behavior, we consider the bursting of pan-
creatic j?-cells. These cells are associated with the secretion of insulin.
The bursting behavior of these cells can be monitored with intracellular
electrodes. Lebrun and Atwater found that the bursting behavior can
be irregular (figure 4.3). Attempts to develop mathematical models of
the Hodgkin-Huxley type have been carried out for the pancreatic /?-
cells. Numerical simulations of these equations by Chay and Rinzel
showed that over certain parameter ranges, regular periodic bursting
was not found; instead, there were irregular, aperiodic dynamics (figure
4.4). Since these arose in a deterministic mathematical model, it was
concluded that this model displayed chaos.

These observations raise important and intriguing problems. The
nonlinear differential equations that have been proposed for pace-
maker oscillations in diverse tissues may in fact be capable of displaying
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4.3. Bursting activity from four different mouse islets of Langerhans after 30-min expo-
sure to 11.1 mM glucose, (a) Islet from a National Institute of Health mouse, (b) and (c)
Islets from Charles River mice, (d) Islet from Charles River mouse after one month on
the National Institute of Health mouse diet. From Lebrun and Atwater (1985).
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4.4. Various periodic and aperiodic responses of Chay-Keizer model and dependence
upon the glucose-dependent uptake rate of intracellular calcium KCa. (a) Periodic burst-
ing for KCa = 0.038. (b) Chaotic bursting for KCa = 0.040. (c) Chaotic beating for KCa =
0.0415. (d) Periodic beating for KCa = 0.045. Note the altered time scale in (b). Adapted
from Chay and Rinzel (1985).
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chaotic behavior under changes in parameters associated with differ-
ences in the environment of the cells. Indeed, in a collection of papers
assembled by Chalazontis and Boisson in 1978, it was shown that phar-
macological manipulations of pacemaker cells often resulted in com-
plex rhythms. Thus it appears that complex chaotic rhythms from
pacemaker tissue may be more common than is currently recognized.

At the moment, mathematical models for pacemaker oscillations
based on realistic ionic mechanisms are so complicated that the only
way to determine the model dynamics is by numerical integration.
In addition, mathematical models may give excellent reconstructions
of action-potential morphology, even in situations in which the ionic
mechanisms being modeled have subsequently been found to be in er-
ror. Thus, even though it is of major scientific interest to determine the
ionic basis of pacemaker oscillation, mathematical modeling of these
currents is a difficult task because the resulting models are so complex
and there may be alternative interpretations of the same data.

4.2 Central Pattern Generators

There has been great interest since the turn of the century in the
mechanisms underlying the generation of motor patterns. It is now
clear that motor rhythms in many species are generated in the central
nervous system and thus can be maintained even in the absence of
sensory input and associated reflexes originating in the periphery. A
system generating such a motor rhythm is called a central pattern
generator (CPG).

Experimental studies of the mechanism of rhythmogenesis by a CPG
are generally difficult to perform and interpret. Although it is generally
possible to obtain recordings of neural activity which have the same
rhythm as the motor output being investigated, it is often not easy to
determine if the neural activity represents motor output, sensory input,
neural activity from central neurons that are not part of the CPG, or
if it really constitutes activity from neurons that are part of the CPG.
In addition, synaptic connections between neurons are often difficult
to demonstrate experimentally.

In view of the experimental problems involved in defining the CPG,
it has proven difficult to develop usqful theoretical models. One view-
point is that, prior to developing theoretical models, it is necessary to
have virtually complete information about the neurons in the CPG
and their interconnections. Although this may be possible in compara-
tively simple invertebrate preparations, it is impossible in the vertebrate
central nervous system. Furthermore, since most CPGs are composed
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of many cells, the functional organization of the network is not neces-
sarily transparent once the different cell types and their connections
are known. Thus we believe that theory directed at elucidating concep-
tual aspects of rhythmogenesis is valuable and necessary at the present
time.

Two basic classes of models have been proposed for a CPG—the
pacemaker and neural network-interaction models. In pacemaker mod-
els for the CPG, it is assumed that the rhythm is generated by a cell
or small group of cells that oscillate spontaneously. In the case where
the pacemaker is a small group of cells, all the cells in the pacemaker
are assumed to be synchronized. Although pacemakers have not been
found in neural structures generating mammalian motor rhythms, it is
very hard to exclude the possibility that such rhythms are generated
by pacemaker cells. However, the consensus at the present time is that
motor rhythms in mammals are generated by network interactions in
neural tissue. The cells in the network may receive tonic input that
leads to activity in the cells. The patterning of this activity to generate
rhythmic motor output only occurs as a result of network interactions
between the different cells or cell groups of the network. In the fol-
lowing three sections we consider several network models that have
been proposed for the generation of motor rhythms.

4.3 Mutual Inhibition

Rhythmic motion of a joint is generally accomplished by periodic
activation of opposing sets of flexor and extensor muscles. The earliest
notions of possible mechanisms generating this rhythmic activity, going
back to the turn of the century, assume that there are two groups of
neurons. Interactions within each group are excitatory, but the inter-
actions between the two groups are inhibitory. Thus there is a mutual
inhibition, as diagrammatically represented in figure 4.5. This mecha-
nism was called the half-center model by Brown in 1914, but this term
is seldom used now.

4.5. A model of a neutral network with mutual inhi-
bition. It is assumed that each neuron receives ex-
citatory input and would be tonically active in the
absence of the inhibitory synapse. Such a network is
not expected to oscillate unless there are some addi-
tional factors, such as fatigue or postinhibitory re-
bound, which will modulate activity in the presence
of a constant input.
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Assume that there is a tonic input to two mutually inhibitory neu-
rons. Then, depending on the strength of the input and the strength of
their inhibitory interactions, one of two possible qualitative dynamics
is possible. Both neurons could maintain their tonic activity, but with
the activity in each neuron at a lower rate than in the absence of inhi-
bition. Alternatively, one neuron could assume a high, and the other
a low, rate of firing. This latter situation is analogous to a phenomenon
called competitive exclusion in ecology, in which one of two compet-
ing species wins out in the struggle for a niche. Such mutually inhib-
itory interactions can also provide the basis for a neurophysiological
"flip-flop" switch.

To generate oscillations from two mutually inhibitory neurons, addi-
tional physiological factors such as fatigue, adaptation, or postinhibi-
tory rebound must be included to obtain switching so that first one,
then the other neuron is active. As a cell continues to fire at a high
rate, metabolites can be depleted, and waste products accumulate cor-
responding to fatigue of the cell. This fatigue would lead to a diminution
in cellular activity. By incorporating fatigue in a theoretical model, it
is possible to obtain oscillatory dynamics in a mutually inhibitory
network. Alternatively, adaptation would lead to decreasing cellular
activity and would also lead to oscillation in mutually inhibitory net-
works. Another physiological mechanism believed to be important is
the excitation often observed following a strong inhibitory input to a
neuron. If there is such postinhibitory rebound, Perkel and Mulloney
showed in 1974 that it is possible to obtain cyclic behavior from mu-
tually inhibitory neurons provided the rebound is sufficiently strong.
Such systems can also be found in a stable steady state in which there
is low level tonic activity in both neurons. A transition to the oscil-
lating state is accomplished by a strong inhibitory input to one of the
cells. The postinhibitory rebound in that cell then leads to a high firing
rate, which acts to strongly inhibit the second cell of the network, and
a stable oscillation ensues.

A concrete demonstration of oscillations in mutually inhibitory net-
works is given in studies of the stomatogastric ganglion in lobsters. It
is possible to isolate the ganglion from the lobster and to study the cel-
lular and network properties that underlie rhythmogenesis. By injecting
photosensitive dye intracellularly and then exposing the cells to intense
light, it is possible to selectively kill cells in the stomatogastric ganglion.
This elegant technique can be used to isolate two cells, designated PD
and LP, which play an important role in rhythmogenesis. If the ex-
perimental conditions are correctly manipulated, it is possible to ob-
tain oscillations from the cellular pair even though neither cell alone
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4.6. Alternate bursting observed from the LP and PD neurons from the stomatagastric
ganglion of lobsters. These two neurons are mutually inhibitory. This activity is the first
clear demonstration of a real "half-center" oscillation in a biological system. From
Selverston, Miller, and Wadepuhl (1983).

has a spontaneous oscillation when separated from the other (figure
4.6).

Although mutually inhibitory cell pairs have also been found in other
CPGs, the observation of such interactions does not necessarily mean
that the mutually inhibitory pair constitutes the CPG. It may simply
be one part of the CPG.

4.4 Sequential Disinhibition

In the network with two mutually inhibitory neurons, first one, then
the other neuron is active, with the phase switching between them
determined by neuronal properties such as fatigue, accommodation,
and postinhibitory rebound. However, some neural networks have neu-
rons that are active during the transition times between the two main
phases of the cycle. For example, in respiration there are pools of neu-
rons that are active during inspiration and expiration, as well as phase-
spanning neurons that are active during the transitions between the
two phases (figure 4.7). It is likely that the phase-spanning neurons
play a role in the timing of the phases and in the transitions between
the phases.

A class of models developed by Kling and Szekeley provide a simple
mechanism for rhythmogenesis which extends the earlier mutually in-
hibitory models and provides for phase switching based on network
properties. These models incorporate a mechanism called sequential
disinhibition or recurring cyclic inhibition. An example is shown in fig-
ure 4.8. The basic postulate is that there are functionally distinct pools
of neurons that receive tonic excitatory input, and that interactions
within a single pool of neurons are excitatory. In addition, some of the
pools of neurons have inhibitory interactions with neurons in other
pools. These networks are capable of generating rhythms in which the
activity patterns are determined by the inhibitory interactions between
neuronal pools. In these networks, activity in one pool of neurons acts
to inhibit the firing of neurons in a second pool. Once the neurons in
the second pool of neurons are inhibited, a third pool of neurons, which



Mathematical Models for Oscillations 67

| INSPIRATION | EXPIRATION

( a )

EXPIRATION

(e

(b (f

(c (g

(d (h)

4.7. Schematic classification of major discharge patterns of respiratory neurons, (a) In-
spiratory neurons, (b) Expiratory neurons, (c) Early expiratory neurons, (d) Late expira-
tory neurons, (e) Inspiratory-expiratory neurons, (f) Expiratory-inspiratory neurons, (g)
Continuous with peak frequency in expiration, (h) Continuous with peak frequency in
inspiration. From M. I. Cohen (1974).

received inhibitory input from the second pool of neurons, can become
active. The third pool is thus disinhibited. If the interactions are chosen
correctly, stable rhythms will arise. Sequential disinhibition represents
a conceptually simple and, to us, an elegant method of generating bio-
logical oscillations. Although neurophysiological studies often reveal

TIME
10 15

4.8. Schematic representation of a network with sequential disinhibition. Each neuron
is assumed to receive tonic excitatory input and would be active in the absence of
inhibition. All neuronal interactions are inhibitory. This network tends to be spon-
taneously oscillatory. The pattern of oscillation shown at the right is similar to the
pattern of activity of neurons generating the respiratory rhythm in figure 4.7. From Glass
and Young (1979).
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that inhibitory interactions do play an important role in rhythmogen-
esis in neural networks, unambiguous identification of networks dis-
playing sequential disinhibition has not yet occurred.

4.5 Negative Feedback Systems

Those living in temperate climates are familiar with the cycling of
heating systems. In the simplest configuration there is a thermostat
with a heating element some distance away. The heating element is
either on or off, depending upon whether the temperature is less than
or greater than some preset value called the set point. After the tem-
perature falls beneath the set point, the heater activates; but because
of the time lags in the system, there is some finite period of time before
the temperature at the thermostat exceeds the set point. Once this hap-
pens, the heating element is turned off, but there will generally be an
overshoot of temperature at the thermostat before the heat generated
at the heating element is dissipated. It is easy to see how this simple
system may cycle, and that the period of oscillation will increase as the
distance (equivalent to the time lag) from the heating element to the
thermostat increases.

Conceptually simple feedback mechanisms are believed to be funda-
mental for the control of a large number of different physiological pro-
cesses. Negative feedback in neural networks may also underlie the
organization of CPGs. As a starting point, consider the ordinary dif-
ferential equation (2.2),

X ( 4 2 )

where x is the controlled variable, and X and y are parameters. Since
dx/dt > 0 for x < X/y, and dx/dt < 0 for x > X/y, this system can be
thought of as a simple feedback system with a set point X/y. As dis-
cussed in chapter 2, equation (4.2) cannot oscillate but will monotoni-
cally approach the value X/y.

In physiological situations, time lags are often important, and X
and/or y are not constants but are controlled by feedback mechanisms.
To model such systems we assume that X and/or y are some appropriate
functions of x(t) and/or x(t — T) (designated xx). Here, T is a time delay
that is used to approximate the time lags present in the physiological
system.

Negative feedback systems are those in which deviations in the state
variable from a steady-state value tend to be minimized by the feed-
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back. This may result in the approach of the state variable to its steady-
state value, or in some circumstances, the emergence of oscillations.

Consider a simple model for the control of ventilation by blood CO2

levels. Let x denote pCO2, the partial pressure of CO2 . The CO2 is
eliminated from the body by ventilation and is produced by body tis-
sues at a constant rate X under constant conditions. The ventilation V
is a monotonic increasing function of arterial CO2 levels some time T
in the past (figure 4.9a). This delay is due to the blood transit time
from the brain stem (where ventilation is determined by chemorecep-
tors and by the "respiratory oscillator") to the lungs (where CO2 elimi-
nation takes place). For computational purposes we assume that

n*)=Vm^, (4.3)

where Vm is the maximum ventilation and 0 and n are parameters used
to describe the CO2 response curve. We also assume that the rate of
removal of CO2 by ventilation is proportional to the pCO2 multiplied
by V. Putting these factors together, we obtain

This is an example of a negative feedback system because increases
(decreases) in arterial CO2 levels lead to increases (decreases) in venti-
lation, which will, in turn, lead to decreases (increases) in the arterial
CO2 levels.

At the steady state, dx/dt = 0. Designate the values of x and V at
the steady state by x* and V*, respectively and set S* = dV/dx\x,.
Values for these parameters at the steady state, derived from the ex-
perimental literature, are

1 = 6 mm Hg/min x* = 40 mm Hg

Vm = 80 liter/min V* = 7 liter/min (4.5)

T = 0.25 min S* = 4 liter/min mm Hg.

In the Mathematical Appendix we show how the stability of a steady
state of a time-delay differential equation may be determined. From
this analysis, an approximate criterion shows that the steady state will
be stable provided

S* < n V*/2h. (4.6)

This analysis also shows that once the steady state becomes unstable,
for the parameter values of equation (4.5) there will be an oscillation
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4.9. (a) Schematic picture of the ventilatory control function, (b) Oscillatory behavior
of the ventilation obtained by integrating equation (4.4) for parameters in which the
ventilation is oscillatory because of instabilities in the negative-feedback control loop,
(c) Ventilation during Cheyne-Stokes respiration. Panels (b) and (c) are from Mackey
and Glass (1977).
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in pCO2 and, consequently, in the ventilation with a period approxi-
mately equal to 4T (see figure 4.9b).

Equation (4.6) predicts that the steady state pCO2 level, x*, may
become destabilized in the following ways: (1) if either the slope S* of
the CO2 control function at the steady state, the time delay T, or the
whole-body CO2 production rate X is increased sufficiently, the steady
state will become unstable, and (2) if the steady-state ventilation V* is
decreased sufficiently, it may also destabilize the steady state, leading
to oscillation with a period of approximately 4T. This type of transition
from a stable steady state to an oscillatory state is called a Hopf bifur-
cation and is discussed in greater detail in chapter 5.

These observations are of interest when considering a breathing pat-
tern known as Cheyne-Stokes respiration (see figure 4.9c), in which there
is a regular waxing and waning of ventilation. Cheyne-Stokes respira-
tion often occurs in the pathological condition of congestive heart fail-
ure (associated with increased circulatory time T from the lungs to
the chemosensitive centers in the brain stem regulating ventilation), in
obese individuals (increased T), and it has been reported after neural
brain-stem lesion (associated with increased sensitivity of the ventila-
tory CO2 response function, i.e., an elevated S*). Cheyne-Stokes res-
piration has been induced in normal dogs via an increase in T with the
addition of an arterial extension, thereby increasing the circulatory
time.

In normal individuals, Cheyne-Stokes respiration occurs at high al-
titude, particularly during sleep. This phenomenon is the cause of the
frequently reported inability to sleep soundly during the first few nights
following movement to a high altitude from a low altitude. In such
circumstances, both O2 and CO2 blood gas concentrations are believed
to play a role. The low O2 stimulates hyperventilation, which lowers
CO2 to the lower asymptote of the CO2 control curve. Ventilation is
then sharply reduced or zero until either an increase of CO2 or a de-
crease of O2 stimulates a resumption of ventilation.

Another example of negative feedback is given by studies on the
pupil-control system. A small spot of light is shined on the edge of the
pupil and stabilized so that it always falls at the same physical location
on the eye (figure 4.10a). In response to the spot of light, the pupil con-
tracts. Since light is no longer entering the pupil, the pupil reflexively
dilates. Now the light enters the pupil again, leading to pupil contrac-
tion. Due to the existing neural-conduction time lags and the nonlin-
earity of the feedback loop, this system goes into a spontaneous
oscillation, which may assume a regular wave form as shown in figure
4.10b.
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4.10 (a) Illustration of technique used to elicit oscillation in the pupil diameter. Since
the light is focused on the border of the iris and the pupil, small movements of the iris
lead to large changes in light intensity, (b) Example of spontaneous high-gain oscillations
in pupil area obtained with setup in panel (a) with constant light intensity. From Stark
(1968).

Other examples in which negative feedback control systems with time
delays have been analysed to obtain insight into periodic physiological
rhythms arise in hematology, motor control, psychiatry, and the regula-
tion of blood pressure.

4.6 Oscillations in Mixed Feedback Systems
with Time Delays

Positive feedback systems are those in which deviations from a steady
state tend to be magnified up to a point. Though these tend to be
thought of as not playing a significant role in the operation of biologi-
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cal systems because of their presumed unstable behavior, it is common
to find situations in which biological feedback incorporates a mixture
of positive and negative feedback. This type of feedback is called mixed
feedback.

As an example of a mixed feedback system in which time delays are
important, we consider an apparently simple model for the control of
white blood-cell production. It is generally believed that there exists
a self-maintaining pluripotential stem-cell population capable of pro-
ducing committed stem cells for the erythroid (red), myeloid (white),
and megakarocytic (platelet) cell lines. With increasing maturation of
the myeloid stem cells, they acquire morphological characteristics that
allow them to be identified as proliferating myeloid precursors. As mat-
uration proceeds, proliferative activity in these cells ceases, the cells
enter a maturational phase, and the nucleus is expelled. Mature neu-
trophils (one type of white blood cells originating from myeloid stem
cells) are released from the marrow into the blood, where they are ran-
domly destroyed with a short half-life (7 hours in humans). The total
time required for a recognizable myeloid precursor cell and its progeny
to mature and be released is about 6 days in humans.

A hormonal control operates between the circulating neutrophil mass
and the myeloid stem cells. Decreases in circulating neutrophil num-
bers lead to the production and release of the hormone granulopoietin
(GP). GP then acts on the myeloid stem-cell population to increase
proliferative activity and ultimately increase the flux of cells into the
recognizable myeloid precursor compartments.

Let x be the density of circulating neutrophils in cells/kg body weight
and y the random neutrophil destruction rate in hours"1; v the flux of
new neutrophils into the blood, measured in cells/kg hour; F (cells/kg
hour) the flux of committed myeloid precursor cells into the recogniz-
able myeloid precursor population; and A the cellular amplification
that takes place in that compartment (see figure 4.1 la). Then, from the
preceding description of the neutrophil production system, we have

(4.7)

where xt = x(t — T) and u(xt) = AF(xz) is the current cellular flux into
the blood in response to a demand created a time T in the past.

Over a wide range of circulating neutrophil levels, the neutrophil
production rate v is a decreasing function of increasing neutrophil den-
sity. However, because of various factors it is expected that at very low
neutrophil levels the production rate will fall to close to zero. Thus for
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4.11. (a) Schematic diagram for the control of blood cell production. The levels of the
circulating blood cells feed back to control the input flux, (b) Schematic diagram of
the white blood-cell production rate as a function of the number of circulating white
blood cells. This is an example of mixed feedback, and can give rise to chaotic dynamics.

v we pick the humped function (see figure 4.11 b),

9"
v(xz) = pxx — -,

where T, 9, and n are parameters.
Combining equations (4.7) and (4.8), we obtain

(4.8)

dx 6" (4.9)
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a nonlinear time-delay differential equation describing the dynamics
of the circulating neutrophil numbers. Note that in contrast to the
ventilatory control system of the previous example, the rate of destruc-
tion of cells is now fixed, but the rate of production of cells is under
feedback control. Furthermore, instead of having only one steady state,
the equation for neutrophil production may have two steady states:
x* = 0 and a second steady state,

xS = 0[(j8-y)/y]1/B, i f /J>y. (4.10)

As before, the stability of the steady states can be determined. When
ft < y and x* = 0 is the only steady state, it is always stable, as would
be expected with the maximum cellular influx less than the neutrophil
destruction rate. When fi > y and two steady states exist, x* = 0 is
always unstable while the second steady state given by equation (4.10)
may be stable or unstable, depending on the values of the parameters
y, P, n, and T. The condition for the stability of this second steady
state is complicated, and we do not write it down here (see Mathe-
matical Appendix). It suffices to say that increases in /?, n, and/or T
may destabilize the steady state, and when this happens the number of
circulating neutrophils oscillates with a period between 2T and 4T will
be the result. Changes in the random destruction rate are more com-
plex, as it turns out that either an increase or a decrease in y may
lead to an instability, depending on the values of the other parameters.
This analysis, however, does not even begin to uncover the dynamics
that equation (4.9) is capable of producing To explore the dynamics
we must abandon our analytic tools in favor of numerical integration.

For normal humans, the following parameter values are estimated
from data: y = 0.1 /day, /? = 0.2/day, n= 10, and T = 6 days. With
these parameters, the stability analysis predicts that the steady state
numbers of neutrophils should be unstable, and indeed numerical
integration of equation (4.9) with these values shows a mild oscillation
in neutrophil numbers with a period of about 20 days. This period is in
agreement with the expected range of the period between 12 and 24
days. In figure 1.8b we carried out the same numerical integration
with an increase in T to 20 days. Note the extreme irregularity of the
solution to the totally deterministic equation (4.9). This simple model
embodied in equation (4.9) once again illustrates the possibility for the
existence of intrinsic chaos in a deterministic, continuous time system.
Here the levels of circulating neutrophils in the model are random
simply as a consequence of their own evolution equations. As we dis-
cussed in chapter 1, the dynamics here shows at least qualitative simi-
larities with data on white blood-cell counts in a patient with chronic
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myelogenous leukemia. Several investigators believe that CML is gen-
erally accompanied by an increase in the transit time x through the cel-
lular maturation compartments, and thus there may be a connection
between the theoretical model and the proposed disease mechanisms.

As yet another example of the generation of periodic and aperiodic
behavior from time-delay systems with mixed feedback, consider the
process of recurrent inhibition, which has been described in almost
every type of neural tissue in species ranging from the lowest inver-
tebrates through humans. This process is characterized by presynaptic
cells delivering excitation to postsynaptic cells. The postsynaptic cells
then generate action potentials, and one effect of these action potentials
is to activate inhibitory interneurons via axon collaterals from the
postsynaptic cell axons. These interneurons in turn deliver inhibitory
activity back to the postsynaptic cells from which their original activa-
tion was derived.

A study specifically directed at understanding the dynamics of a
recurrent inhibitory circuit in the hippocampus considered the CA3
pyramidal cell, mossy fiber, basket-cell complex (figure 4.12). In this
model, formulated within the conceptual framework of equation (4.2),
x(t) was identified with the frequency of firing in the CA3 pyramidal
cell population. The "production" A of x is entirely due to the excit-
atory activity within the mossy fiber population. However, the destruc-
tion of x is determined by two different processes: (1) the natural
decay of activity that occurs because of the electrotonic properties of
the CA3 pyramidal cell membrane, and (2) a "humped" nonlinear type
of mixed feedback, of the same type used to describe neutrophil pro-
duction (equation 4.8), because of the recurrent inhibitory pathway
comprised of the basket cells. In addition, there is a time delay in the
generation of the recurrent inhibition due to conduction and synaptic
delays within the feedback pathway.

The CA3 pyramidal cell-mossy fiber-basket cell complex has been
extensively studied, and the relevant parameters for this system are
easily estimated. Furthermore, it is known that the inhibitory neural
transmitter between the basket cells and the CA3 pyramidal cells is
gamma-aminobutyric acid (GABA), and that penicillin binds almost
irreversibly to the GABA receptors on the CA3 pyramidal cell mem-

Mossy Fibers CA3 Pyramidal Cells

4.12. Schematic figure of a
Basket Cells circuit for recurrent inhibition.
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brane. Thus, penicillin can be used to titrate the number of available
GABA receptors in the postsynaptic cell population, and it is natural
to examine the behavior of the model for this system as the GABA
receptor density is decreased, corresponding to increasing penicillin
levels.

In figure 4.13 we have illustrated the response of this simple model
for recurrent inhibition as a function of the number of GABA receptors.
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4.13. The results of numerical simulation of the network in figure 4.12. N is a measure
of the receptor density. As this density decreases, the rhythm changes from regular
bursting behavior with differing periodicities to sustained but irregular firing at low
receptor levels. From Mackey and an der Heiden (1984).
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As receptor density is decreased to mimic the results of applying peni-
cillin, there is a progressive shift in the cellular activity from regular
burstlike behavior with differing periodicities to a final sustained but
irregular firing pattern at low receptor numbers.

The chaotic behavior of the solutions of time-delay differential
equations with mixed feedback has been seen in models for diverse
phenomena in physiological and ecological systems. Despite the ap-
parent conceptual simplicity and physiological importance of feed-
back systems incorporating time delays, mathematical analysis of
such systems is extremely difficult. One promising line is to assume
that the nonlinearities in the equations are piecewise linear functions.
In such situations, direct integration of the equations from some ini-
tial condition is possible. This technique has been applied to systems
with mixed feedback, and it has been possible to demonstrate a whole
hierarchy of bifurcations between periodic solutions, as well as between
chaotic nonperiodic solutions as parameter values vary. Many other
studies have exploited the use of piecewise constant nonlinearities or
other special types of nonlinearities in time-delay differential equa-
tions to obtain insight into the properties of their solutions.

4.7 Summary

Many different approaches to the mathematical modeling of physio-
logical rhythms have been taken. Models for pacemakers attempt to
account quantitatively for ionic currents underlying pacemaker activity.
Since there are a number of different channels, interpretation of experi-
ments and formulation of theoretical models is a complex procedure.
Recent work has demonstrated that slight modifications of the param-
eters in mathematical models for pacemakers can lead to chaotic dy-
namics. Mechanisms involving mutual inhibition and sequential inhi-
bition have been proposed for the central generation of motor rhythms
by central pattern generators. Finally, negative feedback and mixed
feedback in systems with time delays can show both oscillatory dynam-
ics and mixed feedback can show chaotic dynamics.

Notes and References, Chapter 4

4.1 Pacemaker Oscillations
The definitive work elucidating the nature of the excitability process in the

protypical excitable tissue, the squid giant axon, was done by Hodgkin and
Huxley (1952). Later, Huxley (1959) extended this work to include the effects
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of low-calcium solutions. Many have adapted this approach to characterize
other excitable tissues. McAllister, Noble, and Tsien (1975) studied cardiac
action potentials, but some of their results have recently been reinterpreted
(Noble 1983, 1984; DiFrancesco 1984; DiFrancesco and Noble 1985). Irregular
dyanamics in pacemakers have been observed experimentally in a number
of neuronal systems (Chalazontis and Boisson 1978), in pancreatic /?-cells
(Lebrun and Atwater 1985), and following application of drugs to molluscan
pacemaker cells (Holden, Winlow, and Haydon 1982). Mathematical models
of pacemaker oscillations in neurons (Chay 1984) and pancreatic /?-cells (Chay
and Rinzel 1985), and in cellular slime molds (Martiel and Goldbeter 1985)
also display chaos. There does not appear to be a single common mechanism
for pacemaker oscillations (Berridge and Rapp 1979; Noble 1983).

4.2 Central Pattern Generators
The study of central pattern generators (CPGs) goes back at least to early

in this century when Brown (1914) demonstrated locomotory movements in
cats in which afferent feedback had been abolished. However, a clear theoret-
ical understanding of the mechanisms of CPGs has not yet been obtained,
and some have expressed a skeptical opinion on the role of theory (M. I.
Cohen 1979). We do not attempt to give a complete review of work on rhythmo-
genesis in diverse systems but refer the reader to an excellent collection
(A. H. Cohen, Rossignol, and Grillner 1988).

4.3 Mutual Inhibition
Conceptual and mathematical models incorporating mutual inhibition have

been proposed in diverse contexts (T. G. Brown 1914; Burns and Salmoiraghi
1960; Salmoiraghi and Burns 1960; Harmon 1964; Perkel and Mulloney 1974).
Actual demonstrations of oscillations in mutual inhibitory networks have been
accomplished by Selverston, Miller, and Wadepuhl (1983) and Satterlie (1985).
Mutual inhibition does not necessarily lead to oscillation, but can lead to a
situation in which one or the other of the two neurons stays active. A possible
role for such a neural switch in memory has been proposed by Hopfield (1984).

4.4 Sequential Disinhibition
The original discussion of sequential disinhibition is in Szekely (1965) and

Kling and Szekely (1968). Discussion and analysis of these networks using
methods of Boolean analysis is in Glass and Young (1979) and Thomas (1979).
Differential equations that model sequential disinhibition and other complex
network interactions are in Glass and Pasternack (1978a,b).

For reviews about the mechanisms for respiratory rhythmogenesis, see M. I.
Cohen (1974, 1979), Richter and Ballantyne (1983), Euler (1986), and Feldman
(1986). These papers indicate that the network-generating respiration is ap-
parently complex, with several different interacting cell types. A proposal
that sequential disinhibition networks may underlie respiratory rhythmo-
genesis is in Petrillo and Glass (1984).
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4.5 Negative Feedback Systems
The observation that negative feedback systems may oscillate when the

time delays and/or gains are large is well known (Grodins 1963; Milhorn
1966; Stark 1968). However, many treatments of these instabilities rely on
methods from linear-systems analysis and thus have limited applicability for
analysis of the nonlinear oscillations that can be observed outside of the
linear range of the equations. The particular model for Cheyne-Stokes ventila-
tion that we consider is from Mackey and Glass (1977) and Glass and
Mackey (1979a), which should be consulted for details on parameter estima-
tion. Other, more complex mathematical models have been developed to
account for changes in both O2 and CO2 , but detailed theoretical analysis
of stability properties is generally not possible (Longobardo, Cherniack, and
Fishman 1966; Milhorn 1966; Khoo et al. 1982). Clinically, Cheyne-Stokes
respiration may be associated with neurological lesions or heart disease
(Dowell et al. 1971; Lambertsen 1974). Cheyne-Stokes respiration was induced
in dogs by artificially introducing increased circulatory delay following
oxygenation of the blood (Guyton, Crowell, and Moore 1956). For a discussion
of Cheyne-Stokes respiration at high altitudes, see Waggener et al. (1984). A
recent review on breathing control in elderly subjects with extensive references
is Pack and Millman (1986).

Oscillatory instabilities in negative feedback systems have been implicated
in the genesis of oscillations in many other physiological control systems
(Grodins 1963; Milhorn 1966). Other interesting examples have been developed
in pupil dynamics (Stark 1968, 1984); periodic autoimmune hemolytic anemia
(Mackey 1979b); periodic catatonic schizophrenia (Cronin-Scanlon 1974); the
stretch reflex (Lippold 1970); tremor (Merton, Morton, and Rashbass 1967);
and in blood pressure (Sagawa, Carrier, and Guyton 1962; Hosomi and Haya-
shida 1984). Multiple negative feedback with delay can give rise to complex
rhythms (Glass, Beuter, and Larocque 1988).

