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PREFACE

The study of electrophysiology has progressed rapidly because of the precise, delicate, and inge-
nious experimental studies of many investigators. The field has also made great strides by unify-
ing these experimental observations through mathematical descriptions based on electromagnetic
field theory, electrochemistry, etc., which underlie these experiments. In turn, these quantitative
materials provide an understanding of many electrophysiological applications through a relatively
small number of fundamental ideas.

This text is an introduction to electrophysiology, following a quantitative approach. The first
chapter summarizes much of the mathematics required in the following chapters. The second
chapter presents a very concise overview of the principles of electrical fields and the concomitant
current flow in conducting media. It utilizes basic principles from the physical sciences and
engineering but takes into account the biological applications. The following six chapters are the
core material of this text. Chapter 3 includes a description of how voltages/currents exist across
membranes and how these are evaluated using the Nernst–Planck equation. The membrane
channels, which are the basis for cell excitability, are described in Chapter 4. An examination of
the time course of changes in membrane voltages that produce action potentials are considered
in Chapter 5. Propagation of action potentials down fibers is the subject of Chapter 6, and the
response of fibers to artificial stimuli, such as those used in cardiac pacemakers, is treated in
Chapter 7. The voltages and currents produced by these active processes in the surrounding
extracellular space is described in Chapter 8. The subsequent chapters present more detailed
material about the application of these principles to the study of the electrophysiology of cardiac
and skeletal muscle with a modest inclusion of neural electrophysiology.

The material of this text was designed as an introduction to bioelectricity (electrophysiology),
and one might think that fundamentals change very slowly. In fact the rapid growth of the
field has reflected back changes in the underlying material. Since a quantitative approach to
electrophysiology is a precursor to the various new applications; it is, in fact, a real challenge
keeping things up-to-date. The second edition is the authors’ effort to bring the text more into
line with the current new applications found in recent texts.

In particular, we have introduced a few underlying factors in molecular biology as it interacts
with electrophysiology. While the result is a very modest introduction it is hoped that the treatment
will outline the importance of this topic in bioelectricity. In other applications we have also
endeavored to bring matters up-to-date. This is done in both the chapters on applications as well
as those devoted to fundamentals. We hope this conveys to the reader our excitement with this
field.

In this third edition, we respond to the many requests from students and faculty colleagues
that the book include more exercises with solutions. Thus the exercises have been reorganized,
and many more exercises and solutions added. Additionally, Chapter 8 on extracellular potentials
has been revised and extended, with many new figures, as we recognize that this chapter is key
to understanding many clinical measurements. In addition a number of other chapters have been
revised, with more information now included for the reader about the reasons why different topics
are considered important and how they are related, information that allows one to better focus on
those topics most important to particular instructors and students.

Each time we consider the material in the text we become aware, once again, of how many
talented and energetic investigators and students of the field have made substantial contributions
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to its progress. It is the nature of a textbook to reflect the integrated ideas of many individuals
over more than century, so only a few of the many contributors are recognized by citation. Even
so, a wealth of additional material is available to the reader, and that material provides a much
more complete picture. We have included a few citations in the text on particular points and at
the end of each chapter as additional material, so that the student has a entryway to the extensive
library of published work that now is available.

The revisions also include many corrections and focused responses to suggestions received
from colleagues, readers elsewhere, and especially from our students. We hope they will find
the revisions to their liking. For the future we continue to invite comments and criticisms from
students and faculty colleagues.

Robert Plonsey
Roger C. Barr
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1
VECTOR ANALYSIS

1.1. INTRODUCTION

This text is directed to presenting the fundamentals of electrophysiology from a quantitative
standpoint. The treatment of a number of topics in this book is greatly facilitated using vectors
and vector calculus. This chapter reviews the concepts of vectors and scalars and the algebraic
operations of addition and multiplication as applied to vectors. The concepts of gradient and
divergence also are reviewed, since they will be encountered more frequently.1

1.2. VECTORS AND SCALARS

In any experiment or study of biophysical phenomena one identifies one or more variables
that arise in a consideration of the observed behavior. For physical observables, variables are
classified as either scalars or vectors, that is, the variable is defined by a simple value (e.g., tem-
perature, conductivity, voltage) or both a magnitude plus direction (e.g., current density, force,
electric field).

In a given preparation a scalar property might vary as a function of position (e.g., the con-
ductivity as a function of position in a body). The collection of such values at all positions is
referred to as a scalar field. A vector function of position (e.g., blood flow at different points
in a major artery) is similarly a vector field. We designate scalars by unmodified letters, while
vectors are designated with a bar over the letter. Thus T is for temperature, but J is for current
density.

As mentioned, a vector that has a value at every position in a region is referred to as a
vector field. J(x, y, z) is a vector field where at each (x, y, z) a particular vector J exists.
Physiological vector fields are usually considered to be well behaved, continuous, with continuous
derivatives.

1
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1.3. VECTOR ALGEBRA

1.3.1. Sum

The sum of two vectors is also a vector. Thus,

C = A+B (1.1)

whereC is the resultant or sum ofA plusB. Vectors are added by application of the parallelogram
law (let A and B be drawn from a common origin; if the parallelogram is completed then C is
the diagonal drawn from the common origin).

1.3.2. Vector Times Scalar

The result of multiplying a vector A by a scalar m is a new vector with the same orientation
but a magnitude m times as great. If we designate this by B then

B = mA (1.2)

and

|B| = m|A| orB = mA (1.3)

1.3.3. Unit Vector

A unit vector is one whose magnitude is unity. It is sometimes convenient to describe a vector
(A) by its magnitude (A) times a unit vector (a) that supplies the direction. Thus A = Aa.

1.3.4. Dot Product

The scalar product (or dot product) of two vectors is defined as the product of their magnitudes
times the cosine of the angle between the vectors (assumed drawn from a common origin). From
Figure 1.1 we note that the scalar product of A and B is the product of the magnitude of one of
them (say, |B|) times the projection of the other on the first (|A| cos θ). We designate the dot
product as A ·B, so that

A ·B = AB cos θ (1.4)

Clearly from the definition,

A ·B = B ·A

so that the commutative law of multiplication is satisfied. Note that if A and B are orthogonal
(θ = 90◦) then their dot product is zero. Considering A · A, since in this case θ = 0◦, then
A ·A = A2.

In bioelectricity the dot product often is used to find the component of one vector in the
direction of another, e.g., the component of the electric field along the axial direction of a fiber.
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Figure 1.1. Dot Product. The dot product A ·B is given by AB cos θ.

1.3.5. Cross Product

The cross product (also called the vector product) of two vectors A×B differs from the dot
product in its geometrical meaning and in its form. Geometrically the cross product corresponds
to the area of the parallelogram whose sides are defined by A and B.

If we designate the resultant vector as C then

C = A×B
where

|C| = |A||B| sin θ (1.5)

and angle θ is between A and B.

The direction of C is orthogonal to the plane defined by A and B and is the direction that
a normal, right-handed screw advances if turned from A to B, i.e., the direction follows the
“right-hand rule.” For example, in Figure 1.2

Ax = Ay ×Az

Returning to Figure 1.1, if C = A×B, then the direction of vector C will be into the page.
In terms of components,

A×B = (AyBz −AzBy)ax + (AzBx −AxBz)ay + (AxBy −AyBx)az (1.6)

This result can be verified by replacing each vector A and B by its rectangular components, and
expanding the result. A convenient way of describing the operations in the cross product, and an
aid in remembering it, is to use the notation of determinants.

Cross products arise less frequently in bioelectricity than dot products. Most frequently cross
products appear when dealing with geometrical surfaces, as in taking into account the shape of
the body surface, in electrocardiography.
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Figure 1.2. Vector A and its rectangular components.

1.3.6. Resolution of Vectors into Components

Vector A is the sum of its rectangular components Ax, Ay, Az , as described in Figure 1.2.
That is,

A = Axax +Ayay +Azaz

Similarly, we may describe

B = Bxax +Byay +Bzaz

Using the distributive law of algebra, the dot product of A and B can be formulated as

A ·B = AxBxax · ax +AyByay · ay +AzBzaz · az
+AxByax · ay +AxBzax · az +AyBxay · ax
+AyBzay · az +AzBxaz · ax +AzByaz · ay

(1.7)

Now terms such as ax · ax = 1, since the angle between the vectors is zero and the cosine of
zero is unity. On the other hand, terms such as ax · ay = ay · az = az · ax = 0, since the angle
between the unit vectors is 90◦. Consequently, (1.7) becomes

A ·B = AxBx +AyBy +AzBz (1.8)

The result expressed by (1.8) is, of course, a scalar.

1.4. GRADIENT

Let Φ(x, y, z) be a scalar field (scalar function of position) and assume that it is single-valued,
continuous, and a differentiable function of position. (Physiological fields normally satisfy these
requirements.) We define a surface on which this field has a constant value by

Φ(x, y, z) = C (1.9)
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Figure 1.3. Equipotential surface C1 along with points P1 (on C1) and P2 (located
arbitrarily). The components of d� given by (1.10) are shown; these also enter (1.11).

where C is a constant. Frequently, in this book, the symbol Φ is a potential (electrical, chemical)
in which case the surface of constant value is referred to as an equipotential surface (biologists
prefer the designation isopotential).

If we let C take on a succession of increasing values, a family of nonintersecting isopotential
surfaces results. The geometrical shape of this set of isopotential surfaces is a reflection of the
character of the potential field and is useful for at least this reason.

1.4.1. Gradient to Potential Difference

Consider two closely spaced points P1 and P2. Point P1 lies on the surface Φ(x, y, z) = C1,
and P2, which is close by, may not lie on this surface (see Figure 1.3). Let the coordinates of P1
be (x, y, z). Then the coordinates of P2 could be described as (x+ dx, y + dy, z + dz).

If ax, ay, az are unit vectors along the x,y,z axes, then the displacement (a vector) from P1
to P2 may be expressed as the vector sum of its rectangular components, namely,

d� = axdx+ aydy + azdz (1.10)
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Now the difference in potential from P1 to P2 is the total derivative of Φ(x, y, z) evaluated
at P1. It is given by

dΦ =
∂Φ
∂x

dx+
∂Φ
∂y

dy +
∂Φ
∂z

dz (1.11)

according to the chain rule. We define the vector G to have the above partial derivatives as
rectangular components:

G =
∂Φ
∂x

ax +
∂Φ
∂y

ay +
∂Φ
∂z

az (1.12)

In view of the definition of the scalar product as expressed by (1.8), then (1.11) can be written
as

dΦ = G · d� (1.13)

1.4.2. Properties of G

The function G has some interesting and useful properties. We can deduce these as follows.
First, suppose P2 also lies on C1. Since P1 is only an infinitesimal distance from P2, d� must be
tangent to C1 at P1.

Now under these conditions dΦ = 0, since Φ is constant on C1. Consequently, in (1.13) d�
and G are necessarily orthogonal. Since d� is tangent to C1 at P1, orthogonality means that G is
perpendicular to the surface C1.

We can find the magnitude of G by first choosing P2 so that d� makes an arbitrary angle θ
with the normal to surface C1 at P1 (as shown in Figure 1.3). SinceG is normal to C1, then from
(1.13)

dΦ = d� ·G = G cos θd� (1.14)

Consequently,
dΦ
d�

= G cos θ (1.15)

and therefore the derivative of Φ in the direction � (the directional derivative) depends on the
direction of d� and is maximum when θ = 0. The condition θ = 0 means that d� in the direction
of the surface normal, n, so the maximum derivative of Φ is along the normal to the equipotential
surface. (Those familiar with contour maps are not surprised at this result.) Accordingly, Eq.
(1.15), with θ = 0, yields

G =
dΦ
dn

(1.16)

Thus, from the above, G is in the direction of the maximum rate of increase in Φ and has a
magnitude equal to that maximum rate; and this maximum is achieved along the direction which
is normal to the equipotential surface.

1.4.3. The Del Operator ∇ and the Gradient

The vectorG, defined in (1.12), is known as the gradient. Rather than being given the symbol
G, the gradient of Φ usually is written∇Φ, where ∇ is an operator.



BIOELECTRICITY: A QUANTITATIVE APPROACH 7

With this change in notation,

∇ ≡ ax ∂
∂x

+ ay
∂

∂y
+ az

∂

∂z
(1.17)

The gradient operation ∇Φ is executed by considering each term in (1.17) to be acting on
Φ. Thus the gradient is found by taking each partial derivative and appending the corresponding
unit vector. One can verify that this process leads, correctly, to the right-hand side of (1.12).

Consequently∇Φ not only symbolizes the gradient of Φ but describes the operation leading
to its correct evaluation (though only in rectangular coordinates). Thus from (1.17) we get,
corresponding to (1.12):

∇Φ =
∂Φ
∂x

ax +
∂Φ
∂y

ay +
∂Φ
∂z

az (1.18)

The magnitude of ∇Φ is evaluated by taking the square root of ∇Φ · ∇Φ. From (1.18) and
(1.8) the magnitude is found as

|∇Φ| =
√(

∂Φ
∂x

)2

+
(
∂Φ
∂y

)2

+
(
∂Φ
∂x

)2

(1.19)

1.4.4. Comments about the Gradient

One way to gain an intuitive concept2 of the gradient is as follows: If Φ(x, y) describes the
elevation of points on the surface of a hill [corresponding to each coordinate (x, y)], then the
height (Φ) will vary from place to place in the same way as in a conventional contour map. The
gradient of Φ evaluates the slope of the hill at each point. The slope is represented by a magnitude
and direction. The magnitude signifies how steep the slope is at a particular point. The direction
of the gradient points in the most uphill (steepest) direction. On most hills, both the magnitude
and direction of the slope will vary considerably from place to place.

As will be seen in the sections below, one of the reasons that the gradient is an important
mathematical construct in electrophysiology is that the negative of the gradient of the electrical
potential is normally proportional to the strength of the associated electrical current. In a similar
way, the flow of water on the surface of a hill is closely related to the hill’s slope. Since water
flows downhill, on the smooth surface we are assuming, it will thereby flow in the direction of
the negative gradient.

1.5. DIVERGENCE

Connect a low-voltage battery through two terminals to the body: this establishes a current
flow field (a vector field). Current enters the body through the plus terminal and exists through
the minus terminal.

Within the body, the configuration of the current field will depend on body shape, electrode
positions, and the body’s electrical inhomogeneities; the result could be described by the current
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density function, J(x, y, z), that results. Suppose we turn the problem around and are given only
the function J .

In this case, at the least, the electrode locations (i.e., source and sink for J) should be evident
from the features of the field. In a formal procedure we could discretize the body into small
cubical elements and evaluate the net flow across the bounding surface of each volume element.
If a result is zero then no source is enclosed, but if the value is positive (i.e., a net outflow) then
a net positive source lies within the volume; similarly, a net inflow identifies a net sink.

A more familiar problem is where currents arise, as they do, from excitable tissue (say, the
heart as a source of the electrocardiogram). We could measure this current flow field and then
examine it to determine the sources of that field as in the above example. However, if the field J
can be described analytically, then an analytic expression for the source density can be evaluated;
the procedure will be developed in the following material.

A typical vector field arising in electrophysiology (and one that will be of great interest to
us) is the current density, J , in a volume conductor. The structure of the J field depends on the
presence of sites at which current is either introduced (sources) or withdrawn (sinks). In this
respect the behavior of J(x, y, z) is analogous to the vector field describing fluid flow that arises
from a distribution of sources and sinks, or of heat flow, etc.

This class of vector fields has in common certain general properties, which we will discuss
now in terms of a current flow field. In the following we use the term “sources” to include “sinks”
(which are, simply, negative sources).

For an arbitrary, physically realizable source distribution giving rise to a flow field, J , the
latter will be a possibly complicated but well-behaved vector function of position. In particu-
lar, for a region that contains no sources the net flow of J across the bounding surface of any
arbitrary volume within the source-free region (e.g., choosing inflow to be negative and outflow
to be positive) must be zero. This result is a consequence of the conservation of charge. (This
requirement is also stated to result from the continuity of current.)

The evaluation of the net flow across a closed surface may be taken as a measure of the net
source (or sink) within the region enclosed by that surface. If the net flow across any (every)
surface is zero, then the region is source free, as discussed above. If there is a net outflow, then
within the surface there must lie sources whose net magnitude equals the (net) outflow. For a
differential rectangular parallelepiped we can derive an expression that evaluates this net outflow.
This expression will prove useful when the current density can be described analytically.

1.5.1. Outflow through Surfaces 1 and 2 in Figure 1.4

Referring to Figure 1.4 and assuming a flow field J(x, y, z) to be present, one sees that the
outflow through surface 2 must be

outflow2 = dydz

[
Jx +

(
1
2

)(
∂Jx
∂x

)
dx

]
(1.20)
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Figure 1.4. Divergence evaluated with a rectangular parallelepiped of differential size.

plus a higher-order term, where Jx is the value of Jx(x, y, z) at the center of the parallelepiped
(which accounts for the factor of 1/2 in the expression).

For surface 1 the outflow is

outflow1 = −dy dz
[
Jx −

(
1
2

)(
∂Jx
∂x

)
dx

]
(1.21)

Note the sign: in (1.21) the minus sign (in front of the bracket) arises because in the evaluation
of the outflow the area, 1, is oriented in the negative x direction. The sum of the above two terms
is then dx dy dz ∂Jx/∂x.

1.5.2. Outflow through All Six Surfaces

In the same way the remaining two pairs of faces contribute dx dy dz ∂Jy/∂y and dx dy dz
∂Jz/∂z. Consequently, the net outflow, which is the sum of the previous three terms, is

∮
S

J · dS =
(
∂Jx
∂x

+
∂Jy
∂y

+
∂Jz
∂z

)
dx dy dz (1.22)

Note that J · dS is the outflow of J across an arbitrary surface element. The special integral
symbol with a circle in the middle (

∮
) indicates an integral over a closed surface. In this example

the rectangular parallelepiped described in Figure 1.4 is the designated closed surface, and this is
evaluated in the right-hand side of (1.22). Note that J ·dS correctly evaluates the flow of J across
dS because the dot product selects the component of J in the direction of the surface normal.
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1.5.3. Definition of Divergence

If we divide both sides of (1.22) by dx dy dz, then the ratio is defined as the divergence of J :

divergence J =

(∮
s
J · dS)

dx dy dz
(1.23)

Strictly, divergence is evaluated in the limit as the volume (dx dy dz) approaches zero. This
definition can be written as

divJ = lim
V→0

∮
S
J · dS
V

(1.24)

Consistent with the definition, when J is a differentiable function Eq. (1.22) may be substituted
into (1.24), resulting in

divJ =
∂Jx
∂x

+
∂Jy
∂y

+
∂Jz
∂z

(1.25)

The divergence is a scalar quantity since it equals the net outflow per unit volume of the
vector J at each point in the space. While we have in mind that J is a current flow (current
density), these results apply to any vector field (simply interpret that field as a flow, whether it
actually is or not).

If we treat the∇ operator, defined in (1.17), as having vector-like properties, then in view of
(1.25) and the properties of the dot product given in (1.8) we have (formally)

∇ · J ≡ divJ =
∂Jx
∂x

+
∂Jy
∂y

+
∂Jz
∂z

(1.26)

establishing∇·J as both a symbol for the divergence operation and a description of its evaluation
(in rectangular coordinates).

1.5.4. Comments about the Divergence

It is important to keep in mind that the divergence is a quantity that varies from point to
point. As an analogy, note that water flowing on the surface of a hill has a flow pattern that varies
from point to point. At most points on the hillside, the water arrives from the uphill side and
departs to the downhill side. At these points the water’s “divergence” is zero. At a few sites water
emerges onto the surface from an underground spring (or maybe rain falls on that spot). At such
a point, from the viewpoint of the two-dimensional surface flow function, water is emerging and
flowing out from the point. At these points, the “divergence” is positive, and the point is called a
“source.” At a few other points, water disappears from the surface (maybe it goes down a drain
pipe). As one might expect, the “divergence” at that position becomes negative, and the point is
called a “sink.”

1.5.5. Laplacian

We have seen that the gradient operation on a scalar field results in a vector field. The vector
field may be subjected in turn to a divergence operation—which returns a new scalar field. This
successive application of the∇ operator is called the Laplacian and is symbolized by∇2. That is,

∇2Ψ = ∇ · ∇Ψ (1.27)
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Since, from (1.18), we have

∇Ψ = ax
∂Ψ
∂x

+ ay
∂Ψ
∂y

+ az
∂Ψ
∂z

(1.28)

then, by virtue of (1.26), we obtain

∇ · ∇Ψ =
∂

∂x

(
∂Ψ
∂x

)
+

∂

∂y

(
∂Ψ
∂y

)
+

∂

∂z

(
∂Ψ
∂z

)

or, more simply

∇2Ψ =
∂2Ψ
∂x2 +

∂2Ψ
∂y2 +

∂2Ψ
∂z2 (1.29)

Equation (1.29) evaluates the Laplacian of any scalar function in rectangular coordinates.

1.5.6. Laplace’s Equation

If there are no sources or sinks of Ψ within a region, then throughout that region the divergence
is zero, so at every point one has

∇2Ψ = 0 (1.30)

With the right-hand side zero, the equation is called Laplace’s equation. Often the goal of
a problem in bioelectricity is to find an analytical or numerical function that obeys Laplace’s
equation within some specified region, e.g., around an electrically active fiber.

1.5.7. Comments about the Laplacian

The Laplacian deals with the divergence of the gradient. If the gradient is proportional to
the flow, as of water on the surface of the hill, the Laplacian will find the divergence of that flow.
There will be a nonzero divergence of the flow at those points where water is emerging from
a spring or falling into drainpipes, i.e., at sources and sinks, but the divergence of the surface
flow will be zero elsewhere. That is, evaluating the Laplacian of a flow function is a means of
identifying the presence and magnitude of sources and sinks of that function. A very important
special case occurs when Laplace’s equation is satisfied everywhere in a region, since that means
there are no sources or sinks within that region.

1.6. VECTOR IDENTITIES

Vector identities describe relationships that are true for all well-behaved scalar and vector
functions. That is, while the identity expression looks like an equality, it does not simply hold
for certain values of the variables but rather for all values of the variable. In subsequent chapters
we shall refer to the vector identities listed here. The proof of the first expression will be given.
The reader is invited to use this as a model for confirming the others.

In the following expressions Φ and Ψ are well-behaved scalar functions:

∇ · (ΦA) = A · ∇Φ + Φ∇ ·A (1.31)

∇(ΦΨ) = Φ∇Ψ + Ψ∇Φ (1.32)

∇2(r) = 0, r =
√
x2 + y2 + z2 (1.33)
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1.6.1. Verification of Eq. (1.31)

To verify (1.31) we replaceA by its rectangular components (Axax+Ayay+Azaz) leading
to

∇ · (ΦA) = ∇ · (ΦAxax + ΦAyay + ΦAzaz) (1.34)

Now using the definition of divergence given in (1.26) results in the expression

∇ · (ΦA) =
∂

∂x
(ΦAx) +

∂

∂y
(ΦAy) +

∂

∂z
(ΦAz) (1.35)

By chain rule we have

∇ · (ΦA) = Φ
∂Ax
∂x

+Ax
∂Φ
∂x

+ Φ
∂Ay
∂y

+Ay
∂Φ
∂y

+ Φ
∂Az
∂z

+Az
∂Φ
∂z

(1.36)

Collecting terms gives

∇ · (ΦA) = Φ
(
∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

)
+Ax

∂Φ
∂x

+Ay
∂Φ
∂y

+Az
∂Φ
∂z

(1.37)

We now identify

A · ∇Φ =
(
∂Φ
∂x

ax +
∂Φ
∂y

ay +
∂Φ
∂z

az

)
·A

= Ax
∂Φ
∂x

+Ay
∂Φ
∂y

+Az
∂Φ
∂z

(1.38)

so that substituting (1.38) and (1.26) into (1.37) leads to

∇ · (ΦA) = Φ∇ ·A+A · ∇Φ (1.39)

which confirms (1.31).

1.7. SOURCE AND FIELD POINTS

Many problems in electrophysiological modeling require a vector r that extends from a
“source point” (x, y, z) to a “field point” (x′, y′, z′) (Figure 1.5). These names arise when con-
sidering active tissues lying in passive volume conductors where we shall be interested in the
electric potential field at (x′, y′, z′) established by current sources at (x, y, z).

The use of primed and unprimed variables will be seen later to be a useful way of distin-
guishing source and field points. It is important to distinguish, because sometimes one needs
to perform a mathematical operations on the one or on the other, without confusion and while
utilizing a common coordinate system.

The radius, r, from source to field is a scalar function whose magnitude is

r = [(x− x′)2 + (y − y′)2 + (z − z′)2]1/2 (1.40)

Since r(x, y, z, x′, y′, z′) is a scalar field we can examine its gradient. In this case, since it
depends on both the source and field, we can evaluate the gradient with respect to either the field
coordinates (primed) or the source coordinates (unprimed) while holding the other coordinate
fixed.
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Figure 1.5. Dipole Field. Source at (x, y, z) and field at (x′, y′, z′).

1.7.1. Gradient of (1/r) with Respect to Source Coordinates

In source field problems it is frequently necessary to examine the gradient of the scalar
function (1/r). With care and some patience, finding ∇(1/r) can be accomplished by carrying
out the gradient (derivative) operations in x, y, z coordinates. That is, from (1.17) we recall that

∇ ≡ ax ∂
∂x

+ ay
∂

∂y
+ az

∂

∂z
(1.41)

Assuming that the gradient is desired at the source point, then we apply the∇ operation only on
the unprimed coordinate variables in r [see Eq. (1.40)], and the result is

∇
(

1
r

)
= − (x− x′)ax + (y − y′)ay + (z − z′)az

r3 (1.42)

Because the unit radial vector from the source point to the field point, ar, is (see Figure 1.5)

ar = −((x− x′)ax + (y − y′)ay + (z − z′)az)/|r| (1.43)

then (1.42) can be written as

∇
(

1
r

)
=
ar
r2 (1.44)

Note that our choice of unprimed variables to describe source geometry and primed variables
to describe the field geometry is arbitrary; the reverse definition could equally well be made.

1.7.2. Gradient of (1/r) with Respect to Field Coordinates

In some cases we will be interested in applying the operator

∇′ ≡ ax ∂

∂x′
+ ay

∂

∂y′
+ az

∂

∂z′
(1.45)



14 CH. 1: VECTOR ANALYSIS

In this case, ∇′ operates on the field coordinates [i.e., we examine the effect produced by
varying the position of the field point while holding the source point (x, y, z) fixed]. Carrying
out the indicated partial derivatives in (1.45) on r defined by (1.40) gives

∇′
(

1
r

)
=

(x− x′)ax + (y − y′)ay + (z − z′)az
r3 (1.46)

Consequently, from (1.46), (1.43), and (1.42) we have

∇′
(

1
r

)
= −ar

r2 = −∇
(

1
r

)
(1.47)

1.8. VOLUMES AND SURFACES

Bioelectric events occur within volumes surrounded by surfaces. The volume may be the
whole torso volume of a human, and the surface the skin surface. At a much smaller scale, the
volume may be a cell volume and the surface a cell membrane. The extensions of vector analysis
to some of the mathematics of volumes and surfaces thus prove useful in bioelectricity.

1.8.1. Gauss’s Theorem

In a previous section we saw that the net outflow of current from a given volume is a measure
of the net source contained in the volume. For a volume V bounded by a surface S the outflow is
given by

outflow =
∮
s

J · dS (1.48)

where dS is a surface element whose direction is the outward normal. The divergence∇ · J also
evaluates the net outflow in each unit of the volume.

Thereby, the outflow evaluated in (1.48) can also be found by integrating ∇ · J through the
volume bounded by S. In fact, ∫

V

∇ · J dV =
∮
s

J · dS (1.49)

This relationship is true for any well-behaved vector field. It is known as Gauss’s theorem or the
divergence theorem.

1.8.2. Green’s First Identity

Suppose that
J = Φ∇Ψ (1.50)

where Φ and Ψ are two scalar fields. Substituting (1.50) in (1.49) gives∫
V

∇ · Φ∇ΨdV =
∮
s

Φ∇Ψ · dS (1.51)

Expanding (1.51) with the help of Eq. (1.31) produces Green’s first identity, which is:∫
V

Φ∇2ΨdV +
∫
V

∇Φ · ∇ΨdV =
∮
s

Φ∇Ψ · dS (1.52)
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1.8.3. Green’s Second Identity

From Green’s first identity one gets Green’s second identity, also called Green’s Theorem.
To do so, one observes that there is no special relationship required in (1.50) between scalars Φ
and Ψ and hence (1.52) describes a vector identity.

It is consequently also valid if Φ and Ψ are interchanged; specifically∫
V

Ψ∇2Φ dV +
∫
V

∇Ψ · ∇Φ dV =
∮
s

Ψ∇Φ · dS (1.53)

Equations (1.52) and (1.53) are now two equations, different from each other, but both involving
the same scalar fields Φ and Ψ. If Eq. (1.53) is subtracted from (1.52), the result is Green’s
Theorem: ∫

V

(
Φ∇2Ψ−Ψ∇2Φ

)
dV =

∮
s

(Φ∇Ψ−Ψ∇Φ) · dS (1.54)

1.8.4. Comment on Green’s Theorem

Green’s Theorem may be seen as an abstract theorem (with, perhaps, an austere beauty) since
it shows relationships between scalar fields Φ and Ψ, and their gradients and divergences, without
assigning any specific physical or biological meaning to either one.

To view Green’s Theorem as having significance limited to the abstract is a mistake, however,
since Green’s Theorem can be used as a powerful tool in analyzing real problems. (Later on in
this book, for example, Green’s Theorem is used as a way of examining how currents in the heart
affect voltages on the body surface.)

Exploitation of Green’s Theorem often proceeds by choosing specific forms of the scalar
fields Φ and Ψ. For example, Φ may be interpreted as an electric potential while Ψ may be the
reciprocal distance from source to field, 1/r. Once such assignments are made and used, the
seemingly abstract equation (1.54) quickly becomes a specific equation relating the physically
real variables of the chosen problem itself.3

1.9. THE GRADIENT AND DIVERGENCE OF (1/r)

This section uses the mathematics of Chapter 1 to examine the extraordinary nature of (1/r),
its gradient, and its divergence, whether or not r = 0. The results are used to relate currents to
potentials, as presented in Chapter 2, and then used routinely in the chapters thereafter.

Specifically, the electric potential field of a current point source of strength I0, located at the
coordinate origin, and lying in a uniform volume conductor of infinite extent and conductivity
σ, is

Φe(r) =
Io

4πσ
1
r

(1.55)

The above equation is frequently used to find the potential for a point source, based on the
1/r function. It is implicit that the potentials arise from a single current source located at that
one single point. Thus, it must be the case that ∇2(1/r) = 0 at all points where r �= 0.
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On the other hand, we have established that whenever ∇2Φ is greater than zero, there are
sources. Thus, for (1.55) to be true, it must be that ∇2(1/r) �= 0 at r = 0.

It is not obvious that the 1/r function has these properties in its divergence.

Restating the issue in a different way: because∇2Φ evaluates the volume source distribution
of Φ, then ∇2(1/r) should be zero everywhere except at the origin. Conversely, at the origin,
where a point source corresponds to an infinite source density (i.e., a finite source within an
infinitesimal volume), the divergence must be nonzero and in fact infinite in a special way.

Demonstrating this special property of ∇2(1/r) is of further interest when one recognizes
that any arbitrary distribution of electrical sources can be considered to consist of a collection of
point sources, whose collective effect is the linear sum of the effect of each one individually. Thus
the properties of the scalar field (1/r) are of special interest, and a discussion of this problem has
far-reaching ramifications.

We consider first the value of ∇2(1/r) for r �= 0. Writing r in terms of x, y, z coordinates,
and using direct differentiation, we have:

r =
√

(x− x′)2 + (y − y′)2 + (z − z′)2 (1.56)

Using (1.30) and (1.55) we have

∇2(1/r) =
∂2

∂x2

(
1
r

)
+

∂2

∂y2

(
1
r

)
+

∂2

∂z2

(
1
r

)

=
(

1
r3 −

3(x− x′)2

r5

)
+
(

1
r3 −

3(y − y′)2

r5

)
+
(

1
r3 −

3(z − z′)2

r5

)
= 0, r �= 0 (1.57)

This result confirms the expected behavior of a point-source field at the origin at any finite radial
distance.

∇2Φ describes the negative of the source density of Φ. Consequently, the total source
contained in a small concentric sphere of radius a around the point-source field described by Φe
in (1.55) should equal the (negative of the) point-source strength (SS). We may evaluate SS by
finding the volume integral of the source density, namely,

SS = −
∫
V

∇2ΦedV

= −I0/σ
4π

(∫ a

0
∇2(

1
r

) (4πr2)dr
)

= −I0
σ

∫
V

∇ · ∇(
1
r

) dV (1.58)

The last integral of (1.58) can be carried out by applying the divergence theorem. Because
of symmetry and uniformity on r = a we get, using (1.64) below,

SS = −I0/σ
4π

∫
S

∇(
1
r

)
∣∣∣
a
· dS = −

(
I0/σ

4π

)
4πa2∇(

1
r

)
∣∣∣
a
· ar (1.59)
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The gradient may be evaluated by recognizing that it depends only on the variable r and
hence, from its fundamental definition, requires only a derivative with respect to r, giving

∇(1/r)
∣∣∣
a

= −(1/r2)
∣∣∣
a
ar = −(1/a2)ar (1.60)

The outcome is that

SS = I0/σ (1.61)

We note that, as might be expected, the outcome did not depend on a no matter how small it might
be chosen (consistent with the radius of a point source being zero). This result confirms that the
source is, indeed, a point source and also that its magnitude equals I0/σ, where σ converts to
electric potential.

In the evaluation of∇(1/r) above, we could have applied (1.18), which finds the gradient in
rectangular coordinates. The result would have been the same as in (1.60), but the derivation would
be more lengthy. One can, in fact, derive general expressions for gradient, divergence, and the
Laplacian in coordinate systems other than rectangular; these may be particularly advantageous
in applications where the geometry is cylindrical, spherical, etc.

For example, in spherical coordinates these expressions are

∇Φ = ar
∂Φ
∂r

+ aθ
1
r

∂Φ
∂θ

+
aφ

r sin θ
∂Φ
∂φ

(1.62)

∇ ·A =
1
r2

∂

∂r
(r2Ar) +

1
r sin θ

∂

∂θ
(sin θAθ) +

1
r sin θ

∂Aφ
∂φ

(1.63)

∇2Φ =
1
r2

∂

∂r
(r2 ∂Φ

∂r
) +

1
r2 sin θ

∂

∂θ
(sin θ

∂Φ
∂θ

) +
1

r2 sin2 θ

∂2Φ
∂φ2 (1.64)

Note that the gradient operation deduced for (1.60) from basic principles could also be obtained
from (1.62) (noting that the function has only a radial component).

The results found in this example can be summarized in the following useful equation:

∇2(1/r) = −4πδ(r) (1.65)

where δ(r) is a delta function. This function is defined to be zero everywhere except where r = 0,
in which case δ(0) =∞. However, the singularity is integrable, so that the volume integral over
a volume containing the singular point is finite; in fact (by definition)∫

δ(r) dv = 1 (1.66)

Equation (1.65) could have been used in the analysis of the divergence (1/r), which was
examined in a preceding section. Use of (1.65) there would have resulted in the same conclusions,
achieved by means of a shorter sequence of steps.
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Figure 1.6. The solid angle of the surface S0 is evaluated at P . The magnitude of Ω can
be interpreted as the area intercepted on a unit sphere.

1.10. SOLID ANGLES

Just as analysis of arcs and lengths in a 2D plane requires the use of angles, the analysis
of surfaces in 3D requires the use of solid angles. In bioelectricity, such angles are essential in
finding potentials generated from three dimensional objects (such as cells) or organs (such as the
heart).

Angles in two dimensions can be considered fractions of a unit circle (with maximum angle
in radian measure of 2π). In an analogous way, angles in three dimensions can be considered as
fractions of a sphere of unit radius, with a maximum solid angle of 4π steradians.

Vector analysis provides the necessary operations for the definition and understanding of
solid angles. In Figure 1.6, the element of the solid angle, dΩ, subtended at the point P is

dΩ = −∇
(

1
r

)
· dS (1.67)

where r is the distance from an element of surface dS to P . That is, if P is at the coordinate
(x′, y′, z′) and dS is at (x, y, z) then

r =
√

(x′ − x)2 + (y′ − y)2 + (z′ − z)2 (1.68)

and

∇
(

1
r

)
=
ar
r2 (1.69)

as can be verified by expanding the gradient [or by reference to Eq. (1.44)]. In Eq. (1.69), ar is
from dS to P, as illustrated in Figure 1.6.
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Figure 1.7. Vectors to Corners of a Triangle. Vectors R1, R2, and R3 extend from point
P to the three corners of a triangle. The vectors touch the corners in clockwise order when
seen from the “inside” of the surface defined by the triangle’s surface vector.

If (1.69) is substituted into (1.67), then one obtains

dΩ = − (ar · dS)
r2 (1.70)

One can interpret the magnitude of dΩ evaluated in (1.70) as the area intercepted on a unit sphere
by the rays drawn to the periphery of the area element dS from P.And, consequently, the magnitude
of the total solid angle Ω given by

Ω =
∫
S0

dΩ = −
∫
S0

(ar · dS)
r2 (1.71)

is the area intercepted on a unit sphere by the rays drawn to the periphery of S0.

The interpretation of the solid angle as the subtended area on a unit sphere follows because
ar · dS is the component of the area dS that lies on an included sphere. At the same time, the
area magnitude of ar · dS is scaled by the factor 1/r2, a scaling that brings the area to that of the
unit sphere.

The solid angle Ω is negative when surface vector S points toward P , as in Figure 1.6. On a
closed surface (e.g., a cell), the surface vector is most often chosen to point outward.

Numerical evaluation of solid angles often is done by dividing the surface into a set of
triangles, and then computing the solid angle for the surface as a whole as the sum of the solid
angles of each triangle. An example of such a triangle is shown in Figure 1.7.

The integral of (1.71) then has to be evaluated numerically. (The integral can be done
analytically for special cases, but not in general.) Then numerical evaluation usually can be
divided into two categories, triangles that are far enough away from P to use an approximate
method, and those that are close to it, which require a vector method.

If the triangle is far enough away from P (far enough that the distance r to any point on
the triangle is approximately constant), then the r can be factored out of the integral of the solid
angle, and (1.71) becomes

Ω =
∫
S0

dΩ = −
∫
S0

(ar · dS)
r2 = − 1

r2

∫
S0

(ar · dS) ≈ (ar · S)
r2 (1.72)
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Here r is nominally the distance from P to the centroid of the triangle. Note that both S and r
can be found from the set of vectors R1, R2, and R3.

If the triangle is close to P , or if a more precise answer is required, a more detailed vector
analysis is required, e.g., [1]. Van Oosterom [5] provides a discussion of alternatives and the
superior vector formula

tan

(
1
2

Ω

)
=

[R1R2R3]
R1R2R3 + (R1 ·R2)R3 + (R1 ·R3)R2 + (R2 ·R3)R1

(1.73)

where R1 (no overbar) is the magnitude, and the operation [] is defined as

[R1R2R3] ≡ R1 · (R2 ×R3) (1.74)

Equation (1.73) requires taking the inverse tangent to find Ω. The equation proves satisfac-
tory if care is taken when finding the inverse tangent regarding the signs of the numerator and
denominator.

1.11. OPERATIONS SUMMARY

Below is a summary of the mathematical operations reviewed in this chapter:

Symbol Definition

· Dot (scalar) product

∇ Del operator (partial derivatives)

∇Φ Gradient of the scalar field Φ

∇ · J Divergence of the vector field J

∇2Ψ Laplacian of scalar field Ψ
Ω Solid Angle

1.12. NOTES

1. Because this book is about bioelectricity, an extensive discussion of vector analysis would be inappropriate. Many
readers will have studied vector analysis before coming to this text. For those who wish additional material, several
texts are suggested at the end of the chapter.

2. Here and there in this text there are digressions about the subject at hand that describe ways of thinking about the
mathematical points, often using analogies. These are offered as an aid in developing an intuitive feel for the subject.
While this can be a valuable asset, it is important to be cautious and not substitute such intuition for an actual analysis
of the subject since the analogy may be loosely, but not precisely, true.

3. Green’s Theorem, with its upside down triangles, also can be used to impress your friends and family, when they
asked you what you learned today.
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2
SOURCES AND FIELDS

Understanding electricity in living tissue—where it comes from, what it does, and how it does
it—has been a goal actively pursued since the 1700s, at the inception of the scientific study of
electricity. Such famous investigators as Luigi Galvani, who startled the scientific world in 1791
with his descriptions of the effects of currents in frogs, and his critic Alessandro Volta (for whom
the volt is named) were extensively involved with “animal electricity.”

Some theories of that time were fantastic in light of present-day knowledge (such as the
speculation by Galvani that there was an electrical fluid prepared by the brain, flowing through
nerve tubes into the muscles). Nonetheless, the careful experimental work of Galvani, Volta,
and other investigators of that time laid the foundations of the field of bioelectricity, as well as
electricity more broadly.

In the 1700s some investigators thought that animal electricity was different in fundamental
ways from the electricity observed in nonliving objects. That was wrong. One thing that now
is certain is that animal electricity is not a different kind of electricity. Rather, bioelectricity is
based on the same fundamental laws that describe electricity in the atmosphere, in solid-state
materials such as silicon, in television sets, or lighting systems.

There are at the same time many substantial differences between the elements of electrical
systems that exist in living tissue as compared to man-made electrical systems, and in the ways
they work. One of the major differences is that the living systems derive their electrical energy
from the ionic concentration differences that exist across cell membranes.

Consequently the energy sources are distributed in space along the membrane. Use of this
energy involves a flow of current across the membrane. As a corollary, current in living systems
necessarily and desirably flows both inside and outside electrically active cells, and in a controlled
fashion crosses over the membrane separating the one from the other.

In contrast, systems designed by humans usually have a localized energy source, such as a
battery, that drives currents through a restricted conductor, such as a wire. In such engineered

23
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systems, currents outside the wire are usually due to leakage or other imperfections, rather than
being an important part of the system itself.

The goal of this chapter is to describe, concisely, the fundamental mathematical relationships
linking sources and the electric potentials to the current fields they produce. These relationships
are presented mainly in the form used when considering current sources in a conducting medium,
the form most often of value in bioelectricity.

The most basic relationships of sources, currents, and potentials are given below in only a
few paragraphs, but their ramifications are extensive. Much of the rest of this chapter (and indeed
much of the rest of this book) may be seen as concerned with their detailed applications.

2.1. FIELDS

The perspective of electrical sources and fields as used in bioelectricity visualizes space as
filled with potentials and currents. Both have values that are functions of position, but both
exist more or less everywhere throughout the region. This view corresponds to the recognition
that animals and people are large volumes, filled with conducting solutions, with ionic currents
moving extensively throughout.

Some readers will be familiar with the quantitative properties of electrical circuits. Such
circuits are characterized through the behavior of discrete (lumped parameter) elements connected
together by lossless wires. The perspective of fields as used in bioelectricity differs from the
perspective of circuits in fundamental ways, and is more akin to subjects such as antennas. In
this text the language and symbols of circuits are used from time to time, but one has to keep
in mind the limits of such a description, because the distinctly different nature of the bioelectric
environment changes everything.

2.2. TISSUE RESISTANCE AND CONDUCTANCE

One of the goals of this book is the elucidation of electrical sources, potentials, and currents in
biological tissues. The existence of currents throughout a volume conductor implies the existence
of an electric field, �E. The electric field is important because it describes the force that is exerted
upon a unit charge. Thus it quantifies the force that moves the ions, the constituent elements of
the current. Furthermore, for inhomogeneous materials we will expect a resistivity ρ (or inverse
conductivity σ) to be a function of position. We will discuss this subsequently.