4.6 Oscillations in Mixed Feedback Systems with Time Delays
The model considered here for the control of white blood-cell production

is due to Mackey and Glass (1977) and Glass and Mackey (1979a). For a
general discussion of the scheme of the construction of the hematopoietic
system, see Wintrobe (1976), Mackey (1979a), and Quesenberry and Levitt
(1979). Wazewska-Czyzewska (1984) offers evidence that at very low neutrophil
levels the production rate will fall to close to zero. See Killman et al. (1963),
Ogawa et al. (1970), M. L. Greenberg et al. (1972), and Gavosto (1974) for
evidence implicating an increase in the cellular maturation time in chronic
myelogenous leukemia.

A number of investigators have evolved models of varying complexity
to treat the dynamics of recurrent inhibition (Mates and Horowitz 1976;
Kaczmarek and Babloyantz 1977; Traub and Wong 1981; and Knowles et al.
1985). The model considered here is due to Mackey and an der Heiden
(1984).
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Other investigators have examined the chaotic behavior of the solutions
of time-delay differential equations with mixed feedback in models for the
control of erythropoiesis (Wazewska-Czyzewska and Lasota 1976; Lasota
1977); in general physiological control systems (an der Heiden 1979); in a model
for dopamine dynamics (King, Barchas, and Huberman 1984); in other re-
current inhibition models (an der Heiden, Mackey, and Walther 1981); and in
ecology (J. F. Perez, Malta, and Coutinho 1978; May 1980). Use of the technique
of replacing nonlinearities with piecewise constant, piecewise linear, or other-
wise special functions has been exploited by Glass and Mackey (1979a), Peters
(1980), an der Heiden and Mackey (1982), Saupe (1982), an der Heiden (1985),
and Walther (1985). This technique has enabled some of these investigators to
prove some quite interesting properties of the solutions to these equations.
An experimental study which incorporates mixed feedback in the pupil light
reflex can be found in Longtin and Milton (1988).

An interesting sidelight is that the equations originally proposed by us to
model white blood-cell production have been used extensively by mathe-
maticians and physicists to test algorithms to compute the dimension and
Liapunov number (see section 3.4) from a time series (Farmer 1982; Grass-
berger and Procaccia 1983; Wolf et al. 1985; Le Berre et al. 1987; Kostelich
and Swinney 1987).



Chapter 5

Initiation and Termination

of Physiological Rhythms

Transitions between oscillating and nonoscillating states are common
in physiological systems. In this chapter we discuss experimentally ob-
served transitions between oscillatory and nonoscillatory dynamics and
offer hypotheses to account for these transitions. In section 5.1 we show
that an ongoing rhythm may be continuously present but can only lead
to readily observable phenomena intermittently. Two distinct routes
from oscillatory to nonoscillatory states, known in bifurcation theory
as soft and hard excitation, are discussed in sections 5.2 and 5.3, respec-
tively. In the case of hard excitation, there can be two stable dynamic
states—one oscillatory and the other not—for a given set of param-
eters. In this situation, annihilation of the oscillation with a single
stimulus should be possible. The observation of such annihilation in
experimental systems is discussed in section 5.4.

5.1 Tapping into an Ongoing Oscillation

One possibility for the initiation and termination of biological
rhythms is that an underlying rhythm is continuously maintained but
that the organism can tap into and out of the rhythm by changing a
control parameter. A metaphor is a digital watch that is always run-
ning, but whose readout can be turned on and off.

Low-amplitude membrane potential oscillations, sometimes with su-
perimposed action potentials, have been observed in several systems.
An important physiological system in which such behavior is commonly
found is the gut. Figure 5.1 shows a slow wave oscillation of the smooth
muscle tissue. The action potentials present on some of the slow waves
are associated with contractions of the smooth muscle (see section 8.1).

The possibility for low-amplitude oscillations, which may be called
slow wave or subthreshold oscillations, may be one of the intrinsic fea-
tures of pacemaker oscillations, and such oscillations have been ob-
served in many studies. A particularly striking example occurs in
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5.1. Electrical activity recorded with a pressure electrode (top line) and mechanical
activity (bottom line) recorded from a segment of the cat jejunum. Slow waves that are
associated with spike potentials give rise to the largest contractions, (a) Normal activity,
(b) Same segment of intestine 40 min after bathing in Tyrode's solution containing 10%
of Ca2 + present in (a). Note the reduced frequency and apparent increase in magnitude
of membrane potential. Time calibration: 5 sec; potential calibration: 0 to — 5 mv; tension
calibration: 0 to 3 gm, increase in tension upward. From Bortoff (1961).

numerical studies of an ionic model for pacemaker oscillations in Pur-
kinje fiber (figure 5.2). As the magnitude of an injected hyperpolarizing
current is increased, a number of different rhythms arise in which low-
and high-amplitude oscillations can be observed. In this situation the
appearance of an action potential depends on whether or not the oscil-
lating membrane potential exceeds a threshold. If this threshold is ex-
ceeded, then the rapid depolarization is observed.

A phenomenon that is at least superficially similar occurs in ovu-
lation. Some patients who exhibit the luteinized unruptured follicle
syndrome have apparently normal menstrual cycling (or ongoing oscil-
lation), but the key event of rupturing the follicle and release of an
ovum (or ovulation) does not always take place. These examples show
that in some systems an underlying oscillation can continue even in
the absence of what many would assume is the key or critical event.
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5.2. The effect of injecting a constant hyperpolarizing current in the McAllister, Noble,
and Tsien (1975) model for Purkinje fiber. The hyperpolarizing current (nAjcm1) is
(a) 3.3, (b) 3.34, (c) 3.36, (d) 3.37, (e) 3.3785, (f) 3.3787, (g) 3.4. There are normal action
potentials in (a), combinations of sub- and superthreshold oscillations in (b)-(e), sub-
threshold oscillations in (f), and quiescence in (g). From Guevara (1987).

5.2 Soft Excitation

A natural way for a mathematician to think about turning oscilla-
tions on and off is via a parameter-dependent dynamical system. At
some parameter values the oscillation is present, whereas at others the
oscillation is absent. The simplest situation is schematically depicted
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in figure 5.3. For parameter values c < 0, there is a single steady state,
which is stable and globally attracting. However, for c > 0 the steady
state has become unstable, and there is now a stable limit cycle oscilla-
tion. A concrete example of a pair of differential equations displaying
this bifurcation is

(5.1)

dt
= 2n.

Using the qualitative analysis sketched out in chapter 2, we can easily
see that for c < 0 there is a single steady state, and for c > 0 there is
an unstable steady state at r = 0 and a stable limit cycle with r = c1/2.
As c is increased through the value c = 0, a limit cycle appears, initially
at small amplitude and finite frequency (figure 5.3). Although this bifur-
cation was known to Poincare, it is common to call it a supercritical
Hopf bifurcation or soft excitation.

As we have already discussed in chapter 4, instabilities in negative
and mixed feedback systems may arise when the time delays and/or

c<o c >o

(b)
2.0

1.0

-2

5.3. Soft excitation (supercritical Hopf bifurcation), (a) Phase plane representation of
equation (5.1). As c increases, a stable limit cycle oscillation of low amplitude and
finite frequency arises, (b) The bifurcation diagram for soft excitation. The solid curve
represents the stable solutions and the dashed curve the unstable solutions.
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gains increase beyond certain critical values. At the points of the insta-
bilities, supercritical Hopf bifurcations are observed. Such instabilities
are believed to underlie the oscillations observed in Cheyne-Stokes res-
piration, some types of muscle tremor, many oscillatory hematological
disorders, and the pupillary oscillatory reflex elicited by a spot of light
on the edge of the pupil. In these various situations, an important class
of experiments motivated by the theory would be to determine carefully
the amplitude and frequency of the oscillation as a function of stimulus
intensity near the transition to the stable oscillation. These data could
then be related to the experimental observations by using appropriate
theoretical tools. Unfortunately, such a protocol has not been under-
taken frequently in the study of physiological oscillations. Consequently,
many of the examples we give are of only a tentative nature because
more systematic experimental studies are needed.

An interesting and unusual example that may display a supercritical
Hopf bifurcation is provided by studies on the contractility of the uterus
in dysmenorrhea (figure 5.4). It is known that menstruation is associated
with laborlike contractions, but there is disagreement about the par-
ticular patterns associated with pain. In a class of patients with pain-
ful menstruation and large-amplitude contractions, the intrauterine
pressure was measured with a catheter at the peak of the discomfort.
A nonsteroidal anti-inflammatory drug (piroxicam) was administered
orally and intrauterine pressure was monitored for the next hour. For
one patient, as shown in figure 5.4, the large-amplitude periodic (or
perhaps "chaotic") contractions initially present subsided, and this was
associated with a diminution of the discomfort. Relief was obtained in
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5.4. Uterine pressure as a function of time in a woman with dysmenorrhea. Following
administration of a nonsteroidal, anti-inflammatory drug (piroxicam), the pressure waves
decreased. From Schulman, Duvivier, and Blattner (1983).
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69% of the women screened. The decrease of amplitude illustrated in
figure 5.4 is precisely what one expects in the supercritical Hopf bifurca-
tion as the control parameter passes its critical value (for example, as
c decreases in figure 5.3). However, a word of caution is in order, as
dysmennorhea is a complex and poorly understood phenomenon that
can probably be caused by many factors. Also, large-amplitude uterine
contractions are not unequivocally associated with uterine pain. Thus,
although it is possible that the transition observed can be associated
with a Hopf bifurcation, the clinical significance is still open to debate.

Soft excitation occurs in systems other than negative and mixed feed-
back systems, for example, sequential disinhibition. Because sequential
disinhibition has been proposed as a basis for rhythmogenesis in the
respiratory system and locomotion, it is of interest to examine experi-
mental results on the initiation and termination of the respiratory and
locomotory rhythms to see if they display soft excitation as parameters
are changed.

A detailed understanding of the control of the initiation and termina-
tion of ventilation is not presently available. However, in the context
of hyperventilation, the soft excitation scenario seems the most likely.
Figure 5.5 shows the phrenic-nerve (the motor nerve for the diaphragm)
activity in a mechanically ventilated, anesthetized, paralyzed cat fol-
lowing hyperventilation. The gradual buildup of activity in the phrenic
nerve appears consistent with soft excitation. Local cooling of the ven-
tral surface of the medulla or hypoxia produces transitions from res-
piratory activity to inactivity that are much more abrupt. Figure 5.6
shows a tracing of phrenic activity in an anesthetized, paralyzed, bi-
laterally vagotomized, and sinoaortic denervated cat in which the com-
mon carotid arteries were ligated. At the first arrow, both vertebral

5 sec

5.5. Recovery of phrenic activity following hyperventilation in an anesthetized, par-
alyzed cat. Top tracing is lung volume and the bottom tracing is the integrated phrenic
neurogram. The offset in lung volume while the ventilator is turned off is artifact. Trac-
ing provided by G. A. Petrillo. From Glass (1987).
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5.6. Effects of vertebral artery occlusion in an anesthetized, paralyzed, bilaterally vago-
tomized cat in which the common carotid arteries were ligated. The occlusion was
maintained for the time period between the arrows. Top tracing is systemic arterial
pressure (SAP), and bottom tracing is the integrated phrenic neurogram. Tracing pro-
vided by M. Bachoo and C. Polosa. From Glass (1987).

arteries were occluded, shutting off blood flow to the respiratory cen-
ters in the brain stem. This was followed by an immediate increase in
blood pressure and a slight increase in phrenic amplitude, followed
by an abrupt period of apnea (cessation of breathing). At the second
arrow (about 1 min later), normal blood flow was allowed to resume
in the vertebral arteries by release of the occlusion clamp, and this
led to a rapid onset of periodic phrenic-nerve activity. Our colleagues
at McGill, C. Polosa and M. Bachoo, have suggested to us that the
abrupt cessation of respiration in this experimental situation may be
a model of clinically observed respiratory arrest secondary to cardiac
arrest.

As another example we discuss studies on the control of locomotion.
Generally, rapid initiation and termination of locomotion is needed in
most nonsessile animals in order to survive. In experimental prepara-
tions, it is not clear how to reproduce the volitional aspects associated
with locomotion. However, in studies in the lamprey it has been found
that either electrical stimulation or direct application of pharmacolog-
ically active compounds can be effective stimuli in inducing locomotion
(or fictive locomotion). As an example, consider the induction of fictive
locomotion in the lamprey by electrical stimulation (1 ms pulses at
20 Hz) of the brain stem (figure 5.7). A 3 fiA current was not sufficient
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5.7. (a) Dorsal view (top) of an in vitro brain-stem/spinal-cord preparation of the lam-
prey. "Fictive" swimming behavior was recorded from ventral roots with suction elec-
trodes (1-4). Enlargement of the brain stem (bottom), showing the region of stimulation
(x, about 100 fim deep) that produced the records in (b). (b) Continuous record showing
the ventral-root motor activity elicited by the stimulation. Increasing the current intensity
activates the swimming motor activity. From McClennan and Grillner (1984).

to induce locomotion, but a AfxA did induce rhythmic activity in the
ventral motor roots. At this "threshold" current, bursting began imme-
diately or within a few seconds, and the first burst could occur on either
side. The burst activity was controlled by the magnitude of the stimulus.

However, this information on the control of respiration and locomo-
tion is inadequate to characterize the bifurcations underlying the tran-
sition from quiescence to rhythmic activity. It is necessary to probe
carefully the dynamics as control parameters are both increased and
decreased. Are the thresholds for rhythmic activity the same as stimula-
tion intensity is either increased or decreased, or are they different? In
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soft excitation, there is no hysteresis, and the measured threshold will
be the same both for increasing and decreasing control parameters. In
the alternative situation, in which there is hysteresis, another mecha-
nism is possible.

5.3 Hard Excitation

In the soft excitation scenario, there is a stable limit cycle that arises
initially with low amplitude as a parameter increases. In an alternative
scenario, as a parameter increases there suddenly arises a stable, large-
amplitude oscillation. One way in which this can occur is called the
subcritical Hopf bifurcation or hard excitation. We give a concrete math-
ematical example and then describe several physiological examples.

Consider the pair of differential equations,

~ = r(c + 2r2 - rA)
at

(5.2)
d± = 2n.
dt

A sketch of the phase plane for this system is shown in figure 5.8a. By
setting dr/dt = 0, it is readily shown that the solutions for equation
(5.2) are given by r = 0 and r2 = 1 + (1 + c)1/2. The real nonnegative
solutions are shown in figure 5.8b. Using the qualitative analysis out-
lined in chapter 2, we find that the branch r = 0 is stable for c < 0 and
unstable for c> 0. For c > - 1, r = [1 + (1 + c)1 /2]1 /2 is a stable limit
cycle. For — l < c < 0 , r = [1 — (1+ c)1 / 2]1 / 2 is an unstable limit cycle.

Now consider what happens as c is increased from negative values.
Initially there is a single stable steady state at r = 0 (no oscillations).
When c > — 1, there is also a stable limit cycle, but the dynamics will
be stuck at the stable steady state. However, as c continues to increase
to c > 0, the steady state at r = 0 becomes unstable, and there is a
sudden jump to the stable limit cycle. Thus, as the parameter value
passes its critical value, a large-amplitude oscillation appears. If c is
now decreased, the large amplitude oscillation will persist until c < — 1
and will then disappear suddenly (without the amplitude approaching
zero). Thus, for — 1 < c < 0, there is the possibility of two different
stable dynamics. The one that is observed will depend on the history
of the stimulation (hysteresis effect). This simple example makes it clear
why careful experimental studies performed with both increasing and
decreasing control parameters are needed in order to sort out qualita-
tive properties of the onset and termination of oscillations. The hard
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5.8. Hard excitation (subcritical Hopf bifurcation), (a) As c increases in equation (5.2),
a stable limit cycle oscillation of finite amplitude and frequency suddenly appears. For
intermediate values of c there are two stable behaviors for fixed c, a stable steady state
and a stable limit cycle, (b) The bifurcation diagram for hard excitation. The solid curve
represents the stable solutions and the dashed curves the unstable solutions.

excitation scenario provides a possible explanation for the threshold
shown in figure 5.7.

Probably the most completely analyzed biological system in which
hard excitation has been demonstrated is the squid giant axon. Exten-
sive numerical simulations of the Hodgkin-Huxley equations demon-
strated that it should be possible to select values for the applied current
for which there coexist a locally stable steady state and a locally stable
limit cycle, as in figure 5.8. An experimental test of the theoretical pre-
diction, carried out on a space-clamped squid giant axon in low-calcium
solution, confirms this prediction.

Two separate types of experiments were carried out. In one, an
increasing and decreasing ramp-current stimulus was applied to the
nerve. The observation of hysteresis in the firing of the nerve (figure
5.9a) was expected, based on an analysis of the dynamics of this system
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5.9. Activation and annihilation of periodic activity in space-clamped squid axons
bathed in a low-calcium artificial seawater solution, (a) A continuous increase and de-
crease in the current delivered to the axon (top trace) leads to firing of the axon (bottom
trace), but the current intensity for the onset and offset of the firing are different, show-
ing a hysteresis effect. Calibration—current: 1 //A/div; membrane voltage: 100 mv/div;
time: 50 msec/div. (b) Annihilation of repetitive firing in the axon. Stimulation of the
axon with a barely suprathreshold step of current leads to repetitive firing in the top
half of the figure. In the bottom half of the figure, repetitive firing is once again induced
by a current step, but this is now annihilated by a brief depolarizing perturbation.
Calibration—current: 2 /iA/div; membrane voltage: 100 mv/div; time: 2 msec/div. From
Guttman, Lewis, and Rinzel (1980).
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5.10. Electromyographic record from muscles of the pelvic floor of a healthy male volun-
teer during ejaculation induced using a method attributed to Onan. The arrow indicates
a signal from the subject when first noticing a sensation of orgasm. From Petersen
and Stener (1970).

that showed the presence of a hard excitation. A remarkable theoretical
prediction is that a brief stimulus of critical size delivered at a critical
phase of the cycle should be capable of annihilating the oscillation for
the situation where a stable steady state coexists with a limit cycle.
Such a stimulus was observed in the second type of experiment (figure
5.9b). The annihilation of oscillations in such circumstances is an im-
portant discovery and is discussed in more detail in section 5.4.

We close with an additional example which, based on rather incom-
plete experimental studies, might be associated with hard excitation,
but much more detailed analyses are clearly required. Recorded electro-
myographic activity from pelvic-floor muscles, activated during male
orgasm induced by masturbation, shows that at the onset of orgasm
a low-level activity in the striated urethral sphincter and striated anal
sphincter gives rise to distinct burstlike activity (figure 5.10). The bursts
are of irregular duration, and it is reasonable to question whether a
limit cycle or some other dynamics would be most appropriate to asso-
ciate with the bursting activity. However, the sudden onset with no
obvious periodicity before orgasm is consistent with hard excitation.

5.4 Annihilation of Limit Cycles:
The Black Hole

One characteristic of the hard excitation scenario is that parameter
values exist for which there is bistability. Either a stable limit cycle or a
stable steady state can be present, depending on the stimulation history
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(figure 5.8). In this case the steady state is locally stable, and there is
a finite surrounding region that is attracting for this stable steady state.
Such regions have been called a black hole by Winfree. If a perturbation
is delivered to the limit cycle, it would be possible to knock the stable
limit cycle out of its basin of attraction and into the black hole, resulting
in the annihilation of the oscillation.

A stable oscillation of membrane electrical activity is found in experi-
mental studies of the squid giant axon in low extracellular calcium
(section 4.1). In 1979 Best carried out detailed quantitative studies of
the phase-resetting behavior in the Hodgkin-Huxley equations (appro-
priately modified to model this experimental system) at different stim-
ulus strengths and showed that for narrow ranges of stimulus amplitude
and phase it is possible to perturb the oscillation into its "black hole,"
thereby annihilating the oscillation. As discussed above, subsequent
experimental demonstration of this phenomenon by Guttman and col-
leagues in 1980 (figure 5.9b) provided a striking theoretical confirma-
tion of the theory. Both depolarizing and hyperpolarizing pulses, which
would lead to pacemaker annihilation if delivered at critical phases of
the cycle, were found. There is a similar finding in SA node pacemaker
cells (see figure 1.9).

Clearly, once an oscillator has been perturbed into its "black hole,"
it should be possible to reinitiate oscillations if a sufficiently large stim-
ulus were delivered. Curiously, experimental evidence for this transition
has not been given.

There are many possible implications of pacemaker annihilation in
the interpretation of normal and pathophysiology. At present they
are tentative and highly speculative. The following are offered as a
sampling.

1. In sinus arrest the sinus pacemaker of the heart ceases to function.
This may arise as a consequence of phase resetting of the sinus pace-
maker, for example by a vagal burst. In normal individuals, the sinus
pacemaker does not appear to be susceptible to such an annihilation,
but it is possible that in pathological conditions it would be.

2. Castellanos and coworkers have found electrocardiographic rec-
ords in patients with ventricular ectopic beats which suggest that a
sinus beat at a critical phase of the ectopic cycle can annihilate an
ectopic pacemaker. However, it is not clear why subsequent sinus beats
do not act as stimuli to reexcite the ectopic pacemaker.

3. Triggered automaticity (initiation of a chain of action potentials
by a depolarizing stimulus) has been observed by Wit and Cranefield
in cardiac muscle. This phenomenon might be associated with pertur-
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bation of the cardiac muscle out of its black hole into a stable periodic
orbit.

4. One hypothesized mechanism for sudden infant death syndrome
without apparent organic pathology is the cessation of respiration due
to a perturbation that annihilates the respiratory rhythm.

5. In amennorhea, the menstrual rhythm is absent but hormonal
and surgical treatments can sometimes be given which will restart the
rhythm and induce ovulation. The converse situation is also possible.
In the absence of knowledge concerning the topological structure of the
phase space of the menstrual rhythm, it is conceivable that a black
hole exists. If this is the case, then it has been suggested that birth
control could be accomplished via perturbation of the menstrual cycle
into its black hole.

Though the above are clearly speculative, physiological rhythms that
are essential for life must be stably maintained even under the on-
slaughts of numerous fluctuations and perturbations in the physiolog-
ical environment. If the sinus pacemaker had a large, easily accessible
"black hole" in its phase space, we might not live very long. Thus one
might expect that in the course of evolution, survival required that
essential oscillators be stable with a large basin of attraction. However,
it is also important to recognize that if biological oscillators can really
be associated with limit cycle oscillations, then there is the potential
for annihilating the oscillation if parameters assume values for which
there are black holes.

5.5 Summary

In this chapter we describe four different methods for turning oscilla-
tions on and off.

1. The oscillations are always present but at a subthreshold level.
In some circumstances the oscillations can become superthreshold,
leading to periodic observable events or observable events that occur
intermittently but in which the time interval between subsequent events
is a multiple of the period of the underlying oscillation.

2. Soft excitation. As a parameter increases, a quiescent state be-
comes unstable, and oscillations, initially with low amplitude, build up.
Decrease of the parameter leads to a loss of oscillation following a
reversed path with no hysteresis.

3. Hard excitation. As a parameter increases an initially quiescent
state becomes unstable and large-amplitude oscillations are observed.
Decrease of the parameter leads to an abrubt loss of oscillation, but
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there exists a range of parameters in which either oscillation or quies-
cence occurs, depending on the history of the stimulation.

4. In the hard-excitation scenario for parameter ranges with two
stable behaviors—one oscillatory and the other not—transitions be-
tween the two can be accomplished by a single pulse. However, annihi-
lation of the oscillation by a single pulse can be accomplished only if
the pulse is of correct magnitude and delivered over a narrow range
of oscillator phases that leads to annihilation and not phase resetting.

Notes and References, Chapter 5

5.1 Tapping into an Ongoing Oscillation
Subthreshold oscillations in neural preparations have been observed by

many, including Arvanatiki (1939), Brink, Bronk, and Larrabee (1946), Huxley
(1959), Guttman and Barnhill (1970), Guttman, Lewis, and Rinzel (1980), and
Holden, Winlow, and Haydon (1982). Rapp and Berridge (1977) have suggested
that some pacemaker oscillations (in neural and other tissue) may be due to
action potentials riding on top of these subthreshold oscillations. However,
Huxley (1959) took the position that they are two entirely different modes of
oscillation. Related phenomena in cardiac preparations have been described
by Jalife and Antzelevich (1980), Guevara, Shrier and Glass (1986), and Guevara
(1987). The luteinized unruptured follicle syndrome is described in Marik and
Hulka (1978) and Daly et al. (1985). In a completely different context, Kauffman
and Wille (1975) suggested that an underlying mitotic rhythm in Physarum
can continue even in the absence of mitosis, but this interpretation has been
disputed by Tyson and Sachsenmaier (1978) and Loidl and Sachsenmaier (1982).

5.2 Soft Excitation
For a discussion of soft and hard excitation, see Marsden and McCracken

(1976), Plant (1982), Arnold (1983), Guckenheimer and Holmes (1983), and
Glass (1987). Supercritical Hopf bifurcations occur in negative feedback sys-
tems (Langford 1977) and mixed feedback systems (Kazarinoff and Van den
Driessche 1979).

The relationship between contractions of the uterus and menstrual pain is a
controversial topic that has been much debated (Bickers 1941; Reynolds 1965;
Schulman, Duvivier, and Blattner 1983). Analysis of the initiation and termina-
tion of contractions of the uterus both under normal and pathological condi-
tions would undoubtedly prove to be of great interest.

Glass and Pasternack (1978 b) have studied a theoretical model for sequential
disinhibition, and Petrillo and Glass (1984) proposed it as a model for respira-
tory rhythmogenesis. Transitions of respiratory activity have been produced by
Cherniack et al. (1979), who investigated the effects of local cooling of the ventral
surface of the medulla; Rohlicek and Polosa (1983) and Millhorn et al. (1984),
who studied the effects of hypoxia; and Yamashiro et al. (1985) who studied
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the effects of hyperventilation. Szekely (1965) and Kling and Szekely (1968)
have proposed an important role for sequential disinhibition in the control of
locomotion. Grillner (1981) offers a good review of the control of locomotion.
Transitions of locomotory activity in the lamprey have been induced by either
electrical stimulation or direct application of pharmacologically active com-
pounds (A. H. Cohen and Wallen 1980; Grillner and Wallen 1984; McClennan
and Grillner 1984).

5.3 Hard Excitation
Numerical predictions of the coexistence of a locally stable steady state and

a locally stable limit cycle in the Hodgkin-Huxley equations by Cooley, Dodge,
and H. Cohen (1965), Best (1979), and Rinzel and Miller (1980) were confirmed
experimentally by Guttman, Lewis, and Rinzel (1980). Many other fascinating
phenomena associated with an abrupt onset of rhythmic activity can be found,
but the mechanisms have not yet been enlightened by theoretical analysis. As
an example, postmenopausal women sometimes have periodic hot flashes that
may have an abrupt onset and offset (Kronenberg et al. 1984). Two other
rhythms that may show hard excitation are mastication (Dellow and J. P. Lund
1971; J. P. Lund and Dellow 1973) and masturbation (Petersen and Stener
1970).

5.4 Annihilation of Limit Cycles: The Black Hole
Important insights into the possibility for annihilation of oscillations by a

perturbation comes from work by Winfree (1973b, 1977). Following Winfree's
suggestion that annihilation of oscillations may be possible by a single well-
timed stimulus, such a behavior was observed by Jalife and Antzelevich (1979,
1980) and Guttman, Lewis, and Rinzel (1980) in experimental systems. This
work was followed by a clinical study in which electrocardiographic evidence
suggested annihilation of an ectopic pacemaker by a sinus beat (Castellanos
et al. 1984). A related phenomenon is triggered automaticity, in which a single
beat stimulus initiates periodicity (Wit and Cranefield 1976). Glass and Winfree
(1984), Paydarfar, Eldridge, and Kiley (1986), and Paydarfar and Eldridge (1987)
have hypothesized a link between sudden infant death syndrome and a "black
hole" perturbation that annihilates the respiratory rhythm. Tulandi (1985)
discussed the pharmacological and surgical restarting of the menstrual rhythm
and induction of ovulation in anovulatory humans. Black-hole birth control
was first suggested by Winfree (1973b).
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Single Pulse Perturbation

of Biological Oscillators

I n this chapter we describe experimental and theoretical results con-
cerning the observed effects of single stimuli delivered to biological
oscillators. In section 6.1 we summarize the results of such studies and,
in particular, describe experiments on the perturbation of the respiratory
and cardiac rhythms to illustrate the main points. In section 6.2 we
consider the treatment of phase resetting experiments using integrate
and fire models, and in section 6.3 we describe phase resetting in limit
cycle models. Several potential applications of phase resetting tech-
niques in diverse fields are discussed in section 6.4. The theory for phase
resetting in limit cycle oscillations utilizes a topological approach. The
practical problems associated with application of this approach are dis-
cussed in section 6.5.

6.1 Overview of Experimental Results

In this section we briefly discuss phase resetting of the respiratory and
cardiac rhythms, and then summarize the main properties that have
been found experimentally in other systems.

As an illustration of the type of data obtained from perturbation ex-
periments, consider the perturbation of the respiratory cycle by a lung
inflation. The respiratory cycle is subdivided into the inspiratory phase,
when phrenic activity is strong and the lungs are inflating, and the ex-
piratory phase, when phrenic activity is weak or absent and the lungs
are deflating. The inspiratory duration (T,) and the expiratory duration
(T£) are both modified by lung inflation. Last century, Hering and
Breuer demonstrated that lung inflation delivered during inspiration
serves to shorten the inspiratory phase of the respiration cycle, whereas
lung inflation delivered during expiration prolongs expiration. These
Hering-Breuer reflexes are normally operative and are mediated by
vagal afferents. If the vagus nerve is sectioned, the frequency of respira-
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tion decreases and the tidal volume increases. In current research, the
activity of the central respiratory-rhythm generator is often monitored
by recording inspiratory-promoting activity from the phrenic nerve,
which innervates the diaphragm.

Systematic studies of the Hering-Breuer reflexes have been made by
studying the effects of lung inflation at different phases of the respira-
tory cycle in anesthetized, spontaneously breathing cats while recording
phrenic nerve activity. If a lung inflation is delivered during inspiration,
and provided the lung inflation is sufficiently large, then inspiration
will be terminated. If the volume threshold (VT eq) necessary to termi-
nate inspiration prematurely is plotted as a function of l/T{, the results
are as shown in figure 6.1a, and it is observed that subthreshold pulses
have little effect on the inspiratory duration. Complementary experi-
ments, measuring the duration of the perturbed expiratory time relative
to control as a function of time during expiration at which the stimulus
was delivered (figure 6.1b), show that expiratory duration, and hence
the perturbed cycle duration, is prolonged by lung inflations delivered
during expiration. Although the studies illustrated in figure 6.1 do not
address the long-range phase shifts induced by the perturbations, it is
known that the phase is reset by stimulation of pulmonary afferent
fibers. This means that following several cycles, the firing of phrenic
bursts is altered from what it would have been in the absence of
stimulation.

As a second example, consider perturbation studies of excised canine
Purkinje fibers, which are part of the cardiac conduction system. Once
removed from the heart, the Purkinje fiber is threaded through three
chambers. In chamber 1 spontaneous oscillatory activity was induced
by perfusing with low-potassium Tyrode's solution containing epi-
nephrine. Chamber 2 contained a dextrose and calcium chloride solu-
tion that blocked active wave propagation but allowed electrotonic
spread of activity. Chamber 3 contained a high-potassium Tyrode's
solution to increase the period of the spontaneous oscillation and still
allow wave propagation. This "sucrose gap" preparation was taken as
an in vitro model of an ectopic, that is, abnormal, pacemaker site
(chamber 1) capable of responding to electrical stimuli (chamber 3) via
electrotonic interactions transmitted through a region of depressed con-
ductivity (chamber 2).