The resistive property of materials is included in electrical circuits by means of lumped
elements with pure resistance. Physically we understand that the resistance measures the mag-
nitude of voltage across the element when passing the circuit current, as expressed in Ohm’s law
V = IR. The resistor is the physical element. For a uniform cylindrically shaped rod current
can be assumed uniform across the resistor’s cross-section; hence, the resistor may be treated as
one dimensional, or simply as lumped. Its resistive value can be evaluated by dividing the total
voltage across the element by the current, using R = V/I .

Biological materials, a major focus of this book, have resistive properties. In general these
are not lumped. Biological materials are cells or organs that have significant spatial dimensions,
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and often their properties change from one place to another. Instead of a lumped total resistance
R, there is a property of the biological material, the resistivity, often denoted by ρ, in units of
Ohm-cm. The resistance of a particular element of the material then is determined asR = ρA/L,
where A is the cross-sectional area through which current is flowing, and L is the length through
which current flows.

The concept of resistivity applies to a uniform medium, but that is not required, as resistivity
also allows an inhomogeneous medium. In the latter case ρ is a function of position.

In the analysis of many biological situations, it is more convenient (and established practice)
to use conductivity, denoted σ, instead of resistivity. For example, that is so for the fundamental
equations presented in the next section of this chapter. Conductivity is simply the reciprocal
of resistivity, i.e., σ = 1/ρ. The units of σ are Siemens/cm. The use of conductivity is more
convenient when there are multiple current pathways in parallel. In this case the conductivities
simply can be added, an intuitively and computationally simple step not possible with resistivities.

A further discussion of resistivity and conductivity and their related units appears near the
end of this chapter. Tissue also has substantial capacitance, which is discussed there also.

2.3. FIELDS AND CURRENTS

As noted, the existence of currents throughout a volume conductor implies the presence of an
electric field E. In electrophysiological problems, even under normal time-varying conditions,
E behaves like a static field at each instant of time (we call it quasi-static).1

Consequently, E can be described, as for electrostatic fields, as the negative gradient of a
scalar potential, Φ, that is,

E = −∇Φ (2.1)

in a conducting medium. (A conducting medium has charged ions or other particles than can
move.) The force exerted by the electric field results in the flow of charge (i.e., a current).

The current density J (current per unit of cross-sectional area) is related to the electric field,
E, by Ohm’s law, namely,

J = σE = −σ∇Φ (2.2)

In (2.2), σ is the conductivity of the conducting medium through which the current is flowing.
Inspection of (2.2) shows that the current density J is in the same direction as the electric field
E, if σ is a scalar as assumed here. Conversely, J may be large or small, for a fixed value of
E, depending on the value of the conductivity. (For physiological volume conductors the charge
carriers are ions, in contrast with electrons in the case of electric wires.)

The conducting region, in general, may be considered to contain current sources described
by a source density Iv(x, y, z). Sources may occur naturally, as in a membrane, or artificially, as
from a stimulus electrode.

From the divergence properties of the current density, J , we require

∇ · J = Iv (2.3)
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Equation (2.3) is true because divergence, being a measure of outflow per unit volume, is equiv-
alent to the source density.

When we consider point sources, the volume distribution function Iv will be singular at those
sources because, as already noted, such source densities are infinite (consisting, as they do, of a
finite source strength at an infinitesimal volume); the source density function, while singular, is
necessarily integrable (since the integral evaluates the source magnitude).

When a volume conducting region is evaluated, we might find that the volume integral of
Iv is zero. Finding a result of zero, we may conclude that the volume is either source free or
contains no net source (the total current across the bounding surface is zero) because its sources
equal its sinks. If the volume integral is nonzero, then the region is net positive or net negative,
and compensating sources lie outside the region. In bioelectricity, compensating sources are
necessary to satisfy the requirement that the sum of all sources be equal to zero, a condition that
preserves overall current conservation.

2.3.1. Poisson’s Equation

Potentials link directly to the current sources and sinks that produce them. Taking the
divergence of (2.2) and applying (2.3) gives

∇ · J = Iv = −σ∇2Φ (2.4)

Thus, for a region where the conductivity is homogeneous but which contains a source density
Iv , Poisson’s equation for Φ results, namely [from (2.4)],

∇2Φ = −Iv
σ

(2.5)

2.3.2. Laplace’s Equation

An important special case of Poisson’s equation occurs when the source density Iv is zero
everywhere in a region of interest (i.e., sources lie outside or at the boundary of this identified
region). For this case, that of a homogeneous conducting region that is free of sources (i.e., sources
lie outside the identified region), conservation of current requires that∇ · J = 0. Equation (2.4),
along with the condition that Iv be zero, results in

∇ · J = −σ∇Φ = 0 (2.6)

Under these conditions (2.5) requires that Φ satisfy the partial differential equation called Laplace’s
equation, namely,

∇2Φ = 0 (2.7)

A solution for the electric potential Φ in Poisson’s equation (2.5) can be written in integral
form. The solution is

Φ(x′, y′, z′) =
1

4πσ

∫
IvdV

r

=
1

4πσ

∑ Ijo
rj

(2.8)
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The solution presented in 2.8 is given in two forms: (a) the integral form in terms of Iv
applies when the sources are distributed; (b) the summation form in terms of Ijo (a point source
at distance rj applies when there is a collection of point sources). That Eq. (2.8) is a solution to
(2.5) can be verified by returning to the section in Chapter 1 on the special nature of the (1/r)
function, where this question is examined.

2.4. FIELDS FROM SOURCES, AND VICE VERSA

Note that Eq. (2.8) provides an expression for the electrical potential from a known source
configuration Iv , whereas Eq. (2.4) permits an evaluation of the sources, Iv , assuming it is the
electric potential Φ that is known. In other words, when one knows sources, then one can get
potentials, and vice versa.

2.5. DUALITY

The equations of the previous section are similar to those found in the study of electrostatics.
The electrostatic equations may already be familiar to some readers since they appear in introduc-
tory physics courses. Electrostatics is concerned with electric charges and fields in a dielectric
(i.e., insulating) medium while our interest lies in currents in conducting media.

Electrostatics and bioelectricity are different physical environments. In spite of the differ-
ences we will show below the similarity of governing equations of electrostatics and the equations
that arise when there is steady current, and we will describe how mathematical solutions found
in one context can be transformed into the other.

For electrostatic fields the basic equations are

E = −∇Φ (2.9)

D = εE (2.10)

∇2Φ = −ρ/ε (2.11)

Φ =
1

4πε

∫
ρdV

r
(2.12)

where ρ is the charge (source) density, and ε is the dielectric permittivity. In fact, with D as the
dielectric displacement,

∇ ·D = ρ (2.13)

Equation (2.12) is seen as an extension of Coulomb’s law, but this expression also is the solution
of Poisson’s equation (2.11) in integral form. (The adventurous reader can check that this is so.)
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Now Eq. (2.9) is identical with our Eq. (2.1), while Eqs. (2.10), (2.11), and (2.13) correspond
precisely to Eqs. (2.2), (2.5), and (2.3), provided we replace

ε→ σ (2.14)

D → J (2.15)

ρ→ Iv (2.16)

These correspondences are an application of the “principle of duality.”

The fact that the mathematics of currents in a volume conductor aligns so closely with that
of charges in a dielectric is widely recognized and frequently advantageous. The advantage is
that results (theoretical solutions, computer programs, etc.) learned in one context (e.g., physics)
can be readily transferred to another (e.g., electrophysiology).

It is important to keep in mind, however, that the duality does not imply equivalence. For
example, conductivity σ has an altogether different physical meaning than permittivity ε. In fact,
while∞ < σ < 0, kε0 < ε < ε0.

2.6. MONOPOLE FIELD

A “monopole” is a single pole. In the context of current fields a monopole is a single (point)
source or sink of current within a conducting medium. It is quite rare that natural sources in
bioelectricity involve monopoles, since sources arising from excitable tissues consist of differen-
tially spaced source and sink combinations. Nonetheless, an understanding of the field generated
by a monopole is important, because monopole fields are building blocks for more complicated
and realistic configurations, and sometimes they are directly useful for stimulating electrodes.

Suppose a point source of electric current, a monopole, is embedded in a uniform conducting
medium of conductivity σ. We assume the medium is infinite in extent to make the analysis
simpler. Let the position of the monopole be (x, y, z), as illustrated in Figure 2.1. Because the
medium is uniform, currents are radial.

Furthermore, the current density will be uniform on spheres centered on the source. In view
of the continuity of current, the total current crossing a spherical surface of arbitrary radius r must
equal the current (source) strength I0; consequently, the current density J on r equals I0 divided
by the area of the sphere, namely, 4πr2.

An expression for J as a vector field requires only the additional notation that J is directed
radially outward. Thus we may write J as

J =
I0

4πr2 ar (2.17)
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Figure 2.1. Current from a Point Source (monopole). The source at (x, y, z) creates
currents along radial lines r toward surfaces such as the mathematical surface identified
with the dashed line.

where ar is a unit vector in the outward radial direction, and

r2 = (x− x′)2 + (y − y′)2 + (z − z′)2 (2.18)

In (2.18), (x′, y′, z′) is the location of the field point at which the current density is evaluated
(described in Figure 2.1).

The potential field may now be evaluated if we apply Eq. (2.2) to (2.17). The result is

∇Φ = − I0
4πσr2 ar (2.19)

so

dΦ
dr

= − I0
4πσr2 (2.20)

Integration with respect to r gives an expression for the electric scalar potential, Φm, arising
from a monopole source (a point source), namely,

Φm =
I0

4πσr
(2.21)

Sometimes the stimulus electrode embedded within a biological preparation is considered to
act as a monopole source, to a reasonable approximation. The source location is the electrode’s
tip, and to a good approximation such a source may produce the potential field given by (2.21).
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2.7. DIPOLE FIELD

A point source (monopole) is, intuitively, the simplest elemental source. It turns out that in
electrically excitable tissue, isolated monopoles are not found. Instead, pairs of monopoles of
equal and opposite signs, close together, are the fundamental unit source in electrophysiology.
Thus in this section the field associated with such a source, which is designated a dipole, is
considered. Sometimes a distinction is made between a physical dipole, which consists of a
source–sink pair with small separation, and a mathematical dipole. The fields from the latter
often give a good approximation to fields from the former. Both are discussed more precisely in
a section below.

As an example of a physical dipole, consider a biological membrane. Such a membrane has
a thickness under 100

◦
A. The sides of the membrane often hold positive and negative elements

of equal magnitude, separated by only the small membrane thickness. For a membrane patch2,
such a configuration identifies a dipole source element. An active membrane source, therefore,
consists of a distribution of such dipoles. Thus the electrical properties of dipoles are studied
here both as a technical example of how the monopole building block can be combined into a
more complicated source, and as an introduction to a specific source that is directly applicable to
biomedical problems.

2.7.1. Dipole Analysis

Suppose we place at the origin of coordinates a point source of strength I0 and a point source
of strength −I0. These sources cancel, and the result is that the potential field is zero.

If, now, the source I0 is displaced a small distance d, as illustrated in Figure 2.2, incomplete
cancellation results. The total field under these conditions is precisely the change in the field
resulting from the displacement of I0 by d. (The change in the field at the field point P resulting
from the displacement of I0 by d is precisely the amount by which cancellation of −I0 fails; the
change therefore is the required field.) Thus, the dipole field, Φd, is given by

Φd =
∂

∂d

(
I0

4πσr

) ∣∣∣∣
0
× d (2.22)

where r = [(x− x′)2 + (y − y′)2 + (z − z′)2]1/2 and the zero by the vertical bar indicates that
evaluation of the derivative takes place at x = y = z = 0.

2.7.2. Comparison with Potential from Two Monopoles

We can obtain the same result from a more formal approach by noting that, as described in
Figure 2.2, the distance from the sink to the field point is r0 while that from the source to the field
point is r1, and consequently,

Φd = − I0
4πσ

1
r0

+
I0

4πσ
1
r1

(2.23)

The disadvantage of (2.23) in comparison to (2.22) is the need for two terms, rather than one,
and especially needing to find the small difference between two relatively large values. Thus one
wishes to combine both terms into one, by expressing r1 in terms of r0.
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Figure 2.2. Dipole Configuration. A current source (Io) and current sink (−Io) have equal
magnitude but opposite sign. The sources are separated by distance d. The question is what
potential P they produce at point (x′, y′, z′).

2.7.3. Expressing r1 in Terms of r0

Because distances r0 and r1 are large in comparison to the displacement d, then r1 can be
expressed in terms of r0 as

l
r1

=
1
r0

+
∂

∂d

(
1
r

)∣∣∣∣
0
× d (2.24)

Equation(2.24) is the leading term of a Taylor series expansion of (1/r1), where the vertical bar
and subscript zero indicate an evaluation at the origin of the value of the derivative. Substituting
(2.24) into (2.23) yields the total dipole field Φd, and this again is seen as a residual (non-canceling)
component, namely,

Φd =
I0

4πσ
∂(1/r)
∂d

d (2.25)

We note that (2.25) is the same as (2.22). The partial derivatives in (2.25), as in (2.22), constitute
directional derivatives, as in Eq. (1.15).
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2.7.4. Evaluation of ∂(1/r)/∂d

To evaluate the directional derivative of (1/r), which enters (2.22) and (2.25), we apply (1.15)
to yield

∂

∂d

(
1
r

)
= ∇

(
1
r

)
· ad (2.26)

where ad is a unit vector in the direction of the displacement d. Consequently,

Φd =
I0

4πσ

[
∇
(

1
r

)
· ad
]
d (2.27)

=
I0

4πσ
∇
(

1
r

)
· d (2.28)

This result depends on the assumption in (2.24) that d/r is small and only the linear de-
pendence on d need be retained. In fact, (2.28) is approximately correct even when d/r is only
moderately small (but less than unity). In this case, the field is still described as a dipole.

2.7.5. Mathematically Defined versus Physical Dipoles

For a mathematically defined “perfect” dipole it is required that d → 0 and I0 → ∞ such
that I0d = p remains constant and finite. Then (2.28) can be written as

Φ =
1

4πσ
∇
(

1
r

)
· p (2.29)

While the expression (2.29) is based on d/r → 0, that is never the case in electrophysiology.
Nevertheless, the expression often is used for physical dipoles (sometimes called “real” dipoles)
as an approximation. The approximation is a good one when d/r is small, say < 0.1.

The first neglected term in (2.24), being quadratic, suggests that the linear approximation will
be satisfactory if d/r ≤ 0.1. In a later section a comparison is presented of potentials computed
first as two monopoles and then as one dipole.

2.8. EVALUATING ∇(1/r) WITH RESPECT TO SOURCE VARIABLES

In Figure 2.3 there is a dipole p at position (x, y, z) and a field point at (x′, y′, z′) at which
the dipole field is to be evaluated. The distance between these points is r. The gradient operator in
(2.29) takes partial derivatives with respect to the source (unprimed) variable. That the unprimed
variables are involved is evident from the way the gradient was introduced to replace the directional
derivative at the source point.

Here we show how to evaluate this derivative. Using the definition of r,

r =
√

(x− x′)2 + (y − y′)2 + (z − z′)2 (2.30)
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Figure 2.3. Dipole Field. The source is at (x, y, z) and the field is to be determined at point
(x′, y′, z′).

and carrying out the gradient operation (1.17) we have

∇
(

1
r

)
=

∂

∂x

(
1
r

)
ax +

∂

∂y

(
1
r

)
ay +

∂

∂z

(
1
r

)
az (2.31)

= − 1
r2

[
(x− x′)

r
ax +

(y − y′)
r

ay +
(z − z′)

r
az

]

=
1
r2

[
(x′ − x)ax + (y′ − y)ay + (z′ − z)az

r

]
or

∇
(

1
r

)
=
ar
r2 (2.32)

where ar is a unit vector from source to field. Consequently, from (2.29), where p = I0d and
p = p ad,

Φd =
ar · p
4πσr2 (2.33)

It is frequently convenient to orient the z axis along p, in which case

Φd =
l

4πσ
p cos θ
r2 (2.34)

since ar · az = cos θ, and θ is the polar angle.

2.9. MONOPOLE PAIRS TO DIPOLES?

Electrical sources in biological preparations often arise in pairs. An earlier section developed
equations for the potential from the pair when the pair was taken as two monopoles, or as two
dipoles. Biological dipoles never fulfill the exact conditions required of mathematical dipoles, so
the question arises as to the degree of error present when pairs of physical sources are represented
as a dipole. When is so doing a good approximation? In this section we follow up on that question
with a specific example that forms the basis for more general conclusions.
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Figure 2.4. Two Monopole Sources. The +1 mA monopole is at x = a, and the –1 mA
monopole is at x = −a. The distance from the field point (r, θ) to the positive pole is R+,
from the negative pole R−, and the distance from the center of the pair is r. Potential φ is
at the field point. The dashed line is r sin θ, and is the y coordinate for r, R+, and R−.

2.9.1. Sample Problem

We have point current sources of 1 mA located at x = 1 mm and −1 mA at x = −1 mm
(Figure 2.4). These two sources form a “physical dipole,” i.e., a dipole with a finite monopole
displacement between the two poles. Calculate and plot the normalized potential as a function
of polar angle for a radius (from the origin) of 2, 4, and 8 mm. Compare with the field from an
idealized dipole. Explain any differences. Use σ = 0.001 S/mm.

2.9.2. Solution for Two Monopoles

Because of symmetry about the polar axis, all results are independent of azimuth angle, and
we may choose this to be 0◦. The distance from the positive source to an arbitrary field point,
(r, θ), is designatedR+ (for somewhat greater initial generality, we let each monopole be spaced
a mm from the origin).

In Cartesian coordinates the field point is (r cos θ, r sin θ), while the source is at (a, 0), so

R+ =
√

(r cos θ − a)2 + (r sin θ)2 =
√
r2 + a2 − 2ra cos θ (2.35)

(a result that can also be obtained from the law of cosines). For the negative monopole the source
field distance is

R− =
√
r2 + a2 + 2ra cos θ (2.36)

The total field, by superposition using (2.21), is given by

Φ(r, θ) =
1000
4π

[
(r2 + a2 − 2ra cos θ)−1/2 − (r2 + a2 + 2ra cos θ)−1/2

]
(2.37)
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To compare more easily the potential found with two monopoles to the potential found with
one dipole, it is helpful to factor (2.37) and get

Φ =
1000
4π

2a
r2 − a2

[
r2 − a2

2a
√
r2 + a2 − 2ra cos θ

− r2 − a2

2a
√
r2 + a2 + 2ra cos θ

]
(2.38)

The solution as expressed in (2.38) for the potential for two monopoles will be compared to the
solution given below for the sources expressed as a mathematical dipole.

The reason the form (2.38) is advantageous is that in this form the bracketed term is equal to
one when cos θ = 0. Also, note the behavior of the magnitude (coefficient) term (the part outside
the brackets). In the denominator the component r2−a2 is well approximated by r2 alone, when
a << r, a point to keep in mind for the comparison below.

2.9.3. Solution for One Dipole

At “great enough” distances the monopole source pair is expected to behave as a dipole. In
this example, the dipole strength is p = 1 mA ×2a mm. Hence, using (2.34), we have

Φ(r, θ)d =
2000a
4πr2 [cos θ] (2.39)

The solution (2.39) for the sources expressed as a dipole is in a good form for comparison to the
solution computed from two monopoles, as it also is divided into a magnitude part, outside the
brackets, and an angular part, inside.

2.9.4. Numerical Comparison

The solution for potentials from two monopoles (2.38) can now be compared to the solution
for the potentials when the two sources are approximated as a single dipole (2.39).

Magnitude dependence: the magnitude (coefficient) ratio obtained by dividing the coefficient
of (2.39) with that of (2.38) is (r2 − a2)/r2 = 1− a2/r2. The difference from unity decreases
inversely with the square of the ratio of dipole separation to source–field distance. If a/r = 1/10,
then the dipole magnitude error is under 1%.

Angular dependence: as noted, the bracketed term in (2.38) is the normalized field at a
constant radius. The normalized field is plotted in Figure 2.5 with a = 1 and for r = 2, 4, 8 mm
(as specified in the problem statement).

Also plotted is the normalized variation of the idealized dipole (which is simply cos θ).

2.9.5. Numerical comparison as a function of r

In Figure 2.5 the r = 8 mm curve is virtually the same for the solution expressed as one
dipole with that of the solution for two monopoles. Visually it is difficult to separate the solutions.

Consequently, one concludes from this example that when the source–field distance is five
to ten times the monopole separation, the dipole is a good approximation to the magnitude and to
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Figure 2.5. Normalized Potential Field at constant r from monopoles lying on the polar
axis and equally spaced from the origin by 1 mm. Dashed curve for r = 2, dotted for r = 4
mm, The solid curves describe r = 8 mm.

the pattern of potentials computed as two monopoles. Although this conclusion has been shown
here only for a particular example, it is a conclusion that is true more generally.

2.9.6. Analytical comparison

One can also investigate the goodness of the dipole approximation analytically, by carrying
the Taylor series representation of (2.24) into higher terms. Considering the positive monopole
at x = a (the negative monopole is at x = −a) and letting

Rd = [r2 + a2 − 2ra cos θ]−1/2

we obtain

1/R+ = 1/r +
∂Rd
∂a
|0a+

∂2Rd
∂a2 |0

a2

2
+
∂3Rd
∂a3 |0

a3

6
+ · · · (2.40)

where |0 means that evaluation is at a = 0.

By inspection of (2.40) it can be seen that an expression for l/R− is given by replacing a
by −a, resulting in a similar expression except that odd terms are negative. In forming the total
potential (superposition of positive and negative monopole contributions), the even terms in the
Taylor series expansion drop out and only the odd terms are left. In this remaining expansion the
leading term is the one identified as the dipole.