Electrical stimuli were delivered to chamber 3 at various intervals
throughout the pacemaker cycle of chamber 1. When the electrical
stimulus was delivered between 0 and 230 msec following an action
potential, there was little change in the cycle length. When the stimulus
was delivered 800 msec following an action potential, the cycle length
was increased 23% over control, and when the stimulus was delivered
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6.1. Perturbation of respiration by lung inflation in anesthetized, spontaneously breathing
cats, (a) Brief inflation pulses superimposed upon spontaneous breaths during inspiration.
The lung volume at the end of inspiration as measured from the phrenic neurogram is
VT eq and the duration of inspiration is T7. An inflation pulse either caused inspiration
to terminate abruptly (trace 2 in the insert) or, if below the volume threshold, had no
appreciable effect (trace 3). From Clark and Euler (1972). (b) Brief inflation pulses delivered
during expiration in three cats. The expiratory duration, TE, divided by the control
expiratory duration, TEC, is plotted as a function of the time elapsed since the start of
expiration, TP, divided by TKC. The pulse was of control tidal volume size and its duration
is approximated by the solid bar. From Knox (1973).
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6.2. Cycle length from spontaneously oscillating Purkinje fiber following stimulation
with brief electrical current pulses, as described in the text. The cycle length (expressed
as a percentage of control cycle length) is plotted as a function of the phase in the cycle
at which the stimulus is delivered (phase ranges from 0 at the start of the action potential
to 100). The broken line represents no change in pacemaker length, and points along
the diagonal represent "capture" with constant latency between stimulus and response.
Two different current strengths were used. The control cycle length was 1575 msec. From
Jalife and Moe (1976).

1000 msec following the action potential, the cycle length was decreased
by about 18% less than control. These data are shown in figure 6.2,
where the cycle length is plotted as a function of stimulus phase at two
different stimulation strengths. Note the dependence of the cycle length
on the phase of stimulus presentation.

Studies in many systems show the following generalizations concern-
ing the effects of single perturbations on ongoing biological rhythms.

1. Following a perturbation, the rhythm is generally reestablished
(following a transient) with the same frequency and amplitude as before
the perturbation. The exception to this is oscillatory annihilation, dis-
cussed in section 5.4.
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2. Although the rhythm is reestablished following a perturbation,
its phase is shifted so subsequent marker events occur at times differ-
ent from those which would have been observed in the absence of
perturbation.

3. A single stimulus may lead to either a lengthening or a shortening
of the perturbed cycle length, depending on the stimulus phase.

4. The graph of the cycle length as a function of the stimulus phase
often has apparent discontinuities for some stimulus amplitudes, as
illustrated in figures 6.1b and 6.2.

In the next two sections, we discuss these four experimental observa-
tions within the context of integrate and fire and limit cycle oscillator
models, and show how the applicability of these two classes of models
might be experimentally distinguished.

6.2 Phase Resetting in Integrate and Fire Models

Integrate and fire oscillator models (chapter 1) are popular in biology
because they are conceptually simple, easy to analyze mathematically,
and frequently give predictions consistent with experiment. To illustrate
the phase-resetting predictions of integrate and fire models, we consider
the respiratory rhythm.

A number of different workers have postulated respiratory integrate
and fire models, with differing quantitative details. The essence of these
models is contained in the highly oversimplified model shown in figure
6.3a. Normally the timing of respiration is assumed to be controlled
by an activity oscillating between an inspiratory on-switch threshold
and a inspiratory off-switch threshold. Inspiration is terminated when
the inspiratory off-switch threshold is reached during the inspiratory
phase. The signal to initiate inspiration is generated when the activity
meets the inspiratory on-switch threshold, but inspiration does not
start until after a brief delay.

The effect of a perturbation, which we assume to be a lung inflation,
on this model oscillator depends on the phase of the cycle in which it
is delivered. During inspiration, lung inflation transiently increases the
activity by an amount S, proportional to the size of the inflation (fig-
ure 6.3b). If the inflation is sufficiently large, the inspiratory off-switch
threshold is crossed and inspiration terminates. If the inflation is not
large enough, then there is no effect on the inspiratory time. The graph
of the added stimulus, S, required to terminate inspiration as a function
of 1/Tj is shown in figure 6.4a, which should be compared with fig-
ure 6.1a. For lung inflations during expiration, we assume that the
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6.3. Integrate and fire model for respiratory rhythmogenesis. (a) Inspiratory activity rises
to the inspiratory off-switch threshold. Then expiratory activity decreases to the
inspiratory on-switch, and after a brief delay the cycle is repeated. The control inspiratory
and expiratory times are TIC and TliC, respectively, (b) Effect of a stimulus S delivered
during inspiration, (c) The same stimulus delivered during expiration.

activity is increased by an amount proportional to the inflation volume,
and then relaxes in a linear fashion as before until the inspiration ter-
minates (figure 6.3c). However, if the perturbation is delivered during
the delay phase, there is no effect on the timing. Therefore the normalized
expiration time, as a function of stimulus phase during expiration,
should vary as in figure 6.4b (cf. figure 6.1b).

The graph of the normalized cycle time as a function of the phase
of the stimulus presentation for this integrate and fire model is shown
in figure 6.4c. There are three discontinuities, and the magnitude of
these discontinuities increases with increasing stimulus strength. Fur-
thermore, the position of the first discontinuity will move to the left,
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6.4. The effects of stimulus on the model in figure 6.3. Panels (a) and (b) are directly
analogous to panels (a) and (b) of figure 6.1, and the symbols have the same meaning,
(c) The perturbed cycle length as a function of the phase of the stimulus, where phase 0
is taken as the start of inspiration.

while the locations of the other two will remain stationary as stimulus
strength is increased. Although experimental data that would allow a
direct comparison with the predictions of figure 6.4c can easily be ob-
tained they have, to our knowledge, not been reported.

This integrate and fire model is too simple to be taken seriously as
a model for respiratory rhythmogenesis. However, similar models can
be generated from this prototype by allowing nonlinear activities—for
example, exponential decay of activity during expiration—and by al-
lowing volume perturbations to affect the thresholds rather than the
activities. In more detailed models like these, multiple discontinuities
in the graph of cycle length versus phase of lung-inflation stimulus will
also be observed.

In the natural sciences it is usual to find mathematical models for
dynamical processes formulated as differential equations, rather than
as integrate and fire models (see chapter 2). Although under some cir-
cumstances it may be possible to approximate a differential equation
with an integrate and fire model, a careful analysis of the results of
phase resetting in both types of models reveals important differences.
In the next section we examine phase resetting of oscillations in non-
linear differential equations.

6.3 Phase Resetting of Limit Cycle Oscillations

Many mathematical models proposed for biological oscillations have
stable limit cycles, for example, the models for nonlinear feedback,
sequential disinhibition, and pacemaker cells described in chapter 4.



Single Pulse Perturbation 105

T,o T,o T,o

STIMULUS

6.5. Experimental protocol for phase-resetting experiments. The perturbed cycle length
T is determined as a function of the phase S/To of the stimulus, where To is the control
cycle length.

Interestingly, as Winfree has extensively documented, the responses of
limit cycle oscillators to pulsatile stimuli display several general charac-
teristics independent of the detailed mathematical equations describing
the system. In this section we summarize the main results of phase re-
setting of limit cycle oscillators.

We first present the general experimental paradigm and definitions
used in perturbation studies. The general situation is depicted in figure
6.5. The dark bars represent marker events in a spontaneous oscillation
having an intrinsic or control period, To. These marker events might
include, for example, the initiation of an action potential in a neural
or cardiac preparation, the start of inspiration, or the start of mitosis
in cells growing in tissue culture. The phase at the marker event is
taken as 0. The phase at any subsequent time t, 0 < t < To is defined
to be </> = t/T0. The phase as defined here lies between 0 and 1. In
other notations the phase is expressed in degrees (multiply the phase
by 360° or radians (multiply the phase by 2%). If a stimulus is delivered
at a time 8 following a marker event, the phase of delivery of the
stimulus is S/To.

In these perturbation experiments, the effect of the stimulus on the
cycle in which it was delivered and on subsequent cycles is measured.
The usual finding is that the duration of the cycle in which the stimulus
is delivered is altered. This is called the perturbed cycle length, desig-
nated by T in figure 6.5. In addition, duration of subsequent cycles
may be altered, but for simplicity we assume that they are not. This
assumption is reasonable for many systems since it is often observed
that there is a rapid return to the control cycle length following a per-
turbation. The basic experiment of delivering a perturbing stimulus is
then repeated, varying both the stimulus phase and the magnitude.

As a result of the perturbation of the cycle in which the stimulus was
delivered and the rapid approach to the normal cycle length, subse-
quent marker events occur at times that are different from those that
would have been observed in the absence of perturbation. The differ-
ence in marker events is often reported as a normalized or relative
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phase difference Ad) = (T — T0)/To. In some experimental prepara-
tions, the events immediately following the perturbation may be unob-
servable because of experimental artifact, so the phase difference can
be measured only after several periods of the autonomous cycle have
elapsed.

In this situation it is clear that the phase difference is ambiguous,
since phase differences of —0.1, 0.9, 1.9 would asymptotically appear
to be the same. This is a reflection of the fact that the asymptotic phase
shift is only measurable modulo 1. This ambiguity in the measurement
of phase shift can be confusing, and the phase-shift terminology (al-
though often used) is best avoided unless it is explicitly clear how it is
defined. We will now assume that the cycle is generated by a limit cycle
oscillation. Let x(t = 0) and x'(t = 0) be the initial conditions of a point
on the cycle and a point not on the cycle, respectively, and x(t) and
x'{t) be the coordinates of the corresponding trajectories at time t. If
l i m , ^ d\_x(t), x'(t)~\ = 0, where d is the Euclidean distance, then the
latent phase of x'(t = 0) is the same as the phase of x(t = 0).

The locus of all points with the same latent phase is called an iso-
chron. An isochron is a smooth curve (for limit cycles in two dimen-
sions) crossing the trajectories in the attractor basin of the limit cycle.
The state point on any trajectory in the attractor basin of the limit
cycle passes through all the isochrons at uniform rate. Thus isochrons
are very close together wherever time derivatives are small. In partic-
ular, isochrons come arbitrarily close together at any fixed point and
therefore necessarily also along any singular trajectory leading to a
fixed point. The locus of stationary states and attracting sets of these
stationary states is called the phaseless set. Except for the phaseless set,
one and only one isochron passes through each point in the attractor
basin of the limit cycle. These concepts are illustrated in figure 6.6a,
which shows the isochrons for the Poincare oscillator of equation (2.4)
and figure 2.3. In other, more complex differential equations, the iso-
chrons will generally not be straight lines. The following discussion is
also applicable to these more complex situations.

The effect of a stimulus is to shift a state point on the limit cycle, at
some isochron d), to a new point in phase space lying on some new
isochron </>' generally not on the limit cycle. Assume that the stimulus
is a horizontal translation by an amount b (figure 6.6b). Then, from
trigonometric arguments, d> and </>' are related by the relation

~ ,, b + cos 2nd)
cos 2nm = 3-TPS-. (6.1)v (1 + 2b cos 2nd) + b2)1'2 v ;

The function that can be used to compute the new phase following a
perturbation is called the phase transition curve, or PTC. The PTC is
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6.6. (a) The isochrons for the simple limit cycle oscillator of equation (2.4) and figure
2.3. (b) The effect of a perturbation. A stimulus delivered at phase <j) resets the phase to
</>', where <j> and <t>' a r e related by equation (6.1).

linked to the perturbed cycle length T by the formula,

P=l+<l>- T/To, (6.2)

where we will take the intrinsic cycle length to be To = 1.
A geometical interpretation of the phase resetting experiment is

useful (figure 6.7). If stimuli are administered at all phases of the cycle,
then the locus C of new states reached immediately after the stimulus
will be a displaced image of the limit cycle C. We call this closed curve,
C, the shifted cycle. Phase changes continuously along C except when-
ever C cuts across the phaseless set. Assuming C is continuous, one
can circumnavigate C" once, while counting the net number of times
4>' advances through a cycle (defined from the isochrons of the original
oscillator). This integer is called the winding number or topological degree
of C". After a sufficiently slight perturbation (in this case 0 < b < 1) the
shifted cycle C scarcely differs from the limit cycle C, so <f>' scarcely
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6.7. A schematic representation of effects of perturbing a limit cycle oscillator as in figure
6.6b. (a) Perturbations result in the shifted cycle C. If the shifted cycle encloses the origin,
there is type 1 phase resetting (al), and if the shifted cycle does not enclose the origin,
there is type 0 phase resetting (a2). (b) The perturbed cycle length for type 1 (bl) and
type 0 (b2) phase resetting, (c) The new-phase, old-phase plots for type 1 (cl) and type
0 (c2) phase resetting. From Glass and Winfree (1984).
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differs from <j), and the degree of C" is 1 (figure 6.7). We call this type
1 phase resetting. A perturbation that changes the winding number to
0 is said to induce type 0 resetting. An examination of figure 6.7 makes
it clear that if the perturbation is sufficiently large (b > 1), type 0 phase
resetting is expected.

Now consider the simple limit cycle in figure 6.6 as a conceptual
model for the heartbeat. Assume that each time the phase passes through
0, this corresponds to the upstroke of the cardiac action potential (the
marker event). The perturbation is assumed to be a depolarizing sti-
mulus. These perturbed cycle-length data should be compared with the
experimental findings in figure 6.2. There is a striking qualitative agree-
ment between the perturbed cycle length in the simple model (figure
6.7) and the observed data in the phase-resetting experiment. This simple
model is also consistent with the four main experimental observations
on phase-resetting experiments outlined in section 6.1. Since experi-
ments determine the new phase as a function of both stimulus phase
and amplitude, the results can be displayed three-dimensionally. This
three-dimensional helicoidal plot has been dubbed the time crystal by
Winfree.

From a theoretical perspective, the analysis of the phase-resetting
data based on the topological theory of limit cycles is simple and ele-
gant. It serves to account qualitatively for the main experimental find-
ings without the numerous ad hoc assumptions of integrate and fire
models. In view of the compact nature and simplicity of the topological
theory of limit cycle perturbation, we hope that sufficiently accurate
data from other systems willl become available so perturbed cycle length
and the PTC can be determined as a function of stimulus phase and
amplitude.

Although the topological theory of limit cycle phase resetting quali-
tatively accounts for several features of phase-resetting experiments in
a number of systems, there are sometimes difficulties when a detailed
analysis is performed. We consider some of these in section 6.5. First,
however, we examine phase resetting in various systems.

6.4 Phase Resetting in Diverse Systems

Phase-resetting experiments have been carried out in a large number
of different experimental systems. Often, the researchers have not been
familiar with the mathematical theory of phase resetting sketched above,
and general underlying principles of phase resetting are not explicitly
recognized, even though they are present. We give several examples of
phase-resetting experiments in diverse systems.
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significant deviations from control (P < 0.05). From Lund, Rossignol, and Murakami (1981).
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It has often been noted in studies of motor-rhythm generation that
there are differential effects of stimuli delivered at different phases of
the cycle. We have already discussed the effects of lung inflation and
pointed out that the effects on the respiratory cycle are different if the
inflation is delivered during inspiration and expiration. In similar fash-
ion, electrical stimulation of the palate of anesthetized rabbits during
mastication demonstrates that the effects of stimulation depend on both
the amplitude and the phase of the stimulus (figure 6.8). The differ-
ential effects of electrical stimulation on reflexes during locomotion
have also been well characterized, as we mentioned earlier. Although
the details of the response and the underlying mechanisms need to be
clarified, we must stress that the same stimulus delivered to any limit
cycle model will generally have differential effects that depend on the
phase in the cycle at which the stimulus is delivered.

In another interesting study of phase-resetting behavior, stimuli were
delivered to patients who had either essential tremor or Parkinsonian
tremor (figure 6.9a). The phase resetting was determined as a function
of the phase in the cycle at which the stimulus was delivered. There
was a large noise level in these experiments, but there were clearly
strong phase-dependent effects on the ongoing rhythm. The amount of
phase resetting was described by a linear function (figure 6.9b). The
slope of this function reflected the extent to which the phase of the
rhythm could be reset by peripheral stimuli and thus may help dis-
tinguish essential tremor from Parkinsonian tremor. Although such an
approach is intriguing and of potential utility in assessing peripheral
involvement in tremor, the linear fits to the data do not reflect what
one expects for perturbation of limit cycle oscillators.

As a second clinical example of phase resetting, we consider the
mechanism for the generation of cardiac rhythms with frequent ectopy.
In the normal heart, the rhythm is set by a small region of specialized
tissue called the sinoatrial (SA) node located in the right atrium. Many
cardiac arrhythmias are believed to be due to the development of ab-
normal sites of pacemaker activity, called ectopic pacemakers, gener-
ating spontaneous rhythms that compete and interfere with the normal
cardiac rhythm set by the SA node. This would lead to complex rhythms,
called modulated parasystole by Jalife and Moe, resulting from the
phase resetting of an independent ectopic focus by the normal sinus
rhythm. If modulated parasystole prevails, it should be possible to
demonstrate that a sinus beat falling at different phases of the ectopic
cycle has differential effects. Consider the data shown in figure 6.10a
in which the ectopic beats are labeled by X and the sinus beats by JR.
The inter-ectopic intervals during which a sinus beat fell could be
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6.9. (a) Phase resetting of EMG bursts from the wrist flexors of a patient with essential
tremor. The patient maintained a handle in a zone during the prestimulus period with
a steady level of flexion against a torque motor. A brief displacement is delivered as
indicated by the bar in the bottom of the figure, (b) Deviations in the timing of maximal
EMG activity following a stimulus in two Parkinsonian patients. Statistically significant
deviations, related to the timing of the stimulus, were observed during the tremor cycle
in which the stimulus occurred (cycle 0; upper graphs) and two subsequent cycles (1 and
2; middle and lower graphs) for patient A. C. but not for patient M. N. Adapted from
Stein, Lee, and Nichols (1978).
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6.10. (a) Phase-resetting curves derived from electrocardiographic data in a patient with
frequent ectopic beats. The ectopic beats are labeled by an X and the nonectopic beats
by an R. A concealed ectopic discharge is labelled X*. All values are expressed in msec,
(b) Phase-resetting curves relating the X-R-X intervals to the X-R intervals, both
normalized as percentage of the ectopic cycle length (horizontal line at 100%). Open
circles represent concealed discharges that can be inferred from the timing of the
sybsequent ectopic discharges in the bottom panel in part (a). From Castellanos et al.
(1984).

analyzed to give a phase-resetting curve (figure 6.10b) closely resembling
that shown in figure 6.2.

These examples serve to illustrate that exactly the same experimental
paradigm has been utilized by workers in several disciplines for very
different reasons, though the underlying mathematical concepts in-
volved are common.

6.5 Practical Problems with Application
of the Topological Theory

Consider the simple nonlinear oscillator of figure 2.3 whose re-
sponse to isolated stimuli was shown in figure 6.7. The steady state at
r = 0 is unstable, so arbitrarily close perturbations to this point will
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diverge from it as time proceeds, and the oscillation will be reestab-
lished. Consequently, even though there is a stimulus that will annihi-
late the oscillation, in any practical situation it would be impossible
to deliver it exactly, and the oscillation would be reestablished. Also,
in concrete situations the fluctuations present would send the dynamics
away from unstable steady states. Thus, in practice, it is expected that
there will exist situations in which it is impossible experimentally to
annihilate oscillations by a single isolated stimulus, even though the
oscillation is a limit cycle oscillation. As we discussed in section 5.4, if
there is a stable steady state, then annihilation of an ongoing oscillation
is possible.

Application of the topological theory presents practical difficulties.
One of Winfree's basic ideas is to use the presence of type 1 phase re-
setting at low stimulus strengths and type 0 phase resetting at high
stimulus strengths to infer information about phase resetting at inter-
mediate strengths. The difficulties arise because without further ex-
periments or a good deal of additional knowledge concerning the
topological structure of the nonlinear oscillator, it is difficult to make
accurate predictions about phase resetting at intermediate-strength sti-
muli. The following discussion is difficult, but it is important for all re-
searchers who wish to apply the topological theory to concrete
problems.

The key notion needed to apply the topological results to concrete
situations comes from the following continuity properties of nonlinear
limit cycle oscillations. If (1) a biological oscillator is generated by a
stable limit cycle oscillation, and (2) all perturbations to the oscillation
of fixed strength but at variable phases shift the current point in phase
space to a second point that remains in the basin of attraction of the
oscillation, then after any transients have died away the plot of new
phase versus old phase for that fixed stimulus strength is a continuous
function that maps the unit circle into itself (e.g., see </>' versus 4> m

figure 6.7).
In many situations, the plot of new phase versus old phase does not

appear to be continuous. An example is provided from previously men-
tioned studies of phase resetting of aggregates of spontaneously beating
cells from chick heart. At low-stimulus strengths, new phase-old phase
was type 1, and at high stimulus strengths it was type 0. At intermediate
strengths a different situation prevailed (figure 6.11). A sequence of
stimuli delivered at 141 msec after an action potential led to a pro-
longed perturbed cycle length, and the same stimuli delivered at 143
msec led to a shortened perturbed cycle length. Stimuli delivered at
142 msec led to one of two responses—either a prolongation or a short-
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6.11. Phase-resetting data derived from spontaneously beating embryonic ventricular
heart-cell aggregates. Current pulse stimuli were 27 nA amplitude and 20 msec duration.
The times at the left of the figure indicate the coupling interval from the start of the
action potential to the stimulus in msec. This shows a discontinuous response (see
discussion in the text). From Guevara, Shrier, and Glass (1986).

ening of perturbed cycle length. Letting the oscillation continue for
several cycles, it is clear that the envelopes of action-potential wave
forms following prolongation and shortening are distinct (i.e., they do
not superimpose asymptotically as they must if the new phase versus
old phase curve were continuous).

The data of figure 6.11 pose a fundamental problem. No perturba-
tions were found which shifted the oscillation out of its basin of attrac-
tion at the stimulus strength delivered. Consequently, if the phase-
resetting function is discontinuous, as it appears to be, then the basic
rhythm could not be generated by a limit cycle oscillation. The differen-
tial equations that model ionic current flow through physiological
membranes suggest that, although the phase-resetting curves appear
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to be discontinuous, they may in fact be continuous. Simulations have
shown that these ionic models can give extremely steep phase-resetting
functions that would be difficult to resolve experimentally. Experimen-
tal tests of the continuity properties that require the resolution of time
increments at less than a picosecond accuracy—as the simulations
would suggest is necessary—are impossible because of noise and equip-
ment limitations. Thus for all practical purposes, experimentally mea-
sured phase-resetting functions will appear to be discontinuous pro-
vided the model predictions are as accurate in this situation as they
have proved to be in many others. If the PTC is discontinuous at some
stimulus strengths, then topological arguments based on continuity of
this function cannot be invoked. Therefore, the use of continuity ar-
guments without the explicit demonstration of continuity of the PTC
function is always questionable.

Along the same lines, it is important to recall that the continuous
phenomenological ionic models represent averages of fluctuating cur-
rents through ionic channels. Consequently, theoretical interpreta-
tions based on continuous differential equations can be valid only if
time and current steps are sufficiently large so that fluctuations in
individual channels do not play a role. At the very fine increments that
have been used to discuss phase resetting in ionic models, channel fluc-
tuations are important and may give rise to apparent discontinuities in
experiments.

6.6 Summary

In most situations, a single-pulse perturbation delivered to a spon-
taneously oscillating physiological system will act to reset the phase of
the ongoing rhythm. The magnitude of the resetting depends on both
the stimulus magnitude and the phase of the stimulus in the cycle. The
graph of the new phase as a function of the old phase (the phase transi-
tion curve or PTC) is either a continuous function with winding number
1 (type 1) or 0 (type 0), or it is discontinuous. In general, integrate and
fire models give discontinuous PTCs, and limit cycle models give type
1 PTCs at low-stimulus strengths and type 0 PTCs at high-stimulus
strengths. In many experimental systems and mathematical models,
rapid changes in the PTC over narrow ranges of stimulus phase make
an unambiguous identification of the qualitative features of the PTC
difficult, if not impossible.

An implicit assumption of much theoretical work has been that a
differential equation is the most appropriate model for ah oscillating
biological phenomenon. The experimentally observed discontinuities,
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which are hard to account for using models formulated as differential
equations, do occur in integrate and fire models (section 6.2). Under cer-
tain special circumstances, integrate and fire models represent limiting
cases of limit cycle oscillators and often provide a simple conceptual
model for rhythmogenesis in physiological systems.

Notes and References, Chapter 6

6.1 Overview of Experimental Results
The vast literature dealing with the phase resetting of biological rhythms as

a result of perturbations is extensively discussed in Winfree (1980, 1987a,b).
For the original description of the Hering-Breuer reflex, see Breuer (1868).

Adrian (1933) demonstrated the role of the vagal afferents in the modulation
of the reflex in a classical paper. Further studies of the role of vagal afferents
in respiratory physiology have been carried out by many others, and we have
used the important results of Clark and Euler (1972) and Knox (1973). Iscoe and
Vanner (1980) have studied the long time resetting of the respiratory rhythm
due to vagal stimulation. For a current review of respiratory rhythmogenesis
that includes vagal reflex mechanisms, see Feldman (1986).

Phase resetting in the Purkinje fiber preparation is described in Jalife and
Moe (1976, 1979) and reviewed in Jalife and Michaels (1985).

6.2 Phase Resetting in Integrate and Fire Models
Many workers have proposed integrate and fire models for respiratory ac-

tivity, and the papers of Bradley et al. (1975), Herczynski and Karczewski
(1976), Remmers (1976), Cohen and Feldman (1977), Baconnier et al. (1983),
and Petrillo and Glass (1984) are representative. Equally many others have
proposed nonlinear differential equations with limit cycle behavior as models
for the central respiratory oscillator (Feldman and Cowan 1975; Geman and
Miller 1976; Fincham and Liassides 1978; Pham Dinh et al. 1983; Baconnier
et al. 1983). In certain limits, a limit cycle oscillator can be approximated by
an integrate and fire model. This point was made initially in a discussion of
the control of mitosis by Tyson and Sachsenmaier (1978). Another example of
this correspondence, applicable to respiration, is in Petrillo and Glass (1984).

6.3 Phase Resetting of Limit Cycle Oscillators
The main references for the theory of phase resetting of limit cycles are the

books and articles by Winfree (1975, 1977, 1980, 1987a,b), which should be
consulted for extensive historical information, examples, and further references.
For other theoretical discussions of phase resetting of limit cycle oscillations,
see Pavlidis (1973), Guckenheimer (1975), Kawato and Suzuki (1978), and
Kawato (1981). The presentation in the text follows along the lines of Glass
and Winfree (1984).

Van Meerwijk et al. (1984) applied the theory to experiments on the phase
resetting of the cardiac rhythm in aggregates of cells from embryonic chick
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heart. It is also possible that the theory is applicable to respiratory-rhythm
generation. A study on the effects of superior laryngeal nerve stimulation on
the respiratory rhythm in cats gave evidence for type 1 phase resetting at
low stimulus strength and type 0 phase resetting at higher stimulus strengths
(Paydarfar, Eldridge, and Kiley 1986). Similar results were found in a study in
which electrical stimulation was delivered directly to the brain (Paydarfar and
Eldridge 1987).

6.4 Phase Resetting in Diverse Systems
Phase-resetting experiments have been done in a very large number of other

systems, as previously noted. Of particular interest are studies on mastication
(J. P. Lund, Rossignol, and Murakami 1981) and locomotion (Forssberg et al.
1976). Phase resetting as a diagnostic tool in Parkinsonism has been employed
by R. B. Stein, Lee, and Nichols (1978) and Lee and R. B. Stein (1981). The
analysis of modulated parasystolic rhythms based on phase resetting has been
discussed by Jalife and Moe (1976, 1979) and Moe et al. (1977). Clinical appli-
cations of these ideas have been considered by Furuse, Matsuo and Saigusa
(1981), Jalife, Antzelevitch, and Moe, (1982), Nau et al. (1982), and Castellanos
et al. (1984). A good recent review is Jalife and Michaels (1985). Additional
discussion of the theory of modulated parasystole is in section 7.5.

6.5 Practical Problems, with Application of
the Topological Theory

The topological theory for phase resetting sketched out in section 6.3 is
subtle, and unfortunately it has been frequently misinterpreted in the experi-
mental literature. For example, Jalife and Antzelevitch (1979) state: "His [Win-
free's] theory, in which techniques of differential topology are used, predicts
that if the phase resetting of the pacemaker in response to the perturbation
follows certain specific patterns [i.e., it is type 1 at low stimulus strength and
type 0 at high stimulus strength], then there must be a characteristic stimulus
magnitude and timing at which pacemaker activity is completely annihilated."
Even though this reasoning led Jalife and Antzelevitch (1979) to discover an-
nihilation of action potentials with a single stimulus, the statement is never-
theless misleading since there can be an unstable phase singularity. In this case,
the oscillation would always be reestablished following a perturbation.

The numerical characteristics of the phase resetting predicted by Hodgkin-
Huxley-like differential equations that model excitable membrane behavior
have been given by Best (1979), Chay and Lee (1984, 1985), and Clay, Guevara,
and Shrier (1984). These studies show that observation of the topological prop-
erties of the phase-resetting functions (e.g., type 1 or type 0 behavior) is expected
to be difficult in practice because of the very steep slopes of the PTC. These
analyses offer a possible explanation for the apparently discontinuous phase-
resetting behavior observed in Guevara, Shrier, and Glass (1986). Theoretical
arguments which assume continuity of the PTC can be found in Winfree
(1983b, 1987b).
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Periodic Stimulation

of Biological Oscillators

r eriodic stimulation of spontaneously oscillating physiological
rhythms has powerful effects on the intrinsic rhythm. As the frequency
and amplitude of the periodic stimulus are varied, a variety of different
coupling patterns are set up between the stimulus and the spontaneous
oscillator. In some situations the spontaneous rhythm is entrained or
phase locked to the forcing stimulus so that for each N cycles of the
stimulus there are M cycles of the spontaneous rhythm, and the spon-
taneous oscillation occurs at fixed phase (or phases) of the periodic
stimulus (N:M phase locking). In addition to phase-locked rhythms,
it is also possible to observe irregular or aperiodic rhythms in which
fixed phase relationships and regular repeating cyclic patterns are not
observed. In section 7.1 we discuss the main experimental observations
in phase locking experiments, with particular reference to experiments
on the cardiac and respiratory systems. In section 7.2 we develop the
mathematical concepts needed to analyze phase locking theoretically.
These techniques are applied to analyze phase locking in integrate and
fire models in section 7.3 and in limit cycle models in section 7.4. In
section 7.5 we discuss several phenomena entailing phase locking in
humans.

7.1 Overview of Experimental Results

One experimental paradigm for studying physiological oscillators is
to subject the oscillator to periodic stimuli while maintaining physi-
ological conditions as constant as possible. We do not attempt to give
a complete summary of this large body of work but discuss two illus-
trative systems: the mechanical ventilation of animals, and the periodic
stimulation of cardiac oscillations using an intracellular microelectrode.
We draw generalizations from these systems which are broadly
applicable in a wide variety of experimental systems.
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It has been known since the time of Hering and Breuer that periodic
lung inflation by a mechanical ventilator can lead to phase locking
between the ventilator and the intrinsic respiratory rhythm in mam-
mals. The entrainment is believed to be mediated by the Hering-Breuer
reflexes in which expansion of the lungs inhibits inspiration and pro-
longs expiration (see chapter 6). Afferent activity from stretch receptors
in the lungs is carried by afferent fibers in the vagus nerve. Respiratory
entrainment can be studied by mechanically ventilating an animal at
different ventilator volumes and frequencies while attempting to main-
tain constant levels of anesthesia, body temperature, and blood gases.

Experiments were performed on paralyzed, pentobarbital-anes-
thetized adult cats, and central respiratory activity was monitored by
recording from a branch of the phrenic nerve. In a normal unpara-
lyzed animal, the phrenic nerve innervates the diaphragm, and phrenic
nerve acitivity causes the diaphragm to contract (lower), thus leading
to inspiration. In the paralyzed animal, neuromuscular transmission
between the phrenic nerve and the diaphragm is blocked, and lung
inflation is due solely to the mechanical ventilator. However, afferent
activity from stretch receptors in the lung is still carried by the vagus
nerve. Special steps have to be taken to maintain blood gases constant
as the frequency and amplitude of the ventilator are varied. If the animal
is hyperventilated, central respiratory activity is lost due to low CO2 .
One method for maintaining constant blood gases is to vary the fre-
quency and volume of the ventilator simultaneously, so that the total
ventilation per unit time is maintained constant. However, this tech-
nique cannot be used if one wishes to obtain information about the
ventilator-respiratory rhythm coupling as a function of both frequency
and volume (varied independently). In this case, an alternative method
is to add CO2 to the inspired gas in order to maintain constant physi-
ological levels of CO2 even at high ventilator volumes and frequencies.