The next term serves as a correction to the dipole term and is examined here. From (2.40)
we have

Φ(r, θ) =
p cos θ
4πr2

[
1 +

(
5 cos2 θ − 3

2

)
a2

r2 + · · ·
]

(2.41)

Actually, the second term in (2.41) is useful as a dipole correction term provided that a/r is
sufficiently small compared to unity that the first neglected term, which depends on (a/r)4, can
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Figure 2.6. Parallel Plate Capacitor. Panel A shows schematically a parallel plate capacitor
with voltage V , charge Q, and separation d identified. These quantities are linked through
the electric field E between the plates. In panel B the capacitor is redrawn with a closed
surface added, with dotted lines. The box is an imaginary surface used for analysis. The
product E · dS is zero on all six sides of the box, except for side 3.

be ignored. Under these conditions we note that, as above, the first-order magnitude correction
varies as (a/r)2.

An angular correction is seen to contain a dependence on 2θ. This double angle factor can
be seen in Figure 2.4 for r = 2 mm.

The reader might wish to plot (2.41) for r = 2 mm and compare it with the exact result
plotted in Figure 2.4. The result demonstrates that the two terms in (2.41) would be just about
adequate for r/a = 2 and should improve for increasing values of this ratio. An expression for
the error in using only the two terms in (2.41) could be found by evaluating the third term, i.e.,
the first neglected term, in (2.41).]

2.10. CAPACITANCE

Somewhat surprisingly, biological structures exhibit high values of capacitance, mostly aris-
ing from cell membranes. The presence of this capacitance markedly affects the tissue’s natural
electrical behavior, as well as response to external stimulation. Thus a brief review of capacitance
and its relation to structure is presented here, as it will be pertinent to material presented in later
chapters.3

Suppose a voltage V is present between two parallel conductors that are separated by a
distance d, as shown diagrammatically in Figure 2.6A. The voltage will be accompanied by a
charge Q (per unit area) on each of the conducting plates.

The insulating material separating the conductors, the dielectric, may be air, cell membrane,
or some other nonconductor. The capacitance C between the plates is defined as

C ≡ Q

V
(2.42)
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that is, the capacitance is the ratio of charge to voltage. Nominally, the units of C, Q, and V are
Farads, Coulombs, and Volts. In biological systems, however, it is more common to cite units
values on a “per area” basis, as discussed in the units section below.

The relationship of the physical dimensions of the capacitor and its capacitance can be
determined by using Gauss’s law. Redrawing the capacitor (Figure 2.6B) with an imaginary box
enclosing one plate, as shown by the dotted lines, allows an analysis using Gauss’s Theorem.

If one begins with Green’s Theorem (1.54), which is

∫
V

(
Φ∇2Ψ−Ψ∇2Φ

)
dV =

∮
s

(Φ∇Ψ−Ψ∇Φ) · dS

and makes the choices Ψ = 1 and Φ = φ, the electric potential between the plates of the capacitor,
then Green’s Theorem simplifies to

∫
v

∇2φdv =
∮
S

∇φ · dS (2.43)

On the left one substitutes Poisson’s equation for electrostatics (2.11), so that

∫
v

∇2φdv = −Q
ε

(2.44)

On the right of (2.43) one uses the relation (2.9), which identifies the gradient of potential as the
electric field. Because the electric field exists only between the plates, and the direction of the
electric field is perpendicular to the plates, five of the six sides of the dashed box (of Figure 2.6B)
make no contribution to the surface integral.

On the remaining side, side 3, the magnitude of the electric field E within a parallel plate
capacitor (away from the edges) is −V/d (ignoring any edge effects). Thus

∮
S

∇φ · dS =
∑

6

E · Sj = −V
d
s3 (2.45)

Substituting into (2.43) the relationships given in (2.44) and (2.45),

Q

ε
=
V s3

d
(2.46)

Rearranging and making use of the definition of capacitance(2.42), one finds that

C ≡ Q

V
=
εA

d
(2.47)

thus

Cm =
C

A
=
ε

d



BIOELECTRICITY: A QUANTITATIVE APPROACH 39

Following convention, we have written the area of the capacitor plate now as A instead of
s3. The permittivity ε of a dielectric often is given as kε0, where ε0 is the permittivity of free
space, and k, the dielectric constant, is a value specific to the material.

The lumped parameter treatment of capacitance in electric circuits is associated physically
with two parallel conducting plates between which there is a dielectric. In biology the membrane
of a nerve or muscle fiber constitutes a distributed capacitance. The conductive extracellular
and intracellular media are associated with the two plates of a capacitor. The membrane itself
furnishes the intervening dielectric. The cell membrane often is approximated with k = 3.

The capacitance often is described per unit area, as such a description reflects a membrane
characteristic that may hold true across membranes of different size, e.g., for cells of different
size.

2.11. UNITS FOR RESISTANCE AND CAPACITANCE

Earlier in this chapter we noted that the resistance of biological materials is distributed. With
lumped parameters as used in circuit theory, individual units have resistances R or capacitances
C that do not involve geometric dimensions. In contrast, with distributed resistance, conduc-
tance, or capacitance the determination of resistance or capacitance values often is slightly more
complicated. The additional complications occur because the dimensions of the structure as well
as the characteristics of the material have to be taken into account.

A corollary is that resistance, conductance, and capacitance are specified using several dif-
ferent sets of units. All reflect, of course, basic properties of the materials involved. However,
usually they are also chosen to be convenient and helpful for the particular geometric shapes and
structures involved.4

2.11.1. Resistance and Resistivity, Conductance, and Conductivity

A double-box geometric structure that provides some interesting examples is depicted in
Figure 2.7. Consider first the small box, inside of which the resistivity is ρ = Ri Ohm-cm. The
resistance of the box to a current passing through it will depend on the direction of the current.
First suppose there is a current in the direction ax. What is the resistance of the small box to a
current in this direction? For such a current, the end-to-end resistance of the small box, R (in
Ohms), is

R = Ri · L/Ax = Ri · L/a2 (2.48)

that is, the resistance R (in Ohms) is found by dividing the resistivity Ri (in Ohm-cm) by the
cross-sectional area to the direction of the current, Ax (in cm2), and multiplying by the length L
(in cm) through which current must pass.

Numerical example: If Ri = 200 Ohm-cm, a = 10 μm, and L = 100 μm, what is the small
box’s resistance, R? Answer: Using (2.48),

R = 200Ω−cm · (100× 10−4)cm/(10× 10−4)2cm2 = 2× 106Ω (2.49)
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Figure 2.7. Box in Box. A smaller box, with sides of length a, is inside a bigger box that
has sides of length b. Both boxes have length L. The boxes have different resistivities: Ri
inside the small box, and Re outside the small box.

In biological structures, it is commonly the case that resistances of this magnitude are involved
and not unusual that units conversions (such as μm to cm) are required in resistance calculation.

Taking the reciprocal of (2.48), one gains the corresponding equation for the tissue’s con-
ductance, G, as related to conductivity σ and the tissue’s dimensions. Specifically,

G = σi ·Ax/L = σi · a2/L (2.50)

Numerical example: If σi = 1/Ri = 0.005 S/cm, with a = 10 μm, and L = 100 μm, what
is the small box’s conductance, G, along ax?

G = .005S/cm · (10× 10−4)2cm2/100× 10−4cm = 0.5× 10−6Siemens (2.51)

Note that the conductivity is the reciprocal of the resistivity, and the conductance is the reciprocal
of the resistance.

2.11.2. RGC and a Surface Boundary

The paragraphs that follow present a multiplicity of ways of defining resistance, conductance,
and capacitance (R,G,C). Each of these definitions is used because it is the most convenient for
a certain class of situations. The key to resolving confusion about the different ways of specifying
resistance and resistivity is to return to (2.48) or (2.50) and see how terms are factored to join
different parts of the geometry with the resistivity (or conductivity) of the material. A similar
strategy can be used consistently for conductance (as reciprocal resistance), or for capacitance.
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For commonality with the main applications in later chapters, we will call the surface sep-
arating the small box from the big box the “membrane.” Here we are thinking of it simply as a
thin resistive material with a uniform but tiny thickness t and a resistivity ρm. Then finding the
resistance between the inside and outside of the small box can be done in the same fashion as
(2.48), specifically

R = ρm · t/Am = Rm/Am (2.52)

where the membrane resistance Rm is defined implicitly. Nominally Rm = ρmt, but in practice
it is more likely to be determined from independent experimental measurements. Note that Rm
has the units of Ohm-cm2.

Conductance per unit area can be defined using the reciprocal of (2.52) as

G = Am/(ρmt) = GmAm (2.53)

As for resistivity, the thickness can be merged into the conductance per unit area, Gm. The units
of Gm are Siemens/cm2.

For capacitance, we can find the total capacitance C, keeping (2) in mind, as

C = ε ·Am/t = Cm ·Am (2.54)

HereAm is the surface area of the inner box, i.e., 4aL. The units of Cm, the capacitance per unit
area, most often are microfarads per cm2.

2.11.3. Axial Properties per Unit Length

Specialized structures that have axial uniformity often may be more simply described with
a resistance or conductance per unit length. Considering again the small box along the x axis,
one notes that the cross-sectional area does not change as a function of x. Thus one can find the
resistance for a length L along x as

R = Ri · L/Ax = ri · L ri = Ri/Ax (2.55)

Defining ri in this way, as a resistance per unit length, avoids the repetitive specification of the
cross-sectional area. It is also the case that ri can be specified without reference to (or need to
know) the length L. The units of ri are Ohms/cm.

2.11.4. Membrane Resistance and Capacitance per unit length

For resistance, we can define the cable membrane resistance per unit length rm implicitly by
considering the resistance of a length of membrane.

One step is to describe the surface area of a length of membrane as s · L, its circumference
s times length L.5
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From (2.52)

R =
Rm
Am

=
Rm
sL

= rm/L where rm ≡ Rm/s (2.56)

In the case of the small box used here, s = 4a. For fibers with a circular cross-section, it would
be s = 2πa, where a is the fiber radius.

Membrane capacitance per unit length cm is defined implicitly by

C = CmAm = CmsL = cmL where cm ≡ Cms (2.57)

where again s is the circumference. The units of cm are microFarads per cm. That is, knowing
cm for a segment, one need only multiply by the length of the segment to get the capacitance,
making it easy to adjust for segments of varying length.

2.12. UNITS FOR SOME ELECTRICAL QUANTITIES

Here are units for some of the variables presented in this chapter.

Symbol Units Definition

r centimeters (cm) distance

R Ohms Resistance

G Siemens Conductance

ρ Ohm-cm Resistivity

σ Siemens/cm Conductivity

J Ampere/cm2 Current density

I Ampere = Coulomb/sec Current

Iv Ampere/cm3 Current source density

Φ Volt = Joule/ Coulomb Electric potential

C Farad = Coulomb / Volt Capacitance

2.13. NOTES

1. In thinking about the quasi-static nature of most bioelectric situations, it is helpful to focus on the rate of change.
Certainly there is a constant change in bioelectric fields at a millisecond and microsecond level, e.g., throughout every
heartbeat for a cardiac field. On the other hand, the rate of change of voltages is not fast enough to generate to initiate
detectable radio waves, or to prevent currents on the body surface from being observed at virtually the same time they
are created within the heart.

2. By “patch” we mean a membrane area so small that variables of interest have constant values over its surface.

3. The reader can find much more comprehensive presentations of capacitance and dielectrics in the references, such as
the text by Smythe [5].

4. Experience shows that many errors result from misunderstanding the way resistance or capacitance was given, or the
significance of the units used. Thus this topic may seem tedious or boring, but it is not difficult to get the main ideas,
and it is worth a few minutes to get them straight in one’s mind.

5. Here using s instead of c for circumference so as to avoid overlap with C for capacitance.



BIOELECTRICITY: A QUANTITATIVE APPROACH 43

2.14. REFERENCES

1. Jeans JH. 1927. The mathematical theory of electricity and magnetism, 5th ed. Cambridge: Cambridge UP.

2. Plonsey R, Collin RE. 1961. Principles and applications of electromagnetic fields. New York: McGraw-Hill.

3. Pugh EM, Pugh EW. 1960. Principles of electricity and magnetism. Reading, MA: Addison-Wesley.

4. Skilling HH. 1948. Fundamentals of electric waves. New York: John Wiley and Sons.

5. Smythe WR. 1968. Static and dynamic electricity, 3rd ed. New York: McGraw-Hill.

6. Stratton JA. 1941. Electromagnetic theory. New York: McGraw-Hill.



3
BIOELECTRIC POTENTIALS

In this book we will be examining the behavior of excitable cells, notably nerve and muscle,
both descriptively and quantitatively. The behavior is described mostly in terms of the potentials
and currents that excitable cells produce. These potentials and currents are observed in the cells’
interior volume, across their membranes, and in their surrounding conducting volume from the cell
surface to the body surface. Such electrical signals are vital to the transmission of information
in nerves, the initiation of contraction in muscles, and hence essential to vision, hearing, the
heartbeat, digestion, and other biological processes. Despite the tremendously different functions
of these organ systems, it is remarkable how extensively their underlying electrical systems share
many basic principles of organization, and how fundamentally similar they remain in almost all
living creatures.

This chapter has two major divisions. The first deals with potentials and currents in an
extensive solution, the goal of which is establishing the terminology and relationships of ionic
flows from diffusion or electric fields, and the commonly used symbols, nomenclature, and
mathematical operations used for describing them. As will be seen, flow occurs because of
electric fields and due to the effects of diffusion, sometimes acting in tandem, and other times in
opposition. This half of the chapter applies directly to fields such as electrochemotherapy, where
electric fields cause the movement of charged particles such as DNA [8, 11].

The second half of the chapter deals with flow, ionic concentrations, and electric potentials
across a membrane. Information on membrane structure is included, though for most electrical
analysis the membrane is treated in terms of its electrical properties of capacitance and resistance.
Membrane resistance is described as coming from the membrane’s channels, which are specialized
structures that allow the movement of particular ions. Certain critical relationships are established,
such as the Nernst equation, which gives the potential at which flow across a membrane due
to electric forces in one direction offsets the flow in the other direction due to concentration
differences. This latter portion of the chapter is used most often in the subsequent chapters of the
book, as it is fundamental to the mechanisms of operation of excitable nerves and muscle.

It was almost a century after the work of Volta and Galvani when Svante August Arrhenius
showed (1887) that solutions which readily conduct electric current, such as the solutions within

45
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the body of a human or animal, contain electrically charged particles. These particles now are
called ions (from the Greek word for “going”), and among those of particular significance are
ions of sodium and potassium.

We begin by first describing the ionic composition inside and outside well-known excitable
cells. We proceed to develop the equations showing how the flow of currents is related to potential
gradients and to ionic concentrations in physiological media. In their fundamental respects these
equations are true in any solution containing ions, but in our description we anticipate the material
about biological membranes that appears in the latter part of the chapter. There, the focus is on
the important special case of potential differences and currents that accompany the concentration
differences across cell membranes, first at equilibrium, and then with a membrane model that can
handle a wider range of circumstances.

3.1. CURRENTS IN SOLUTIONS

The kind of charge carriers that are present in living tissues are ions within the electrolytes
(solutions of acids, bases, and salts, which conduct electricity). Such charge-carrying ions are
present both inside and outside of cells, especially ions of sodium and potassium, allowing
current to flow extensively throughout both intracellular and extracellular volumes. Such charge
movement within living tissue is similar to that in sea water, with its high dissolved salt content,
but not very similar to the flow of current in wires, where the charge carriers are electrons that
move within the metallic structure in the wire, but not through the insulation into the surrounding
space.

As noted by Harned and Bereton [2], the science of electrical currents in solutions is complex.
In this chapter our ambitions are necessarily limited—to provide some basic information about
the underlying physical and electrochemical basis of bioelectric potentials and currents. Our goal
is not a comprehensive study of electrolytic solutions, a topic well beyond and different from the
scope of this text. Rather, it is to provide enough information that the subsequent chapters can
be connected to the movements of ions, and the forces that act upon them, in a way that is based
on sound physical principles, even if these are described in a simplified manner.

3.2. MOLES AND AMPERES

One aspect of the study of bioelectricity that gives it a special fascination (and sometimes a
special frustration) is that it brings together subjects that have developed independently, each with
its own conventions, terminology, units, and even cultures. In this chapter such a juxtaposition
arises immediately in the study of the movement of ions, since such movement can be described
in either of two ways.

When ionic movements are described from the perspective of chemistry, the quantities of
ions are naturally expressed in terms of moles. One mole is simply an amount of pure substance
in grams that is numerically equal to its atomic weight. Consequently, a mole includes a fixed
number of molecules, namely, Avogadro’s number, which is 6.0225×1023 molecules. Flows are
then described in terms of moles per second, and fluxes by moles per second per unit area. Here,
such fluxes, counted in terms of the number of moles, are denoted by a lowercase letter j.

When ionic movements are described from the perspective of the study of electricity, the
quantities of ions are expressed in terms of Coulombs. This unit derives from the forces between
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charges, rather than their number. From this origin, the magnitude of the charge on one electron
(and thus on one ion with valance equal to one) is determined to be 1.6 × 10−19 Coulombs.
Flows are then described in terms of Coulombs per second, or Amperes. Thus flux (flow per unit
area) is in the units of Amperes per unit area, e.g., Amperes per cm2. Here, such fluxes, when
expressed in terms of the electrical charge movement, are denoted by an uppercase letter J.

It is important to realize that an example of ionic movement, a single physical phenomenon,
can be described in either of two ways—as a particle flow or as an electrical current. The numerical
values of the flow will be different (with different units) depending on which way is chosen, e.g.,
moles per second versus Amperes.

A conversion from units of particle movement is required to get a value of electrical current.
The conversion factor is called Faraday’s constant, F. The conversion is

F = (6.02× 1023)
particles

mole
× (1.6× 10−19)

Coulombs
particle

= 96, 487
Coulombs

mole

Joos [6] points out that the Faraday can be understood independently of arguments about atomic
structure as the amount of charge required for the electrolytic liberation of one chemical equivalent
(for a univalent ion, one mole) of a substance, irrespective of which element is ionized. The
constant value that was measured demonstrated that each ion, on the average, carried the same
amount of charge and anticipated the understanding that each ion carries a single charge (if
univalent).

Faraday’s constant appears in many different equations in this text, sometimes for reasons
that initially seem obscure. In studying these expressions, it is often helpful to keep in mind that
the introduction of Faraday’s constant normally comes from the need to convert current flows
from particles per second to electrical current, or vice versa.

3.3. IONIC COMPOSITION

From the viewpoint of electrical currents the most important ions are sodium and potassium.
Those of calcium and chloride also play a significant role in some circumstances, as do other
ions.

As examples of ionic concentrations, literature values for frog muscle and squid nerve axon
are given in Table 3.1. There are wide variations in concentration that exist from ion to ion and
intracellular versus extracellular. Note that these large differences exist despite the tendency of
concentration to average out, due to diffusion. The concentrations of ions in either the intracellular
or extracellular volumes allow significant currents to flow in either place.

The concentrations between the intracellular and extracellular volumes are especially impor-
tant to excitable cells. For all excitable cells the concentration of intracellular potassium greatly
exceeds extracellular potassium. Such is the case in Table 3.1 for both frog muscle and nerve
axon, even though the concentration values are quite different. (The relative ratios of intracellu-
lar to extracellular K+, Na+, and Cl− in Table 3.1 are similar to those generally found in other
excitable muscle and nerve.)
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Table 3.1. Ionic Concentrationsa

Muscle (frog) Nerve (squid axon)

Intracellular Extracellular Intracellular Extracellular
mM mM mM mM

K+ 124.0 2.2 397 20
Na+ 4.0 109.0 50 437
Cl− 1.5 77.0 40 556
A− 126.5

aThe A− ion is large and impermeable.

In contrast to potassium, the extracellular sodium and chloride concentrations greatly exceed
intracellular sodium and chloride. The different ratios of intracellular to extracellular concentra-
tions for sodium and potassium ions are of great importance to transmembrane voltage, and to
how it changes.

3.4. NOTATION FOR ION SPECIES

Much of the evaluation of the movement of ions that is described in the sections that follow
has the same physical basis and mathematical form no matter which ion is being considered. This
situation could produce a tremendous amount of largely redundant text, which we have tried to
avoid in the following way: Where we subsequently refer to “the pth ion,” this notation means
that the same argument can be made for each of the ion species individually (sodium or potassium
or whatever). We have used this slightly abstract way of identifying ionic species so as to avoid
having to repeat the same argument over and over, once for sodium, once for potassium, etc.

On the other hand, it is important to keep in mind that while the mathematical argument
(and the form of the equations) may be the same for each ion individually, the numerical values
will be different, and thus the electrophysiological effects will be quite different, maybe even the
opposite.

3.5. NERNST–PLANCK EQUATION

The Nernst–Planck equation relates the flow of ions to spatial differences in concentration
or in the electric potential. It is helpful to think first about these effects separately.

3.5.1. Diffusion and the Diffusion Coefficient

If a drop of blue ink is placed in a beaker of water, then ink molecules will, on average, move
away from the highly concentrated region into the surrounding water. The process will continue
until the ink is uniformly distributed in the water (which will become a uniform light blue color).
The process is known as diffusion and arises because of the thermal energy of the molecules.
At first, the dense dye concentration in the drop is surrounded by a concentration of dye that is
much lower. Consequently, there is a net flow from the center outward. We say that diffusion
is in a direction of decreasing concentration, i.e., that flow takes place “down the concentration
gradient.”
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Table 3.2. Numerical Values for Several Diffusion Coefficients

Ion D Units Conditions Ref

Na+ 1.33×10−5 cm2/sec at 25 ◦C [7]
K+ 1.96×10−5 cm2/sec at 25 ◦C [7]
Cl− 2.03×10−5 cm2/sec at 25 ◦C [7]
KCl 2.03×10−5 cm2/sec 0.002 mole/l, 25 ◦C [10]
NaCl 1.58×10−5 cm2/sec 0.002 mole/l, 25 ◦C [10]

No electric field is required for diffusion to occur as diffusion is not an electrical phenomenon.
Rather, diffusion arises as a consequence of the pronounced random motion of molecules that
occurs at ordinary temperatures. This random motion scatters the blue ink. At first, more move
away from the center of the ink drop than toward the center, simply because more ink molecules
are near the center. Such random movement results in a net movement from the original site,
until the ink becomes diffused throughout the beaker.