As the ventilator volume and frequency are varied, a number of dif-
ferent rhythms are established between the ventilator and phrenic ac-
tivity. These different rhythms are organized in an orderly fashion in
the ventilator volume-ventilator frequency plane shown in figure 7.1.
Insets show representative traces of ventilator volumes and phrenic
nerve activity corresponding to different stable phase-locked rhythms,
as well as non-phase-locked rhythms (which occur in the shaded re-
gions). In these experiments, low ventilation frequencies and volumes
could not be studied since adequate ventilation must be maintained.
Likewise, very high volumes and frequencies could not be studied be-
cause of the mechanical limitations of the ventilator and the limited
lung capacity of the cat.
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7.1. Composite showing zones of phase locking between a mechanical ventilator and
the respiratory rhythm obtained experimentally in anesthetized, paralyzed cats. In each
inset the upper trace is lung volume and the lower trace is integrated phrenic activity.
The scales are the same for all insets. The shaded regions represent irregular dynamics.
VmlL% is the maximum ventilator volume and / is the ventilator frequency. From Petrillo
and Glass (1984).

As discussed in section 4.2, it is believed that the respiratory rhythm
is generated in a complex network of neurons in the brain stem. In
contrast, the cardiac rhythm is generated in a specialized region of
electrically coupled cells in the SA node that act as a pacemaker for
the heart. We now describe experiments in which the effects of pulsatile
electrical stimuli delivered to spontaneously beating cells derived from
the ventricles of embryonic chick heart were determined.

As the frequency and current intensity of the electrical stimuli are
varied, a variety of different rhythms between the stimulator and the
heart cells are established. The results of these experiments are sum-
marized in the composite in figure 7.2. In this figure the insets represent



122 Chapter 7

7.2. Theoretically computed phase-locking zones (solid lines) and illustrative traces (in-
sets) for periodically stimulated aggregates of embryonic chick-heart cells. A is stimulus
amplitude (arbitrary units) and x is the period of the stimulus divided by the intrinsic
cycle length. Calibration bars are 1 sec and 50 mv. From Glass, Guevara, and Shrier
(1987).

the different observed phase-locking patterns, and the solid lines rep-
resent the results of theoretical computations based on phase-resetting
experiments using single pulses. In addition to the stable phase-locked
rhythms, there are a number of irregular rhythms. In section 7.4 we dis-
cuss the theoretical techniques used to compute the phase-locking zones
and associate the observed irregular rhythms with chaotic dynamics.

Although these results have been obtained from two very different
physiological systems using different types of periodic stimulation, there
are certain striking features common to both. The following general-
izations are applicable to a large number of experiments of periodic
forcing of biological oscillators.
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1. The stable zones of phase locking most commonly observed cor-
respond to low-order ratios between the number of cycles of the forcing
stimulus and the intrinsic rhythm (i.e., 2:1,3:2, 1:1,2:3, 1:2). Although
other N:M ratios with larger values of JV and M can also be observed,
these occupy smaller areas in the frequency-amplitude parameter space,
and they are consequently easily overlooked or obscured by noise.

2. The stable rhythms are organized in the frequency-amplitude
plane in an orderly fashion. It is common to associate a rotation num-
ber p = M/N with an N:M rhythm. Then, as the stimulation frequency
increases at fixed stimulus amplitude, p decreases.

3. At very low stimulation amplitudes, it is difficult to maintain sta-
ble phase locking.

4. If the regions of frequency-amplitude parameter space between
stable phase-locking zones are studied, then it is generally possible to
find stimulation parameters that give rise to irregular dynamics.

Despite their similarities, there are differences between the cardiac
and respiratory systems. For example, the 2:2 region observed in the
periodically stimulated cardiac cells was not observed in the mechan-
ically ventilated cats. The goal of theoretical studies of phase locking
is to provide a theoretical basis for understanding the similarities and
differences between the different preparations. Ideally, one would like
to be able to make predictions about the phase locking as stimulation
parameters vary, based on the mechanisms of rhythmogenesis and the
coupling of the stimulator to the intrinsic rhythm. In practice, the
mathematical analysis of periodically forced nonlinear oscillators is an
extremely difficult problem, and detailed quantitative understanding of
dynamics has been obtained in only a few special situations.

The theoretical studies make it clear that although there are many
similarities between the dynamics in different systems, there will also
generally be differences if the dynamics are studied in sufficient detail.
In order to establish this assertion, we describe the dynamics resulting
from periodic stimulation in a number of different model systems. We
also discuss entrainment of biological oscillators in a number of clinical
contexts.

7.2 Mathematical Concepts

The study of periodically forced nonlinear oscillators has a rich
history, and it is still an area of active research. Here we give only the
most important results from the perspective of experimental studies in
biology.

Periodically forced nonlinear oscillators were studied in the 1920s
by van der Pol and van der Mark. They proposed that the electrical
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activity of the heart could be modeled by three nonlinear oscillators
corresponding to the sinus node, the atria, and the ventricles. There is
a unidirectional coupling between the sinus and the atrial oscillators,
and likewise a unidirectional coupling between the atrial and ventricu-
lar oscillators. By reducing the coupling strength between the atrial
and ventricular oscillators, they found it was possible to obtain a num-
ber of different stable phase-locked rhythms that correspond qualita-
tively to a class of cardiac arrhythmias called the atrioventricular {AV)
heart blocks. However, most workers in cardiovascular physiology at-
tribute AV heart block to blocked conduction in the AV node, rather
than to lack of synchronization between atrial and ventricular oscil-
lators (see section 8.1).

The simple two-dimensional differential equation proposed by van
der Pol to model nonlinear limit cycle oscillations has played an im-
portant role in applied mathematics. Studies of the effects of periodic
sinusoidal forcing of this equation were undertaken by van der Pol
and still continue. The periodically forced van der Pol equation can
be written as

—^ - e(l - u2) ~ + u = B cos(vt). (7.1)
at at

When B = 0, there is a unique stable limit cycle oscillation. As v and
B vary, there are entrainment regions, as shown in figure 7.3. A notable
observation made first by Cartwright and Littlewood and subsequently
by Levinson in the 1940s was that it is possible to find parameter
values such that aperiodic orbits exist for some set of initial conditions.
In the current jargon of nonlinear dynamics, these aperiodic orbits
correspond to chaotic dynamics in the periodically forced nonlinear
oscillators. In a celebrated paper published in 1967, Smale, who was
following Levinson's exposition, discovered a mathematical construc-
tion (the horseshoe map) that shows the existence of an infinite number
of periodic orbits, as well as aperiodic orbits in a special class of two-
dimensional finite difference equations (diffeomorphisms of the plane).

As an introduction to the mathematical analysis of periodically
forced nonlinear oscillators, consider the hypothetical situation in
which a biological oscillator is periodically stimulated. To be concrete,
imagine the forcing to be a sinusoidal electrical-current perturbation of
a spontaneously oscillating neuron. Take the period of oscillation of
the sine wave to be 1 sec, and assume that the period of the oscillation
of the nerve cell (To) is different from 1 sec. Keep a record of the
sequence of times that the nerve cell fires.

In the limit of no coupling between the neuron and the perturbation,
the sinusoidal forcing has no effect. In this limit it is a trivial problem
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7.3. Regions of phase locking of the van der Pol oscillator (equation 7.1) to a sinusoidal
stimulation obtained using an analog computer. The ratios between the cycles of the
forced oscillator and the forcing function are indicated. Dynamics in shaded regions were
called "beat oscillations" (now called quasiperiodicity). From Hayashi (1964).

to compute the next firing time of the neural oscillator. If tt is the time
of the ith firing, then

h +1 — tj (7.2)

If we are only interested in the phase of the sinusoidal stimulus at
which the neuron fires, then it suffices to consider only the fractional
part of the values of tt. Mathematically, we take t{ modulo 1 and call
the resulting phase of the ith firing 0 ; (figure 7.4a). For example, if we
take To = 0.75 sec, then (j>i+1 = <f>i + 0.75 (mod 1). A graph of this
function is shown in figure 7.4b. In the more general situation with
coupling, the sinusoidal stimulus will have an effect on the firing of the
neuron. However, if the coupling is comparatively weak, there may
only be small changes from the zero-coupling limit. In this case, equa-
tion (7.2) can be rewritten

b) + To (mod 1), (7.3)

where the function /((/>,-, b) is (generally) a nonlinear function that
depends on the coupling strength b. In the limit of zero coupling,
f(4>i, o) = o.

Equation (7.3) is another example of a finite difference equation (see
section 2.5). Once the nonlinear function / is known, it is possible to
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7.4. (a) Schematic picture showing the phase of two successive firings of a neural oscillator
in a sinusoidal cycle assuming there is no influence of one upon the other, (b) A graph
of the associated finite difference equation.

compute the dynamics for all future times. However, in contrast to the
quadratic map (equation 2.6), equation (7.3) contains two parameters,
b and To. The firing times tt (mod 1) can be represented as points on
the circumference of a circle of unit circumference. Then the iteration
of equation (7.3) takes one point on the circle to a second point. Such
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N:M N':M

7.5. Schematic diagram of Arnold
tongues. In the shaded regions there
is a stable phase locking between
a spontaneously oscillating sys-
tem and an imposed periodic input
function. Between any two stable
phase locking zones there are al-
ways others. The ordinate repre-
sents the amplitude and the abscissa
the period of a periodic forcing
function.

a function is called a circle map. To understand the effects of pertur-
bations, it is important to understand the changes in dynamics (bi-
furcations) that arise as parameters in the circle map are varied.

Provided the nonlinear function / in equation (7.3) is not too large,
the bifurcations of this equation are well understood. The precise math-
ematical definition of "not too large" is that there must be a 1:1 cor-
respondence between values of (f) and <f>'. Thus for any value of 4> there
is one and only one possible value of </>', and for each value of </>' there
is one and only one value of 0. Such maps are called invertible.

Analysis of the bifurcations of invertible circle maps was undertaken
by Poincare in the last century and has remained a topic of great
interest. Major advances were made by the Russian mathematician
Arnold. The results of his analysis are schematically shown in figure
7.5. The (b, To) plane has distinct regions, called Arnold tongues or
Arnold horns, which correspond to stable phase locking in a ratio N:M
(N cycles of the stimulator and M cycles of the neural oscillator).
Arnold tongues are present for all rational ratios N:M where N and
M are relatively prime integers (i.e., they have no common divisor).
This means that there are an infinite number of Arnold tongues corre-
sponding to all possible ratios between the frequencies of the stimulator
and the driven oscillator. It should be clear that the basic structure
shown in figure 7.5 is also present in figures 7.2 and 7.3, at least over
some of the range of parameter space.

In invertible circle maps, for all parameter values inside the Arnold
tongue corresponding to N:M phase locking, all initial conditions
asymptotically approach a stable N:M phase-locking pattern. We in-
formally define the rotation number as the ratio between the number
of cycles of the stimulator divided by the number of cycles of the forced
oscillator. Thus for N: M phase locking, the rotation number p = M/N
(see also the Mathematical Appendix).



128 Chapter 7

Are there any combinations of stimulus amplitude and frequency
that do not give rise to stable entrainment? Said another way, what
dynamics are found between Arnold tongues? There exist parameter
values for which no stable entrainment is found for any initial condi-
tion. The dynamics in this situation are called quasiperiodic. The easiest
way to imagine this is to consider the case in which the two rhythms
are completely independent. As time proceeds, the phase relations be-
tween the two rhythms will continually shift but, in the general case,
will never repeat if the ratio between the two frequencies is not rational.
If every value of </>; which is generated is plotted on the circumference
of a circle, then, in the limit as;' -> oo, the circumference will be densely
covered with points (this means that any point on the circumference
is arbitrarily close to a point in the sequence (p0, (j>u (j)2,...). The
dynamics are aperiodic, but they are not chaotic since two initial con-
ditions that are close together remain close together in subsequent
iterations.

These dynamics are sometimes called oscillatory free runs or relative
coordination. An example showing a typical appearance for quasiperi-
odic dynamics is given in figure 7.1 in the inset showing the dynamics
present between the 1:1 and 3:2 rhythms. Although one might expect
that it would be hard to find sets of parameter values that give rise
to quasipenodicity, there is a finite probability that one will observe
quasipenodicity given a random choice of parameters in invertible circle
maps. In fact, in experimental studies at low stimulation strength, the
usual experience is that dynamics appear to display quasiperiodicity
rather than phase locking.

The discussion to this point has considered a situation in which the
coupling strength (and hence the nonlinearity) is not too large and the
dynamics are represented by invertible circle maps. In concrete ex-
perimental systems and in mathematical models, as the strength of the
periodic perturbation increases it is no longer possible to represent the
dynamics by invertible circle maps, and the comparatively simple and
well-understood Arnold tongue structure in figure 7.5 is no longer ob-
served. We now consider several ways in which the Arnold tongue
structure can be destroyed by considering the periodic forcing of inte-
grate and fire and limit cycle oscillations.

7.3 Periodic Forcing of Integrate
and Fire Models

Periodic modulation has been incorporated into integrate and fire
models in two different ways. First, we may assume that the activity
is periodically modulated but the threshold is held constant. Alterna-
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7.6. Integrate and fire model with a sinusoidally modulated threshold. After reaching the
threshold there is an instantaneous reset to zero. Starting at an initial condition t0, the
threshold will be reached the first time at t,, which can be calculated using equation
(7.5). 1:2 phase locking is shown. Adapted from Glass and Mackey (1979b).

tively, the threshold may be subjected to periodic modulation. In the
following we discuss the effects of threshold modulation.

One motivation for the analysis of periodic forcing of integrate and
fire models comes from the experimental studies on the mechanical
ventilation of cats. An examination of the insets in figure 7.1, in partic-
ular the 1:2 and 3:2 rhythms, shows large lung inflations coincident
with the premature termination of the inspiratory activity. This gives
a striking visual suggestion for the utility of an integrate and fire model
with modulated threshold for this system. As we already discussed in
chapter 6, the Hering-Breuer reflexes can be modeled by integrate and
fire models.

We consider a simple integrate and fire model with a periodically
modulated threshold (figure 7.6). For reasons of concreteness and sim-
plicity, we assume that the threshold is the sine function

•0(t) = 1 + k sin(27it)- (7.4)

We assume the activity increases linearly, with slope y, to the threshold
and then resets to zero. The goal is to understand in detail the bifurca-
tions and dynamics in this model as a function of the parameters for
all initial conditions.

Assume that t0 is known (figure 7.6). Then the time the activity first
reaches threshold tl can be found by solving the equation,

-to)= 1 + k sin(27it1). (7.5)

This is a transcendental equation in tt and has no analytical solution.
However, tt in equation (7.5) is defined implicitly by a finite difference
equation and can be numerically computed once the initial condition
and the parameters are specified. Some of the entrainment zones are
shown in figure 7.7.



7.7. Phase-locking zones for the integrate and fire model. The frequency in the absence
of sinusoidal modulation (k = 0) i s / = y. The Arnold tongue structure is present beneath
the dashed line. From Glass and Belair (1986).

For k < y/2n the dynamics are described by a continuous invertible
map of the unit circle, and the discussion above concerning Arnold
tongues is applicable. If, however, the slope of the rising activity is less
than the maximum slope of the sine wave, then the dynamics will be
described by a discontinuous noninvertible function. In this case, it is
known that there will still be N:M phase locking for all integers N
and M that are relatively prime. There are also parameter values that
give rise to aperiodic dynamics. There are, however, two differences
between the properties of the aperiodic dynamics in the case in which
the dynamics are described by the discontinuous piecewise monotonic
maps and by the invertible maps. First, successive iterates no longer
form a dense orbit on the unit circle. A dense orbit is clearly impos-
sible since there is a forbidden range of values of ti+1 for which no
pre-image exists. Second, the probability that one will choose a set of
parameter values associated with the aperiodic dynamics is now zero.

In addition to studies of integrate and fire models in which the thresh-
olds are sinusoidal, there have been several studies of the properties
of integrate and fire models in which the thresholds are piecewise linear.
Such studies allow a much more complete analysis of the dynamics
than is possible using sinusoidal thresholds. For example, Lasota and
Mackey proved that such models display chaotic dynamics in some
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parameter ranges. The significance of this finding lies in the observation
of chaos even in extremely simplified models for the periodic forcing
of oscillations. In view of this finding, it seems likely that the appear-
ance of chaotic dynamics at least over some range of stimulation pa-
rameters in periodically forced physiological oscillators may be very
common.

Attempts to develop more realistic integrate and fire models for the
entrainment of the respiratory rhythm have been made by Petrillo and
Glass. They assume that two thresholds are modulated by the volume
of the mechanical ventilator. The timing of inspiration and expiration
is represented by activities that oscillate between the two thresholds.
A brief delay occurs between the time the inspiratory onset threshold
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7.8. Composite showing different zones of phase locking obtained in a theoretical model
for mechanical ventilation of a paralyzed, anesthetized cat. In the model, which is dis-
played in the insets, there are two thresholds that are modulated by the periodic lung
inflations (not shown). The solid line in the insets represents the operation of the respira-
tory rhythm generator that rises and falls linearly between the thresholds. Compare with
figure 7.1. From Petrillo and Glass (1984).
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was reached and the beginning of inspiration. This model has five pa-
rameters, all of which could be determined from the data. Numerical
simulations of the model (figure 7.8) show good agreement with the
experimental results shown in figure 7.1. However, a detailed study of
the bifurcations in this model was not carried through.

Another attempt to develop integrate and fire models for the entrain-
ment of biological rhythms was made by Daan and coworkers for the
circadian rhythm. They assumed that there were two sinusoidally mod-
ulated thresholds. With this model they were able to provide a partial
explanation for data on sleep duration as a function of the time of onset
of sleep. A systematic analysis was not made of the zones of 1:1 en-
trainment (corresponding to the normal circadian rhythm), or of other
possible phase-locking zones as a function of the parameters.

In conclusion, the assumption that there are periodic inputs to in-
tegrate and fire models provides a conceptually simple means to model
phase locking in biological systems. Even the simplest possible models
lead to extremely complicated dynamics, which are only partially
understood.

7.4 Entrainment of Limit Cycle Oscillators

Many biological rhythms are best represented mathematically as
limit cycle oscillations in differential equations (see chapter 4). Because
these rhythms interact with each other and because there is periodic
stimulation from the external environment, it is important to under-
stand the effects of periodic forcing on a limit cycle oscillation. One
prototypical model for periodically forced limit cycles is the sinusoidally
forced van der Pol equation (see equation 7.1 and the related discus-
sion). J. H. Jensen and coworkers have shown that sinusoidal forcing
also gives rise to chaotic dynamics in mathematical models of excit-
able neural and cardiac tissue, and Aihara and coworkers have dem-
onstrated strange attractors from sinusoidally forced squid axons (see
section 3.4).

We now consider the effects of a periodic train of short pulsatile
stimuli on limit cycle oscillations. In the event that the limit cycle is
rapidly reestablished following a single stimulus, it is straightforward
to compute the effects of periodic stimuli once the effects of a single
stimulus are understood.

The main idea can be developed from a consideration of the effects
of periodic stimulation of the Poincare oscillator considered in chapters
2 and 6. Once again assume that there is a limit cycle at r = 1, that
perturbations consist of a horizontal translation by an amount b, and
that following a perturbation the limit cycle is rapidly approached. As
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discussed in chapter 6, the effect of a single stimulus delivered at phase
4> is to shift the limit cycle to a new phase, </>', where

>' = g{4>, b). (7.6)

The function g is called the phase transition curve (PTC). If </); is the
phase immediately preceding the ith stimulus, then the phase imme-
diately preceding the (i + l)st stimulus is simply

(mod 1), (7.7)

where T is the time interval between periodic stimuli measured relative
to the intrinsic cycle length of the limit cycle oscillator (figure 7.9).
Equation (7.7), which is equivalent to equation (7.3), is the necessary
relationship; equation (7.7) is a general result. If the PTC can be com-
puted or experimentally measured, and if there is a rapid return to the
limit cycle following a perturbation, then once an initial condition is
chosen the dynamics can be determined by iteration for all future times.

For the simple limit cycle model the PTC can be readily computed,
and analytic and numerical techniques can be applied to determine the
detailed structure of the phase-locking zones as a function of stimulus
amplitude and frequency. In this example, when b < 1 the PTC is an
invertible type 1 circle map, and for b > 1 the PTC is a type 0 circle
map. Although the bifurcations that result are not completely known,
this is perhaps the best understood nontrivial example of the effects
of periodic forcing on a limit cycle oscillation over a broad range of

7.9. A schematic model for the perturbation of a limit cycle by a periodic stimulus. Pro-
vided there is a rapid relaxation back to the limit cycle, equation (7.8) is derived.
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7.10. Schematic organization of the phase-locking zones for the periodic stimulation of
the nonlinear oscillator in figure (7.9), assuming rapid relaxation back to the limit cycle
following each stimulus. Beneath the dashed line is the Arnold tongue structure. Above
it there are complex bifurcations, as discussed in Guevara and Glass (1982), Hoppensteadt
and Keener (1982), and Keener and Glass (1984). From Glass and Belair (1986).

stimulus frequencies and amplitudes. The results are summarized in
figure 7.10, which shows a schematic representation of the continuation
of the Arnold tongues. This model also shows chaotic dynamics and
complex bifurcations over some regions of parameter space. In this
model the extensions of some of the Arnold tongues that do not extend
to high amplitudes have a mushroom shape. In fact, in both the cardiac
and the respiratory experiments it was impossible to find some of the
more complex rhythms (such as 3:2 entrainment) at the high values of
stimulation intensity.

The application of the results in this section to the study of concrete
systems can be carried out in the following way. From figure 6.6b it is
easy to see that the effects of a single pulse delivered to the oscillator
at a phase 0 will result in a perturbed cycle length,

T/To = (7.8)

where g{<]>) is the PTC. Thus, by experimentally measuring the per-
turbed cycle length as a function of cf>, it is possible to measure experi-
mentally the PTC, which can then be numerically iterated to determine
the entrainment zones. This procedure has been carried out on the
periodically stimulated cardiac cells, and the solid lines of figure 7.2
were computed in this manner. There was close agreement between the
theoretical calculations and the experimental observations.

The main assumption in these calculations is that the relaxation back
to the limit cycle is sufficiently fast so only a single variable, the phase
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7.11. A plot showing the phases of suc-
cessive stimuli as a function of the pre-
ceding stimulus, as in figure 1.11. The
solid superimposed line is derived from
single-pulse-perturbation experiments
using the theory in the text. The fail-
ure of points to superimpose (as they
should) in the region <f>; = 0.38 is pro-
bably due to inaccuracies of the fitted
curve to the phase resetting data in this
region. From Glass Shrier, and Belair
(1986).

of the current stimulus, need be considered. An a posteriori justification
for this assumption is provided by the determination of 4>' versus <f>
directly from experimental tracings during aperiodic (chaotic) dynam-
ics, and from comparison of this with the same curve derived from
equation (7.6) using experimentally measured values of #(</>). This is
illustrated in figure 7.11, where the superimposition of the points on
the solid curve (determined from single-pulse perturbation experiments)
demonstrates that the one-dimensional models presented here are ap-
propriate for the description of the experimental cardiac dynamics. It
is also important to recognize that nonmonotonic circle maps can lead,
at some parameter values, to chaotic dynamics similar to those ob-
served in the simple quadratic map described in chapter 2. Despite the
success of the one-dimensional theory, an important experimental prob-
lem is to determine the effects of prior stimulation history on the current
state of the system. At some point it will be necessary to consider
higher-dimensional finite difference equations.

7.5 Phase Locking of Rhythms in Humans

The theoretical work described above concentrated on the different
phase-locking patterns and rhythms observed from the periodic forcing
of very simple models of biological oscillators. Even in these simple
systems, the detailed behavior under periodic stimulation is so complex
that it is unlikely it will ever be observed in any system, let alone in a
biological system that tends to be "noisy." Despite the difficulty for
fine observations of predicted behavior, an understanding of the gross
phenomenology may have potential significance in a very large number
of normal and pathophysiological situations in humans. We present a
number of examples. In no case is there a theory that is well worked out.
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Respiratory Sinus Arrhythmia

This phenomenon refers to the modulation of the cardiac rate by res-
piration, due to complex coupling between these two rhythms. During
the inspiratory phase there is lowered intrathoracic pressure, which
leads to greater cardiac filling and hence higher stroke volumes. Blood-
pressure differences resulting from the changes in stroke volume will
lead to differences in baroreceptor reflexes, which in turn lead to dif-
ferent afferent vagal effects on the cardiac cycle. Differences in oxygen-
ation of the blood during inspiration and expiration will lead to different
chemoreceptor reflexes at the different phases of the respiratory cycle.
These, in turn, may affect respiratory and cardiac rhythms. Finally, the
brain-stem activity associated with respiratory rhythmogenesis can also
lead to fluctuations in sympathetic and vagal tone and therefore affect
cardiac control. Despite—or perhaps because of—these multiple feed-
back loops, in humans there is comparatively weak coupling between
respiration and the cardiac rhythm, and the resulting rhythms are gen-
erally not phase locked. Rather, a slight acceleration of the cardiac
rhythm is observed during inspiration, and a slight slowing down is
observed during expiration, giving rise to a rhythm that appears to be
quasiperiodic.

Respiratory-Locomotory Coupling and
Interlimb Coordination

Butler and Woakes showed that during locomotion in birds there are
complex biomechanical interactions between the musculoskeletal ele-
ments involved in generating the locomotory and respiratory rhythms.
In quadrapedal (four-footed) mammals there is normally a 1:1 entrain-
ment between the respiratory and locomotory rhythms. Bramble and
Carrier have shown that in a galloping horse, 1:1 entrainment at rates
of over 100/min can be observed. In running humans, the coupling be-
tween respiration and locomotion can be studied by recording breath-
ing sounds (pneumosonograms) and foot impact during locomotion. A
number of different coupling patterns have been observed (figure 7.12),
but a complete understanding of the reflex mechanisms underlying the
entrainment is not available.

Ectopic Cardiac Pacemakers

We have already discussed the resetting of ectopic pacemakers by
the normal sinus rhythm. A related problem is to predict the rhythms
resulting from the interaction of sinus and ectopic pacemakers based
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7.12. Phase locking of respiration and gait from a single run in a healthy human. In
each panel the upper trace records the sound produced by respiration and the lower
trace indicates the impact of the right foot, (a) 3:1 phase locking; (b) 2:1 phase locking;
(c) 3:2 phase locking (running); (d) 3:2 phase locking (walking). From Bramble (1983).

on the phase-resetting curves. A calculation along these lines was under-
taken by Moe and coworkers (figure 7.13). The various ratios (3:2, 2:1,
5:2, etc.) labeled at the top of the figure show the zones of stable en-
trainment. However, because of the refractory periods of the heart, not
all ectopic beats will be observed. The apparently complex organization
of the zones similar to those observed in periodically stimulated heart
cells (figure 7.2) is as expected. Although the clinical condition in which
there is ECG evidence of only a single ectopic focus with ectopic beats
occurring less frequently than about 6/min is currently considered to
be relatively benign, arrhythmias due to multiple ectopic foci are po-
tentially dangerous and can degenerate to tachycardia and fibrillation
(see section 8.5). Indeed, in a classic text in electrocardiography pub-
lished in 1946, Katz used to term "chaotic heart action" to describe
complex arrhythmias in which there were multiple ectopic foci. The
connection between these rhythms and the "chaotic" dynamics that are
the focus of this book remains to be clarified.

Ventilator-Respiration Coupling

In many acute and chronic clinical settings, mechanical ventilation
is necessary. Sometimes it is difficult to adjust the ventilator so that
the patient does not "fight the ventilator." When this happens, there
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7.13. Phase-locking zones in a mathematical model of parasystole. The sinus cycle length
is 40 and the ectopic cycle length (EPCL) varies as shown on the abscissa. The ordinate
is a measure of the strength of the influence of the sinus pacemaker on the ectopic rhythm.
The zones give stable entrainment between the sinus rhythm and the ectopic pacemaker,
but not all ectopic beats are observed because some fall during the refractory period of
the ventricles. In the silent zones, all ectopic beats fall in the refractory period, and in
the concealed bigeminy (CB) and concealed trigeminy (CT) zones only some of the beats
fall in the refractory period. In the region labeled F, there are fusion beats that arise
when the ectopic pacemaker and sinus beat fall at approximately the same time. From
Moe et al. (1977).

are several strategies: sedate, paralyze or hyperventilate the patient.
Obviously, it is most desirable to adjust the ventilator so that there is
some reasonable entrainment pattern with patient and ventilator infla-
tions in phase. A systematic study of the entrainment of the respiratory
rhythm in humans has been carried out. The subjects were anesthetized,
and diaphragmatic activity was monitored by an esophageal electrode
during ventilation with a fixed volume without patient triggering. It
was possible to demonstrate 1:1 entrainment over a range of ventilator
frequencies and amplitudes (figures 7.14, 7.15). This situation is com-
plicated in many currently available ventilators, since it is possible to
have ventilatory efforts by the patient triggering the inflation pulse of
the ventilator.
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7.14. 1:1 phase-locked rhythms set up between a mechanical ventilator and the re-
spiratory rhythm in an anesthetized human subject. In each panel the top trace is the
mechanical ventilator, the second line is the integrated diaphragmatic electromyogram
recorded with an esophageal electrode, and the third line is the ventilation volume.
Dashed and solid lines show onset of mechanical ventilator and diaphragmatic inspira-
tory efforts, respectively, (a) ventilator frequency (/) = 24/min, ventilator volume (V) =
400 ml. (b) / = 19.4/min, V = 500 ml. (c) / = 15.6/min, V = 600 ml. From Graves et al.
(1986).
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7.15. Composite plot from seven subjects showing the region of 1:1 phase locking be-
tween a mechanical ventilator and the respiratory rhythm in mechanically ventilated
anesthetized humans. The abscissa is the ventilator frequency divided by the intrinsic
frequency in the absence of the mechanical ventilator, and the ordinate is the ventilator
volume divided by the intrinsic tidal volume. An approximate boundary separating the
1:1 zone from zones of irregular dynamics has been drawn. From Graves et al. (1986).

Sleep Arrhythmias

Many physiological variables display a 24-hour periodicity, arising
from an entrainment of the sleep-wake and other physiological cycles
to the 24-hour day. However, as Wever has shown, if an individual
lives in a constant environment in which social and physical clues of
the external environment are not present, then an intrinsic circadian
rhythm develops which differs from the normal 24-hour rhythm.

Many psychiatric patients with affective disorders show abnormal-
ities in their circadian rhythms. For example, many depressed patients
awake early and complain about their sleep habits. Practitioners are
currently suggesting that interventions directed toward manipulation of
the circadian rhythm may be useful therapeutically. Thus Wirz-Justice
is studying the effects of pharmacological manipulations, whereas Lewy
and coworkers have been manipulating the light-dark cycle.

On a more mundane level, most of us have experienced jet lag, and
many of us have experimented with various sleeping, eating, or phar-
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macological strategies to minimize it. Since controlled experiments are
difficult, we are sure to witness a great deal of quackery in the years
ahead in this area. Formulation of models is not straightforward be-
cause to date it has been impossible to measure the parameters in the
models directly or to manipulate them.

7.6 Summary

In response to periodic stimulation, physiological rhythms may be-
come either entrained (phase locked) to the stimulus giving periodic
dynamics, or the resulting rhythms can be aperiodic. In the case of
aperiodic rhythms, quasiperiodic or free-running rhythms are ob-
served at small-stimulus amplitudes. At higher-stimulus amplitudes,
aperiodic dynamics can sometimes be associated with chaos. The or-
ganization of the entrainment zones as a function of the frequency and
amplitude shows a number of striking features. At low-stimulus ampli-
tude, an Arnold tongue structure is observed. In this case one expects
that if there is N:M entrainment at one frequency and N':M' en-
trainment at another, then an intermediate frequency can be found at
which there is N + N':M + M' entrainment. However, the range of
frequencies over which such dynamics will be observed may be so small
that, in practice, experimental observations are impossible. As stimulus
amplitude increases, the Arnold tongue structure breaks down and
may give a complex topological structure. Entrainment phenomena
are believed to be important in physiology and occur in a number of
different systems.

Notes and References, Chapter 7

7.1 Overview of Experimental Results
A number of workers have carried out systematic studies of the entrainment

of respiration to a mechanical ventilator in a number of different mammalian
preparations (Fallert and Muhlemann 1971; Vibert, Caille, and Segundo 1981;
Baconnier et al. 1983). The results we report, taken from Petrillo, Glass, and
Trippenbach (1983) and Petrillo and Glass (1984) are in agreement with results
from these other laboratories.

Likewise, a number of workers have studied the effects of periodic electrical
stimulation of cardiac pacemaker tissue, either using sinusoidal or pulsatile
stimuli (Reid 1969; Levy, Iano, and Zieske 1972; Van der Tweel, Meijler, and
Van Capelle 1973; Jalife and Moe 1976, 1979; Scott 1979; Ypey et al. 1982;
Jalife and Michaels 1985). The experimental results given here on the periodic
stimulation of embryonic heart-cell aggregates are extracted from an extensive
series of experimental and theoretical studies (Guevara, Glass, and Shrier 1981;
Glass et al. 1983; Glass et al. 1984; Guevara 1984; Guevara, Shrier, and Glass
1988).
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The generalizations concerning the periodic forcing of biological oscillators
are supported by a number of studies in diverse systems (Perkel et al. 1964;
Pittendrigh 1965; Pavlidis 1973; Pinsker 1977; Ayers and Selverston 1979;
Guttman, Feldman, and Jakobsson 1980).

7.2 Mathematical Concepts
It is a difficult problem to analyze mathematically the dynamics of periodi-

cally forced nonlinear oscillations such as the van der Pol equation (van der
Pol 1926; van der Pol and van der Mark 1928). For representative work, see
Cartwright and Littlewood (1945), Levinson (1949), Hayashi (1964), Flaherty
and Hoppensteadt (1978), Levi (1981), and Guckenheimer and Holmes (1983).
Our understanding of this problem is still far from complete, and it will cer-
tainly remain a rich area for mathematical research in the future.

A basic understanding of the dynamics of invertible circle maps is due to
Poincare (1885, 1954), Denjoy (1932), and Arnold (1965), and a good summary
for the mathematically sophisticated reader is found in Arnold (1983) and
Devaney (1986). The analysis of circle maps is currently of great interest and
is discussed in more detail in the Mathematical Appendix.

7.3 Periodic Forcing of Integrate and Fire Models
An early application of integrate and fire models was to study the response

of sensory systems to cyclic input (Rescigno et al. 1970; Knight 1972; Fohl-
meister, Poppele, and Purple 1974). A comprehensive recent review of the
dynamics in integrate and fire models in the presence of cyclic input is given in
Keener, Hoppensteadt, and Rinzel (1981).

Early studies analyzed the integrate and fire model in figure 7.6 in the context
of periodically forced relaxation oscillations (Harker 1938; Builder and Roberts
1939). Unaware of these early studies, the same model was considered in the
context of entrainment of biological oscillators (Glass and Mackey 1979b; Glass
et al. 1980). This model has also been proposed by Winfree (1980) in the con-
text of circadian rhythms. Further analysis of mathematical aspects of the bi-
furcations in this model is in Keener (1980), Keener (1981), and Keener, Hop-
pensteadt, and Rinzel (1981). Modifications of this model are discussed in Glass
and Belair (1986).

Piecewise linear integrate and fire models have been investigated by several
workers. Allen (1983) and Belair (1986) have been able to derive precise bound-
aries for phase-locking zones. Lasota and Mackey (1985) have been able to
prove the existence of chaotic (exact) dynamics.

Integrate and fire models for respiration are given in Baconnier et al. (1983)
and Petrillo and Glass (1984). Integrate and fire models for circadian rhythms
are presented in Winfree (1980, 1983a, 1984), Daan and Beersma (1984), and
Daan, Beersma, and Borbely (1984) and are discussed by Strogatz (1986).

7.4 Entrainment of Limit Cycle Oscillators
A discussion of chaos resulting from sinusoidal forcing of nonlinear cardiac

and neural oscillators is in J. H. Jensen et al. (1983), J. H. Jensen, Christiansen,
and Scott (1984), and Aihara et al. (1986).
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The use of finite difference equations to determine the effects of periodic
stimulation of nonlinear oscillators with brief stimuli was originally presented
in studies on the periodic forcing of neural oscillators (Perkel et al. 1964) and
circadian oscillators (Pittendrigh 1965). Subsequently, equivalent procedures
have been used in the analysis of diverse systems. For representative papers, see
Keller (1967), Pavlidis (1973), Moe et al. (1977), Zaslavsky (1978), Scott (1979),
Pinsker (1977), Ikeda, Tsuruta, and Sato (1981), Guevara, Glass, and Shrier
(1981), Segundo and Kohn (1981), Ypey et al. (1>82), Glass et al. (1983), Guevara
et al. (1983), Honerkamp (1983), Guevara (1984), and Glass et al. (1984).

The study of the dynamics in the periodically forced Poincare oscillator was
undertaken in Guevara and Glass (1982), Hoppensteadt and Keener (1°82), and
Keener and Glass (1984).

7.5 Phase Locking of Rhythms in Humans
Respiratory sinus arrhythmia. This is a well known clinical phenomenon (for

example, see Bellett 1971).
Respiratory-locomotory coupling and interlimb coordination. The coordina-

tion between fins in swimming was studied in a classic and beautiful work by
von Hoist (1973), who also noted analogies between fin arrhythmias and cardiac
arrhythmias. Applications of the theoretical concepts to study limb coordina-
tion in turtles is reviewed by P.? G. Stein (1977). Extensive studies of resp^a-
tory-locomotory coordination have been carried out in birds (Butler t.nd
Woakes 1980) and mammals (Bramble 198., Bramble and Carrier 1983).

Ectopic cardiac pace lakers. The model of modulated parasystole, as for-
mulated by Jalife and Moe (1976, 1979) and Moe et al. (1977), has been ex-
tremely influential in both theoretical studies (Ikeda, Tsuruta, and Sato 1981;
Honerkamp 1983) and clinical studies (Castellanos et al. 1984). Reviews of this
opic can be found in Jalife and Michaels (1985) and Glass et al. (1987b).

Ventilator-respiration coupling. Despite its practical clinical importance, this
phenomenon has been rarely studied in human patients (Curzi-Dascalova et al.
1979; Gr. ,/es et al. 1986).

Sleep arrhythmias. A number of different mathematical models for circadian-
rhythm generation and the entrainment of the circadian rhythm based on
integrate and fire models (Winfree 1980,1983a, 1984; Daan and Beersma 1984;
Daan, Beersma, and Borbely 1984) and limit cycle models (Wever 1979; Gander
et al. 1984) have been proposed (see the collection by Moore-Ede and Czeisler
1984). A comprehensive review of sleep disorders is in Weitzman (1981), and
an extensive collection of papers on circadian rhythms in psychiatry has ap-
peared (Wehr and Goodwin 1983). Particularly interesting applications of theo-
retical ideas to clinical work are in Kripke (1983), Wirz-Justice (1983), and
Lewy, Sack, and Singer (1985). A reported phase resetting of the circadian
rhythm by bright light is in Czeisler et al. (1986). Phase resetting of circadian
rhythms with tranquilizers in hamsters has recently been reported (Turek and
Losee-Olsen 1986).
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Spatial Oscillations

.Physiological rhythms are ordered in space as well as in time. In the
usual circumstance, the oscillation will display simple wavelike propa-
gation originating from a pacemaker region. However, in many situa-
tions simple periodic wavelike propagation originating from a point
source is not found, and other types of spatial ordering are observed. In
this chapter we discuss these unusual modes of wave propagation. Wave
propagation in a one-dimensional strip of tissue is considered in section
8.1 and in a one-dimensional ring of tissue in section 8.2. In section 8.3
we discuss wave propagation in two dimensions, and in section 8.4 we
discuss wave propagation in three dimensions. Fibrillation is believed
to be associated with abnormal reentry or circus spread of excitation in
two and three dimensions. Theoretical and experimental studies of
fibrillation are discussed in section 8.5.

8.1 Wave Propagation in One Dimension

A prototypical example of a physiological system in which there is
one-dimensional wave propagation is the ureter. The ureters transport
urine from the kidney to the bladder via peristaltic waves originating
in a localized region near the junction of the ureter and the renal pelvis
called the renal pelvic pacemaker. Wave propagation in the ureter can
be studied either by measuring spontaneous activity or by stimulating
one end of the ureter electrically and measuring electrical activity dis-
tally. In data from a study on intact dogs (figure 8.1a), a 1:1 trans-
mission of excitation at a stimulus period of 4 sec (upper trace) and a
5:4 transmission of excitation at a stimulus period of 3.38 sec (lower
trace) was observed. There is an increasing latency prolongation in the
5:4 rhythm between the stimulus and the next excitation wave, until
eventually there is a nonconducted beat.

An analogous effect occurs in impulse conduction in the human heart.
Even though the heart is a complex three-dimensional structure, for
the current purposes we think of it as one-dimensional, with excitation
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8.1. Response of the ureter to periodic electrical stimulation, (a) Recording from anes-
thetized dog. The dashed line represents the stimulus and the continuous curve the
activity recorded from an extraluminal bipolar electrode. The top trace shows 1:1 con-
duction when the stimulation period was 4 sec and the bottom trace shows Wenckebach
cycles when the stimulation period was 3.38 sec. From Weiss, Wagner, and Hoffman
(1968). (b) Recording from rat ureter in vitro. Electrical activity shows alternation of
large and small responses from periodic stimulation. From Prosser, Smith, and Melton
(1955).

following the path: SA node-atria-AV node-His bundle-Purkinje
fibers-ventricles. Contraction of the atria is usually followed 0.12-0.20
sec later by contraction of the ventricles (figure 1.2). However, AV heart
block is characterized by abnormal coordination between the atrial and
ventricular rhythms, leading to a prolonged interval between atrial and
ventricular contractions (first-degree AV block), more atrial than ven-
tricular contractions resulting from blocked conduction of some atrial
beats (second-degree AV block), or complete lack of coordination be-
tween atrial and ventricular rhythms (third-degree AV block). Second-
degree heart block, in which there is an increasing interval between
the atrial and ventricular contractions (the PR interval), leading to a
dropped beat, is shown in figure 8.2a. Rhythms with increasing latency
between stimulus and response and an eventual dropped beat are now
called Wenckebach rhythms.

Another phenomenon, which occurs in both the ureter and the heart,
is an alternation of responses to a periodic train of stimuli. Figure 8.1b
shows an alternation of response that can be observed by rapid periodic
stimuli delivered to an in vitro rat-ureter preparation. Similar phenom-
ena are found in cardiology when alternation of pulse strength or
electrical complexes (alternans) show up in electrocardiograms (figure
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8.2. (a) Electrocardiogram showing successive prolongation of the PR interval until aQRS complex is dropped. This is called
second-degree heart block or Wenckebach rhythm. From Goldberger and Goldberger (1986). (b) Electrocardiogram showing
alternating amplitude of the QRS complex during a supra ventricular tachycardia. From Bellett (1971).



Spatial Oscillations 147

8.2b). At rapid heart rates, alternans is frequently found and can be
considered a normal response, but the appearance of alternans at lower
heart rates is often considered a sign of dysfunction. Although an alter-
nans response to periodic stimulation of one-dimensional excitable
tissue at high stimulation rates is not encountered as often as Wencke-
bach rhythms, the response is sufficiently common to warrant a dis-
cussion of a possible mechanism for it.

In summary, periodic stimulation of excitable one-dimensional tissue
at low rates leads to periodic traveling excitation waves of equal ampli-
tude following the periodic stimulus in a 1:1 fashion. As the frequency
is increased, the simple 1:1 propagation of equal-amplitude waves is
no longer observed. One possibility is that each stimulus still leads to
a wave of excitation, but the amplitudes of subsequent waves vary. A
second possibility is that some of the waves are blocked and that pe-
riodic rhythms of the form N:M with N > M are found. Although
more complex patterns of propagation are also clearly possible, we con-
fine our attention to these two main types of dynamical behavior.

The physiological basis for understanding the dynamics arises from
the following three observations, known to Mines early in the century:
(1) As the stimulation frequency increases, the propagation velocity of
a wave decreases (the dependence of propagation speed on frequency
is called a dispersion relation in physics); (2) as the stimulation fre-
quency increases, the duration of the excitation decreases; and (3) fol-
lowing an excitation there is a time interval, the refractory period (6),
during which a second stimulus cannot lead to a subsequent excita-
tion. Incorporating these physiological properties into a mathematical
model gives partial insight into the dynamics described above.

A schematic representation of the physiological situation is shown in
figure 8.3. A stimulus (S,-) leads to excitation after a delay (SR;). The

SRj-| APDj-,

t»

SR; APDi

ts

8.3. Schematic diagram showing the periodic stimulation of excitable tissue with a time
interval of ts between successive stimuli. SR{ represents the time interval from the fth
stimulus to the start of the next action potential, and APDt is the duration of the ith
action potential.
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action-potential duration (APD) of the excitation following stimulus S;

is denoted APDt. The stimulus and the resulting excitation wave are
often measured at different positions in the system being studied. Al-
though in realistic situations SR{ and APDi may depend on the stim-
ulation history, we assume that the duration of these intervals is a
function of the time from the end of the preceding excitation to the
stimulus Sj. Calling ts the time interval between stimuli, we have

!) (8.1a)

APDt = G(ts -SRi-j^-APD^i), (8.1b)

where F and G are functions to be determined. Although equations
(8.1a,b) have been introduced in the context of wave propagation in
distributed systems, they are also applicable to spatially homogeneous
systems in which stimulus and response are measured at the same point.
To the best of our knowledge, a general analysis of equations (8.1a,b)
has not been given. However, two special cases have been treated.

In the first case, we assume that the duration of excitation is con-
stant and that, consequently,

SR^Ffa-SRt-J. (8.2)

In cardiac electrophysiology, the function F has been studied in the
context of propagation of action potentials through the AV node. F is
called the recovery curve. In this case, the interval SR corresponds
from the beginning of the P wave on the ECG to the beginning of the
QRS complex (figure 1.2). Since the early years of this century, it has
been recognized that the PR interval is a decreasing function of the
preceding RP interval, and that the AV recovery curve can be used to
compute the effects of periodic stimulation as a function of the fre-
quency of the periodic stimuli.

To illustrate the use of the recovery curve in practical situations,
consider the following. An intra-atrial electrode is used to periodically
stimulate a human heart, and the activity in the bundle of His was
recorded. The interval between the stimulus and the onset of activity
in the bundle of His is the SH interval. At a stimulation period of
440 msec, a Wenckebach block was established with 11 atrial contrac-
tions to 10 ventricular contractions (11:10 AV block) (figure 8.4a).
Successive measurements of SH as a function of the preceding HS are
shown in figure 8.4b. The data can be fitted to the exponential function,

SH = SHmin + ot1e~HS>zl for HS > B, (8.3)
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where SHmin = 230 msec, a1 = 308 msec, il = 111 msec, and 9 =
50 msec. Using the recovery curve of equation (8.3), we can now derive

SHi = SHmin + a1e-(Nt~-SH'-l)"\ (8.4)

where N is the smallest integer, such that Nts — SHi_l > 6.
By iterating equation (8.4) it is possible to determine the dynamics

for any value of ts. A graphical iteration for ts = 442 msec gives rise
to a 10:9 Wenckebach rhythm (figure 8.4c). In figure 8.4d we show the
ratio between the number of conducted beats divided by the number of
stimuli, p, as a function of ts. The figure is the graph of a Cantor function.
Since there are an infinite number of steps, most of unimaginably small
size, the graph of a Cantor function is sometimes called a devil's staircase.

The results of figure 8.4d are quite general. With any monotonically
decreasing recovery curve like that shown in figure 8.4b, conduction
will be described by the Cantor function. Thus we observe the classical
Wenckebach rhythms of the form N:N — 1 as well as more complex
variants. In this fashion the iteration of the finite difference equation
serves to give a unified perspective and classification for Wenckebach
and related arrhythmias based on the bifurcations predicted from the
recovery curve.

We now consider equation (8.1) in a second situation, in which the
time SRt remains constant, but the APD varies. Specifically, we con-
sider the effects of periodic stimulation on a spatially homogeneous
excitable aggregate of cells from embryonic chick heart that is not
spontaneously beating. Figure 8.5a shows the response of this prepara-
tion to periodic excitation with ts= 180 msec. There is an alternation
of APD which is not present at stimulation frequencies with fs >
200 msec. The function that gives the APD as a function of the time
from the end of the previous action potential to the stimulus is called
the electrical restitution curve. The restitution curve can be approxi-
mated by the exponential function,

APD = APDmax-a2e~^\ (8.5)

where APDmiiX is the maximum APD, X is the time that elapsed from
the end of the preceding action potential to the stimulus, and a2 and
T2 are positive constants. The graph of the electrical restitution curve is
shown in figure 8.5b. Substituting equation (8.5) into equation (8.1) gives

= APDmax - a2e-(Nt'~APDi-^\ (8.6)

where N is the smallest integer such that Nts — APDi_1 > 9. In equation
(8.6) a period-doubling bifurcation will arise provided T2 In(a2/T2) > 9
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8.4. (a) Electrocardiographic lead II and His-bundle electrogram (HBE) recorded from a patient during atrial pacing at an S-S interval
of 440 msec. S and H present the stimulus artifact and His-bundle deflections on the HBE, respectively The time interval from each
stimulus to the next His-bundle deflection is given in msec. From Levy et al. (1974a). (b) A plot of the SH interval (time from S to
following H deflection) as a function of the preceding HS interval for i data in (a), (c) Equation (8.4) with ts = 442 msec. A cycle
corresponding to 10:9 AV block is shown. The conduction ratio, p, (number of ventricular contractions divided by the number of atrial
stimuli) as a function of ts computed from equation (8.4) with the parameters in (b). This curve is called a Cantor function (Mandelbrot
1977, 1982). From Glass, Guevara, and Shrier (1987a).
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8.5. (a) Intracellular recording of transmembrane potential from a periodically stimu-
lated quiescent heart-cell aggregate. In the upper trace the period of the stimulation is
300 msec, and in the lower trace it is 180 msec. Vertical calibration is 50 mv and hori-
zontal calibration is 300 msec, (b) Action potential duration (APD) as a function of
recovery time X. (c) Equation (8.6) for t, = 170 msec. There is a stable cycle with APD
alternating between 94 msec and 156 msec (2:2 rhythm) and a stable steady state with
APD = 187 msec (2:1 rhythm), (d) Bifurcation diagram showing APD as a function of
stimulation frequency / . Solid lines show theoretical results, and triangles give data
points. Adapted from Guevara et al. (1984).

at a critical stimulation frequency /* , where 1//* = APDmax — x2 +
T2ln (a2/t2). At the critical simulation frequency the APD is APDmax — T2

and the recovery time is T2 In(a2/t2). Thus in this experimental system
we identify alternans with a period-doubling bifurcation. A graphical
solution of equation (8.6) is shown in figure 8.5c for ts= 170 msec. For
this stimulation period there are two possible stable asymptotic be-
haviors corresponding to the alternans, and also 2:1 rhythms. The com-
puted values for the APD as a function of stimulation frequency are
shown in figure 8.5d. The theoretical calculations show the appearance
of alternans, but do not accurately give the APD for the range of stim-
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ulation frequencies for which alternans was experimentally observed.
The theory also predicts a bistability between 1:1 and 2:1 dynamics
and between 2:2 and 2:1 dynamics. Although bistability in conduc-
tion through the AV node was originally observed by Mines, we know
of no other observations of this phenomenon in AV conduction, though
it is observed during periodic stimulation of spontaneously beating
aggregates of chick-heart cells.

To this point we have considered propagation of excitation in one
dimension, in which the dynamics could be analyzed by consideration
of a finite difference equation. As might be expected, physiologically
important and mathematically more complex situations have also been
studied. We briefly comment on two of these—the propagation of ac-
tion potentials in nerve or other excitable systems, and the electrical
activity in the small intestine.

A large body of work exists on the propagation of electrical activity
in nerve using Hodgkin-Huxley or related models. Since nerve cells
transmit excitation via nondecrementing action potentials, mathemat-
ical models of nerve cells formulated as partial differential equations
should show stable propagating activity. However, to prove rigorously
the existence and stability of traveling waves in concrete situations is
a difficult problem. Some analytic results on the existence and stability
of traveling wave solutions in one dimension have been obtained, but
in realistic models of the cardiac conduction system only numerical
simulations of conduction have been carried out, and analytic results
are lacking.

As a final example, consider the electrical activity present in the small
intestine. We have already mentioned slow-wave activity is present in
the longitudinal muscle cells in the small intestine (figure 5.1). There is
a gradient in the frequency of slow-wave intestinal activity, which, in
humans, is about 12/min in the duodenum and decreases aborally to
about 8/min in the terminal ileum. The coupling between the slow-wave
oscillations leads to frequency plateaus as one moves down the intestine
with phase shifts within a single plateau. The slow-wave oscillations
are not associated with contraction unless there are superimposed spikes
on the peak of the slow waves (chapter 5.1). In fasting individuals there
are striking migrating myoelectric complexes (MMC) associated with
intestinal contractions, which slowly traverse the length of the intestine
in about 90 min (figure 8.6). As the MMC passes a given region of the
intestine, regular bursts of activity arise at the frequency set by the
slow-wave oscillation. This activity will last approximately 20 min out
of the 90-min MMC cycle. At other times of the MMC cycle there are
either no contractions or irregular contractions. Eating a meal abolishes
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8.6. Cyclic motor activity in the lower esophageal sphincter (LES) and stomach, and migrating motor complexes (MMC) in
the small intestine of dog recorded with strain gauges. Distances (in cm) indicated on small intestine strain gauges are from
the pylorus. From Sarna (1985).
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the MMC activity, and the two different types of intestinal contractions
now occur. Peristaltic waves pass aborally down the small intestine for
short distances (1-4 cm) at a velocity set by the apparent velocity of
the slow waves. Segmentation contractions are localized contractions
that are not coordinated with contractions above and below. The co-
ordination of these various rhythmic activities is a complex task which
is not yet fully understood.

8.2 Wave Propagation in a Ring of Tissue

Rings of tissue, cut from the jellyfish mantle, were studied early in this
century by Mayer. Shortly thereafter, wave propagation in rings of
cardiac tissue was studied by Mines and Garrey. In response to a single
stimulus delivered to the tissue, waves of contraction were generated
which spread in both directions from the point of stimulation and were
annihilated when they collided. However, if stimuli were delivered at
increasing stimulation frequency, a situation frequently arose in which
a wave continued to propagate in one direction even after stimulation
was discontinued. Calling the velocity of propagation v, the path length
/, and the refractory time 9, a stable circulating wave is only possible
provided l/v > 9. The observation of such circulating or circus waves
in cardiac tissue provided experimental evidence for the hypothesis that
some cardiac arrhythmias may be due to circus or reentry mechanisms,
in which excitation can repeatedly circulate through the cardiac mus-
culature.

The mechanisms underlying the establishment of circulating excita-
tion are not immediately obvious. One possibility is that there is uni-
directional block in the cardiac tissue which restricts the conduction of
activity to one direction but not the other.

Conduction block due to elevated refractory time can also lead to
the establishment of circus excitation. Consider the situation in figure
8.7. Assume that the refractory time is 9 at all points in a ring of tissue
except for a small portion in which it is 9'. Stimulation delivered at a
given point in the tissue propagates with a speed v, and the distance
from the point of stimulation to the region of increased refractivity is
/t and l2, going clockwise and counterclockwise, respectively, where
12 > /i- Assume that two stimuli are delivered with a time ts between
them, where 9 < ts < 9'. The first stimulus passes through the tissue in
clockwise and counterclockwise directions and annihilate. The second
stimulus once again travels both clockwise and counterclockwise, but
since ts < 9', the clockwise excitation is blocked when it reaches the
refractory region. However, provided ts > IJv + 9' — l2/v, the second
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8.7. Schematic diagram for wave propagation in a
ring of tissue. The refractory period is 9 in the white
region and 8' in the shaded region, where 8' > 8. If
the tissue is stimulated two times from the point S
with a time ts between the stimuli, where 0 < ts < 8'
and ts > IJv + 9' — l2/v, then a counterclockwise
circulating wave of excitation will be generated.

pulse will reach the region of increased refractoriness after it has become
excitable, and a circulating wave of excitation will result.

In a tissue in which all points have the same refractory period, Wiener
and Rosenblueth showed theoretically in 1946 that a circulating wave
of excitation can be generated from two stimuli delivered to the tissue
at different times and different positions, so that the second stimulus
falls at the end of the refractory period of one of the spreading waves.
As a consequence, the effect of the second stimulus is a spreading wave
in only one direction. Now there are three simultaneous waves in the
ring of tissue, two circulating in one direction and one in the other.
Two of these waves moving in opposite directions will annihilate each
other, leaving the third as a circulating wave of excitation. It is also
easy to see that circulating waves will be possible in sheets of tissue
with a barrier, provided the circumference of the barrier is sufficiently
large, so l/v > 9.

The recognition that circulating waves around a hole or barrier can
be stably maintained is an important concept in cardiac physiology.
Almost 70 years ago, Lewis showed that stable circulating atrial waves
could exist around the openings of the great veins on the right auricle
by mapping the cardiac action potentials on the surface of the heart
of a dog. Lewis proposed that this circulating wave was associated with
atrial flutter. Another example of circus movement occurs in patients
with accessory pathways between the atria and ventricles. In these pa-
tients tachycardias sometimes arise in which circus movements are pos-
sible as a result of normal anterograde conduction through the AV
node and retrograde conduction through the abnormal accessory path-
way. A permanent cure for these tachycardias can be obtained by
surgical section of the accessory pathway, thereby breaking the reentry
loop. In other patients, tachycardias appear to arise from circus move-
ment around an aneurysm or infarct.
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8.3 Waves and Spirals in Two Dimensions

Consider a hypothetical experiment in which a circulating wave of
excitation is set up in a ring of tissue; as the wave propagates the hole
shrinks, eventually going to zero. What will happen to the wave? At
first, it might seem that maintaining a circulating wave would be impos-
sible since there is no way that the wave could continue to circulate
around a hole of zero circumference. Yet, surprising as it may seem,
waves can continue to circulate.

There are fundamental problems involved in the observation of
waves in two and three dimensions. Whereas the propagation of a wave
in one dimension can be monitored by comparatively few measuring
devices along the length of the excitable system, in higher dimensions
it is necessary to either observe the wave propagation visually or to
have a large number of measuring devices to sample adequately the
entire space. As we have already discussed, the study of wave propaga-
tion in excitable media has been facilitated by experiments on the
Belousov-Zhabotinsky reaction, which displays target patterns and
spirals (figure 1.12).

This complex chemical phenomenology may appear to be totally
irrelevant for understanding spatial dynamics in physiology. However,
we believe that understanding the propagation of these chemical waves
will be central to our understanding of complex cardiac arrhythmias,
and rhythms and arrhythmias in other spatially extended excitable
tissues. In the rest of this section we give a summary of some of the
main work on two-dimensional wave propagation in physiology.

An early description of circulating excitation in cardiac tissue in
which there was no clear anatomical barrier was given in 1924 by
Garrey, who studied circus movement in turtle hearts. He observed that
"local faradization [electrical stimulation], confined to one spot on the
auricle, started a circuit which coursed irregularly about that spot. The
diameter of this intramuscular circuit was indefinite, something like
1 cm. or more. The entire remainder of the auricle responded to each
circuit with a coordinate contraction repeated regularly 159 times a
minute." This and other related observations formed the basis for the
first theoretical study of reentry and fibrillation in 1946 by Wiener and
Rosenblueth, who proposed a model in which space and time are con-
tinuous, and the state of the cardiac musculature was represented by
a single variable. Following an instantaneous excitation, the tissue was
refractory for a time, and then the tissue was excitable. Although they
demonstrated circus movement around a sufficiently large barrier, their
model did not appear to support circus movement in the absence of
a barrier, but they could not prove this. Wiener and Rosenblueth
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obviously found Garrey's observations disturbing because they did
not coincide with the theoretical model, and they raised the possibility
that in Garrey's work "an artificial transitory obstacle was established
unwittingly at the stimulated region."

Subsequent work has unequivocally established the presence of sta-
ble circus movement in two dimensions even in the absence of a bar-
rier. The evidence comes from diverse experimental and theoretical
work, which is summarized more fully in the Notes and References.
Briefly, it revolves about the following facts.

1. Stable spiral waves are observed in nonliving excitable systems—
e.g., in a two-dimensional iron-wire grid in nitric acid which was pro-
posed by Nagumo and coworkers in 1963 as a physical model of nerve
excitation, and in the Belousov-Zhabotinsky reaction.

2. Stable spiral waves are observed in living excitable systems. The
first observation was made in 1965 by Gerisch, who observed spiral
waves in aggregating slime molds. In the slime molds there is aggrega-
tion to a pacemaker which periodically releases a burst of cyclic
adenosine monophosphate. In addition, in 1977 Allessie and coworkers
demonstrated a circulating excitation in rabbit atrium, in the absence
of any barriers using multiple electrodes to record the circus movement.
Their leading circle hypothesis suggested that circus movement in the
absence of a barrier could account for reentrant arrhythmias.

3. Spiral waves are observed in numerical simulations of cellular
automata. In these systems, time and space are discrete. The state of
each cell at a given time is a function of the states of neighboring cells
at preceding times. In 1961 Farley and Clark first observed spirals in
models of nerve networks. Moe and coworkers, trying to understand
the mechanism of fibrillation, developed a cellular automata model of
the myocardium—containing heterogeneous refractory times—that dis-
played complex circulating excitation in response to stimulation. This
model was reexamined recently by J. M. Smith and R. J. Cohen, who
studied its response to gradually increasing stimulation frequencies and
observed complex periodicities as well as complex circulating excitation.

4. Spiral waves are observed in numerical simulations and theoretical
analyses of continuous nonlinear systems.

In summary, in two-dimensional excitable media, simple target pat-
terns as well as more complex spiral waves can be found. The evidence
for this comes from experiments in chemical and biological systems
and from numerical simulations and theoretical analysis of mathe-
matical models of these systems. A detailed discussion of the physiolog-
ical significance of this work as a model for fibrillation is left to section
8.5.
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8.4 Organizing Cente in Three Dimensions

Real biological systems are not one or two dimensional, but are really
three dimensional. The three-dimensional nature of biological tissue
should play an important role for tissues in which all three spatial di-
mensions are roughly comparable—for example, for the ventricles of
the heart and possibly for conical structures. The observation of excita-
tion in three dimensions is difficult and the main results are principally
theoretical. The main advances in understanding the geometry of prop-
agation of excitation in three dimensions are due to Winfree and
Strogatz.

One way to generate a three-dimensional wave is to translate the
spiral waves perpendicular to the plane. The resulting scroll waves are
shown in figure 8.8. In this case, the axis of the scroll wave extends to
the boundary of the three-dimensional medium. The possibility also
exists that the axis of the scroll can form a loop by joining the ends of

8.8. Three dimensional scroll wave. A thin section might appear as a spiral wave (see
figure 1.12). From Winfree (1973a).



8.9. Three dimensional waves formed by joining the ends of the scroll wave, (a) Computer-
drawn image. From Winfree and Strogatz (1984b). (b) (right) Belousov-Zhabotinsky
reagent showing the same geometry. From Welsh, Gomatam, and Burgess (1983).

the axis, as illustrated in figure 8.9a. Figure 8.9b shows the Belousov-
Zhabotinsky reaction in a three-dimensional medium. The resemblance
to figure 8.9a is striking. The scroll ring of figure 8.9a, b is just the be-
ginning of whole families of increasingly complex and linked rings that
are theoretically possible.