A quantitative description of diffusion is Fick’s law. That law is

jd = −D∇C (3.1)

In Fick’s law, C is the concentration of some substance, such as the blue ink, as a function
of position. D is a proportionality constant (called Fick’s constant or the diffusion constant).
Fick’s constant is sometimes called “Fick’s coefficient” since its value is not quite independent
of concentration but increases slightly with increases in C.

Usually, D is determined from experiment rather than from basic principles. Some physical
insight into D can be gained by noting that for a gas D = �ν/3, where � is the mean free path
and v is the average molecular velocity. (In a liquid, this relationship is complicated by ionic
interactions.) A sample of experimental values of diffusion coefficients is given in Table 3.2.

The flux, jd, is the number of particles (ions) moving per unit time through a cross-section
of unit area. A lowercase j is used to describe ion flow. As noted earlier, an upper case J refers
to the associated electric current density, that is, j embodies the movement of particles, while J
embodies the movement of charges.

3.6. MOBILITY

3.6.1. Electric Field and Mobility

Because of their charge, ions are subject to electric field forces. Because of collisions, the
force exerted by a given field will move ions with a finite velocity. This velocity is denoted by
up, termed the mobility, which is the velocity achieved under a unit field for the pth type ion.

If the valence of this ion isZp, then the ionic flux is given by the product of ion concentration
and its velocity, namely,

je = −up Zp
|Zp| Cp∇Φ (3.2)
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Table 3.3. Faraday’s Constant F and the Gas Constant R

Constant Value

F 96,487 Coulombs/mole
R 8.314 Joules/degree K-mole
RT/F 8.314×.300/96487 = 25.8 mV at 27 ◦C

where∇Φ is the electric field, Zp/|Zp| the sign of the force on the pth ion [positive for positively
charged ions (cations) and negative for negatively charged ions (anions)], and consequently
−up(Zp/|Zp|)∇Φ is the mean ion velocity. The ionic mobility depends on the viscosity of
the solvent, the size of the pth ion, and its charge.

Equation (3.2) gives the ion flux per unit area. The units of flux depend on the units of ion
concentration. Often flux is expressed as moles per unit area per second.

3.6.2. The Diffusion Coefficient and Mobility

The mobility relates the force due to the electric field (−∇Φ) to the ionic flux it produces.
With a similar mathematical form, Fick’s constant relates spatial changes in concentration (∇C),
sometimes thought of as the “force” due to diffusion, to the movement of ions down the concen-
tration gradient.

Since both flows are impeded by the same molecular processes (collisions with solvent
molecules), a physical connection exists between parameters up and D. The mathematical de-
scription of the connection was worked out by Einstein, and the resulting equation thus bears his
name. Einstein’s equation is

Dp =
upRT

|Zp|F (3.3)

As before, p signifies the pth ion species with valence |Zp|, and up is its mobility, T is the absolute
temperature, F is Faraday’s constant, and R is the gas constant. Numerical values are given in
Table 3.3.

3.7. TEMPERATURE VARIATIONS

Temperature is commonly held uniform in experimental studies, and many animal systems
(including humans) are evaluated at their normal body temperature, about 37◦C. Temperature
may, however, vary in human or animal systems, with disease or under special circumstances,
such as surgery. Furthermore, temperature in cold-blooded living systems, such as the squid,
varies with that of the environment, and some famous experimental results are reported at 6.3◦C.

Thus it is important to take note of the presence of the temperature term in Eq. (3.3)
and to keep in mind that the temperature dependence arises from the term RT/F. Temperature
sensitivity of some of the active membrane processes described in later chapters is even greater.
Temperature differences between nominal room temperature, normal human body temperature,
and temperatures reported for various experimental or natural circumstances are sufficient to
produce noticeable (and sometimes pronounced) differences in numerical results.
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Such temperature differences may produce noticeable differences in experimental values and
in the overall performance of the living tissue itself.

3.8. FLUX DUE TO DIFFUSION PLUS ELECTRIC FIELD

The total flux when both diffusional and electric field forces are present is

jp = jd + je (3.4)

or, using (3.1), (3.2), and (3.3),

jp = −Dp

(
∇Cp +

Zp Cp F

RT
∇Φ
)

(3.5)

Equation (3.5) is known as the Nernst–Planck equation.

Equation (3.5) describes the flux of the pth ion under the influence of diffusion and an
electric field. Its dimensions, which depend on those used to express the concentration and
velocity, normally are moles per cross-sectional area per unit time.

This flux can be converted into an electric current density when multiplied by FZp, the
number of charges (Coulombs) carried by each mole; Jp is the resulting electric current density
(in Coulombs per second per cm2 or Amperes per cm2).

Applied to (3.5), conversion results in

Jp = FZpjp = −Dp FZp

(
∇Cp +

Zp Cp F ∇Φ
RT

)
(3.6)

As noted earlier, a capital J designates the electric current density while a lowercase j de-
scribes the flux. Alternatively, using Einstein’s equation (3.3) to substitute for Dp, one has

Jp = −
(
upRT

Zp

|Zp| ∇Cp + up|Zp|Cp F∇Φ
)

(3.7)

In Eq. (3.7), it seems at first paradoxical that the sign of the valence (positive for cations)
should be required in the diffusion term (the first term), whereas only the magnitude of the valence
is required in the electric field term (second term).

The resolution of the paradox comes from realizing that in the diffusion term the concentration
gradient controls the direction of the flow, but the current will be in the same or opposite direction,
depending on whetherZp is negative or positive. Conversely, in the electric field term the electric
field itself determines the direction of positive current flow, so knowledge ofZp is necessary only
to determine current magnitude.

3.8.1. Conductivity

Materials that conduct electricity are commonly characterized in terms of their resistance,
or its reciprocal, conductance. How do factors such as mobility and concentration relate to the
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overall electrical conductance of the intracellular or extracellular space? One imagines that all
these parameters must be closely connected, because conductance is a parameter that characterizes
the ease of movement of charge through a conducting medium, an idea fundamentally a part of
the preceding sections.

Such a connection does indeed exist. The thrust of this section is to identify it explicitly.
Thereby one is able to tie the aggregate characteristic of conductance to the parameters that
describe the movement of ions in the medium.

The electric current in an electrolyte arising from the movement of an ion under the influence
of an electric field, E = −∇Φ, according to (3.7), is

J
e

p = −up|Zp|Cp F ∇Φ (3.8)

The ion type is designated by the subscript p, while the superscript e signifies that the current
is due solely to an electric field. For a KCl electrolyte, for example, the total current (density) is
given by

J
e

KCl = FCKCl[uK + uCl]E (3.9)

where the contribution to current flow from both K+ and Cl− is accounted for; the concentration
of K+ and Cl− is given by that of CKCl, assuming complete dissociation.

One can compare the preceding equation to a standard form of Ohm’s law, J = σE, where
σ is the effective electrical conductivity. These two equations are the same, if the electrolyte
conductivity is defined as

σ = FCKCl[uK + uCl] (3.10)

This equation is the connection between the conductivity value and its constituent parameters,
which was the goal of this section. Note that for a particular current path, the conductivity (in
units such as Siemens per cm) can be converted into a conductance. One does so by taking
into account the dimensions of the path, e.g., using an expression such as conductance equaling
conductivity times the cross-sectional area, divided by the path length.

Equation (3.10) identifies conductivity σ as proportional to ionic concentration. A limitation
of this equation is that it arises from the assumption that the salt is completely dissociated,
an assumption that must at some point deviate from reality, as the concentration increases and
dissociation is no longer virtually complete. In our context, the issue that arises is how well the
assumption holds for the ionic concentrations in excitable tissue.

This question can be more precisely addressed mathematically by slightly modifying the
definition of σ to let the degree of dissociation appear explicitly. In particular, if only α percent
dissociates, then

σ = αFCKCl[uK + uCl] (3.11)

To examine more carefully the effects of the degree of dissociation, it is helpful to define a
quantity that describes its effect on conductivity apart from the effect of concentration increases.
This quantity is called “equivalent conductance,” Λ. With α included, equivalent conductance is
defined as

Λ = αF [uK + uCl]× 1000 (3.12)
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Table 3.4. Equivalent Conductance vs Concentration

Concentration Measured
of KCL (mM) Equivalent conductance

0.0001 148.9
0.0010 146.9
0.0100 141.3
0.1000 128.9

Table 3.5. Equivalent Conductance

Ion Λ Units T Ref

Na+ 50.08×10−4 m2 s/mol 25 ◦C [7]
K+ 73.48×10−4 m2 s/mol 25 ◦C [7]
Cl− 76.31×10−4 m2 s/mol 25 ◦C [7]

Note that the expression for Λ is the same as the expression for conductivity, omitting the
concentration term. (The factor of 1000 may be included to place numbers in more convenient
units.) With this definition, Λ is affected by concentration only to the extent that α diminishes
from unity for increasing concentration.

As an example, Table 3.4 tabulates the effect of concentration on equivalent conductance,
as measured experimentally. From the table one sees that Λ does not change very much over
several orders of magnitude of concentration change, but it does begin to decline significantly as
the concentration of KCL grows to values of 0.0100 mM and above.

Equivalent conductance is also important since it is a quantity that can be measured experi-
mentally and tabulated for reference. Table 3.5 gives some numerical examples. The conductance
values are valuable in part because they can be used to obtain other parameters, e.g., by use of
the equation obtained by combining (3.3) with (3.12) for α = 1:

D =
RT

F 2

Λ
|Z| (3.13)

3.8.2. Transference Numbers

In general, the contributions to the net conductivity come from all mobile ions, but the
contributions of each will be in different proportions. The proportionality factors are known as
transference numbers (or transport numbers). Using the above example, we define

tK =
uK

uK + uCl
, tCl =

uCl

uK + uCl
, tK + tCl = 1 (3.14)

where tK and tCl are the transference numbers for potassium and chloride, respectively.
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Table 3.6. Transference Numbera

Ion Range (mole/L) t

KCl 0.02–3.0 tK = 0.49
HCl 0.01–0.2 tH = 0.83
LiCl 0.01–0.2 tLi = 0.32
NaCl 0.01–0.2 tNa = 0.39

aIn each case the transference number for chloride is found by
subtracting the cation value, a given above, from unity.

Some sense of the relative magnitude of transference numbers is illustrated by the chloride
electrolytes in Table 3.6. For an electrolyte with a more complex ionic composition, the trans-
ference numbers depend on relative concentrations as well as mobilities. Later in this book,
when we consider action currents, a detailed account of the charge carriers in the intracellular
and extracellular spaces will depend on their respective transference numbers.

3.9. MEMBRANE STRUCTURE

Excitable cells are surrounded by a plasma membrane, whose main function is to control the
passage of ions and molecules into and out of the cell. This membrane behavior will be found to
underlie the tissue’s electrical properties.

The plasma membrane is a structure that bounds the cell. The membrane is mainly made of
lipid, which often represents as much as 70% of the membrane volume, depending on cell type.
The membrane lipid itself prevents the passage of ions through the membrane. The membrane
is heterogeneous, with numerous large, complex proteins (on the order of 2,500 amino acids)
embedded within it. Some of these proteins are the constituents of pumps and channels that
exchange ions between intracellular and extracellular space.

The ions themselves have radii on the order of 1
◦
A. Knowledge of the size and three-

dimensional structure of channels remains incomplete. As diagrammed hypothetically by Hille
([3], p. 71), the channel structure is on the order of 100

◦
A, with an internal pore that is much

wider than an ion over most of its length, narrowing to atomic dimensions only in the ion selective
areas.

The membrane is about 75
◦
A thick. In this and the following chapter we focus on membrane

structure as it affects the membrane’s capacitative and ionic properties, in which thickness plays
a significant role.

The membrane’s thickness is, however, usually much less than other dimensions of interest.
Thus in later chapters the membrane often will be considered as an interface without thickness
but having net resistive and capacitive values.

3.9.1. Transmembrane Potential

If the electrical potential at the inside surface of the membrane of an excitable cell is compared
to the potential at the outside surface, then, at rest, a potential difference, called the transmembrane
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potential, on the order of 0.1 volt will be found. Mathematically, the definition of Vm is

Vm ≡ Φi − Φe

Because the membrane has a resistance (i.e., is not a perfect insulator), there will be a transmem-
brane current, Im. By definition, this current is considered to have a positive sign when it flows
across the membrane in the direction from the inside to the outside.

Excitable membranes have periodic resting and active phases, during which the transmem-
brane potential fluctuates in the range ±0.1 Volts. The 0.1-volt difference is not very much in
comparison to ordinary household voltages, but it becomes enormous because the distance across
which the potential changes is so small, just the membrane thickness. That is, this transmembrane
voltage produces an enormous electric field across and within the membrane.

In the subsequent sections of this chapter we will consider explanations for the origin of the
resting potential, and explanations of its magnitude and sign. We will see that the potential at rest
depends on the selective permeability of the membrane to the several major ions that are present
and to the different ionic composition of intracellular and extracellular space.

3.9.2. Pumps and Channels in the Membrane

The electrical behavior of nerve and muscle depends on the movement of sodium, potas-
sium, calcium, and other ions across their membranes through the pumps and channels which lie
therein. Pumps are active processes (consuming energy) that move ions against the concentration
gradient. The sodium–potassium pump tends to operate at a slow but steady rate and maintains
the concentration differences of Na+ and K+ between the intracellular and extracellular regions.

Channels make use of the energy stored, in effect, in the concentration differences, to allow
the flow of each ion type down its concentration gradient. They do so in a way that is highly
controlled as to when and to what degree the flow is allowed. The flow of ions through channels
results in changes in transmembrane potential, sometimes quite rapidly.

The selective permeability of the membrane to individual ions, and the ability to rapidly
increase or decrease the permeability selectively, is a truly astonishing property. Such control
seems to be accomplished by means of channel gates which respond to the presence of electric
fields or to certain ligands. Channels are the means by which rapid changes in transmembrane
potentials occur. These rapid changes are associated with information transmission in nerves and
mechanical contractions in muscle.

The basic structure of the membrane, including its lipid and protein (channel) content, is
depicted in Figure 3.1. Under steady-state conditions (e.g., at rest) a fixed fraction of each
channel type will be open and the membrane can be considered (macroscopically) to provide a
particular ionic conductance to each ion species present. Ion movement across the membrane is
subject to both diffusion and electric field forces, and we will describe the application of physical
principles to evaluate the net transmembrane flow.

3.9.3. Lipid Content

A lipid such as olive oil that is placed on a water surface will spread out. If given enough
room, it will reach a thickness of a single molecule (monolayer). At the same time, on a calm
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Figure 3.1. Schematic Representation of the Model of Membrane Structure, showing
sodium channel proteins embedded in the lipid bilayer matrix of the membrane. The
channel density is un physiologically high, for illustrative purposes. Drawing based on
Catterall WA, et al. 1994. Structure and modulation of voltage-gated sodium channels.
In Ion channels in the cardiovascular system, Ed PM Spooner, AM Brown. Armonk, NY:
Futura.

surface the monolayer will remain contiguous. In this condition the polar heads of the lipid
(which are hydrophilic) face the water while the non-polar tails (hydrophobic) lift away.

The biological membrane consists, basically, of two such layers of lipid. (Naturally, these
two layers are called “the lipid bilayer.”) The structure is shown in Figure 3.1. These layers
organize themselves so that the polar group of each layer faces the intracellular or extracellular
aqueous medium. Conversely, their non-polar tails are in contact, and form the interior of the
membrane.

Figure 3.1 illustrates the hydrophobic lipid tails in the membrane interior. This inner portion
of the membrane behaves like a dielectric (insulator) of perhaps 30

◦
Athickness.

One aspect of the membrane that is critical to its electrical function is its electrical capacitance.
If we determine the capacitance of such a parallel plane structure with a high dielectric constant
(estimated as k = 3, using the value for oil), then, using the parallel plane capacitance formula
of chapter 2, we get

Cm =
kε0

d
=

(3× 10−9)
36π(3× 10−9)

= 0.009 F/m2 = 0.9μF/cm2

where ε0 = 10−9/36π Farads per meter is the permittivity of free space and d is the membrane
thickness. The computed value of capacitance is an estimate, but the resulting value is similar to
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the measured value of most excitable membranes. The resulting value of roughly 1 μF/cm2 is an
extremely high value as compared to most materials used in ordinary factory-made capacitors.
Inspection of the result shows that the high value comes about because of the remarkable combi-
nation of high membrane resistance and dielectric constant within a membrane that is very thin,
a combination hard to construct in a non-biological capacitance.

After staining and fixing, the membrane is seen under electron microscopy to be characterized
by two dense lines separated by a clear space and aggregating 75

◦
A. Presumably the polar groups

take up the stain (along with the associated protein) but not the non-polar region. This membrane
appearance is readily recognized in electron micrographs.

3.10. NERNST POTENTIAL

The unequal concentration of ions in the intracellular versus extracellular spaces causes
diffusion of ions from high to low concentrations; the rate of diffusion depends on the difference
in concentration and the membrane permeability (which depends on the open channel density
and channel resistance).

Charged ions accumulate on the membrane because of its capacitance. These charged ions
set up an electric field across and internal to the membrane. The electric field will, in turn,
exert forces on all charged particles lying within the membrane. Consequently any quantitative
description of ion flow within or across the membrane must take into account both forces of
diffusion and electric field.

At a particular moment, the movement of ions of type p across a membrane will depend
on the relative density of p channels, the relative probability of such a channel being open,
the conductance of the channel, and the net driving force (diffusional plus electric field) for
this ion species. Living membranes have the property of selective permeability to various ion
species, as determined based on the relative ease of movement of the respective ions across
the membrane, considered macroscopically. The selective permeability can be described by an
effective conductance (per unit area) for the transmembrane flux of p.

In the following we treat the permeability of the membrane as, in its effect, uniformly
distributed, that is, we determine a macroscopic description arising from the averaged microscopic
channel behavior. Furthermore, we assume the movement of a particular ion species to be
independent of that of others. To the extent that channels are relatively uniformly distributed,
that our interest lies in their macroscopic effects, and that the pth ion’s flow is confined to the pth
ion’s channels, this assumption is satisfactory.

As noted, for the excitable cell the membrane has the property of selective permeability. In
other words, certain ions pass readily across the membrane while other ion species flow with
more difficulty or not at all. Because the ionic compositions of the intracellular and extracellular
regions are quite different, an initial diffusional ion movement of permeable ions takes place. The
result is a net transfer of charge and the establishment of a membrane electric field. Consequently,
both diffusional and electric field forces are always expected with biological membrane systems.
Accordingly, the Nernst–Planck equation is the appropriate expression for the examination of ion
flow across biological membranes. The equilibrium conditions that are determined correspond
to those that could also be found from thermodynamic considerations.
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Figure 3.2. Concentration Cell. The concentration cell has a calibrated membrane area
separating two compartments, designated i and e. Known ionic concentrations are present
in each compartment. Here two hypothetical ions, P+ and Q−, are present in each com-
partment. The compartments are well mixed, so that concentration differences within
a compartment are insignificant. The concentration cell provides well-defined geometry
within which concentration changes over time can be examined.

3.10.1. Single Ion Permeability

We analyze first the movement of ions in a concentration cell. The results will be seen
to be useful in the examination of the biological membrane. A concentration cell is illustrated
in Figure 3.2. Such a cell is a two-compartment system separated by a selectively permeable
membrane. We assume the concentration of P+ in compartment i to exceed that in compartment
e. We also assume the membrane impermeable to Q−. Consequently, P+ will diffuse from i to
e, (but Q− cannot diffuse from i to e).

Ions in solution experience significant diffusion wherever there is a significant change in
concentration between nearby locations. Since the ionic compositions outside and inside excitable
cells are quite different, and since these regions are quite close together (separated only by a thin
membrane), a high concentration gradient is often present. Correspondingly, diffusion must
necessarily play a strong role in transmembrane current behavior, for all permeable ions.

The diffusion results in accumulation of positive charge in e (electrostatic forces cause these
charges to reside on the membrane). This leaves behind in i an excess of negative charge of
similar magnitude (these reside on the i side of the membrane due to electrostatic forces). The
result is a difference of potential, Vm, related to the charge ΔP+ by the membrane capacitance
Cm (where Vm = ΔP+/Cm).

For a membrane thickness of d there is also an electric fieldE = Vm/d = ΔP+/(Cd). The
electric field is directed from e to i, and it clearly increases in magnitude as ΔP+ diffuses from
i to e. The growing electric field increasingly hinders further diffusion until it brings about its
termination and equilibrium is reached.

3.10.2. Nernst Equilibrium

At equilibrium the electric field force (from e to i) just balances the diffusion force (from i
to e). Under these conditions we obtain from (3.6)

Jp = 0 = −DpFZp

[
∇Cp +

ZpCpF∇Φ
RT

]
(3.15)
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hence

∇Cp = −ZpCpF
RT

∇Φ (3.16)

We assume that quantities vary in the direction perpendicular to the membrane only. Calling
this coordinate x then simplifies (3.16) to

dCp
dx

= −ZpCpF
RT

dΦ
dx

(3.17)

and rearranging gives
dCp
Cp

= −
(
ZpF

RT

)
dΦ (3.18)

We can integrate (3.18) across the membrane from compartment e to compartment i:

∫ i

e

dCp
Cp

= −ZpF
RT

∫ i

e

dΦ (3.19)

The result is

ln
(

[Cp]i
[Cp]e

)
= −ZpF

RT
{Φi − Φe} (3.20)

Thus the potential difference at equilibrium across the membrane, V eq
m , equals

V eq
m = Φi − Φe =

−RT
ZpF

In
(

[Cp]i
[Cp]e

)
(3.21)

where the transmembrane potential has been defined as the intracellular (i) minus extracellular
(e) potentials following present-day convention.

The following numerical coefficient replaces RT/F in (3.21) for the case that T is chosen to
be at a cool temperature (17 ◦C):1

V eq
m = Ep =

−25
Zp

ln
(

[Cp]i
[Cp]e

)
mV =

25
Zp

ln
(
Cp]e
[Cp]i

)
(3.22)

or, using base 10 instead of natural logarithms,

V eq
m = Ep =

58
Zp

log10

(
[Cp]e
[Cp]i

)
mV (3.23)

The Nernst potential for an ion is the Vm given by these equations. When ion p is in
equilibrium, the Nernst potential is the transmembrane voltage. At equilibrium the ion’s rate of
movement in one direction, due to diffusion, is equal to its rate of movement in the opposite
direction, due to the electric field associated with the transmembrane voltage.
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Another way of thinking about the Nernst potential is that it is an electrical measure of
the strength of diffusion, as it is the potential required to provide an exact counterbalance to a
particular concentration ratio.