8.5 Fibrillation and Other Disorders

Sudden cardiac death, in which the heart develops a fatal arrhythmia
without warning, kills over 400,000 people yearly in the United States.
In some instances this arrhythmia is a bradycardia (slow heart rate), but
in the majority of cases it is a tachycardia (fast heart rate) that frequently
originates in the ventricles. Although tachycardias are often initially
rather regular, they generally degenerate into low-amplitude, irregular
wave patterns on the electrocardiogram, reflecting the "fibrillation"
present in the heart. Since the classic studies by Mines in 1914 and
Wiggers and Wegria in 1940, it has been known that fibrillation can also
be induced in the normal heart by electrical stimulation of the myo-
cardium. Thus it is clear that fibrillation reflects abnormal organization
of cardiac activity. The desire to understand this abnormal organization
and to develop treatments to avert the establishment of fibrillation
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(b)

8.9 (continued)
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underlies much of the research on the spatial organization of activity
in excitable media discussed above.

An early description of fibrillation was given by Garrey in 1924.
Since his description portends subsequent developments, we quote
extensively:

The general process of fibrillary contraction of heart muscle may
be described as an incoordinate, disorderly and extremely bizarre
contractile process in which normal systole and diastole no longer
occur, the impression being given that individual fibers or groups
of fibers are contracting independently (hence the name fibrilla-
tion). While certain regions of the fibrillating tissue are at rest, other
adjacent area or areas widely separated from each other may show
synchronous contraction. The surface of the fibrillating chamber
shows areas of fine twitchings, of flickering and tremulous move-
ments, combined with coarser undulating waves of muscular con-
traction which progress slowly through the muscle mass, moving
now in oi;c direction, now in another, being continually blocked in
their progress by interference with other waves. In one and the
same heart, every gradation may at times be seen, from the con-
dition in which the coarse undulatory movements p -edominate, a
condition to which Kronecker (1896) referred as a rolling move-
ment which is comparable to a stormy peristalsis, to that in which
the fibrillating tissue presents the appearance of a quivering mass
or shows coarse, rapid fluttering movements with superimposed
fine, fibrillary twitchings (Robinson, 1913). Riotous and chaotic as
this fibrillation appears to be, analysis indicates that it may be aptly
spoken of as a contractile maelstrom, for it appears that contrac-
tions are not independent of each other, but that the contractile
impulse travels in a ringlike circuit repeatedly returning to and in-
volving a given region after completion of each circuit (Garrey,
Mines). This idea of a trapped wave, as presented by Garrey and
by Mines, has been generally accepted by present day experimenters
(c.f. infra).

Concerning a theoretical description of the mechanism that can lead
to the fibrillation, Garrey is once again remarkably lucid:

Impulses can spread in any and all directions, their progress
being limited only by the preexistence or development of localized
blocks within the tissue mass. Such blocks divert the impulse into
other and more circuitous paths, and the area so blocked off can
participate in contraction only v lien an impulse which has passed
the other parts of the ventricle approaches it from another direc-
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tion; this area in turn becomes a center from which the progress of
contraction is continued, to be in turn diverted by other blocks.
The existence of such blocks, and especially of blocks of transitory
character and shifting location, has been noted in the experiments
detailed above. These conditions make possible the propagation of
the contraction wave in a series of ring-like circuits of shifting lo-
cation and multiple complexity. It is in these circus contractions,
determined by the presence of blocks, that we see the essential phe-
nomena of fibrillation.

These observations are consistent with and anticipate much recent
research on fibrillation. They are in accord with the suggestion by Moe
and coworkers that fibrillation is due to the wanderings of multiple
wavelets in the myocardium, and with the emphasis of the Russian
school (as typified by the work of Krinskii) on the importance of "re-
verberators" and the fractionation of reverberators to give multiple re-
entry circuits. The recent emphasis by Winfree on circus motion as a
basis for fibrillation is also consistent with Garrey's early discussions.

The development of microelectrodes and computers has made pos-
sible elegant physiological studies of tachycardia and fibrillation in
the intact myocardium. Allessie and coworkers have observed circus
motion in rabbit atria, and quite recently they have observed complex
propagation that appears to be analogous to the multiple wavelets sug-
gested from the computer studies of Moe. A dramatic example was ob-
tained by Downar and colleagues by recording epicardial activity of the
ventricles during cardiac surgery in humans. Rotating spiral waves,
similar to those observed by Allessie in rabbit atria, were observed dur-
ing an episode of ventricular tachycardia (figure 8.10). El-Sherif and
coworkers have studied the patterns of activation for one to five days
following coronary artery ligation in dogs. A pattern of excitation was
observed in which "two circulating wavefronts advance in clockwise and
cour rclockwise directions, respectively, around two zones (arcs) of
functional conduction block." It is intriguing to speculate that these
two circulating waves might be analogous to the clockwise and counter-
clockwise rotations that are often set up in the excitable Belousov-
Zhabotinsky reaction (figure 1.12b).

From a practical standpoint, one of the crucial aspects of the study
of fibrillation is to determine how it is established in cardiac tissue. One
mechanism is by repeated periodic stimuli delivered to a single locus
on the myocardium. Numerical simulations by Moe and coworkers and
J. M. Smith and R. J. Cohen show that such periodic stimuli, if suf-
ficiently rapid, will lead to dynamics resembling fibrillation following
removal of the stimuli, in a medium with a variable refractory period.
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8.10. Epicardial mapping of ventricular activation recorded in humans during pro-
grammed stimulation. Lower panel shows three local epicardial electrograms in transi-
tion from programmed pacing (arrows) to sustained ventricular tachycardia. Upper panel
shows retrospective epicardial maps in which consecutive wave fronts of excitation, at
12-msec intervals, for two sequential beats of the tachycardia. The activation wheeled
around the apex, consistent with ventricular flutter. From Downar et al. (1984).

An intriguing result from the simulations is that complex periodicities
(such as alternans or other period-multiplied rhythms) result for stimu-
lation frequencies slightly lower than those that gave rise to the fibril-
lation. These rhythms are due to the variable conduction around and
through regions of high refractory periods, and are not related to the
period-doubling cascades observed in nonmonotonic one-dimensional
maps.

Another result from these simulations shows that alternans is some-
times observed prior to fibrillation. This finding is of interest since it is
known from experiments in dogs that alternans in T-wave morphology
is associated with a lowered ventricular fibrillation threshold. Although
it is tempting to speculate that such alternans may be part of a period-
doubling cascade leading to chaos (i.e., fibrillation), a clear mechanism
that could generate such a cascade has not been proposed. As discussed
in section 8.1, the alternating response of cardiac tissue to stimuli at
high stimulation rates may be due to a period-doubling bifurcation
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(which is not part of a cascade). Thus the appearance of alternans
prior to fibrillation in response to rapid stimulation requires a careful
and conservative analysis. At present the association of fibrillation with
the chaos observed in one-dimensional maps is not justified.

A second mechanism for inducing fibrillation is to give a single elec-
trical shock at a critical phase (called the vulnerable phase by Wiggers
and Wegria) in the cardiac cycle during the refractory phase of the
ventricles. This timing is clinically important because fibrillation occur-
ring in the clinical context of frequent ectopy is often associated with
the fall of ectopic beats during the repolarization of the ventricles, the
R on T phenomenon. In addition, the induction of atrial fibrillation is
often associated with a premature atrial contraction that falls during the
repolarization phase of the atria. As Winfree has shown, a single stim-
ulus falling during the refractory period could give rise to spiral-wave
activity patterns. If the stimulus is delivered so that it generates a wave
that intersects the trailing refractory zone of a propagated wave, the
endpoints of the stimulated wave might roll up to give rise to two
counterrotating spiral waves. Thus a single shock delivered to spon-
taneously oscillating homogeneous tissue might lead to a graded phase
resetting, culminating in spiral waves. However, the phase-resetting
argument presented by Winfree is not directly applicable to fibrillation
since the usual medium for cardiac fibrillation is an excitable but not
a spontaneously oscillating tissue. Nevertheless, the observation that
circus movement can be set up in a homogeneous tissue is important
and contrasts with other hypotheses based on heterogeneous refractory
times.

In view of the complex nature of fibrillation, there has been interest
in developing quantitative measures to characterize it. However, since
fibrillation is not stationary, and fibrillation in different contexts may
have different characteristics, quantitative studies are open to unavoid-
able problems. Computation of power spectra during ventricular fib-
rillation and autocorrelation during atrial fibrillation reveal strong
periodicities, which may reflect the presence of regular periodic circus
motion or localized pacemakers. It is important to recognize that auto-
correlation functions, power spectra, or dimension calculations based
on surface electrocardiograms are crude measures of the spatial orga-
nization of fibrillation.

The discussion to this point has dealt with fibrillation and circulating
waves in cardiac tissue, but it is clear that any excitable tissue can sup-
port circus movement and fibrillation. Two tissues in which circus
movement has been demonstrated are the rat cortex and the chicken
retina. This work is based on earlier observations of waves of spreading
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8.11. Circulating wave of spreading depression elicited by a single injection of KCl to
the cortex of the rat. The circulating rhythm lasted for about 3 hr (55 min of the middle
part of the record are omitted). During the last five complexes, there was KCl application
by which the circulation of spreading depression was stopped. The small circle is the site
of KCl injection, the large circles represent the sites of the recording electrodes, and the
straight line represents an incision in the cortex. It was usually necessary to administer
two KCl injections to initiate the circulating wave. From Shibata and Bures (1972).

cortical depression following application of potassium chloride to neu-
ral tissue. The slow spread of the waves (2-4 mm/min) is similar to
the spread of waves in Jacksonian epilepsy and the scintillating scotoma
of migraine headaches. Figure 8.11 shows recordings from two points
on a rat cortex during passage of a circulating depression. The appear-
ance of alternating activity levels is particularly intriguing. This may
be related to the alternans described in section 8.1, and warrants further
study.

Another organ in which circus movement might be expected is in the
stomach, but we know of no documented description of circus move-
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men*, there. Recently, however, You and coworkers have written about
a patient with gastrointestinal motility abnormalities (tachygastria),
including severe nauseau, vomiting, epigastric bloating and pain, and
weight loss. Recording of gastric activity from serosal electrodes in-
dicated abnormally rapid rhythms, postulated to be caused by "the
development of an abnormal ectopic or wandering pacemaker in the
antrum." The symptoms were greatly improved by hemigastrectomy.
However, histologic study of the antrum and a segment of the jejunum
did not disclose any discernible lesions. A possible, but completely
speculative mechanism for the malady would be fibrillation or circus
movement, but much more detailed multielectrode recordings would be
needed to confirm this speculation.

8.6 Summary

The spatial ordering of oscillations can differ from simple wavelike
excitations emanating from a point source. In one dimension, if the
stimulation frequency is too large, there will either be dropped beats
(Wenckebach and other block phenomena) or there will be an alterna-
tion of response (alternans). In two dimensions, there can be propagat-
ing spirals having either one or several arms. In three dimensions, still
more complex geometries called organizing centers are theoretically
possible, but they are extremely difficult to observe experimentally. It
is possible that complex dynamics in two and three dimensions in which
there are multiple reentry circuits (spirals or organizing centers) underlie
fibrillation.

Notes and References, Chapter 8

8.1 Wave Propagation in One Dimension
The cardiac rhythms in which there is partial blocking of propagation in the

neighborhood of the AV node, resulting in grouped beating, are now called
Wenckebach rhythms in honor of their discoverer (Wenckebach 1904). Early
attempts at analysis of the mechanisms of Wenckebach rhythms were carried
out by Mines (1913), Mobitz (1924), and Lewis and Master (1925), who recog-
nized that the PR interval is often a decreasing function of the preceding RP
interval. Mobitz (1924) and more recently others (Decherd and Ruskin 1946;
Levy et al. 1974a,b- Glass, Guevara, and Shrier 1987; Shrier et al. 1987) have
shown that the AV recovery curve can be used to compute the effects of peri-
odic stimulation as a function of the frequency of the periodic stimuli. A similar
theoretical model for AV heart block has been proposed by Keener (1981),
who provided an understanding of the bifurcations of the finite difference
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equations that model this arrhythmia (Keener 1980, 1981). For further dis-
cussions of Wenckebach rhythms, see Bellett (1971), Zipes (1979), and Marriott
and Conover (1983). Wenckebach-like rhythms are also observed in other
tissues such as the ureter (Weiss, Wagner, and Hoffman 1968).

Alternans rhythms, in which there is an alternation of action potential mor-
phology, have also been observed in diverse tissues such as the ureter (Prosser,
C. E. Smith, and Melton 1955), canine antral circular muscle (Publicover
and Sanders 1986), and embryonic chick-heart cells (Guevara et al. 1984). These
experimental observations may be related to the electrical alternans pheno-
menon observed in electrocardiology (Bellett 1971). The theoretical analysis of
alternans using iterative techniques was pioneered by Nolasco and Dahlen
(1968), and our treatment follows along similar lines (Guevara et al. 1984). For
a discussion of the electrical restitution curve, see Boyett and Jewel (1978).

In this chapter we do not discuss in detail wave propagation in one-dimen-
sional excitable media which originates from a point source in which there is
periodic propagation with the same period as the pacemaker. Such situations
have been extensively analyzed, notably in the papers of Rinzel and coworkers
(Rinzel 1980, 1981; Rinzel and Miller 1980; Rinzel and Maginu 1984). For other
important theoretical results on traveling wave solutions in one dimension, see
Carpenter (1979) and Feroe (1983). These references should be consulted for
details and for full citations to earlier work. In realistic models of the cardiac
conduction system, analytic results are not yet available, though numerical
simulations of conduction have been carried out (Joyner et al. 1983).

In other theoretical work specifically related to the intestine, the frequency
gradient of coupled nonlinear oscillators has been modeled by several groups,
and it has been possible to demonstrate the presence of frequency plateaus in
the mathematical models (Diamant, Rose, and Davison 1970; Sarna, Daniel,
and Kingma 1971; B. H. Brown et al. 1975; Patton and Linkens 1978; Sarna
1985). Recently, studies of a simplified mathematical model tor the small in-
testine have successfully obtained analytic results on the plateau phenomenon
(Kopell and Ermentrout 1983). Wave propagation underlying locomotion in
fishes (Kopell 1986) and the lamprey (Rand, A. H. Cohen, and Holmes 1988)
has also been modeled by coupled oscillators.

8.2 Wave Propagation in a Ring of Tissue
Rings of tissue from the jellyfish mantle were first studied early in this cen-

tury by Mayer (1908). Shortly thereafter, wave propagation in rings of cardiac
tissue was studied by Mines (1913, 1914) and Garrey (1914, 1924).

The idea that conduction block due to elevated refractory time can also lead to
the establishment of circus excitation is due to Lewis (1920; see also Krinskii
1968; Marriott and Conover 1983).

Wiener and Rosenblueth (1946) have considered a model of tissue with a
homogeneous refractory time throughout, specifically within the context of a
tissue with a "hole" or nonconducting region. Lewis (1920, 1925) showed that
stable, circulating atrial waves could exist around the openings of the great
veins on the right auricle by mapping the cardiac action potentials on the
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surface of the heart of a dog, and proposed that this circulating wave was
associated with atrial flutter. Another example of circus movement is in Wolff-
Parkinson-White patients in whom there is an accessory pathway between the
atria and ventricles (Marriott and Conover 1983; Gallagher 1985). A perma-
nent cure for tachycardias in these patients can be obtained by surgical section
of the accessory pathway, thereby breaking the reentry loop (Wallace et al.
1974). Finally, some tachycardias appear to arise from circus movement around
an aneurysm or infarct (Josephson et al. 1985).

8.3 Waves and Spirals in Two Dimensions
See Winfree (1980, 1987b) for a much more complete summary of the main

work on two-dimensional wave propagation in physiology.
The observations by Garrey (1914, 1924), Mines (1913, 1914), and Lewis

(1920, 1925) formed the basis for the first theoretical study of reentry and
fibrillation by Wiener and Rosenblueth (1946). Selfridge (1948), working with
the same model, was able to show that it did not support stable circus movement
in the absence of an obstacle.

Stable spiral waves in nonliving excitable systems were apparently first ob-
served by Nagumo, Suzuki, and Sato (1963). For a discussion of the results in
this reference (which is difficult to obtain) and a full discussion of spiral waves
in the Belousov-Zhabotinsky reaction, see Winfree (1980, 1987b). Additional
observations on spiral waves in the Belousov-Zhabotinsky reaction are in
Agladze and Krinsky (1982) and Muller, Plesser, and Hess (1985). Stable spiral
waves are observed in aggregating cellular slime molds, as described by Gerisch
(1965) and more recently by Durston (1973). The observation of circus move-
ment in rabbit atria was carried out by Allessie, Bonke, and Schopman (1977).

Spiral waves have been observed in many studies of the dynamics of cellular
automata (Farley and Clark 1961; Reshodko and Bures 1975; J. M. Greenberg,
Hassard, and Hastings 1978; Madore and Freedman 1983). Studies of cellular
automata as models of cardiac action potential propagation are found in Moe,
Rheinboldt, and Abildskov (1964) and J. M. Smith and R. J. Cohen (1984).

Spiral waves are observed in numerical simulations and theoretical analyses
of continuous nonlinear systems. Numerical results were obtained by Gulko
and Petrov (1972) in a model of excitable biological systems, and by Winfree
(1974) and Miura and Plant (1981) in a simplified model of excitable kinetics.
Spirals were also observed in mathematical models of oscillating chemical reac-
tions (Erneux and Herschkowitz-Kaufman 1975; D. S. Cohen, Neu, and Rosales
1978). A number of analytical results dealing with the existence and stability
of spiral waves in two-dimensional media have been obtained (Kopell and
Howard 1981; Hagan 1982; Mikhailov and Krinskii 1983; Keener 1986).

8.4 Organizing Centers in Three Dimensions
The original description of the scroll wave (Winfree 1973a) flowered 10 years

later in the elaboration of a beautiful and detailed theory of spatial organi-
zation in three-dimensional excitable media (Winfree and Strogatz 1983a,b,c,
1984a,b), which is summarized and explained in a nontechnical way in Winfree
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(1987b). It is still too soon to evaluate the practical importance of these theoret-
ical results. However, observations of a simple three-dimensional geometry
corresponding to theoretical expectations have been made in the Belousov-
Zhabotinsky reaction (Welsh, Gomatam, and Burgess, 1983).

8.5 Fibrillation and Other Disorders
Mines (1914) and Garrey (1914, 1924) had deep insights into the origin of

tachycardia and fibrillauon. The earliest experimental work on fibrillation in-
duced by electrical stimulation of the myocardium is by Mines (1914) and
Wiggers and Wegria '1940). The role of premature atrial contractions in in-
ducing atrial fibrillation is discussed in Bennett and Pentecost (1970), and the
role of premature ventricular contractions in inducing ventricular fibrillation
and sudden death (the R on T phenomenon) is discussed in Nikolic et al. (1982)
and Hohnloser et al. (1984). A current perspective on sudden cardiac death is
in Lown (1979). A suggestion by Winfree (1983b) that Mines accidentally killed
himself in 1914 while performing phase resetting experiments on his own heart
has received widespread circulation. Documentary evidence apparently incon-
sistent with this suggestion has been found and is in the Osier Library at McGill
University (see also Winfree 1987b>

The hypothesis that fibrillation is due to the wanderings of multiple wavelets
due to variable refractory times in the myocardium is due to Moe and co-
workers (Moe and Abildskov 1959; Moe et al. 1964) and has recently been re-
examined by I M. Smith and R. J. Cohen (1984) and Allessie et al. (1985).
Ritzenberg et al. (1984) have shown that the post stimulus fibrillatory-like re-
sponses in these models are due to the variable conduction around and through
regions of high refractory period. The alternans in T-wave morphology asso-
ciated with lowered ventricular-fibrillation threshold in dogs was shown by
Adam et al. (1984). Similar ideas, but stressing the importance of "reverberators,"
have been popular in Russia (Krinskii 1968).

Direct mapping of *he electrical activity during arrhythmia promises to clar-
ify what is going on during tachycardia and fibrillation (Allessie et al. 1977;
Allessie et al. 1985; Downar et al. 1984; El-Sherif 1985). Ideker and Shibata
(1986) have recently used the mapping techniques to test hypotheses about the
origin of tachycardia and fibrillation which have been proposed by Winfree
(1983b, 1985, 1987b) and have found agreement with theoretical predictions. In
particular, they have observed the establishment of both clockwise and counter-
clockwise rotating waves due to single shocks delivered during a critical phase
of the cardiac cycle. The effects of a stimulus on an excitable, but nonosciUatory
medium presents special problems for theoretical interpretation (Winfree
1987b).

The nonstationarity of fibrillation has been discussed by Wiggers (1940) and
Goldberger et al. (1986). The computation of power spectra of ventricular fibril-
lation was carried out by Herbschleb et al. (1979) and Goldberger et al. (1986),
and the autocorrelation of atrial fibrillation was reported by Batters by (1965).

One topic of contention is whether fibrillation is "chaotic" (Battersby 196^;
J. M. Smith and R. J. Cohen 1984; Goldberger et al. 1986). Since there are no
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generally accepted operational definitions for fibrillation or chaos, this question
could be debated endlessly.

Circus movement in the rat cortex was described by Shibata and Bures (1972)
and in the chicken retina by Martins-Ferreira et al. (1974). The original observa-
tion of waves of spreading cortical depression following potassium chloride
application was due to Leao (1944). A report of tachygastria is in You et al.
(1981).



Chapter 9

Dynamical Diseases

W e have proposed that diseases characterized by abnormal temporal
organization be called dynamical diseases. In this chapter we briefly
review the concept of dynamical disease. In section 9.1 we discuss the
identification of dynamical disease. There is a large literature in which
mathematical models for dynamical disease have been formulated, and
this theoretical approach is discussed in section 9.2. An alternative
approach, discussed in section 9.3, is to formulate biological models of
dynamical disease and to analyze them theoretically. One eventual goal
is to utilize principles and concepts from biological and mathematical
models for diagnosis and for the rational design of therapies. This is
discussed in section 9.4.

9.1 Identification of Dynamical Diseases

The normal individual displays a complex mosaic of rhythms in the
various body systems. These rhythms rarely display absolute period-
icity. Indeed, quantitative measurements of such rhythms as the heart
rate and respiration frequently reveal much greater fluctuations in these
systems than might be naively expected. Goldberger and colleagues
have even suggested that the normal healthy dynamics are "chaotic"
and disease is associated with periodic behavior. However, clear
mechanisms which can lead to chaos (in the technical sense used in
this book) for normal dynamics have yet to be enunciated. Whether
or not one interprets normal dynamics as chaos or some other type of
dynamic behavior, it is clear that many pathologies are readily identi-
fiable by abnormal rhythmicities.

The signature of a dynamical disease is a marked change in the
dynamics of some variable. Three types of qualitative changes in dy-
namics are possible and all have been observed: (1) variables that are
constant or undergoing relatively small-amplitude "random" fluctua-
tions can develop large-amplitude oscillations that may be more or less
regular. Thus there may be the appearance of a regular oscillation in
a physiological control system not normally characterized by rhythmic
processes; (2) new periodicities can arise in an already periodic process;
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and (3) rhythmic processes can disappear and be replaced by relatively
constant dynamics or by aperiodic dynamics.

During a 30-year period starting in the late 1940s, Reimann studied
periodic diseases in which the period was greater than 24 hours. In
1974 he wrote:

Since 1947 I have collected reports of more than 2,000 exam-
ples of various medical disorders recurrent at weekly, fornightly,
monthly or irregular intervals in otherwise healthy people. These
repetitive disturbances are far more intense and disabling than
those incident to the circadian rhythm. They are heritable and,
with an exception, only one of several entities afflicts a family
[Reimann 1963].

Generally, and in current textbooks of Medicine, the proposed
nosologic relation of the disparate entities is received skeptically
and the subject is confused. I probably have not made my views
clear, or my essays may not be read carefully or the idea is dis-
regarded. Each entity is different clinically, but all have in common
heredity, precise or irregular periodicity of short episodes of illness
for decades, overlapping features, suppression of episodes during
pregnancy, occasional replacement of one entity by another, occa-
sional amyloidosis, similar serum complement defects and they
resist therapy.

Reimann studied a host of different periodic diseases, including dis-
orders that are associated with periodic recurrence of fever, periodic
swelling of joints, periodic fluctuations of circulating blood cells, and
periodic edema. Whether or not the disorders Reimann was considering
share any common etiologic features, his emphasis on instilling order
based on dynamic features of the disease was not popular. In a similarly
frustrated tone, Crammer wrote in 1960: "Cyclic processes are facts of
pathology as of physiology, and multiple rhythms occur in the single
individual throughout the evolutionary tree. This knowledge does not
seem to have penetrated clinical medicine in the way it has gained
acceptance in the rest of biology, perhaps because so little is known of
the underlying mechanisms of cyclic illnesses."

Our observations stress the importance of careful experimental docu-
mentation of the time-dependent behavior of physiological control sys-
tems in health and disease, particularly in response to changes in control
parameters. Such observations not only provide important insight into
the nature of the underlying control systems, but also place constraints
on the features that proposed models must contain.

Unfortunately, published long time-series for physiological phenom-
ena are uncommon, particularly in the recent clinical literature. In our
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research on dynamical diseases over the past decade, we have been
struck by the great difficulty, if not impossibility, of identifying vital
data sets containing long time-dynamics of numerous physiological
variables in a single individual. Thus extended records of blood cell
concentrations, hormone levels, blood pressure, labor rhythms, and so
on are not easily found.

Although the accumulation of such long time-series of descriptive
data is sometimes difficult in the current research environment, other
reasons may exist for their absence. It is quite possible that both in-
teresting and relevant dynamical changes are often observed but not
published because their significance is not fully appreciated, or the dy-
namical changes are wrongly ascribed to environmental noise and/or
experimental error. The pooling of data from different experiments or
patients often obscures the presence of interesting dynamics in experi-
mental and clinical time records. A fundamental property of chaotic
systems is that their dynamics are exquisitely sensitive to small changes
in either the values of the control parameters and/or initial conditions.
In view of the extensive range of biological variability, it is not sur-
prising that even at the best of times the observed dynamics between
two experiments or patients are not precisely the same. By pooling
time-series, one could easily submerge interesting dynamics into a mo-
notonous and humdrum noisy sea.

A wealth of dynamical behavior ranging from periodic to irregular,
noiselike oscillations can be readily observed both experimentally and
clinically in physiological control systems. Although many of these sit-
uations are familiar to the physiologist, the universal and fundamental
aspects of their rich dynamical fabric does not yet appear to be fully
appreciated. The importance of these qualities becomes more evident
when it is realized that relatively simple nonlinear mathematical models
have these same properties, thus implying that dynamic complexity
may be the norm rather than the exception in living systems. Significant
and striking dynamical features of normal and pathological physiolog-
ical systems exist, and a continuing study of these in the future is likely
to be extremely fruitful in its yield of insight into fundamental aspects
of physiological control.

9.2 Formulation of Mathematical Models
for Dynamical Diseases

The notion that it is possible to formulate mathematical models that
capture qualitative characteristics of human disease is certainly not
new. Prior to the coining of the term "dynamical disease," numerous
studies existed in which mathematical models for physiological systems



Dynamical Diseases 175

had been proposed, and altered dynamics in the mathematical model
as a result of bifurcations (not always characterized as such) were iden-
tified. For example, studies of cardiac conduction were undertaken by
Mobitz and by van der Pol and van der Mark in the 1920s and Wiener
and Rosenblueth in the 1940s. There were extensive studies of oscilla-
tory instabilities in negative feedback systems in the 1960s.

Throughout this book we have given a number of examples from
studies characterizing bifurcations in mathematical models of physio-
logical systems. Currently, those familiar with the basics of nonlinear
dynamics should be able to propose mathematical models for physio-
logical systems which display dynamic properties such as limit cycle
oscillation or "chaos." What is not so easy, however, is to make sure
that the origin of the normal or pathological oscillation is associated
with a hypothesized physiological mechanism.

The formulation of mathematical models for physiological system is
a powerful tool for fixing ideas and developing insight into physio-
logical dynamics. However, such modeling in the absence of concrete
applications to clinical or experimental systems will simply remain inter-
esting hypotheses. What is needed is the continual interplay between
theory and experiment which has characterized the physical sciences.
Although some may feel that biology is different from the physical
sciences, and will never be amenable to the type of sharp theoretical
analysis common there, we disagree. We are convinced that the rich
dynamical phenomena in physiology and medicine can be understood
using techniques being developed to understand dynamics in nonlinear
systems.

9.3 Development of Biological Models
for Dynamical Diseases

The great advantage in developing a biological model for a dynam-
ical disease is that it is possible to undertake systematic manipulations
that are simply not possible to undertake in human beings. Examples
of such biological models are the insertion of a length of tubing into
the carotid artery to increase the delay time between oxygenation of
blood in the lungs and the arrival of the blood in the brain stem (as a
model for Cheyne-Stokes respiration), the cycling of white blood cells
in grey collie dogs (as a model for the periodic fluctuations of white
cells in cyclical neutropenia), and the periodic stimulation of Purkinje
fibers in vitro (as a model for cardiac-arrhythmia generation).

The potential pitfall in biological models for dynamical diseases is
that the observed altered dynamics may mimic those observed clini-
cally, but for different reasons. Since the possible types of bifurcation
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from stable or oscillating states are often limited, it may be possible to
establish qualitatively similar dynamics in many different ways. Despite
this, combined systematic experimental and theoretical work on bio-
logical models of dynamical disease is essential. Even if the particular
model is shown to be inappropriate as a model for a particular disease,
the careful working-out of the theory for bifurcations in dynamics as
a function of system parameters is bound to be of interest. Unfortu-
nately, the current structuring of most institutions of higher learning,
combined with the inadequate training of both theoreticians and ex-
perimentalists and the current nature of research support, conspire to
make the requisite interdisciplinary studies logistically difficult to de-
sign, implement, and complete

9.4 Diagnosis and Therapy

A goal for many of those interested in the application of nonlinear
dynamics to physiology is to develop practical techniques for diag-
nosing pathological conditions and deciding on rational therapeutic
strategies for treating them. The biological aspects of our own research
has largely centered on the short- and long-range control of the cell
cycle and cell proliferation with applications to hematological dis-
orders, the dynamics of simple neural feedback systems, and the effects
of single and periodic perturbations on physiological oscillations. In
the course of this work, a number of potential applications of nonlinear
dynamics to clinical medicine have occurred to us. As illustrations of
these, we briefly describe several possible approaches drawn from our
own work and that of others.

In many clinical situations, periodic stimuli are delivered to the pa-
tient as a therapeutic measure. Examples are drug administration and
the use of electronic cardiac pacemakers and mechanical ventilators. In
these circumstances, establishing a well-controlled, stable relationship
between the imposed rhythm and the bodily rhythms can be difficult
to achieve.

For example, in some diabetic patients it can be difficult to establish
appropriate schedules for insulin administration. In these patients, peri-
odic insulin administration combined with regular eating and exercise
schedules is ineffective in maintaining blood glucose within normal
limits. Rather, there can be apparently irregular fluctuations (for ex-
ample, in blood glucose monitored upon arising). In such patients it
will be necessary to develop protocols for insulin administration based
on a knowledge of ambient blood-sugar levels and an understanding
of the dynamics of the glucose-control system.
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Implementation of sensing mechanisms to aid in the effective thera-
peutic use of mechanical ventilators and cardiac pacemakers has been
carried out. These sensing mechanism allow feedback from the patient
to the controlling device to facilitate operation and to avoid dangerous
competition between imposed and intrinsic rhythms. However, a de-
tailed understanding of the dynamics of these devices as they are used
clinically is an extremely difficult theoretical problem due to this bidi-
rectional coupling.

A novel suggestion for using periodic stimulation clinically has been
made by a colleague, John Milton at the Montreal Neurological Insti-
tute. He suggests that it may be possible to suppress tremor by periodic
stimulation. Such an effect would be analogous to suppression of oscil-
lation in cardiac cells by periodic depolarizing stimuli, as demonstrated
by Guevara in 1984. Similarly, properly timed doses of medication
might be able to suppress seizures in regularly cycling epileptics.

Another clinically important situation involving interactions between
endogeneous and external rhythms involves circadian rhythms. The
observation that circadian rhythms are often altered in patients with
affective disorders has led to attempts to treat these patients by re-
storing the normal phase relationship between the intrinsic sleep wake
and the normal 24-hour cycle. Phase shifting of the circadian clock
can be accomplished by light, by small changes in sleep pattern im-
posed over several days, and by drugs. It is important to recognize that
changes in the circadian rhythm may be one effect rather than the cause
of the affective disorder, so that treatment of the circadian abnormality
will not necessarily cure the affective disorder. Finally, since it has been
demonstrated that benzodiazepines can affect the circadian rhythms in
hamsters, the possibility has been raised that the effects of jet lag can
be reduced by appropriate administration of drugs, thereby phase re-
setting the circadian rhythm. However, setting appropriate doses and
schedules for drug administration is not yet possible.

Studies of the cell cycle and blood cell control have led to a number
of proposals concerning patients with blood diseases. Clinical data and
the study of the dynamics of feedback systems for the regulation of
hematopoesis (see section 4.6) have led to the recognition that oscilla-
tions and perhaps chaotic dynamics may be expected in patients with
blood disorders. In a study of periodic hematopoiesis (PH, also known
in the early literature as cyclical neutropenia), Mackey in 1978 was
able to relate the dynamic changes found in the blood-cell populations
of PH patients to a bifurcation in the dynamics of the pluripotential
stem cell (PPSC) population, accurately predicting the period of the
oscillations observed as well as a number of other characteristics of the
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disease. The bifurcation was hypothesized to arise from an (abnormal)
cellular death during the proliferative phase in the PPSC population.
The hypothesis that cell death during proliferation in the PPSC can
give rise to oscillations was subsequently confirmed using 89Sr to induce
cell death in W/Wv mice. A subfraction of aplastic anemia patients is
thought to suffer from the same pathology (abnormal cell death), and
the hypothesis for the origin of PH suggests that some of these aplastic-
anemia patients should show oscillations in their stem-cell numbers
and more mature hematopoietic cells during their recovery. This phe-
nomenon has been observed by Morley in unpublished work.

The recognition that patients with blood diseases may frequently
cycle has important practical implications. In the absence of any ther-
apy, a subpopulation of CML patients display prominent cycling of
their white blood-cell levels between normal and elevated values (see
figure 1.8 and section 4.6). An unpublished study of patient records
from the Oncology Day Centre of the Royal Victoria Hospital, Mon-
treal, suggests that many CML patients being treated with chemother-
apy were also "cyclers," and thus their white cell counts might have
spontaneously decreased to normal even without the chemotherapy.
The possibility that patients with CML may be cycling regularly or
chaotically confounds treatment. In fact, populations of patients with
CML show the same survival statistics now as they did during the
period from 1910 to 1948 in spite of the advent of sophisticated chemo-
and radiotherapies. One possible explanation (see section 4.6) is that
some patients die because of the therapy much sooner than if they had
been left alone, while others have their lifespan increased! This hypoth-
esis presupposes a white blood-cell control system operating in a cha-
otic domain, and would suggest that therapy will become effective only
when the intricacies of this control system have been truly mastered.

Insight from nonlinear dynamics for therapy need not always arise
from situations in which periodic or chaotic oscillations occur. For
example, in patients suffering from marrow hypoplasia of various ori-
gins—for example, from radiotherapy or chemotherapy—one might
think that the more the demand on the PPSC to produce differentiated
cells was decreased, the more advantageous to the recovery of the PPSC
and their marrow descendents it would be. Pursuing this original line
of thought, the dynamic response of a continuous maturation prolif-
eration model for the erythroid-production control system has been
treated as a nonlinear optimal control problem. A central point of
interest was the hematopoietic response after a massive decrease in
the number of proliferating PPSC, as found in many of these cases of
marrow hypoplasia, including aplastic anemia. Based on this analysis,
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it was possible to show that there is an optimal level of the peripheral
demand for mature erythrocytes that will allow the maximum possible
repopulation of the PPSC population. Surprisingly, the optimal de-
mand level on the PPSC for efficient repopulation is not zero. This
insight was used to design a simple therapy for the treatment of these
pathologies, based on decreasing the demand for differentiated ery-
throid precursor cells. This can be accomplished either by having the
patients breathe in an oxygen-enriched environment or by administer-
ing a massive transfusion of erythrocytes. These procedures have been
successfully tested at the Academy of Medicine, Krakow, Poland, but
large clinical trials have not been undertaken.

9.5 Summary

Many human diseases are characterized by unusual and complex
dynamic behavior. The analysis of the mechanisms underlying such
diseases must inevitably deal with a theoretical analysis of the observed
dynamics. Approaches to study these problems involve the formulation
of theoretical and biological models of the disease. A long-term goal for
researchers is to help provide novel diagnostic and therapeutic strate-
gies for the treatment of humans. It is our hope that this book will help
to stimulate research in these areas.

Notes and References, Chapter 9

9.1 Identification of Dynamical Diseases
Normal variability of the heart rate is described in Kitney and Rompelman

(1980), Akselrod et al. (1981), Kobayashi and Musha (1982), and normal vari-
ability of respiration is described in Goodman (1964). The hypothesis that this
normal fluctuation of the heart rate is associated with "chaos" is due to
Goldberger and colleagues (Goldberger et al. 1985,1986; West and Goldberger
1987; Goldberger and Rigney 1988). A mechanism which can give rise to highly
complex and perhaps chaotic dynamics in normal physiological control systems
is the interactions between multiple feedback loops controlling a single vari-
able (Glass, Beuter, and Larocque 1988). In recent work, available only in pre-
print form at the time of writing of this book, Goldberger and Rigney (1988)
summarize their position as follows: "cardiac arrest represents a bifurcation
from the fractal, chaotic dynamics of the normal heartbeat to the pathologic
periodicities of the dying heart." It is important to recognize, however, that
numerous clinical observations going back 40 years identify apparently irre-
gular rhythms, which were even called "chaotic" by Katz (1946), as precursors
to sudden cardiac death (Nikolic, Bishop, and Singh 1982; Hohnloser et al.
1984). Many other pathologic rhythms in the human heart, such as atrial fibril-
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lation, multifocal atrial tachycardia, and frequent ventricular ectopy frequently
appear to be highly irregular (Bellett 1971; Marriott and Conover 1983; Gold-
berger and Goldberger 1986).

Early discussion of periodicities in disease has been given by Reimann (1963,
1974), Crammer (1959, 1960) and C. P. Richter (1965). We first used the term
"dynamical disease" in 1977 (Mackey and Glass 1977), and have returned to this
theme often (Glass and Mackey 1979a; Mackey and an der Heiden 1982;
Guevara et al. 1983; Mackey and Milton 1987; an der Heiden and Mackey
1988).

9.2 Formulation of Mathematical Models
for Dynamical Diseases

Formulation of mathematical models for disease has been attempted many
times in the past. The study of mathematical models for cardiac arrhythmias
was pioneered by Mobitz (1924), van der Pol and van der Mark (1928) and
Wiener and Rosenblueth (1946). Models for the control of blood cell production
were proposed by King-Smith and Morley (1970) and Lasota (1977). Studies of
instabilities in negative feedback systems were undertaken by Grodins (1963),
Milhorn (1966), and Stark (1968). Throughout this book we have presented
theoretical models for a variety of pathological conditions, including Cheyne-
Stokes respiration (section 4.5), chronic myelogenous leukemia (section 4.6),
and AV heart block (section 8.1). In general, we anticipate that an under-
standing of the changes in dynamical behavior associated with disease will
necessarily entail a formulation of suitable mathematical models.

9.3 Development of Biological Models
for Dynamical Diseases

For a biological model of Cheyne-Stokes respiration, see Guyton Crowell,
and Moore (1956). For a discussion of the cycling of white blood cells in grey
collie dogs, see J. E. Lund, Padgett, and Oh (1967), and Dale, Ailing, and Wolf
(1972). Jalife and Moe (1976, 1979) developed biological models for the cardiac
arrhythmia parasystole.

9.4 Diagnosis and Therapy
An experimental demonstration of the suppression of periodic activity in

heart cells by periodic stimulation has been given by Guevara (1984) and
Guevara, Shrier, and Glass (1988). Phase resetting of the circadian clock in
humans by light has been reported by Czeisler et al. (1986). Turek and
Losee-Olsen (1986) induced phase resetting of the circadian clock in hamsters
using benzodiazepines. The possibility for treating affective illness by manipu-
lating the circadian clock is discussed in several papers in the collection by
Wehr and Goodwin (1983). Light therapy in various contexts is being pursued
actively by Lewy and coworkers (Lewy, Sack, and Singer 1985). A discussion
of the relevance of phase resetting of circadian clocks to jet-lag is in Winfree
(1986).
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A model for periodic hematopoesis was proposed by Mackey (1978), and
observation of cycling of blood cells following induced cell death using radio-
active strontium was given in Gurney, Simmons, and Gaston (1981). Statistics
on the survival of patients with chronic myelogenous leukemia are in Shimkin,
Mettier, and Bierman (1950) and Wintrobe (1976). A model for survival with
this disease is in Lasota and Mackey (1980).

Formulation of the continuous maturation proliferation model of the cell
cycle was carried out by Mackey and Dormer (1981, 1982), and application
of this model to aplastic anemia was carried out by Lasota, Mackey, and
Wazewska-Czyzewska (1981). Therapies suggested by this study have been im-
plemented by Wazewska-Czyzewska (1984).



Afterthoughts

Somehow, a myth has arisen (which we believe is accepted by the
great majority of practicing biologists) that detailed mathematical and
theoretical analyses are not appropriate in biology. Certainly the math-
ematical training of most biologists and physicians is minimal. Yet if
the complex dynamic phenomena that occur in the human body were
to arise in some inanimate physical system—let us say in a laser, or
liquid helium, or a semiconductor—they would be subjected to the
most sophisticated experimental and theoretical study.

We have had two aims in writing this book. This first is to make
physical scientists aware of the enormous complexity and beauty of
dynamic phenomena in physiology and medicine. The second is to
show physiologists and physicians that the techniques of nonlinear
mathematics are applicable, and in some cases essential, to the analysis
of dynamic phenomena in physiology.
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I n this book we have emphasized theoretical concepts and biological
problems rather than given details about computational techniques.
Yet, underlying the general theory is a large body of mathematical
methods subsumed under the rubric "Theory of Dynamical Systems."
This area is generally considered as an advanced area in mathematics
and as such it is not normally taught at the undergraduate level. Ac-
cordingly, texts in this area may not be suitable for many readers of
this book.

The use and understanding of the principles we have discussed will
be enormously facilitated if the reader attempts to develop some tech-
nical abilities that will enable him or her to formulate and analyze
finite difference equations and differential equations as models of partic-
ular biological systems. The mathematical concepts needed to carry
through such analyses do not require a sophisticated mathematical
background, and we have in fact taught undergraduate biology and
physiology students the basics for many years. In this Appendix we
sketch out briefly the central computational techniques and give some
problems. We discuss separately differential equations and finite dif-
ference equations.

A.I Differential Equations

Mathematical models in the physical and biological sciences are of-
ten formulated as ordinary differential equations of the form

dx
- ^ = / , . ( * ) , Xi(t = 0) = x ;(0), i=l,2,...N, (A.I)
at

where x;(f) represents the rth variable and the function ft(x) gives the
time evolution of xt(t). In the simplest situation the functions on the
right-hand side of equation (A.I) are linear, that is, all the variables on
the right-hand side appear only to the first power. In this situation
equation (A.I) can be written

^ = Ax, x(t = 0) = x0, (A.2)
at

where A is an N x N matrix, x represents an TV-vector, and x0 a vector
of initial conditions.
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The solutions of linear ordinary differential equations are completely
understood and can be readily calculated. To do this one solves the
characteristic equation, which is given by

det(A - pi) = 0, (A. 3)

where / is the identity matrix and "det" means determinant. The char-
acteristic equation is an iVth order polynomial in p, and in general it
will have N different roots, called eigenvalues, with non-zero real parts.
In this situation the solutions of equation (A.2) usually can be written

X;(t) = £ cfPit. (A.4)

where pt represents a root of the characteristic equation (A.3) and c;

represents a constant, which may be complex and is normally set from
the intial conditions.

The case of exponential decay considered in chapter 2 is an example
of equation (A.2) when there is only one variable. When there are two
variables, equation (A.2) can be written as

dxx

— = ax1 + bx2, ( A - 5 )

dx2

~dt
= cx1 + dx2,

where a, b, c, d represent constants. By differentiating in equation (A.5)
and then substituting, equation (A.5) can be rewritten in the form

^ ^ ad~ bc)xx = 0. (A.6)^ ( a + d)^
dt dt

Equation (A.6) is a linear, second-order ordinary differential equation
since the highest order of the derivative is 2 and all derivatives and
powers appear as linear terms. In second- (or higher) order linear dif-
ferential equations it is convenient to determine the characteristic equa-
tion by substituting x(t) = Cept and solving the resulting characteristic
equation.

Example 1. Radioactive materials decay according to the equation

dx
Tt = -*x>

where a is a constant. The half-life of radioactive tritium is 4.5 x 103

days. Give the formula for the amount of radioactive tritium as a func-
tion of time if N is present at t = 0.
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Solution. Radioactive tritium decays exponentially so that x(t) =
Ne~xt. The value of a can be calculated by determining the time tlj2

that it takes until x(t) = 0.5 N. Thus a = In 2/t1/2, or in this case a =
1.5 x 104days"1.

Example 2. An intravenous administration of a drug can be de-
scribed by a two-compartment model with compartment 1 represent-
ing the blood plasma and compartment 2 representing body tissue
(figure A.I). This system can be modeled by the differential equations,

dx1

IF
dx2

~dt

k2)x1 + /c3x2,

= klx1 - k3x2,

where x1 and x2 are the concentrations of the drug in compartments 1
and 2, respectively, and ku k2, and k3 are positive constants that give
the flow between compartments. Solve this equation for xl as a function
of time, starting from an initial condition xt(0) = C, x2(0) = 0 for the
special case kx = 0.5, k2 = k3 = 1.

Solution. The characteristic equation is

j + / c 2 ) - p

which can be solved to give

-(&! + k2 + k3) ± [(fej + k2

= 0,

Pl.2 =

Substituting the given values of ku k2, and k3, we find Pi = —1/2, p2 =
- 2 so that

x^t) = Ae~t/2 + Be"2'.

Compartment I Compartment 2

A.I. A compartmental model for transport
of drugs between the blood plasma (com-
partment 1) and body tissue (compartment
2). The kj represent rate constants for
transport.
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From the initial conditions, we find that

A + B = C.

dx1

dt
= - 3 C / 2 = -A/2-2B.

This can be solved to determine A = C/3 and B = 2C/3, so that the
solution of the problem is

(0 -'/2 ^ ~ 2 '

Example 3. A damped pendulum, in the limit of small-amplitude
oscillations, is described by the differential equations,

where 9 is the angular displacement from the vertical, k is a positive
constant proportional to the friction, and ro is the angular frequency.
The angular frequency in turn is (l/g)112, where / is the pendulum length
and g is the acceleration due to gravity. Assume that 4co2 > k2. At

t = 0, 9 = 5° and — = 0. What is 9 as a function of time?
dt

Solution. The characteristic equation is

p2 + kp + co2 = 0,

which has two roots,
_ -k±( / c 2 -4cu 2 ) 1 / 2

Pi,2 — 2 •

In this case the two roots are complex conjugates with a negative real
part. Using the identity e'a = cos a + i sin a, where i = y —1> the
boundary conditions can be used to set constants in the same manner
as in example 2. The solution is an exponentially decaying oscillation
given by

' — kt\V at 5k . at~

1'2where a = (4co2 - k2)

The analysis of the linear ordinary differential equations provides a
basis for the stability analysis of nonlinear ordinary differential equations
in the neighborhood of steady states (also known as equilibrium points
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or fixed points), which are defined as points for which the derivatives of
all variables are equal to zero. At a steady state, x*, of equation (A.I),

dx*
-£-= f,(x*) = 0, i=l,2,...,N, (A.7)

In the neighborhood of the steady state, the dynamics are given by

dx
— = A{x- x*), (A.8)
at

where the elements of the matrix A are defined as

3f, (A.9)

The eigenvalues of the matrix A can once again be computed using
equation (A.3). These eigenvalues are useful in characterizing the quali-
tative dynamics in the neighborhood of the steady state. If the real
parts of all the eigenvalues are less than zero, the steady state is asym-
ptotically stable, and it is asymptotically approached in the limit t -> oo
from all initial conditions in the neighborhood of the steady state. If
the real part of one or more of the eigenvalues is positive, then the
steady state is unstable. If the largest real part of the eigenvalue(s) is
zero, the steady state is called neutrally stable.

Let us consider the dynamics in the neighborhood of steady states in
two dimensions. If the origin of the axes is translated to the steady state,
then the linearized equations in the neighborhood of the critical point
is given by equation (A.5), and the eigenvalues are computed to be

The geometry of flows in the neighborhood of the critical point depend
on the eigenvalues. The various generic cases have been named as
follows:

Case 1. Focus, pt and p2 are complex conjugates with nonvanishing
real parts

a + d^O, (a-d)2 < -4k-.

Case 2. Node, pt and p2 are real with the same sign,

a + d\ > [(a - df + Abe]112, (a - df > -Abe.

Case 3. Saddle point, pt and p2 are real with the opposite signs,

\a + d\ < [(a - d)2 + Abcf12, (a - df > -Abe.
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NODE

FOCUS

SADDLE

A.2. The three main types of steady
states for two-dimensional ordinary
differential equations. Stable nodes
and foci are shown. For unstable
nodes and foci, the trajectories are
directed outward, away from the
steady state.

Nodes and foci can be either stable or unstable. Saddle points are always
unstable.

As discussed in chapter 2, it is common to plot the evolution of the
system as time proceeds by sketching the trajectories in the phase space
for different initial conditions. In figure A.2 we show the phase plane
portraits of foci, nodes, and saddle points.
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Bifurcations are associated with changes in the number and/or sta-
bility of steady states or other limit sets. For example, the Hopf
bifurcation is associated with two complex eigenvalues crossing the
imaginary axis. Determination of whether this corresponds to a super-
critical or subcritical bifurcation (chapter 5) can (in principle) be carried
out algebraically, though the computations may become horrendous.
A second simple bifurcation is associated with the splitting of a single
stable steady state into three steady states—a saddle point and two
stable steady states.

The number and types of steady states are restricted by the geometry
of the phase space. An important topological result due to Poincare
places restrictions on the steady states in two-dimensional vector fields.
In practical situations, the dynamics are restricted to a finite connected
region of phase space, and the trajectories on the boundary of the region
are directed into the region. In this situation, in two dimensions, if we
call Jf, 3F, and £f the numbers of nodes, foci, and saddle points, respec-
tively, then by the Poincare Index Theorem

jf-\.&-y = \. (A.ll)

Extensions of this result to higher-dimensional phase spaces and phase
spaces of different topology are possible.

Example 4. A system in which there is mutual inhibition (see chapter

4) can be given by the differential equations,

dx _ 0"

It ~ 0" + y" ~ *'

It ~ 0" + x" ~ y'

If 0 = 1/2, there is a steady state at x* = y* = 1/2. Discuss the bifurca-
tions and sketch the flows in the phase plane as n varies.

Solution. The characteristic equation at the steady state is readily
calculated from equation (A.9) is

= 0.

The eigenvalues of this equation are p1 2 = — 1 + n/2. The steady state
is a stable node for n < 2 and a saddle point for n > 2. The trajectories
in the two-dimensional phase space can be sketched (figure A.3). At



1.5

1.0

0.5

0

(b)

X

o «>z/

0.5 1.0 1.5

A.3. Schematic representation of the phase plane for mutual inhibition, (a) For n < 2
there is a single stable steady state, (b) For n > 2, there are three steady states, a saddle
point and two stable nodes. Which node is reached in the limit t —> oo depends on the
initial condition.

n = 2 there is a bifurcation in which the single steady state splits into
a saddle point plus two stable steady states.

Example 5. The van der Pol oscillator is given by the equations

dx 1 x3

dy
£>0.

Describe the bifurcations as a function of e, and sketch the phase plane
for the case 0 < e « 1.

Solution. There is a single steady state at x = y = 0. The characteristic
equation is

1 1

=o.s £

- £ -p

from which the eigenvalues can be readily computed to give

1/2

Therefore, for £ > 1/2 there is an unstable focus, and for 0 < e < 1/2
there is an unstable node. For 0 < e « 1, there is a limit cycle as shown
in figure A.4.
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dx

dt

A.4. Schematic diagram of the phase plane for the van der Pol equation with £ » 0. A
stable limit cycle is set up. The jump from one branch of the cubic to the other along
the dotted lines is rapid.

The examples and calculations have concentrated on the analysis of
the stability and bifurcations of steady states. Unfortunately, except in
one-dimensional ordinary differential equations, knowledge about the
number and stability of steady states is not sufficient to give a complete
description of the global topological organization of the dynamics.
Indeed, proofs of comparatively simple topological properties of dy-
namics, such as the uniqueness and stability of limit cycle oscillations
in two and more dimensions are often very hard to find, and there is a
great reliance on numerical methods to study nonlinear dynamics.

In contrast to ordinary differential equations, in which the right-
hand side is a function of the current values of the variables, in delay
differential equations the right-hand side may be a function of the value
of variables at some time in the past. In physiological systems with
feedback, time delays often arise because of the time needed to transmit
information from receptors to effector organs (see sections 4.5 and 4.6).
The analysis of the dynamics in time-delay equations poses many theo-
retical problems of great current interest. Here we concentrate on the
comparatively simple problem of local stability analysis.

Consider the delay differential equation,

^ =/ (* ,* , ) , (A.12)

where xz = x(t — x). Note that for this, in contrast to ordinary differen-
tial equations, initial conditions must be specified as initial functions,

x(t') = fit') for (' e [ —T, 0],

and delay differential equations, in spite of their apparent simplicity,
are actually infinite dimensional systems.
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As usual, the steady states x* of equation (A. 12) are defined implicitly
by f(x*, x*) = 0. Thus, using a Taylor series expansion of equation
(A. 12) in the neighborhood of a steady state x*, and considering only
first order terms, we obtain

~rAz + Bzz, (A.13)

where

(A. 14)* Az = x — x*, A = —
ox

To examine the local stability of equation (A. 12) in the neighborhood
of a steady state x* is equivalent to examining the solutions of equation
(A.13) for the local stability of z = 0. Thus we make the ansatz z = eXt

which, with equation (A.13), gives

X = A + Be~'A\ (A.15)

Generally, the eigenvalue X is complex, X = \i ± ico, and in order for
local stability of z = 0 to be assured, we must have fx < 0.

In 1950 Hayes gave a complete treatment for the conditions under
which n = Re(X) < 0, and these may be summarized by the following:

Ml > 1*1
or

ifcos M--g
Ml < l*| and Z<

{B2

where the principal value [0 < cos~ 1( — A/B) < n~] is taken. This con-
dition defines the situation under which a steady state x* of equation
(A. 12) will be locally stable. Though Hayes' treatment is rather compli-
cated, a partial understanding for these criteria can be obtained from
the following considerations.

We go back to equation (A.15) and consider the case when X is purely
imaginary, that is, X = ico, so /i = 0. This is, then, just the condition for
neutral stability. Substituting X = ico into equation (A.15) gives

ico = A + Be-'10", (A. 17)

which is equivalent to

ico = (A + B cos COT) — iB sin COT. (A. 18)
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Equating real and imaginary parts of equation (A. 18) gives two
equations,

— A = B cos cox, (A. 19a)

and

co = — .B sin COT, (A. 19b)

which are to be solved for co and T. Squaring both equations and adding
gives

co = (B2 - A2)112. (A.20)

Furthermore, from equation (A. 19a) COT = cos - 1( — A/B), so

defines exactly the value of the time delay T at which n = 0, given values
of A and B. Comparison of equations (A.20) and (A.21) with the Hayes
criteria in equation (A. 16) shows the connection. Often, but not always,
as a parameter in equation (A. 12) is varied so that a steady state x*
loses its stability [the conditions in equation (A. 16) are violated], a
Hopf bifurcation takes place with a pair of complex conjugate eigen-
values crossing from the left-hand to the right-hand complex plane.
The inequalities in equation (A. 16) can be obtained only from a finer
analysis.

Equations (A.20) and (A.21) offer some interesting insights into the
period of oscillation when stability is lost. At precisely the set of param-
eters (A, B, T) defined by equation (A.21), there is a solution z(t) = eimz

of equation (A. 13), where the angular frequency co is given by equation
(A.20). Since angular frequency co and period T are related by co = 2n/T,
equation (A.21) can be written in the alternative form,

(A.22)

From this it is readily derived that if A and B are the same sign,

2T ^ T ^ 4T, (A.23a)

whereas, if A and B are different signs,

2T < T. (A.23b)
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Therefore, in the time-delay equation in equation (A. 12), it is possible
to place bounds on the period of the oscillation at the point of instability.

Example 7. The time-delay differential equation

dx _ 6"

dt 0" + xn
t

represents a negative feedback system in which a substance, xz, decays
exponentially but is produced by a monotonically decreasing feedback
function that depends on the value of x at a time z in the past. Deter-
mine the stability criteria when 6 = 1/2. For n » 1, what are the stability
criteria and what is the period of the oscillation at the instability?

Solution. There is a steady state at x* = 1/2. Doing a power-series
expansion around this point and defining z = x — 1/2, we have, to first
order,

dz n

Applying Hayes's criteria [equation (A. 16)], we find that the steady
state is stable if

2>n,

or

cos"1I -
n > 2 and z <

For large values of n, the solution will be stable provided nz < n. At
the point of instability, the period is 4r. This shows that steady states
in negative feedback systems with time delays are destabilized by in-
creasing the gain of the feedback (here n) or the time delay, T. Note that
we have not provided analytic evidence that this bifurcation is a super-
critical Hopf bifurcation, but further analytic studies show this to be
the case.

A.2 Finite Difference Equations

One approach to analyzing differential equations in higher dimen-
sions is to consider the properties of maps that represent the return of
a cross section of flow to itself. Such maps are conveniently written as
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finite difference equations,

x;(t + 1) = fi(x(t)), i = 1, 2 , . . . , N, (A.24)

where xt(t) represents the value of the rth component at a time t, and / ;

is a nonlinear function. An analysis of the stability of steady states in
finite difference equations follows along the same lines as in differential
equations. Assume that there is a steady state x*, which is defined by
the relationship

x{t + 1) = x(t) = x*. (A.25)

Then equation (A.24) can be linearized in the neighborhood of the
steady state to obtain

x(t + 1) = A(x(t) - x*), (A.26)

where A is an N x N matrix and the elements of A are given as

aij = ~ - • (A.27)
dxj x,

The eigenvalues of A are once again found by solving the characteristic
equation,

det(/4 - pi) = 0. (A.28)

The steady state, x*, is stable if all the eigenvalues lie inside the unit
circle. (A complex number a + ib lies inside the unit circle if a2 + b2 < 1).
A Hopf bifurcation occurs if two complex conjugate eigenvalues simul-
taneously cross the unit circle.

In one and two dimensions, finite difference equations display much
richer dynamics than ordinary differential equations. This is because
the trajectories of the time evolution of differential equations must be
continuous, and this precludes the presence of cycles or chaos in one-
dimensional differential equations and chaos in two-dimensional dif-
ferential equations. However, both cycles and chaos can be found in
one-dimensional finite difference equations. As we have discussed, one
dimensional finite difference equations arise naturally as mathematical
models in biology and the natural sciences. Moreover, comparatively
simple one-dimensional finite difference equations yield enormously
rich bifurcations under parameter changes, and in some cases a de-
tailed mathematical analysis of the bifurcations has been possible. In
the remainder of this Appendix we discuss exclusively the dynamics
in one-dimensional finite difference equations. For notational conve-
nience, we indicate subsequent iterates by subscripts.
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As a simple example, we consider the linear finite difference equation

xt+l = axt. (A.29)

By iterating this equation we find

xt + 2 = axt+1 = a(axt) = a2xt,

(A.30)

Xt + n = a X t + n - l ~ a Xf

Thus, if \a\ < 1, then the iterates xt will approach 0 in the limit t -> oo.
If however, \a\ > 1, then the values xt will be unbounded in the limit
t -> oo.

In one-dimensional finite difference equations, it is frequently con-
venient to iterate the equation graphically. This graphical iteration can
be used to calculate the time evolution even in circumstances when the
algebraic computation of the iterates is not feasible. In figure A.5 we
show the iteration of equation (A.29) for the situation in which 0 < a < 1,
and also the situation in which a > 1. The geometrical decrease and
increase are evident.

Another way of thinking about equation (A.29) is to think of it as
resulting from a linearization about the steady state xt+1 = xt = 0. This
steady state is stable for \a\ < 1 and unstable for a > 1, in accord
with the stability criteria discussed earlier for the general case in N
dimensions.

In the general one-dimensional finite difference equation

a steady state, xt+1 = xt = x*, will be stable if \(df/dx)x*\ < 1, and un-
stable if \(df/dx)x*\ > 1. The reason for this is clear and relates to the
linear expansion of the function at the steady state or, alternatively,
to the value of the eigenvalue of the linearized equation at the steady
state.

Starting from an initial condition x0, one can iterate equation (A.31)
to generate a sequence xo,xl = f(x0),..., xm= fm(x0). A periodic orbit
of period n will arise if xf+n = xf, xf+j # xf for 1 <_/ < n. Let

P = /"« = El
1

(A.32)

The stability of the periodic orbit is determined by the value of \p\; for
\p\ < 1 the orbit is stable, and for \p\ > 1 it is unstable. When \p\ = 1



Appendix 197

a<

xH

x H = axt

X2 X|

xt

a >

t*l

A.5. Graphical iteration of
the finite difference equation
xt+1 =ax,.

there is a bifurcation of the periodic orbit. Generically, there are two
definite possible bifurcations depending on the sign of p. Suppose the
map / depends on a parameter n, and that at // = fi0, \p\ = 1. When
p = 1, for values of \i close to /J0 there is either no periodic orbit (say
for ji > /J,0), or there are two orbits of period n, one stable and the other
unstable (say for fi < fx0). In this case we say that there is a tangent bi-
furcation at \x = /J,0. This means that as pi passes through its critical
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value, a new stable periodic orbit, as well as an unstable periodic orbit,
appears.

When p = — 1, depending on the sign of fi — /i0 for ji small, there is
either a stable orbit of period n or a stable orbit of period 2n and an
unstable orbit of period n. The point [i = /i0, where p = — 1, is a period-
doubling bifurcation point. This means that as \i passes through its
critical value, the period of a stable and hence observable oscillation
doubles.

Example 8. For the equation

x t + 1 = axt{\ - xt) 0 < a < 4 , 0 ^ x ( < l , (A.33)

determine all steady states, the range of values of a for which each
steady state is stable, and the type of bifurcation that occurs when the
steady state loses stability.

Solution. By setting x t + 1 = x, and solving the resulting quadratic
equation, we find that there is a steady state at x* = 0 for all values of

Q J
a, and at x* = for a > 1. The slope at the steady state x* = 0 is

a
a, from which we see that x* = 0 is a stable steady state for 0 < a < 1
and an unstable steady state for a > 1. At a = 1 there is a bifurcation,
but it is not a tangent bifurcation even though the slope at the steady
state is 1, since there are two steady states (one stable and the other not,
if one considers the steady state at x* < 0) both for a < 1 and a > 1.
For the steady state at x* = {a — I)/a, the slope at the steady state is
2 — a. Thus this steady state is stable for 1 < a < 3 and unstable for
a > 3. At a = 3 the slope is equal to — 1 and there is a period-doubling
bifurcation with a stable period 2 cycle arising as a increases through
the value a = 3.

Example 9. For the equation

xI + 1 = xr + b sin 2nxt (mod 1), b > 0,

determine all steady states, determine the range of values of b for which
each steady state is stable, and determine the type of bifurcation that
occurs when the steady state loses stability.

Solution. The steady states are easily seen to be at x* = 0 and x* =
1/2. The slope at the steady state at x* = 0 is 1 + 2nb, which is always
unstable for b > 0. The slope at the steady state at x* = 1/2 is 1 — 2nb.
This steady state loses stability via a period doubling bifurcation at
b = 1/TL
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One of the remarkable features of finite difference equations is that
they sometimes display complex sequences of bifurcations that depend
on the general geometric features of the functions on the right-hand
side of the equations. Thus different classes of equations that exhibit
well-defined geometric features have been identified and the bifurca-
tions analyzed. We now consider the bifurcation sequences that are
found in two classes of equations: (1) single-humped functions defined
on an interval, and (2) circle maps, which map the points on the circum-
ference of a circle into itself.