3.10.3. Symbolic Names for Nernst Potentials

The Nernst potentials for the major ion species are important quantities and are usually
assigned special symbols. We have made such an assignment in (3.22) and (3.33), where Ep is
defined to beV eq

m . Even though Nernst potentials are given special symbols, it is important to keep
in mind that they are simply the transmembrane potential that exists for particular circumstances,
the equilibrium of a particular ion species.

Ep may be a constant, or it may change slowly. More specifically, for potassiumEp becomes
EK. In most mathematical expressions involving EK, we treat it as a constant, recognizing that
so doing implies that the intracellular and extracellular concentrations of potassium (but not
the transmembrane potential) remain the same. (Or, at least, EK changes slowly compared to
other variables of interest.) As a notational device, use of the symbol EK allows one to readily
differentiate between Vm, the transmembrane voltage at a certain moment (but perhaps changing
rapidly), as compared to EK, a value of Vm at potassium equilibrium.

3.10.4. Examples for Potassium and Sodium Ions

Suppose frog muscle had the concentrations of Table 3.1, and suppose its membrane was
permeable to potassium ions but to no others. At what transmembrane potential would there be
equilibrium?

Answer: Using (3.22),

Vm = 25 ln
2.2
124

= −100.8 mV

If the same membrane were permeable only to sodium ions, at what transmembrane potential
would there be equilibrium?

Answer:

Vm = 25 ln
109
4

= +82.6 mV

Note that the polarity of Vm is different for sodium versus potassium ions because of the ratio of
concentrations, even though both ions are cations.

3.11. ELECTROLYTES

3.11.1. Relative Charge Depletion

The equilibrium state at the Nernst potential is achieved by the net movement of charge from
one side of the membrane to the other. For biological membranes, the resting potential depends
on the charge magnitude and on the membrane capacitance. A reasonable question is, then, how
much the intracellular or extracellular concentrations are modified by this charge movement.
To answer this question, one needs (a) to assess the amount of charge required to charge the
membrane to equilibrium voltage, and to compare that amount to (b) the amount of charge in the
electrolyte.
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(a) To evaluate the amount of charge Q moved, consider as an example a muscle fiber of
radius 10 μm. The total charge movement associated with the resting condition is given
by

Q = CV

If we take the nominal values C = 1 μF cm2 and V = 100 mV, then for an axon 1 cm in
length the amount of charge on the membrane at equilibrium is

Q = 1× 10−6 × 2π × 0.001× 1× 0.1 = 0.628× 10−8 Coulombs/cm (3.24)

(b) For an intracellular potassium concentration of 124 mM/liter we can find the amount of
charge in the electrolyte as

QK = 0.124×
(
π × (0.001)2 × 1

1000

)
× 96487 = 0.375× 10−4 Coulombs/cm (3.25)

Taking the ratio ofQ toQK in this example, we see that the relative charge depletion is only
≈ 0.00017, that is, only this tiny fraction of the charge in the solution is necessary to charge the
membrane. The conclusion is that the change in concentration caused by the movement of these
ions is inconsequential insofar as a single charging cycle. (An even smaller fraction would be
seen for larger-diameter fibers.)

On the other hand, over a longer time period with many charging cycles, there could be a
significant cumulative effect.

3.11.2. Electroneutrality

In any region within an electrolyte, it is expected that the concentration of anions equals that
of cations, the condition being known as electroneutrality. Electroneutrality is expected because
any net charge brings into play strong electrostatic forces that tend to restore the zero net charge
condition.

The movement of charge to achieve the Nernst potential in the above example does not
violate the electroneutrality of intracellular and extracellular electrolytes. The reasons there is no
violation are because the charge involved is so small, relatively, and because the excess positive
or negative charges reside on the membrane, not within the solution.

While the above results for the Nernst potential show only a tiny relative charge depletion,
one should not apply this result to every situation without careful evaluation. First, it is worth
noting that the analysis for the Nernst potential applies directly only to a specific case involving a
membrane permeable to only a single ion. Many biological membranes evaluated in other parts
of this text have multi-ion flows. In addition, intracellular and extracellular volumes are highly
variable. In some tissues volumes may be sufficiently small such that significant concentration
changes do result. In such cases electroneutrality may not be maintained, and a more sophisticated
analysis, such as Debye–Hückel [9] theory, is necessary.
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3.12. SUMMARY SO FAR

The developments in this chapter have so far provided two major results along with a number
of secondary ones. The two major results are:

1. The Nernst–Planck equation allows one to compute the resulting current density wherever
the concentration and potential gradients are known, if the characteristics of the medium
(such as temperature) are also known. Current flow in the interior and exterior of cells
can be evaluated beginning with the Nernst–Planck equation, and (as shown above) it
provides the foundation step for finding the Nernst potential, across membranes.

2. For membranes, the equation for the Nernst potential is the second major result. Knowl-
edge of the Nernst potential allows one to know, for given concentrations, the potential at
equilibrium that would exist across real membranes if the membrane were permeable to
only one ion. It is particularly useful for knowing the limiting transmembrane potential
that can be reached if the membrane approaches a state where significant permeability
remains for only one ion. An advantage of the equations derived is that they do not require
that the permeability itself be known.

We now need to proceed to evaluate current flow across membranes in more detail. We thus
need to take into account the more normal situation where the membrane is permeable in various
degrees to several ions simultaneously. Also, we need to evaluate how much the membrane current
is, when it is not zero. In principle, the Nernst–Planck equation, as an expression applicable for
any concentration gradient and any potential gradient, might be expected to provide us with a
starting point for such an evaluation.

The Nernst–Planck equation fails, however, to do so. The reasons for its failure lies not in a
deficiency in the equation itself but in our ability to apply it. The problem is that we do not know,
for a channel, the needed quantities required to use the Nernst–Planck equation effectively.

In other words, we know neither the concentration nor the potential as a function of distance
as one moves along a pathway from the inner edge of the membrane to its outer edge. We do know
that all these quantities have quite different values on one side of the membrane as compared to the
other, so that large changes must occur somewhere. Although one makes simplifying assumptions
about the transmembrane potential, as was done by Goldman [1] for the GHK equations (below),
we are uncertain as to how far such results can be relied upon in view of the actual complexities.

On the other hand, some quantities about excitable membranes are fairly readily measured,
such as their conductivities to various ions. Thus, to take advantage of what can be done and to
avoid what is unknown, it is at this point advantageous to “erase the board,” so to speak, and to
begin again with a new model of the membrane, the parallel conductance model. The parallel-
conductance model is consistent in principle with all the developments considered so far, but
quite different in its appearance and mathematics. It begins again in a way that takes advantage
of what has been done so far, while looking at things from quite a different perspective.

3.13. PARALLEL-CONDUCTANCE MODEL

The parallel-conductance model embodies the bold mental step of asserting that different
ions pass through the membrane independently one of another, as shown diagrammatically in
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Figure 3.3. The Parallel-Conductance Model of an Excitable Membrane (IN = intracellular,
OUT = extracellular). Independent conductance channels are present for K+, Na+, and
Cl−. Transmembrane potential Vm is positive when the inside has higher potential than
the outside. The battery polarity is chosen to show that usually the Nernst potentials of EK
and ECl are negative (inside more negative than outside) and that of ENa is positive (inside
more positive than outside).

Figure 3.3, that is, different pathways across the membrane operate in parallel and simultaneously.
Under that premise, the issues are now subdivided into how individual pathways operate, and
how they combine together to create composite effects such as the membrane resting potential.

Resting Potential

The excitable membrane resting potential is one that brings the membrane into a steady
state. It is that value at which the total membrane current is zero (otherwise, we have a changing
potential and the membrane is not at rest). Before intracellular electrodes, it was supposed that
all permeable ions were individually in equilibrium (i.e., in which case there would be a total
absence of transmembrane ion flow). This is not the case, as is clear because the Nernst potential
of each permeable ion is different (there is no single transmembrane potential that brings all ions
to equilibrium).

To be able to address such dynamic mechanisms, we introduce the membrane representation
of Figure 3.3. This representation is called the “parallel-conductance model.” The model is
intended to represent the flow of ions through their respective ionic channels in a small area of
membrane, often called a membrane element, or a membrane patch,

Ionic Currents

As shown, the model assumes that the significant ions are potassium, sodium, and chloride.
Each branch determines the contribution to the total transmembrane current from a specific ion
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species, and each branch is thought of as a macroscopic description of the respective open ion
channels. The underlying assumption of the parallel-conductance model is that one can identify
segments of membrane that are small enough that the transmembrane voltage is the same all
across the patch, while at the same time large enough that the patch encompasses numerous ionic
channels, so that average channel behavior is all that has to be represented. This underlying
assumption proves to be true in most situations.

If the membrane potential isVm, then the net driving force for potassium is (Vm−EK), which
evaluates the deviation from equilibrium. The potassium current is, consequently, proportional
to Vm−EK; the proportionality coefficient gK has the dimensions of a conductance, and is called
the potassium conductance. Conductance gK is not a constant but varies depending on how many
channels are open at a particular moment. (In a later chapter we describe the dependence of
conductance on membrane conditions.) So

IK = gK(Vm − EK) (3.26)

The corresponding electrical circuit is illustrated in Figure 3.3.

If Vm > EK, then the outward diffusional forces are not completely equilibrated by the
electric field, and a net outward potassium flux, hence current, results. Note that IK in (3.26) is
appropriately positive.

For the sodium ion
INa = gNa(Vm − ENa) (3.27)

Here if Vm > ENa, then because ENa, is positive Vm must be positive and even larger than
ENa. The result is an outward sodium flux driven by an electric field which exceeds the inward
diffusional forces. Equation (3.27) provides the correct sign for INa.

For the chloride ion, analogous to (3.26), one obtains

ICl = gCl(Vm − ECl) (3.28)

If Vm > ECl, the inward chloride diffusion is not completely equilibrated and a net influx occurs.
Since this influx is of ions with a negative charge, it constitutes an outward electric current; ICl
should be positive, and from (3.28) it is.

3.13.1. Parallel Conductance in Alternative Forms

It is worth keeping in mind that the parallel-conductance model is included in this chapter to
present the main concept of such models in a simple form.

Parallel-conductance models as used in particular contexts (for example, those of later chap-
ters in this book) are normally modified in significant ways from the form above. For example,
Hodgkin and Huxley used a parallel-conductance model that had sodium and potassium path-
ways, and a third pathway identified as leakage. They inferred the properties of the leakage
channel from measurements of the transmembrane potential, rather than by modeling a specific
ionic flow.

Other investigators have used parallel-conductance models with pathways to represent addi-
tional ions, such as calcium ions, and additional mechanisms, such as ionic pumps.
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3.13.2. Capacitive Current

To complete the list of contributions to the transmembrane current we add the capacitive (or
displacement) current, which is simply

IC = Cm
dVm
dt

(3.29)

At rest (that is, at steady state), IC = 0 since dVm/dt = 0 (because if dVm/dt was not zero, Vm
would be changing and thus not at steady state).

Capacitive current is much more important than one might at first suspect, because the
membrane is very thin and thus highly capacitive.

3.13.3. Resting Vm from Steady-State Constraints

As noted above, a resting membrane requires steady-state conditions, namely, zero net trans-
membrane current. The membrane current Im is

Im = IC + IK + ICl + INa

At steady state, IC = 0 since dVm/dt = 0. Thus, at steady state,

Im = 0 = 0 + IK + ICl + INa

Substituting the expressions for each ionic current from (3.26), (3.27), and (3.28) gives

gNa(Vm − ENa) + gK(Vm − Ek) + gCl(Vm − ECl) = 0 (3.30)

One can solve for Vm from (3.30) and obtain the resting value, Vrest, given by

Vrest =
gKEK + gClECl + gNaENa

gK + gNa + gCl
(3.31)

Equation (3.31) is known as the parallel-conductance equation for the resting transmembrane
potential. It describes how Vm arises as a weighted average of Ek, ECl, and ENa depending on
their relative conductivities.

3.13.4. Example for Squid Axon

The above ideas can be illustrated using values ofEk, ECl, andENa for the squid axon from
Table 3.1 and (3.23). We choose resting values of the conductances to be

gK = 0.415 mS/cm2
, gCl = 0.582 mS/cm2

, gNa = 0.010 mS/cm2
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These values permit an examination of the relative influence of the Nernst potential and con-
ductivity on resting conditions from (3.31). One obtains from Table 3.1 and (3.23) the following
Nernst potentials:

EK = −74.7 mV, ENa = 54.2 mV, ECl = −65.8 mV.

Substituting the above values into (3.31) yields Vm = −68.0 mV. This resting potential gives
rise to a steady efflux of potassium.

The efflux is driven by the difference between Vm and EK of 6.7 mV. An influx of sodium
will also occur driven by the difference in Vm from its equilibrium Nernst potential, which in this
example equals 122.2 mV. This large driving force acts on a relatively low conductivity, so the
efflux of potassium and influx of sodium are roughly in balance, preserving the steady state. (For
simplicity, we have here assumed chloride to be, essentially, in equilibrium.)

The parallel-conductance model is based on membrane conductances, and these must be
found either from experiment or from yet another model. The Hodgkin–Huxley model, de-
scribed in a subsequent chapter, utilizes (3.26)–(3.28) and gives expressions that evaluate the
ionic conductances.

3.14. CONTRIBUTIONS FROM CHLORIDE

3.14.1. Chloride–Potassium Equilibrium

The role of the chloride ion in determining the resting potential appears to be secondary to
that of potassium. This comes about because the intracellular chloride concentration is very small
and undergoes a large percentage change with small amounts of chloride influx or efflux (which
is not true for potassium). Consequently, chloride ion movements can be expected to occur that
accommodate it to the potassium ion ratio to bring both ion ratios into consonance (i.e., the same
Nernst potential), namely, when

[K+]i[Cl−]i = [K+]e[Cl−]e (3.32)

Since the chloride ion ratio tracks the potassium, one need only follow the latter to evaluate
the resting membrane potential (as a rough approximation). Changes in resting potential may
similarly be thought due solely to the potassium ion ratio, namely,

Vm ≈ 25 ln
(

[K+]e
[K+]i

)
(3.33)

3.14.2. Resting Conditions and Behavior of Chloride

An experimental investigation of the behavior of chloride under resting conditions was per-
formed by Hodgkin and Horowicz [4, 5]. Their frog muscle preparation was placed in a normal
extracellular medium.
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Figure 3.4. Effect of a Sudden Reduction in the External Chloride Concentration on the
membrane potential of an isolated frog muscle fiber. Reprinted with permission from
Hodgkin AL, Horowicz P. 1959. The influence of potassium and chloride ions on the
membrane potential of single muscle fibers. J Physiol 148:127–160.

These conditions applied:

Extracellular [Cl−]e = 120 mM.

Extracellular [K+]e = 2.5 mM.

Intracellular potassium concentration [K+]i = 140 mM.

Intracellular chloride concentration [Cl−]i = 2.4 mM.

The resting potential was nominally the chloride equilibrium potential of −98.5 mv.

At t = 0 they rapidly reduced the extracellular chloride concentration from 120 mM to 30
mM (see Figure 3.4).

The effect was to increase ECl by 58 log10 (120/30) = 34.9 mV, so ECI increased from
−98.5 to −63.6 mV. The membrane potential is found, experimentally, to rise to −77 mV (see
Figure 3.4). (Note that this value lies between EK ≈ −98.5 mV and ECl = −63.6 mV).2
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Following the reduction of extracellular chloride, an efflux of Cl− resulted since the outward
electric field is no longer equilibrated by inward diffusion. The efflux of anion caused an increase
in Vm.

As a consequence of this increase in the outward electric field K+ flowed outward—an efflux
of KCl. As we have seen, only a very small flux of a single ion can take place without setting up
large equilibrating fields. That principle is illustrated here, as the flow is essentially electroneutral
with equal amounts of potassium and chloride.

In order for there to be an equal flow rate of potassium and chloride, the ratio of the driving
force on each ion must be inversely proportional to their conductivities.

Thus,

ΔVK = (98.5 − 77) is the potassium driving force (difference between Vm and EK at
t = 0+).

ΔVCl = (77− 63.5) is the chloride driving force (i,e., Vm − ECl at t = 0+).

Because
JK = (Vm − EK)gK = JCl = (Vm − ECl)gCl (3.34)

the membrane at t = 0+ is described by

gK

gCl
=

ΔVCl

ΔVK
=

(77− 63.5)
(98.5− 77)

= 0.63 (3.35)

Equation (3.34) may also be thought of as an illustration of the parallel-conductance mem-
brane model. In this case the experiment provides a direct measure of the relative potas-
sium/chloride conductivity. Note the following experimental observations:

The effect of an efflux of KCl is to diminish [K+]i, but we shall confirm that this amount
is a small change from 140 to 138 mM. However, the drop of 2 mM [Cl−]i results in a
large percentage change of chloride.

Ultimately (in 15 min or so)ECl diminishes to the value held byEK (as [Cl−]i diminishes
due to chloride efflux). For the new steady state ECl ≈ −98.5 mV, assumed unchanged,
so [Cl−]i must drop by a factor of 1/4 to offset the reduction in [Cl−]e by a factor of 1/4
(i.e., from 120 to 30 mM).

This new concentration occurs when [Cl−]i reaches 0.6 mM from its initial value of 2.4
mM, a loss of 1.8 mM.

To balance, the KCl efflux thus consists of 1.8 mM. This efflux results in a decrease in
intracellular potassium concentration from 140 to 138.2 mM. As noted, this amount of
movement has a negligible effect on EK.
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Consequently, it appears that, indeed, chloride accommodates to changing conditions so that
equilibrium is restored. In effect, chloride leaves the fixing of the resting potential to potassium.

Why is it that the efflux of 1.8 mM was not considered to affect the values of [K+]e? It
was assumed there was no effect because extracellular space is assumed to represent a very large
volume of electrolyte (a condition that is often true, but not always). With a large extracellular
volume the ions that are flowing out produce an insignificant change in the overall concentration
in the extracellular space. In this regard, the assumed large extracellular volume contrasts sharply
with the confined intracellular space.

3.15. REFERENCE VALUES

Symbol Name value

N0 Avogadro 6.02× 1023 ions per mole
0oC Celsius temp corresponds to 273.16 oK (absolute)
F Faraday 96,487 absolute Coulombs/gram equivalent
R Gas Constant 8.314 J/K mole at 27 ◦C
RT/F coefficient 8.314× 300/96487 = 25.8 mV (≈ 27 ◦C)
ε0 permittivity (10−9)/(36π) (Coulombs2 sec2) / (kg m2)

3.16. NOTES

1. 17◦C≈ 63◦F. See also the reference values above.

2. For simplicity we let the initial rest values of EK = ECl.
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4
CHANNELS

4.1. INTRODUCTION

In the previous chapter it was pointed out that biological cells are enclosed by a plasma mem-
brane. This membrane consists of a lipid bilayer and, as seen in Figure 3.1, the hydrophilic polar
heads are oriented facing the intracellular and extracellular water-containing media, while the
hydrophobic tails, on the other hand, are internal to the membrane. The biophysical consequence
of the lipid is a membrane with the high dielectric constant of oil and the high resistivity of that
material. The thin membrane has a high membrane capacitance of Cm = 1μF/cm2; the lipid
membrane also has a high specific resistance of 109 Ω cm2.

The very high membrane resistance is essentially an insulator to the movement of ions. Ion
flux takes place because of the presence of membrane proteins called channels. These membrane
proteins lie transverse to the membrane and contribute an aqueous path for ion movement. Spe-
cific resistances of biological membrane of 1,000 to 10,000 Ωcm2 are observed. Such specific
resistances are much lower than that of lipid membrane alone and occur as a consequence of the
presence of open membrane channels.

But channels do not simply furnish a passive opening for ions to flow. Rather, channels are
generally selective for a particular ion. In addition, a striking property of channels is that they
have gates that open and close, and ion flow is controlled through that mechanism.

This chapter is devoted to an examination of channels, their structure and their bioelectrical
properties.

4.2. CHANNEL STRUCTURE BY ELECTRON MICROSCOPY

We first review what has been found from electron microscopy (EM), electron diffraction,
molecular biological, and biophysical approaches. The use of electron microscopy and x-ray
diffraction requires a regular lattice, but general methods for crystallizing membrane proteins
are not available as yet. There are several purified channel proteins that do form fairly regular
two-dimensional lattices. These lattices have been investigated with x-ray diffraction and EM.

71
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Figure 4.1. Model of the Acetylcholine Receptor that shows the five component subunits
and the aqueous pore. The band locates the membrane bilayers through which the molecule
passes; the lower part is cytoplasmic. From Stroud RM, Finer-Moore J. 1985. Acetylcholine
receptor structure, function, and evolution. Reproduced with permission from Annu Rev
Cell Biol 1:317–351. Copyright c©1985, Annual Reviews Inc.

The achieved resolution of around 17
◦
A describes a general structure but is not adequate for many

details of interest (e.g., pore cross-section and gates).

A conception of the acetylcholine (ACh) receptor that results is shown in Figure 4.1. We
note that it contains five component subunits enclosing an aqueous pore. Also, the total length
substantially exceeds the plasma membrane. This molecule has been estimated to be about 120
◦
A in length, 80

◦
A in diameter, with a 2.0–2.5 nm central well. The dimensions of other ionic

channels are not too different.

4.3. CHANNEL STRUCTURE: MOLECULAR GENETICS

An increasingly important technique for investigating channel structure is based on gene
cloning methods that determine the primary amino acid sequence of channel proteins. The
results can be tested by determining whether a cell that does not normally make the supposed
protein will do so when provided the cloned message or gene.

Oocytes of the African toad Xenopus laevis are frequently used to examine expression of
putative channel mRNA. The resulting channel properties can be evaluated to determine whether
the protein synthesized is indeed the desired protein.