In chapter 2 we have already discussed some of the properties for
single-humped functions such as the quadratic map (A. 3 3). As the pa-
rameter a increases, there are cascades of period-doubling bifurcations.
The value of a at the first and second period-doubling bifurcations
can be calculated analytically. The sequence of period-doubled orbits
1,2,4,8,... converges by the value a = 3.57 . . . and for values of a greater
than this, new periodic orbits not in this sequence can be found. How-
ever, the sequence of periodic orbits as a continues to increase is well
understood and was called the V-sequence (U for universal) by Metrop-
olis, Stein, and Stein in 1973. Up to orbits of period 6, the U-sequence
is 1,2,4,6,5,3,6,5,6,4,6,5,6. As the period of the orbit increases, the num-
ber of windows of a for which this orbit can be found also increases,
giving rise to infinite numbers of windows of unimaginably (to a biol-
ogist) small size in which stable periodic orbits can be found. In addi-
tion, there exist values of a for which "chaotic" dynamics can be proven,
given some technical definition of chaos. From a practical point of
view, the very narrow windows at which stable periodic cycles appear
preclude the observation of high periodicities in all but the most con-
trolled experiments in which it is possible to minimize noise. In experi-
mental work in physics, some observations of successive period doubling
and the U-sequence have been made in diverse systems such as hydro-
dynamic instabilities and chemical oscillations. In biology, the observa-
tion of such behavior has been made in diverse mathematical models
(see chapter 4, for example), but experimental observations of period
doublings and chaos are more limited (see chapter 7).

In addition to maps of the interval with a single extremum, there is
a well-developed theoretical understanding of the global organization
of bifurcations in finite difference equations that map the points on the
circumference of the circle into itself. Such functions arise naturally in
biological systems—for example, during a periodic stimulation of a
biological oscillator (see chapter 7). A circle map is of the form

(modi), (A.34)
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where (f>, is a point on the unit circle S1, and / is a function that may
be nonlinear. If a circle map is continuous, it can be characterized by
a number called the topological degree, which represents the number
of times 4>t+i g ° e s around the unit circle as </), goes around it once.
The significance of the topological degree is that in periodic forcing of
strongly attracting limit cycle oscillations, the dynamics can frequently
be described by either circle maps of topological degree 1 or 0 (Section
7.4). The dynamics of equation (A.34) can be partially characterized by
a rotation number. In equation (A.34) calling

-</>„ (A.35)

the rotation number is

1 N

p = lim sup — £ A&. (A.36)

If there is a periodic solution of the finite difference equation, the rota-
tion number is rational.

A conceptual understanding of some of the properties of the rotation
number can be obtained by a consideration of differential equations
defined on a torus (figure A.6). Provided there are no fixed points of
the flow, the dynamics can be analyzed by consideration of a cross sec-
tion to the flow. The map that takes points on this cross section back
to itself is called the Poincare map. Since the cross section is topologically
a circle, the Poincare map is a circle map. Moreover, since trajectories
cannot cross, the Poincare map is a one-to-one, invertible map. The
rotation number gives the average rotation in the <p coordinate for one
rotation in the 9 coordinate (see figure A.6). The rotation number for
any initial condition on the cross section must be the same. Periodic
forcing of nonlinear oscillations with low-amplitude stimuli frequently
can be described by invertible circle maps. In this case, the Arnold
tongue structure shown in figure 7.5 is found. However, as the stimula-
tion amplitude increases, this simple Arnold tongue structure is de-
stroyed, and there are exceedingly complex bifurcations that are still
not completely understood.

To illustrate what happens, we consider a model equation

4>t+i = 4>t + T + b sin(2n(j)t), (A.37)

where b and T are constant. Equation (A.37) is continuous for all values
of b. However, at the value of b = \/2n, the map becomes nonmonotonic.
Thus for b > l/2n the map is no longer a one-to-one invertible map
of the circle, though it is still of topological degree 1.

A plot of the phase-locking zones as a function of b and T is shown
in figure A.7 For b < l/2n, the Arnold tongue structure of figure 7.5 is
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A.6. (a) A torus. The location of any point on the
surface can be specified by two coordinates, <j> and
9. (b) A trajectory on the surface of the torus. A cross
section to the flow is shown. The Poincare map gives
(j>t+1 as a function of <j>t. The rotation number counts
the number of rotations in the <j> coordinate for each
rotation in the 9 coordinate.

A.7. Locally stable phase-locking regions for the sine map in equation (A.37). The line
at b = 1/271 separates the region in which the map is a one-one invertible map (b < 1/2TT)
and noninvertible (b > Ijln). The widths of some of the regions is so small as b increases
that the boundaries are collapsed into a single line. There is bistability where two zones
overlap. In the nonlabeled regions are phase locked, quasiperiodic, and chaotic dyna-
mics. From Glass et al. (1983).
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period 8

period 4

period 2

SOLID LINES- period doubling
bifurcation

DASHED LINES-tangent bifurcation

A.8. Schematic figure for the zones of period-doubling bifurcations in maps with two
quadratic extremal points. This scheme has been found in cubic maps and circle maps.
From Belair and Glass (1985).

maintained. For the region b > \/in in which the map is noninvertible,
the structure is very different. Each Arnold tongue present for b < l/2n
extends into the region b > l/2n, splitting into two branches.

Consequently, extensions of Arnold tongues can cross, leading to a
situation in which two different periodic orbits associated with different
rotation numbers are found for the same values of the parameters. The
other main feature is that there are complex sequences of bifurcations
that are present in the Y-shaped regions formed by the extensions of
each Arnold tongue. Each of the Arnold tongues has a complex geo-
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metrical arrangement of period-doubling bifurcations displaying self-
similarity, which is schematically represented in figure A.8. Beyond the
accumulation points of the period-doubling sequences, there are chaotic
dynamics. The same topological structure depicted in figure A.8 was
conjectured to be present in each of the Arnold tongues by Glass and
Perez in 1982. In some sense this structure is an unfolding of bifurca-
tions in maps with one parameter and one extremum to maps with
two parameters and two extrema. This example is of interest because
it displays a correspondence with periodically forced chick-heart cells
(chapter 7).

The analysis of bifurcations of circle maps of topological degree dif-
ferent from 1 has not yet been carried out in great detail. However, the
primary motivation for examination of this problem to date has come
from the potential applicability to biological systems where maps of
topological degree 0 arise naturally as a consequence of phase-resetting
properties of biological oscillators that have been experimentally ob-
served (chapter 6). The same sequence of period doublings shown in
figure A.8 are also observed in degree 0 maps.

Since most results concerning the global organization of bifurcations
have been found using a combination of numerical and advanced topo-
logical techniques, problems amenable to simple analytic solutions are
not easy to find. The following two problems illustrate some features
of the theory.

Example 10. Consider the circle map of topological degree 0,

0,+ 1 = b sin 2n(f)t (mod 1).

For what value of b is there a cycle of period 2 that passes through the
two extrema?

Solution. The situation is shown in figure A.9. The extrema are at
0r = 1/4 and <f>t = 3/4. Assuming 0O = 1/4, we have 3/4 = b sin n/2,
from which we find immediately that b = 3/4.

Example 11. Consider the circle map,

4>t +1 = 4>t ~ b sin 2ncj>t + z (mod 1).

Calculate the boundaries of the region in which there is a stable periodic
orbit of period 1 and rotation number 1, and characterize the bifurca-
tions on these boundaries.

Solution. Say there is a fixed point at </>*. Then, for a period 1 orbit
with rotation number equal to 1, we must have

1 + 0* = 0* - b sin(2n<p*) + x.



204 Appendix

1.00

0.75

0.50

0.25

0 0.25 0.50 0.75 1.00

A.9. A circle map of topological degree zero with a stable period-2 orbit passing through
the two extrema (see example 10).
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A. 10. The zone for stable 1:1 phase locking for the circle map in example 11.
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^ 1, there will be a solution of this equation which is

2n<f)* = sin 11 —-— ). The locus of the tangent bifurcation is found

• 30r+l
by setting

= 1. From this we compute 2nb cos 2n<j) = 0, and

as b increases, keeping x fixed, there is a tangent bifurcation along the
lines b = 1 — x and b = T — 1. As b continues to increase, the period
1 solution loses stability by a period-doubling bifurcation. This occurs

, 30,.
when ——- = — 1. When this occurs, we compute that — 1 = 1 —

> cos 2K4>*. Substituting in the value for </>*, we find that a period-

doubling bifurcation occurs along the hyperbola -y = b2 — (T — I)2.
n

The region in which there is a stable period 1 solution with rotation
number 1 is shown in figure A. 10.

A.3 Problems

Most of these problems are derived from published papers about
oscillation and chaos in biological systems. In the interest of encour-
aging readers to undertake calculations on their own, we do not give
the sources of the equations here (though most can be found with just
a bit of digging). The problems are of different levels of difficulty and
some are quite hard. Most (but not all) of them have been success-
fully solved by our undergraduate physiology students. Students who
have access to computers will benefit from numerically simulating the
dynamics.

1. In the differential equation,

dx
—— = sin x — ax x ^ 0, a ^ 0,
dt

discuss the bifurcations as a function of a. Starting from any initial
condition, describe the dynamics as t -> oo.

2. The differential equation,

-— = O — A sin d>,
dt

where (f> is taken modulo 2n and Q and A are positive constants,
has been considered as a model for two coupled, spontaneously



206 Appendix

oscillating neurons. 4> is the phase difference between the activity
in the two neurons. Discuss the qualitative dynamics and bifurca-
tions as a function of Q. and A.

3. The "Brusselator," which has been proposed as a model of bio-
chemical oscillations, is described by the differential equations,

dx ,
—- = a — ox + x y — x,

dy u 2
b x x y

where x and y are positive variables and a and b are positive con-
stants. Determine the steady state and describe the stability as
a function of a and b. What type of bifurcation occurs when the
steady state loses stability?

4. The equations

dx
l

d-l = Axf - Ay,

where x and y are positive variables and y is a positive constant,
have been proposed as a model of glycolytic oscillations. Solve for
the steady state, determine its stability, and classify it (node, focus,
or saddle point) as a function of y.

5. (A) Based on the eigenvalues at the steady state, classify the dif-
ferent steady states in three dimensions, and sketch the trajectories
in the neighborhood of each.

(B) Suppose that a differential equation is denned in a ball in
three dimensions and that the trajectories on the boundary of the
ball are directed into it. There is a single steady state. Which ones,
out of the steady states found in (A), may it be?

6. The following has been proposed as a model for feedback inhibition:

dx1 0"
dt 6"

dxt _
llt~Xi

:-xu
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Solve for the steady state and determine the criteria for a Hopf
bifurcation as a function of N and m, when 9 = 1/2.

7. The differential equation,

dx- 92m

It = (9m + xT+1)(9
m + xT+2) ~Xh l = U 2' 3' 4'

where xt are positive variables (x5 = x1; x6 = x2), has been pro-
posed as a model for sequential disinhibition. Find the steady state
and determine the value of m at which a Hopf bifurcation occurs
when 9 = 1/4.

8. Compute the amplitude and period of the oscillation in the time-
delay equation (example 7) in the limit as n -> oo.

9. Consider the piecewise linear finite difference equation,

x t + 1 = x , + 0.4, 0sCx ( <0.6 ,

xt+1=xt- 0.2, 0.6 ^ x( < 0.7,

xt+1 = xt - 0.6, 0.7 sc x( < 1.0.

Determine the dynamics, starting from different initial conditions
both algebraically and graphically. Are there any stable cycles?

10. Describe the dynamics in the finite difference equation,

Are there any stable cycles?

11. The finite difference equation,

xt + 1 = 3 .6x t - x,2,

is numerically iterated and gives dynamics that appear to be cha-
otic, starting from an initial value x0, 0 < x0 < 3.6. After many
iterations, what are the maximum and minimum values of x, that
could be observed? (Hint: The values 3.6 and 0 are not the answers.)

12. For the finite difference equation,

x t + 1 =Xxt{\-xt), 0 < 1 ^ 4 , 0 < x 0 < l ,

find the values of 1 for which a stable, period 2 cycle is found.
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13. For the cubic map,

xt +! = ax? + (1 - a)xt, - 1 < xt < 1, 0 sc a ^ 4,

describe the bifurcations and the steady states and cycles for
0 < a < 1 + 51/2.

14. Consider the simple model for a limit cycle oscillation in equation
(2.4). This equation is perturbed by a horizontal translation by an
amount b, and there is a rapid relaxation to the limit cycle (a -> oo).
(A) Analytically determine the new phase as a function of the old
phase (i.e., the PTC) and draw the graphs for b = 0.8 and b = 1.2.
(B) Using the theory in section 7.4 calculate the boundary of the
1:1 entrainment zone as a function of b. What types of bifurcations
occur on the boundary?

Notes and References, Mathematical Appendix

In recent years there has been great interest in nonlinear mathematics and
a number of texts in this area have appeared. Physically oriented texts, which
contain numerous examples of applications of the theory in the physical sci-
ences but do not contain rigorous mathematics include (Berge, Pomeau, and
Vidal (1984), Schuster (1984), and Thompson and Stewart (1986). Mathemati-
cally oriented texts that take a more rigorous approach arc Arnold (1983),
Guckenheimer and Holmes (1983), and Devaney (1986). An examination of cha-
otic dynamics from the standpoint of ergodic theory is in Lasota and Mackey
(1985). Mathematical treatment of some of the topics included here can be
found in recent texts in mathematical biology (Segel 1984; Murray 1988).

A.I Differential Equations
An excellent introductory text in qualitative theory of differential equations

from the eyes of two leading mathematicians is Hirsch and Smale (1974). This
contains an elementary discussion of the Hopf bifurcation theorem and a proof
of uniqueness and stability limit cycles in the van der Pol equation. Several
additional papers on the Hopf bifurcation are in Marsden and McCracken
(1976). The Poincare Index Theorem is usually treated at advanced levels in
mathematics. For a discussion of its extension to vector fields in different
dimensions and topologies, see Guillemin and Pollack (1974) (look for the
Poincare-Hopf Theorem—but don't assume that this is the same Hopf as in
the Hopf bifurcation, for it is not). Applications of the Poincare-Hopf Index
Theorem to biology and chemistry are in Glass (1975).

The phase-plane portrait, which is found for mutual inhibition (figure A.3),
captures the topology of the competitive exclusion principle in ecology (May
1973) and serves as a model of mutual inhibition in biochemical and neural
networks (Glass and Kauffman 1973; Shymko and Glass 1974; Glass and Young
1979). Dynamics in networks in which there is mutual activation (see above
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references and also recent studies by Hopfield (1984) display the same topology.
Important early examples of chaos in nonlinear ordinary differential equations
are in Lorenz (1963) and Rossler (1979).

Applications of time-delay equations as models for feedback control in phy-
siology have been pursued vigorously (Mackey and Glass 1977; an der Heiden
1979, 1985; Mackey 1978; Glass and Mackey 1979a; Mackey 1979a,b; Mackey
and an der Heiden 1984; an der Heiden and Mackey, 1982, 1988).

A.2 Finite Difference Equations
A discussion of bifurcations in the quadratic map, (equation A.33) can be

found in many places, and the presentations of Devaney (1986) and Thompson
and Stewart (1986) are particularly recommended. A good review of the prop-
erties of invertible circle maps is in Devaney (1986). In recent years there has
been interest in the transition from invertibility to noninvertibility (Feigenbaum,
Kadanoff, and Shenker 1982; Ostlund et al. 1983; M. H. Jensen, Bak, and Bohr
1984). From a biological point of view, it is also of interest to examine the dy-
namics for parameter values for which the map is noninvertible (see section 7.4).
Studies of the bifurcations of this map in the noninvertible region were moti-
vated by biological problems (R. Perez and Glass 1982; Glass and Perez 1982)
and have subsequently been carried through by many others (Schell, Fraser,
and Kapral 1983; Boyland 1986; Fraser and Kapral 1984; Belair and Glass
1985; and Mackay and Tresser 1986).
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14, 130, 135, 141; Poincare map, 56;
routes to, 49

chaotic heajt action, 137
characteristic equation: delay differential

equations, 192; differential equations,
184, 187; finite difference equations, 195

Cheyne-Stokes respiration, 70, 71, 80, 86,
175

chronic myelogenous leukemia. See
leukemia

circadian rhythm, 17, 177, 180; integrate
and fire model for, 142, 143; in
psychiatry, 140, 143

circle map, 125-28, 199-203, 209
circulatory system, fractal geometry, 54
circus movement, 155, 156, 163, 171
cochlear neuron activity, 37, 38, 55
competitive exclusion, 64, 65, 208
conduction block, 15, 155, 168
cortex, circus movement in, 165, 166, 171
cortical depression, 166, 171
cortical rhythms, 6, 17, 48, 50
cubic map, 208
cycle of period n, 27, 196
cyclical neutropenia, 175, 177, 180

depolarization, 58
devil's staircase, 149, 151
differential equations, 19-21, 34, 183-94,

208, 209; attractors, 50; bifurcations,
25-26, 35, 85, 90, 91, 96, 97, 189; limit
cycles, 22-25, 34, 35, 50, 85, 90, 91, 96,
97; stead states, 21-22, 186-88

diffusion, 40
dimension, 49, 53; electroencephalogram,

56; mixed feedback, 81; strange
attractor, 54

discontinuity, in phase resetting
experiments, 102, 103, 115, 118

dispersion relation, 146
dissipative systems, 52
drug administration, compartmental

model for, 185
dynamical diseases, 16, 18, 172-81;

biological models for, 175, 176, 180;
diagnosis and therapy, 176-79,
180-81; identification, 172-74, 179,

180; mathematical models for, 174,
175, 180. See also aplastic anemia,
cardiac arrhythmias, Cheyne-Stokes
respiration, chronic myelogenous
leukemia, cyclical neutropenia,
dysmenorrhea, jet lag, epilepsy,
periodic hematopoiesis, tremor

dysmenorrhea, 86, 96

ectopic pacemaker: gastric waves, 167;
pacemaker annihilation, 97; phase
locking, 136-38, 143; phase resetting,
111, 113, 118

eigenvalues: delay differential equations,
192; differential equations, 184-87;
finite difference equations, 195

electrical restitution curve, 149, 152, 168
electrocardiogram, 4, 145, 146
electroencephalogram, 6; chaos in, 56;

dimension of, 56; power spectrum of, 48
entrainment, 124. See also phase locking
epilepsy, 80, 166, 177
equilibrium points, 21, 186
erythropoiesis, 21, 186
essential tremor, 111, 112, 118
excitability: in Belousov-Zhabotinsky

reaction, 15; in cardiac tissue, 15, 34,
144-71

expiratory duration, 98
exponential decay, 20, 184, 185
exponential growth, 20
exponential inter-event histograms, 7,

37,39

fatigue, 64, 65
Feigenbaum's constant, 33, 35
fibrillation, 160, 162, 163, 170; and chaos,

165, 170, 171; power spectrum of, 170;
and tachygastria, 167. See also atrial
fibrillation and ventricular fibrillation

fictive locomotion, 88, 89
finite difference equations, 27-34, 35,

194-205; bifurcations, 32, 33, 167, 197,
198; chaos, 33, 42, 199; cycles, 27, 32,
196; graphical iteration, 27-29, 149,
151, 152, 196, 197; phase locking,
125-27, 129, 133, 142, 143; probability
density, 42, 43; steady states, 27, 195

first passage time, 41
first return map, 49. See also Poincare

map
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fixed points, 21, 187
focus, 187, 188
fractal geometry, 53, 56; circulatory

system, 54; lungs, 54; strange attractor,
53

GABA receptors, 76, 77
gastric waves, 167, 171
glucose: control of insulin release, 62;

fluctuations, 5
glycolytic oscillation, 206
granulopoietin, 73
graphical iteration, 27-29, 149, 151, 152,

196, 197

half-center model, 64
hard excitation, 90-93, 97
heart rate, power spectrum of, 48, 55, 179
hematology, 177, 180
hematology rhythms, 17, 86, 177, 180.

See also aplastic anemia, cyclical
neutropenia, leukemia, periodic
hematopoiesis

hemorrhage, 4
Hering-Breuer reflex, 98-100, 117, 129;

and phase locking, 120
hippocampus, 76
Hodgkin cycle, 59
Hodgkin-Huxley equations, 21, 3.4, 58, 59,

74, 153, 168; hard excitation in, 91, 94,
97; phase resetting in, 118

homeostasis, 4, 17
Hopf bifurcation, 71, 84-93; delay

differential equations, 193; differential
equations, 189; finite difference
equations, 195; mixed feedback, 96;
negative feedback, 96; subcritical (see
also hard excitation), 90; supercritical
(see also soft excitation), 96

hormone rhythms, 17, 34. See also insulin
secretion

horseshoe map, 124
hot flashes, 97
hyperventilation, 87, 97
hypoxia, 96
hystersis, 90

initial function, in delay differential
equations, 191

inspiratory duration, 98
insulin administration, 176

insulin secretion, 5, 61, 62
integrate and fire oscillators, 8; chaos

during periodic forcing, 130, 142; for
circadian rhythm, 142, 143; for neural
activity, 41; for respiration, 102-4, 117,
129, 131, 142; phase locking, 128-32,
142; phase resetting, 102, 104, 116, 117

inter-event histogram, Poisson process, 39
inter-spike intervals, 38, 41, 42
intestinal rhythms, 17; frequency plateau,

168; migrating myoelectric complex,
153-55; slow wave oscillations, 82, 83

invertible circle maps, 127, 142, 200, 209
ion channels, 6, 55
isochron, 106
iteration (see also graphical iteration), 27

jet lag, 140, 180

1-m systems, 34. See also Poincare
oscillator

lamprey locomotion, 88, 89, 97
latent phase, 106
leading circle hypothesis, 158
leukemia: chaotic dynamics in, 9, 10;

mathematical model for, 73-76, 80;
noise vs. chaos, 44; 46, 55; therapy, 47,
178-79, 181

Liapunov number, 49, 54, 56, 81
limit cycle, 22, 25, 34, 35; annihilation,

93-97, 118; dimension, 50; hard
excitation, 90, 97; phase locking, 124,
132-35, 142, 143; phase resetting, 104,
9, 116; Poincare oscillator, 23-25, 34,
106-9, 117, 132-34, 143; soft
excitation, 85, 96; van der Pol
equation, 124, 142, 190, 191

linear differential equations, 183
local stability, 26, 35
locomotion rhythm: central pattern

generators, 79; coupled to respiration,
136, 137, 143; in lampreys, 88, 89, 97;
and soft excitation, 87, 88, 91; wave
propagation in fishes, 168

lungs, fractal geometry of, 54
luteinized unruptured follicle syndrome,

83,96

mastication: hard excitation, 97; phase
resetting, 110, 111, 118
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masturbation: hard excitation, 93, 97
mechanical ventilation, 120, 121, 129,

137-41, 143, 176
menstrual rhythm, 10, 95, 97
meteorology, 33, 35
migraine headaches, 166
migrating myoelectric complex, 153, 154
miniature end plate potentials, 36, 37, 55
mitotic oscillator, chaos in, 44, 45, 55
mixed feedback, 72-75, 80, 81; and Hopf

bifurcation, 96; oscillations in, 86;
recurrent inhibition, 76-78, 80; white
blood cells, 73, 75, 80

modulated parasystole, 111, 113, 118,
137, 138, 143

mossy fiber, 76
motor rhythm, phase resetting, 111
multifocal atrial tachycardia, 180
mutual activation, 208
mutual inhibition, 64, 65, 79, 189, 190,

200

negative feedback, 68-72, 80, 194, 206;
pupil light reflex, 71, 72, 80;
respiration, 69-71, 80; soft excitation,
96

neural activity: integrate and fire model
for, 41. See also Hodgkin-Huxley
equations

neural network: as a central pattern
generator, 63-68, 69; spiral waves in,
158

neural oscillators, periodic forcing, 142,
143. See also squid giant axon

neuromuscular junction, 37, 55
neutral stability, 107
neutrophils, 9, 73
node, 187, 188
noise, 6, 36; cell cycle, 44, 55; effect on

phase locking, 123; leukemia, 44, 46,
55; noise vs. chaos, 36-56

noninvertible maps, 133, 134, 200, 201,
209

nonlinear differential equations, 21, 186

organizing centers, 159-60, 169-70
orgasm, 93, 97
oscillatory free runs, 128
ovulation, 83, 96, 97

pacemaker: in Belousov-Zhabotinsky
reaction, 15; central pattern generators,
64; mathematical models for, 57-63,
78, 79. See also cardiac pacemakers,
SA node

pancreatic p cells, 34, 61, 62, 79
Parkinsonian tremor, 111, 112, 118
pendulum, 22, 186
penicillin, 76
period doubling bifurcation, 32, 49, 198,

199; and alternans, 152
periodic breathing. See Cheyne-Stokes

respiration
periodic diseases, 172, 173, 180
periodic hematopoiesis, 177, 180. See also

cyclical neutropenia
peristaltic waves, 144
perturbation, single pulse: cardiac tissue,

155
perturbed cycle length, 105, 108
phase (of a stimulus), 105
phase difference, 106
phaseless set, 106
phase locking, 119-43; circadian

rhythms, 140, 141, 143; ectopic
pacemakers, 136-38, 143; finite
difference equation, 125-27, 129, 133,
142-43; heart cell aggregate, 121, 122,
141; in integrate and fire models,
128-32, 142; limit cycle oscillations,
132-35, 142-43; respiratory rhythm,
119-21, 131-32, 137-43; respiratory-
locomotion rhythms, 136, 143; van der
Pol equation, 123, 124, 125, 132, 142

phase plane, 25, 28
phase resetting, 98-118; discontinuities,

103, 104, 115, 116, 118; ectopic
pacemakers, 111, 113, 118; of heart cell
aggregates, 22, 23, 114, 115, 117, 118;
Hodgkin-Huxley equations, 118; in
integrate and fire models, 102-4, 117;
in limit cycle models, 104-9, 117-18;
mastication, 110, 111, 118; Poincare
oscillator, 106-9, 117; Purkinje fiber
oscillations, 99, 101, 117; respiration,
118; respiratory rhythm, 98-100,
102-4, 117; tremor, 111, 112, 118; type
0, 108-9, 116-18; type 1, 108, 109,
116-18

phase shift, 106
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phase space, 51
phase-spanning neurons, 65, 67
phase transition curve, 106, 116; and

phase locking, 133, 134; for Poincare
oscillator, 106, 133

phrenic activity: during mechanical
ventilation, 120, 121; following
hyperventilation, 87; following
vertebral artery occlusion, 88; phase
resetting, 99

pitchfork bifurcation, 32. See also period
doubling bifurcation

plateau phenomena, 168
Poincare, H., 7, 17, 22, 34
Poincare Index Theorem, 189, 208
Poincare map, 23-25, 34, 48, 49, 56, 200,

201; phase locking, 132-34, 143; phase
resetting, 106-9, 117

Poisson distribution, 39, 40
Poisson process, 36, 42, 55; inter-event

histogram, 39; probability density, 39;
radioactive decay, 38

positive feedback, 72
postinhibitory rebound, 64, 65
potassium conductance, 6, 7, 58, 59, 61
power spectrum: of electroencephalogram,

48, 56; of heart rate, 48, 55, 179; of
respiration, 48, 55, 179; of tremor, 48,
56; of ventricular fibrillation, 165, 170

probability density: finite difference
equations, 42, 43; for Poisson process,
39,41

propagation velocity, 147
psychiatry: circadian rhythms in, 18, 140,

143
PTC. See phase transition curve
pupil dynamics: mixed feedback, 81;

negative feedback oscillations, 17, 71,
72, 80, 86

Purkinje fiber, 145; mathematical model,
60, 61, 79, 83, 84, 96; phase resetting,
99, 101, 117

pyramidal cells, 76

quadratic map, 27-33, 35, 126, 198, 199

radial isochron clock, 34. See also
Poincare oscillator

radioactive decay, 38, 39, 184, 185
random walk, 36, 41, 55

recovery curve, 148, 167
recurrent inhibition, 76, 77, 80
recurring cyclic inhibition, 65. See also

sequential disinhibition
reentry, 155, 157. See also circus

movement
refractory period, 147, 156, 158, 163, 165,

168, 170
relative coordination, 128
relaxation oscillator, periodic forcing of,

142
renal pelvic pacemaker, 144
respiration, 10, 117; annihilation of

oscillations, 95, 97; coupled to
locomotion rhythm, 136, 137, 143;
effect of hyperventilation, 87, 96; effect
of hypoxia, 96; effect of vertebral
artery occlusion, 87, 88; Hering-Breuer
reflex, 98-100, 117; integrate and fire
models for, 103, 111, 129, 131; limit
cycle models for, 79, 117; negative
feedback, 69, 80; phase locking during
mechanical ventilation, 120, 121,
137-41, 143; phase resetting of, 99,
100, 102, 117, 118; power spectrum of,
48, 55, 179; sequential disinhibition, 66,
67,79

respiratory sinus arrhythmia, 136, 143
retina, circus movement in, 165, 171
R on T phenomenon, 165, 170
rotation number, 123, 127, 200

SA node, 111, 145; annihilation of
oscillations, 11, 94, 95, 97

saddle point, 187, 188
schizophrenia, negative feedback, 80
scroll waves, 159, 160, 169
sensitive dependence on initial conditions,

6,33
sequential disinhibition, 66, 67, 79, 207;

and soft excitation, 87, 96
shifted cycle, 107
sine map, 200-202
sinoatrial node. See SA node
sinus arrest, 94, 95
sleep arrhythmias, 139, 143
slime mold aggregation, spiral waves in,

158, 169
slime molds, chaos in, 79
slow wave oscillations, 82
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sodium conductance, 58, 59, 61
soft excitation, 84-90, 96, 97
spiral waves, 15, 16, 157, 158, 165, 167,

169
squid giant axon: hard excitation in, 91,

92; Hodgkin-Huxley model, 58, 59, 78;
periodic forcing of, 52

stable cycles, in finite difference
equations, 196

stable steady state, 21, 22, 25
steady state, 4; delay differential

equations, 192, 193; differential
equations, 21, 22,486, 187; dimension
of, 50; finite difference equations,
25-27, 195, 196; stability criterion, 21,
22, 25, 26

stomatogastric ganglion, 65, 66, 79
strange attractor, 50, 53, 54, 56
stretch reflex, negative feedback

oscillations, 80
structural stability, 26, 35
subcritical Hopf bifurcation, 90. See also

hard excitation
subthreshold oscillation, 82
sudden infant death syndrome, 95, 97
supercritical Hopf bifurcation, 71, 96,

189. See also soft excitation

tachycardia, 137, 156, 160, 169, 170, 180
tachygastria, 171
tangent bifurcation, 197
target patterns, 15, 157, 1158
time crystal, 109
time delay differential equations, 6S;

mixed feedback, 72-78, 80, 81, 209;
negative feedback, 68-72, 80, 194, 207,
209; stability analysis, 191-94

topological degree, 107
topological theory, practical problems

with, 113-16, 118
trajectory, 25
traveling wave, annihilation, 14, 155, 156
tremor, 17; negative feedback oscillations,

80; power spectrum of, 48, 56; soft
excitation, 86; suppression of, 177

triggered automaticity, 94, 97
type 0 phase resetting, 108, 109, 116, 118
type 1 phase resetting, 108, 109, 116, 118

U (universal) sequence, 33, 35, 199
unidirectional block, 115
ureteral rhythms 17, 144, 145, 168
uterine contraction, 86, 87, 96

vagus nerve, 120
van der Pol oscillator: qualitative

analysis, 190, 191; sinusoidal forcing,
124, 125, 142

ventricular ectopic beats, 94, 113, 165,
180. See also modulated parasystole

ventricular fibrillation, power spectrum
of, 165, 170. See also fibrillation

ventricular heart cells: chaotic dynamics,
13, 14, 135; phase locking, 12, 13, 121,
122, 141; phase resetting, 22, 23, 117;
Poincare map, 48

voltage clamp, 58, 61
volume threshold, 99, 100
vulnerable phase, 165

Wenckebach block. See AV block
white blood cells, mixed feedback, 73, 86
Wiener process, 41
winding number, 107