Although the primary structure of many channels has now been determined, the rules for
deducing secondary and tertiary structure are not known. Certain educated guesses on folding
of the amino acid chain can be made, however. One involves a search for a run of twenty or
so hydrophobic amino acids, since this would just extend across the membrane and have the
appropriate intramembrane (intra-lipid) behavior.

In this way the linear amino acid sequence can be converted into a sequence of loops based
on the location of the portions lying within the membrane, within the cytoplasm, and within the
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Figure 4.2. Proposed Transmembrane Structure of (a) voltage-gated Na+ channel protein
and (b) voltage-gated K+ channel protein. The sodium channel arises from a single gene;
it contains 1800–2000 amino acids, depending on the source. About 29 percent of the
residues are identical to those in the voltage-gated Ca++ channel protein. There are four
homologous domains indicated by the Roman numerals. Each of these is thought to contain
six transmembraneα helices (Arabic numerals). Helix number 4 in each domain is thought
to function as a voltage sensor. The shaker K+ channel protein (b) isolated from Drosophila
has only 616 amino acids; it is similar in sequence and transmembrane structure to each
of the four domains in the Na+ channel protein. From Darnell J, Lodish H, Baltimore D.
1990. Molecular cell biology, 2nd ed. New York: Scientific American Books. Adapted
from Catterall WA. 1988. Structure and function of voltage-sensitive ion channels. Science
242:50–61. Copyright c©1988, American Association for the Advancement of Science.

extracellular space (Figure 4.2). From the membrane portion of the sequence the particular run of
amino acids gives some clues as to the structure of and the boundaries of the ion-conducting (pore-
forming) region, as well as the location of charge groups that could enter into voltage-sensing
gating charge movement.
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This approach was successfully used in the study of shaker1 K+ inactivation. Following acti-
vation of this channel, it was noted that the ensuing inactivation was voltage-independent. Voltage
independence implies that the inactivation process must lie outside the membrane (otherwise it
would be subject to the intramembrane electric field).

The amino-terminal cytoplasmic domain of the membrane protein was investigated by con-
structing deletion mutants whose channel-gating behavior could then be examined. The results
demonstrated that inactivation is controlled by 19 amino acids located at the amino-terminal
cytoplasmic side of the channel and that these constituted the ball of a ball and chain.

What appears to be happening is that associated with channel activation is the movement of
negative charge into the cytoplasmic end of the channel. The negative charge attracts the positively
charged ball, resulting in closure of the channel by the ball (which exceeds the channel mouth in
size). Deletions of this amino acid sequence terminated the channel’s ability to inactivate.

4.3.1. Channel Testing

Some hypotheses can be tested by site-directed mutagenesis involving the deletion or in-
sertion of specific protein segments (as just noted). By examining the altered properties of the
channel expressed in Xenopus oocytes, one can make educated guesses concerning the function of
the respective protein segments. Unfortunately, since the introduced changes can have complex
and unknown effects on the tertiary structure, only tentative conclusions can be reached.

Based on what is known of the channel structure and even more on channel function, Hille
[1] constructed the channel cartoon reproduced in Figure 4.3. Referring to this figure we note,
for example, that the cross-sectional area of the aqueous channel varies considerably along the
channel length. The variable cross-section is consistent with a recognition that the walls of the
enclosing protein are nonuniform.

This shape also could contribute to the channel’s property as a selectivity filter. Measurements
show that a potassium channel may pass K+ at a rate that is 104 times greater than Na+, even
though the latter is 0.4

◦
A smaller in crystal radius—so that selectivity is not a simple steric

property. The observed high channel selectivity could be related to the particular distribution of
charges along the walls of the pore, and this possibility can be investigated based on the amino
acids lining the pore.

In Figure 4.1 the barrel stave structure has been thought to facilitate rapid gating. Such
gating could be accomplished by only a small rotation of the contributing components. Thus,
small conformational changes could give rise to large changes in the cross-section of the aqueous
channel. The very rapid gating that is observed biophysically requires such structures.

Voltage gating implies that the molecular structure of the channel protein contains effectively
embedded charges or dipoles—and these are sought within the amino acid sequence. An applied
electric field causes intramolecular forces that can result in a conformational change.

This movement of charges constitutes a gating current; the charge displacement through
an electrical potential adds or subtracts from the potential energy of the protein, and this can
be related to the density of open or closed channels in a large population (through Boltzmann’s
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Figure 4.3. Functional Description of Membrane Channel. “The channel is drawn as a
transmembrane macromolecule with a hole through the center. The functional regions—
selectivity filter, gate, and sensor—are deduced from voltage-clamp experiments and are
only beginning to be charted by structural studies. We have yet to learn how they actually
look.” [From Hille B. 1992. Ionic channels of excitable membranes, 2nd ed. Sunderland,
MA: Sinauer Associates.]

equation); this will be discussed later. Since the gating current saturates when all channels are
open, this constraint can be used to separate its contribution from the total capacitive current.

4.4. ION CHANNELS: BIOPHYSICAL METHODS

4.4.1. Single-Channel Currents and Noise

If an open single channel should behave as an aqueous path for ions, then the open channel
contributes a path for electrical current with a fixed conductance of γ. Based on the parallel
conductance model, a potassium channel should provide a current iK given by

iK = γK(Vm − EK) (4.1)

Assuming Vm−EK = 50 mV and a conservative value of γK = 20 pS, then from (4.1) a current
of 2 pA results, a value consistent with experiment. Measurement of this single-channel current
with a micropipette having a tip diameter of 1 μm is feasible if other currents (noise in particular)
can be minimized.
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Figure 4.4. Inside–Out Patch Clamp Configuration. The desired current path through the
cell is challenged by the alternate (leakage) pathway available in the region of electrode–
membrane contact. A single open channel is assumed to give a membrane conductance
equal to or greater than 20 pS (a resistance of ≤ 50 GΩ). To keep leakage current low
(hence minimal loss of signal strength as well as reduced Johnson noise), this resistance
should be in the tens of gigaohms; fortunately, patch electrodes with 100 GΩ leakage
resistance are currently available.

We note that the Johnson noise current is

σn =
√

4kTΔf/R = 0.0180 pA (4.2)

based on Δf = 1 kHz, R = 1/20 pS = 5 × 1010 Ω, T = 293 K, and k (Boltzmann’s constant)
= 1.38× 10−23. Even with a signal current of 1 pA, an entirely acceptable S/N = 56 results.

The problem in single-channel measurements that results from bringing a micropipette in
contact with the cell membrane is illustrated in Figure 4.4. Using conventional techniques we
would have a leakage resistance of 10 MΩ in parallel with that of the channel (5× 1010 Ω). With
the reduced R value of this combination, (4.2) evaluates a leakage noise current of 1.3 pA. This
noise current results in a poor signal-to-noise ratio.

To reduce the noise current by tenfold requires a 100-fold increase in leakage resistance!
Such a reduction was achieved by Neher and Sakmann by careful preparation of the electrode
tip, preparation of the biological material, and application of a small amount of suction. The
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resultant instrument is called a patch clamp. The measurement of these low picoampere-level
currents could not have been achieved without the advent of field-effect transistors with low-
voltage noise and sub-picoampere input currents.

The choice of tip diameter of around 1 μm is about ten times larger than that used for
intracellular micropipettes. The larger tip results in a lower tip resistance, a desirable factor
to achieve a lower noise, as noted above. On the other hand, it may mean that more than one
channel will find itself under the patch electrode. An examination of the recorded signal will
reveal whether, in fact, only a single channel is accessed.

4.4.2. Voltage-Clamp Methods

Investigations of electrically active membrane often make strategic use of a patch clamp,
space clamp or some other form of voltage clamp. To understand why, some background is
needed, so that one understands the historic difficulties such a strategy is designed to overcome.
In essence, what was discovered over time was that in such a membrane the conductivity changes,
so that Ohm’s law does not hold. Such conductivity changes are now known to arise from the
opening or closing of channels. Varying numbers of open channels then produce changes in
transmembrane voltage.

Closing the loop, the membrane voltage changes alter the number of channels that are open
or closed. There is thus a feedback system, in which transmembrane voltages change channel
openings, and changes in channel openings alter voltages. This feedback mechanism is a beautiful
engine for cell activity and response, but one that, in its natural form, is hard to analyze in terms
of its components, and next to impossible to evaluate experimentally.

To cut through this complexity, the voltage-clamp experiment was developed over a period
of years in the mid-1900s. Though its origin had an experimental focus, the voltage clamp was
also a powerful analytical concept. A core goal of the voltage clamp is to break the feedback
loop where voltages affect channels, and channels affect voltages. Breaking the loop allows one
to separate changes in voltage from the changes in the numbers of open channels that result.

The separation is achieved by making transmembrane voltage something the investigator
sets as an independent variable, whether mathematically or experimentally, rather than something
determined intrinsically by the cell, as happens normally. Thereafter the consequences of setting
the voltage are determined, in terms of membrane currents, channels open, or other effects.

In the voltage-clamp protocol (Figure 4.5), the transmembrane voltage is set to two values
in succession, here designated V 1

m and V 2
m. The time periods during which these voltages are

applied are called phase 1 and phase 2. In phase 1, the clamp mechanism and its control system
supplies enough current of the right polarity to hold the transmembrane voltage at V 1

m until the
cell reaches steady state at time t = t1. Then, at time t = 0, there is an abrupt transition from
the first to the second transmembrane voltage, i.e., a transition from V 1

m to V 2
m. In phase 2,

transmembrane voltage V 2
m is maintained until a new steady state is reached at time t = t2.

Often the primary focus is on evaluating changes in the state of the membrane during phase
2 at times t > 0 such as t = ta or t = tb. At such times an evolution in the number of channels
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Figure 4.5. Voltage Clamp, Vm versus Time. Panel A, Concept: The transmembrane
voltage is held constant at transmembrane voltage V 1

m until time t = 0, when it is abruptly
shifted to V 2

m. Times t1 and t2 identify the times when the membrane reaches a steady
state in phases 1 and 2. Panel B, Detail: The equilibrium voltage for potassium is EK and
that for sodium ENa. Voltage Vm is an absolute value i.e., relative to Vm = 0, as shown
for V 1

m on the left, while vm (note lower case v) is relative to the resting potential (i.e.,
relative to Vr , as shown by v2

m on the right). Time t = ta marks the end of the voltage
transition, while time t = tb occurs later, but before phase 2’s steady state is attained.

that are open and the membrane currents that are flowing through them is taking place, as the
membrane evolves into its steady state for phase 2.

These changing numbers of open channels allow changes in ionic currents that are directly
observable. In this regard, the driving force for sodium ions, VNa = Vm − ENa (shown during
phase 2 by a downward arrow) has a different magnitude and sign than the driving force for
potassium ions VK = Vm − EK (shown during phase 2 by an upward arrow).
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In voltage-clamp experiments, transmembrane voltage is set as an independent variable, so
the transmembrane voltage comes about in a way that does not occur naturally. However, the
consequences of setting that membrane voltage, in terms of numbers of channels open or closed,
or in terms of membrane current, can be evaluated as a function of time and as a function of
transmembrane voltage. This knowledge then can be integrated into a more complex system
where transmembrane voltages as well as channel characteristics evolve in a natural way.

4.4.3. Patch Clamp

If transmembrane currents are measured from a macroscopic cell membrane, the contributing
current density will vary with position over the membrane (unless some special effort is made).
Such variation may result from propagation of activity, a topic treated in a subsequent chapter.

Because of the nonuniform contributions it may be difficult to interpret the measured current.
It will be difficult because the current will originate from multiplicity of channels, and each one
may be behaving differently because of a different transmembrane voltage, temporal phase, etc.
(Later, we will describe a “space clamp,” which ensures identical transmembrane voltages for all
channels.)

The patch clamp addresses such difficulty. In the patch clamp, the micropipette tip is small,
only around 1μm diameter. As a consequence its measured current is from only the very small
contacted membrane element. A beneficial corollary is that the confounding effects of spatial
variation of a large membrane area are avoided. The measurement is unaffected by spatial
variations and is hence “space clamped”; the “clamp” in the name “patch clamp” arises from this
feature.

A downside of restricting measurement to a patch is that the currents through the patch are
smaller than for a larger membrane segment, and thus they are harder to measure. We have noted
that for a patch clamp to work satisfactorily careful preparation is required to ensure an adequate
signal-to-noise ratio. The following is a brief list of pertinent considerations [1].

1. A high-resistance seal is essential to ensure that the leakage currents (and their noise
components) are small compared to the desired transmembrane currents.

2. The pipettes should be fire polished and clean. In general, pipettes may be used only
once.

3. Cells should be clean and free of connective tissue, adherent cells, and basement mem-
brane. Good seals are most readily obtained on cultured cells.

4. The application of gentle suction will increase the resistance of the seal to greater than
1010 Ω. This is the desired gigaohm seal (gigaseal), permitting the measurement of
currents from membrane areas on the order of 1μm2. This resolution makes possible
recording currents from single channels.

In Figure 4.6, four configurations of recording from a single-cell membrane using a patch
micropipette are depicted. At the upper left, the gigaseal is established and an on-cell condi-
tion results. If a microelectrode is introduced into the cell, currents between that electrode and
the patch electrode must pass through the membrane patch (only). In view of the small size of
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Figure 4.6. Four Configurations for Patch Clamping are described. The clean pipette is
pressed against a cell to form a tight seal using light suction, and produces the cell attached
or on-cell configuration. Pulling the pipette away from the cell establishes an inside–out
patch. Application of a suction pulse disrupts the membrane patch, allowing electrical
and diffusional access to the cell interior for whole-cell recording. Pulling away from the
whole-cell arrangement causes the membrane to re-form into an outside–out configuration.
From Hamill OP, et al. 1981. Improved patch clamp techniques for high resolution current
recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100.
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the patch, this size could contain one or only a few channels (or none at all). Application of a
constant transmembrane potential permits the study of a single-channel response.

A momentarily elevated suction will rupture the membrane across the pipette (without de-
stroying the seal), yielding the whole-cell configuration. In this situation the entire intracellular
space is accessible via a low resistance to the patch electrode. It can be shown that the intra-
cellular space is essentially isopotential. Consequently, currents introduced through the pipette
flow uniformly across the entire cell while the pipette potential is the same as that at all points
on the intracellular cell surface. The macroscopic behavior of the whole cell is examined in this
arrangement; small cells in the diameter range of 5–20 μm can only be measured this way.

If, after establishing a gigaseal, the pipette is quickly withdrawn, then a patch of membrane
will be found still in contact with the mouth of the pipette. The pipette may then be readily placed
in solutions of arbitrary composition and the resulting transmembrane potentials and currents
measured. In this arrangement the inside (cytoplasm side) of the membrane is in contact with the
bathing solution (i.e., the extracellular or outside); the arrangement is called inside–out.

If the pipette is pulled away while first in the whole-cell configuration, the membrane will
reform in an outside–out configuration, that is, in this case, the outside (extracellular surface) of
the cell membrane now faces the outside of the micropipette (i.e., the bathing solution). These
comments are also illustrated in Figure 4.6.

4.4.4. Single-Channel Currents

Examination of patch-clamp current reveals discontinuities that directly reflect the opening
and closing of channel gates. Thus the concept of gated channels is supported by these experiments
and supplements the evidence of gated pores found in EM, x-ray diffraction, and molecular
biological studies.

Typical patch-current recordings are shown in Figure 4.7. The current waveform is interpreted
as reflecting the opening and closing of a single channel.

The single-channel record is seen to switch to and from an open or closed state. The time in
each state varies randomly, but if the ratio of open to closed time is evaluated over a sufficiently
long period, then this ratio (with some statistical variation) will be the same over any successive
such interval. Such a determination gives the expected value or probability that the channel will
be open (closed), a value that is independent of time under these steady-state conditions. An
electric circuit representation of the single-channel current is given in Figure 4.8.

If the transmembrane potential is suddenly switched to a new value, the probability of the
channel being open also will change, as will be discussed in a later section.

The single-channel behavior is the basis for the macroscopic membrane properties. While
the former is statistical in nature, the summation of very large numbers of such contributions
results in a continuous functional behavior. We will examine this relationship in this chapter and
give further details of macroscopic membrane behavior in subsequent chapters. We will also
show that, while the macroscopic properties can be found from the microscopic, to some extent
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Figure 4.7. Patch-Clamp Recording of unitary K currents in a squid giant axon during a
voltage step from –100 to 50 mV. To avoid the overlying Schwann cells, the axon was cut
open and the patch electrode sealed against the cytoplasmic face of the membrane. (A) Nine
consecutive trials showing channels of 20 pS conductance filtered at 2 kHz bandwidth. (B)
Ensemble mean of 40 repeats; these reveal the expected macroscopic behavior. T = 20 ◦C.
From Bezanilla F, Augustine GR. 1992. In Ionic channels of excitable membranes, 2nd ed.
Ed B Hille. Sunderland, MA: Sinauer Associates.
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Figure 4.8. (a) Electrical circuit representation for a single (potassium) channel showing
fixed resistance rK, potassium Nernst potentialEK, and the transmembrane potential Vm.
The closing and opening of the switch simulates the stochastic opening and closing of the
channel gate. (b) Single-channel current corresponding to (a), where γK = 1/rK. This is
an idealization of the recording shown in Figure 4.7.

the inverse is also true, and we will describe how certain microscopic, single-channel statistical
parameters can be found from macroscopic measurements.

4.4.5. Single-Channel Conductance

If a channel behaves ohmically, then in (4.1) its conductance γ is expected to be a constant. In
an experiment byYellen [4], shown in Figure 4.9, a single-channel potassium current is evaluated
as a function of transmembrane voltage. For the voltage range considered we note that a fairly
linear result is obtained supporting the conclusion that γK is constant; its value of 265 pS can be
found from the slope of the dotted curve in Figure 4.9.

An estimate of the channel conductance can be obtained based on macroscopic ohmic ideas.
For the channel shown in Figure 4.1, the pore diameter is on the order of 20

◦
A . If it is assumed

that this is actually a uniform cylinder of length 150
◦
A (two membrane thicknesses), then the

conductance evaluates to

γ = π(10× 10−8)2/(250× 150× 10−8) = 84 pS (4.3)

based on a bulk resistivity of 250 Ωcm. The resulting value compares with measured values
of potassium channel conductance of 20 pS and greater, and might be considered surprisingly
close. In this calculation the macroscopic ohmic behavior of a uniform column of electrolyte has
been applied to a channel of atomic dimensions that is also likely to be nonuniform. It ignores
electrostatic forces between ions and wall charges, possible channel narrowness, etc.

In addition, one should include an access resistance from the mouth of the cylindrical channel
into the open regions of intracellular and extracellular space. This resistance (using an idealized
model) is given by ρ/(2a). Including this resistance reduces the channel conductance from 84
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Figure 4.9. Current–Voltage Relations for a single BK K(Ca) channel of bovine chromaffin
cell. The excised outside–out patch was bathed in 160 mM KCl or NaCl and the patch
pipette contained 160 mM KCl. In symmetrical K solutions the slope of the dashed line is
γ = 265 pS; T = 23 ◦C. From Hille B. 1992. Ionic channels of excitable membranes,
2nd ed. Sunderland, MA: Sinauer Associates. Based on measurements of Yellen G. 1984.
Ionic permeation and blockade in Ca2+-activated K+ channels of bovine chromaffin cells.
J Gen Physiol 84:157–186.

[as found in (4.3)] to 76 pS. In comparison, some measured channel conductances are given in
Table 4.1 for sodium and potassium.2

Table 4.1 also shows the measured channel density, obtained using one of two methods. In
one, the macroscopic conductance of a whole cell was measured and then divided by the surface
area of the cell and by the single-channel conductance. The result is the number of channels per
unit area.

A second approach is based on gating-current measurements, and this approach will be
described subsequently. The result as seen in Table 4.1 might be thought to give a sparse density
of channels. This conclusion would be reached on Hille’s [1] estimate that perhaps 40,000
channels could be physically accommodated in a 1μm2 membrane area.

But another reference value for channel density comes from an evaluation of the quantity
of charge needed to change the transmembrane potential by 100 mV. Assuming C = 1μF/cm2

and a voltage change of 100 mV, then fromQ = CV , one obtains 10−7 Coulombs/cm2 or 10−15
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Table 4.1. Conductance of Sodium and Potassium Channels

Preparation γ Channels
– (pS) (number/μm2)

Sodium
Squid giant axon 4 330
Frog node 6–8 400–2000
Rat node 14.5 700
Bovine chromaffin 17 1.5–10

Potassium
Squid giant axon 12 30
Frog node 2.7–4.6 570–960
Frog skeletal 15 30
Mammalian BK 130–240 —

Coulombs per μm2. Multiplication by Avogadro’s number and division by the Faraday results in
6200 monovalent ions required per μm2. One channel carrying 1 pA of current moves that many
ions in 1 msec. Thus the “sparse” channel density in Table 4.1 is also several orders greater than
an absolute minimum.

4.4.6. Channel Gating

We have mentioned that inactivation of the shaker K+ channel is accomplished with a ball
and chain configuration (Figure 4.10).

In the study of the ion channel colicin, a radical reconformation accompanies channel opening
and closing, described by a “swinging gate” model [3]. In the absence of detailed information
on channel protein structure, gating mechanisms require a degree of guesswork.

In any case it is clear that, for voltage gated channels, the influence of a transmembrane
potential on a gate is through the force exerted on charged particles by the electric field within
the membrane (associated with the gate) in the protein channel. While the total distribution of
charges in the macromolecule must be zero, we can have local net charge, though charges are
probably organized as dipoles. An adequate force exerted by an electric field will result in a
conformational change in which the channel state is switched from closed to open (or vice versa).

At the same time, the charge (dipole) movement contributes to the capacitive current (in
much the same way as a dielectric displacement current arises from molecular charge movement
or dipole orientation). Such currents are called gating currents. Since they saturate at large
enough fields, they can be separated from the remaining (non-saturating) capacitive current,
which is linearly dependent on ∂Vm/∂t.

Suppose we assume that the energy required to open a closed channel is supplied through
the movement of a charge Qg = zqqe through the transmembrane potential Vm, where zq is the
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Figure 4.10. A protein ball pops into a pore formed by the bases of four membrane-spanning
proteins (one not shown), thereby stopping the flow of potassium ions out of a nerve cell.
Based on Hoshi T, Zagotta WW,Aldrich RW. 1990. Biophysical and molecular mechanisms
of Shaker potassium channel inactivation. Science 250:506–507, 533–538, 568–571.
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valence and qe is the charge. Then Boltzmann’s equation expresses the ratio of open to closed
channels as

[open]
[closed]

= exp
(
−w − zqqeVm

kT

)
(4.4)

The fraction of open channels is therefore

[open]
[open + closed]

=
1

1 + exp[(w − zqqeVm)/kT ]
(4.5)

In (4.4) and (4.5) w is the energy required to open the channel when the membrane potential
is zero, i.e., with Vm = 0, and k is Boltzman’s constant. (Recall that the gas constantR = k/qe.)

A plot of (4.5) as a function of Vm for different values of Qg can be compared with the
macroscopic dependence of ionic conductance, as a function of Vm, and in this way Qg can
be estimated [1]. Good fits are achieved, but the model is very simple and the interpretation
uncertain.

One complication is that the charged particles may not move across the entire membrane
(i.e., through the entire voltage Vm). Another complication is that the transitions may not be
smooth but take place in steps. (Step behavior is what is believed to occur.) Moreover, if the
force mechanism involves dipole rotation and translation, the energy calculation will necessarily
be different from that assumed in (4.4). Nonetheless, the equations are a starting point.

4.5. MACROSCOPIC CHANNEL KINETICS

The membrane functions by changing the number of open channels in response to a changing
transmembrane voltage, as well as time. It must do so fast enough to allow eye blinks and escape
from predators, but slow enough that the process does not become uncoordinated or out of control.
What equations describe the average number of open channels? What equations describe the rates
of change of the average number if the transmembrane voltage shifts from one value to another?
The equations of macroscopic channel kinetics address these questions.

We consider a large membrane area containing N channels of a given ion type. We assume
that each channel’s behavior is independent, though governed by similar statistics. We further
assume that each channel is either in an open or closed state and that the transition between these
states is stochastic. Let the number of closed and open channels at any instant be Nc(t) and
No(t), respectively, where Nc and No are random variables; then

N = Nc(t) +No(t) (4.6)

We assume state transitions to follow first-order rate processes. If the rate constant for
switching from a closed to an open state is α while that for switching from an open to a closed
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state is β, then the average behavior is described by

α
Nc ⇀↽ No

β
(4.7)

Based on experience with the measurements of Hodgkin and Huxley (to be described in
Chapter 5), we expect α and β to depend on the transmembrane potential (only) and therefore to
be constant when the potential is fixed (as assumed at this point).

Based on the relation given in (4.7), we have

dNc
dt

= βNo − αNc (4.8)

and similarly
dNo
dt

= αNc − βNo (4.9)

If (4.6) is substituted into (4.9); then, after rearranging terms, one has

dNo
dt

+ (α+ β)No = αN (4.10)

The solution of (4.10) is
No(t) = Ae−(α+β)t +

α

α+ β
N (4.11)

Equation (4.11) is important because it shows how the number of open channels can be determined
after, for example, the voltage transition in a voltage clamp. The equation gives the solutions
for a time immediately after the voltage change, a long time after the change, or at any time in
between.

In this regard, in (4.11) constant A has to be determined by the boundary conditions. Here
the boundary condition is the number of open channels at t = 0. For a voltage clamp, that would
be the number of open channels existing just before the clamp voltage was set to a new value.

The implications of (4.11) can be seen by considering what happens if a voltage step is
introduced at t = 0. The immediate result of the voltage change will be that α and β switch
to new values. Equation (4.11) describes what happens thereafter. If, for example, at t = 0 all
channels were closed, then from (4.11) we have (for t > 0)

No(t) =
α

α+ β
N(1− e−(α+β)t) (4.12)

Let No(∞) be the probable number of open channels after a sufficiently long time. (“Suffi-
ciently long time” means long enough for the negative exponential term in (4.12) to go to zero,
compared to other terms.) Then consider again the situation following the change to the new rate
constants α and β.
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From (4.12), we see that No moves from a value of zero to a steady-state value of

No(∞) =
α

α+ β
N (4.13)

Thus, at steady state it is only the average number of open channels that is constant, as the
actual number of open channels will fluctuate around this average value. The average number
open depends on the α and β values that are present at the new transmembrane voltage, so after
a sufficiently long time any previous history is lost.

In the new steady state, the expected (average) value is of interest, but also of interest is the
fluctuation around it. One way of thinking about fluctuations is to note the following somewhat
surprising fact: while obtaining (4.11) we assumed a voltage-clamp transition to have occurred.

In fact, expression (4.11) also describes the response to spontaneous fluctuations in the
number of open channels. Consequently, the kinetic analysis of fluctuations reflects the same
time constants as arise in classical macroscopic analysis. This correspondence is formalized in
the fluctuation-dissipation theorem [2], which exhibits the broader and fundamental nature of this
correspondence.

4.6. CHANNEL STATISTICS

We assume that each channel in a population of similar channels switches between open
and closed states governed by the same rate constants α and β as govern the ensemble (as we
discussed in the previous section).

We let C identify a closed channel and O the open channel. Then

α
C ⇀↽ O

β
(4.14)

For example, if we have N = 100 channels and the probability of a channel being open is 50%,
then at any instant we have an expected (i.e., steady-state) value of Nc(∞) = No(∞) = 50.

The number 50 is, of course, not the exact value of Nc(t) or No(t) at any t, no matter how
large. The reason that 50 is not the exact value is because the actual values will fluctuate around
50, over time, because the underlying channel behavior is random and 50 is only the average.

From (4.13) we found thatNo(∞), the expected number of open channels under steady-state
conditions, equals [α/(α + β)]N . In view of (4.6), we deduce that Nc(∞) = [β/(α + β)]N .
Consequently, for this example, setting α = β = 1 describes both the ensemble as well as the
single channel.

Suppose the total number of channels is N and under steady-state conditions an average
number 〈No〉 are open and an average number 〈Nc〉 are closed. Under these circumstances the
probability, p, of a single channel being open is

p = 〈No〉/N (4.15)
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Conversely, the probability, q, of a channel being closed is given by the ratio

q = 〈Nc〉/N (4.16)

Since N = No(t) +Nc(t) = 〈No〉+ 〈Nc〉, then

p+ q = 1 (4.17)

The probability of exactlyNo channels being open can be found by evaluating the probability
of a specific qualifying distribution (i.e., pNoqN−No) multiplied by the number of different ways
in which that distribution can occur (i.e., which of the exactly No channels are open and the
remainder closed).

The latter number is given by N !/[No!(N −No)!], arrived at by recognizing that N ! is the
total number of rearrangements of N completely different channels. However, interchanging
open channels among themselves, No! or closed channels among themselves, (N − No)! are
indistinguishable rearrangements. Such indistinguishable rearrangements are divided out.

Thus, the probability of exactly No open channels out of N total channels [which we denote
by BN (No)] is

BN (No) =
N !

No!(N −No)!p
NoqN−No (4.18)

The distribution (4.18) is given the name Bernoulli.

With p and q defined as above and for an arbitrary well-behaved variable y, the following
relationship follows from the binomial theorem:

(yp+ q)N =
N∑

No=0

BN (No)yNo (4.19)

Equation (4.19) can be confirmed by writing out the series expansion for the left-hand side.
The first terms are

(yp)N +N(yp)N−1q +
N(N − 1)

2!
(yp)N−2q2 + · · · (4.20)

which, using (4.18), can be seen to correspond correctly.

By taking the derivatives of both sides of (4.19) with respect to y one obtains

Np(yp+ q)N−1 =
N∑

No=0

NoBN (No)yNo−1

and for y = 1 (4.20) gives

Np =
N∑

No=0

NoBN (No) (4.21)
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Since BN (No) is the probability of No, its product with No summed over all values of No
corresponds to the definition of the average value of No (i.e., 〈No〉). Consequently

pN = 〈No〉 (4.22)

Here pN, the probability of a channel being open times the number of channels, is also recognized
as the expected (average) number of open channels, hence confirming (4.22).

If the second derivative of (4.19) is taken with respect to y, and y set equal to unity, then one
gets

N(N − 1)p2 =
N∑

No=0

No(No − 1)BN (No)

=
N∑

No=0

N2
oBN (No)−

N∑
No=0

NoBN (No) (4.23)

The first term on the right-hand side is the second moment of the distribution of No, designated
〈N2

o 〉.

Using (4.22) permits (4.23) to be written as

〈No〉2 −Np2 = 〈No〉2 − 〈No〉 (4.24)

Rearranging terms yields
Np(1− p) = 〈N2

o 〉 − 〈No〉2 (4.25)

The right-hand side of (4.25) is the variance of No, or σ2. So we have

σ2 = Np(1− p) (4.26)

The importance of the variance is that it is a measure of the deviation around the average. In
the case of channels, it is important to know not only the average number of channels open (or
closed) but also much deviation from the average can occur, and how often. This information is
provided by the variance and by its square root, the standard deviation. Both are widely used, as
the variance tends to be most convenient in mathematical expressions, but the standard deviation
is more convenient when comparing numerical values, especially if by hand.

We note that the variance inNo equals N times the probability of a channel being open times
the probability of the channel being closed. This important expression relates the macroscopic
quantity σ2 to the single-channel, microscopic parameter p.

As an illustration, if the aforementioned channels were all potassium channels then the
individual open-channel current is

ik = γK(Vm − EK) (4.27)

as explained in (4.1).
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For N channels with p being the probability of a channel being open, the macroscopic current
IK is given by

IK = NpγK(Vm − EK) (4.28)

Looking at the coefficient, one sees that the macroscopic membrane conductanceGK is given by

GK = NpγK (4.29)

The connection between macroscopic conductance and that of individual channel conductances
is made explicit in (4.29).

4.7. THE HODGKIN–HUXLEY MEMBRANE MODEL

Hodgkin and Huxley showed that the total membrane current could be found as the sum of the
currents of individual ions. Their mathematical model is presented in Chapter 5. In that chapter
we shall review the extensive measurements made on the squid giant axon and the mathematical
model developed to simulate that behavior. That work was published in the early 1950s and much
has been learned about the underlying single-channel properties since then.

In this section we seek an application of single-channel behavior that leads to the macroscopic
behavior that will later be included in the overall Hodgkin–Huxley model. However, the transition
from microscopic to macroscopic is still not fully completed, so that at this time one must be
guided by the expected macroscopic result.

For the potassium channel, Hodgkin and Huxley assumed that it would be open only if four
independent subunits of the channels (which they called “particles”) had moved from a closed to
an open position. Letting n be the probability that such a particle is in the “open” position, then

pK = n4 (4.30)

is the probability pK of the potassium channel being open. [As a matter of notation, observe that
n in (4.30) is the probability of a potassium particle being in the open state and thus is not the
number of channels N , as used earlier in this chapter.]

The movement of the particle from closed to open was assumed to be described by a first-
order process with rate constant αn, while the rate constant for going from open to closed is βn.
Consequently,

dn

dt
= αn(1− n)− βnn (4.31)

where, of course, (1− n) is the probability that the particle is in a closed position.3

Let us first follow the temporal behavior of a single-channel subunit (particle). We assume
it to be closed and investigate the possibility that it will open. To do this we now consider an
ensemble of a large number of such closed subunits, all of which are assumed independent.
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Then at the moment at which a constant voltage is applied, when α assumes a constant value
arising from that voltage, we have for the ensemble

dO

dt
= αCN (4.32)

where O is the number of particles that switch to the open position, and CN is the total number
of subunits, all initially closed, in the ensemble.

Dividing through (4.32) by CN gives

ΔO
CN

= αΔt (4.33)

But ΔO/CN is the probability that any closed subunit will open in the Δt interval. We can
generalize this so that if a subunit is closed at t = t1, then the probability that it will open by
t = t1 + Δt equals αΔt. Conversely, when the subunit is in the open position, the probability
that it will close in the interval Δt is βΔt.

The potassium channel as a whole has several subunits. Specifically, four “n” subunits must
be in the open position for the channel to be open. The probability of an open potassium channel
is thus given by p = n4.

The maximum conductance of N potassium channels occurs when they are all open and is

ḡK = NγK (4.34)

where N is the number of potassium channels per unit area of membrane, so that ḡK is a specific
conductance.

For large N, where expected values can be assumed,

gK = ḡKn
4 = NγKn

4 (4.35)

If at t = 0 a steady voltage (i.e., “voltage clamp”) is applied for which the related αK and
βK are constant, then we can solve (4.31) to give

n(t) = n∞ − (n∞ − no)e−t/τn (4.36)

where
τn = 1/(αK+βK) and n∞ = αK/(αK+βK) (4.37)

Equations (4.36) and (4.37) describe the temporal behavior of the probability function describing
the probability of a subunit being in the open position. It also gives the fraction of all subunits
that are expected to be in the open position. But n is a random variable and while 〈n〉 gives its
expected (average) value, its actual value will be different. Hodgkin and Huxley will be seen
to treat a very large ensemble associated with their macroscopic measurements, in which case
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n can be appropriately considered to be a real variable. However, whatever is learned from the
macroscopic model can, by a reinterpretation of the meaning of n, be applied to a single channel.

Thus the potassium current through the open channels becomes

IK = gK(Vm − EK) (4.38)

These comments may be readily extended to sodium, calcium, and other channels. For
sodium current, the fundamental change is that the sodium channel is seen as controlled by three
particles of typem and one of type h. Thus the probability that a sodium channel is open becomes

pNa = m3h (4.39)

With pNa so defined, the conductivity for sodium ions has an analogous form to (4.35),
namely,

gNa = ḡNam
3h = NγNam

3h (4.40)

and the equation for the current from sodium ions is likewise analogous

INa = gNa(Vm − ENa) (4.41)

The above equations arise naturally from the understanding of channels as structures within
the membrane. Historically, however, these equations originated from observations of current
flow across larger segments of tissue, as presented in Chapter 5. It is to the credit of both the earlier
and the more recent investigators that there is such a remarkable compatibility of understanding
as seen now from both smaller and larger size scales.

4.8. NOTES

1. A mutant of Drosophila characterized by shaking; a consequence of the mutation is abnormal inactivation.

2. Data in Table 4.1 come from Hille B. 1992. Ionic channels of excitable membranes, 2nd ed. Sunderland, MA: Sinauer
Associates, and were based on data from published measurements.

3. Note that n is a continuous variable and hence “threshold” is not seen in a single channel. Threshold is a feature of
the macroscopic membrane with, say, potassium, sodium, and other channels, and describes the condition where the
collective behavior allows a regenerative process to be initiated that constitutes the upstroke of an action potential.
This topic will be developed in Chapter 5.
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5
ACTION POTENTIALS

Biological membranes contain a large number of several types of ion channels; these interact
through their common transmembrane potential and capacitance. A remarkable result is that
such electrically active tissue, by means of a regenerative process, can generate a transient pulse
of electrical changes, an action potential, across the cell membrane. The action potential cycle
consists of a rapid membrane depolarization (i.e., an increase in transmembrane potential) fol-
lowed by a slower recovery to resting conditions. Once an action potential is initiated at one
site on an extensive membrane, it initiates action potentials at adjacent sites, thus leading to a
sequence of action potentials throughout the remaining membrane.

A simple cellular electrophysiological model is that shown in Figure 5.1. Here the cell
membrane separates the extracellular and intracellular spaces. Both regions may be idealized as
passive and uniformly conducting (though with different conductivities). If an adequate stimulat-
ing current is passed between a pair of electrodes across the membrane of the cell, a remarkable
series of events ensues, which may be observed by recording the transmembrane voltage across
the membrane as a function of time.

Specifically, concurrent with the stimulus current, Vm shows a small direct response. After
a short latency a much larger and more energetic second deflection occurs, an action potential.
The action potential is a consequence of the stimulus, but it is generated by the charged energy
stored in the concentration differences that exist across the excitable membrane. The action
potential is generated by the membrane’s utilizing this stored energy to allow first the flow of
sodium ions (to move the voltage up) and then the flow of potassium ions (to move the voltage
down). When one examines this phenomenon in detail, it is seen to consisted of a series of
remarkably complex events. This chapter is devoted to a quantitative examination of these
observations.

Action potentials are nonlinear. If the stimulus current of Figure 5.1 is reduced by half, then
no action potential occurs. Conversely, if the stimulus current is doubled, the action potential
deflection remains largely unchanged, but the latency is markedly reduced.

97
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Figure 5.1. Electrical Stimulation of an Excitable Cell. The stimulus elicits an action
potential. The top drawing shows a cartoon of a cell with a stimulator S and a voltmeter
V attached. The stimulator injects current into the intracellular volume (positive electrode)
and removes current from the surrounding extracellular volume. The voltmeter measures
transmembrane voltage as a function of time. It is assumed that regions within and around
the cell are equipotential, so that a uniform voltage difference exists across all points on the
cell membrane. The upper trace shows a stimulus current, IS , which delivers a short current
pulse of 0.3-msec duration, beginning at t = 0. The lower trace shows the voltage record,
Vm(t). The deflections on the voltage trace are first the direct response to the stimulus,
identified with s, and, 4 msec later, a much larger deflection, the action potential (marked
AP). The vertical calibration corresponds to 20 μA/cm2 on the current plot and 20 mV on
the voltage plot.

This chapter considers action potentials from several perspectives, while remaining centered
on the Hodgkin–Huxley model for membrane current action potentials. One might think of this
chapter as having three major divisions. In the first, which includes Sections 5.1 and 5.2, we
summarize experimental findings and show how these findings were placed in a quantitative,
equation-based framework. In the second division of the chapter (Sections 5.3 and 5.4), we
describe the elements of the Hodgkin–Huxley mathematical model, both in terms of equations
and in terms of the sequence of steps required to perform HH calculations numerically. The last
major division of this chapter (Section 5.5 and thereafter) gives some of the major extensions to
the Hodgkin–Huxley framework. Each of these major divisions of this chapter can be understood
largely independently of the other, but of course they are tightly linked, in terms of history and
concept. The chapter’s sections are:1
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The first section describes critical experimental observations of action potentials, includ-
ing those establishing the different ionic compositions present inside and outside an active
membrane.

The second describes the voltage-clamp experimental setup. (The voltage-clamp proce-
dure now has evolved into a conceptual framework as well as experimental platform.) This
framework is used to tease out the flow of potassium and sodium ions, selectively as well
as overlapping in time. Such flow creates action potential; voltage-clamp experimental
data give these events quantitative form.

The third section develops the mathematical description of membrane ionic conductances.
This mathematical description quantifies the selective flow of ions across excitable mem-
brane. The resulting equations are critical links between experimental observations and
the general Hodgkin–Huxley mathematical model of transmembrane potentials and cur-
rents. One subsection points out some issues of notation for transmembrane potentials
and units for transmembrane conductance and current. This notation is used in this section
and all later ones.

The fourth section integrates the ionic current equations into an overall mathematical
model for membrane currents and potentials. It also addresses, from a more modern
perspective, the sequence of steps that are the basis for simulations of membrane ac-
tion potentials, and that serve as a foundation for many other computer simulations of
electrically active tissue.

In the fifth section, several topics are presented that are important extensions of the
Hodgkin–Huxley theoretical base, including changes with temperature, calcium ion cur-
rent, and another framework for including ionic pumps needed to recharge the membranes
ionic balance.

This chapter’s appendix provides a full derivation of the GHK equation, and shows some
consequences in terms of ionic flow and resting potentials.

5.1. EXPERIMENTAL ACTION POTENTIALS

The behavior of a propagating action potential on a single fiber is well illustrated utilizing
the giant fibers of the nerve cord of the earthworm. As illustrated in Figure 5.2, individual fibers
can he teased out and a single fiber identified at its proximal and distal end.

The fiber can be studied by placing a pair of stimulating electrodes at one end and a pair of
recording electrodes at the other. The stimulating electrodes are designated as such since they
are connected to a source capable of supplying a current pulse. The recording electrodes, on the
other hand, connect to an amplifier and display device (oscilloscope or computer).

The fibers in this preparation consist of one median and two (smaller and equal) lateral fibers,
each of which can be thought of as uniform and continuous. (Actually, each fiber consists of
multicellular coupled units, but functionally each behaves as if it were cylindrical and bounded
by a continuous excitable membrane.)
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Figure 5.2. Arrangement for Recording Action Potentials from the giant fibers in the
nerve cord of the earthworm. From Aidley DJ. 1978. The physiology of excitable cells.
Cambridge: Cambridge UP. Reprinted with the permission of Cambridge University Press.

5.1.1. Noteworthy AP Attributes

Action potentials have a number of noteworthy characteristics. These unusual characteristics
include thresholding, differential response by diameter, and latency, as described in the following
sections.

Threshold response

If the amplitude of the stimulus pulse is relatively small, then, as seen in Figure 5.3a, no
response is detected in the recording circuit. (The response that coincides with the stimulus, known
as the stimulus artifact, arises due to direct coupling between signal generator and recorder.) As
the stimulus strength is increased, a point is reached (Figure 5.3b) at which a response (a nerve
action potential) is suddenly seen. This sudden onset illustrates the phenomenon of threshold
and reflects a discontinuity in response at a specific stimulus amplitude.2

As the stimulus is further increased in strength, the response seen in Figure 5.3b remains
unchanged. For this reason the action potential is described as all or none, i.e., the action potential
waveform remains unchanged at the higher level of transthreshold stimulus amplitude.
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Figure 5.3. Oscilloscope Records from the Experiment Shown in Figure 5.2. In each
case the upper trace is a record of the potential changes at the recording electrode and the
lower trace (at a much lower amplification) monitors the stimulus pulse. From Aidley DJ.
1978. The physiology of excitable cells. Cambridge: Cambridge UP. Reprinted with the
permission of Cambridge University Press.

Fiber diameter

When the stimulus reaches a sufficiently higher level, the threshold for a second action
potential is achieved (shown in Figure 5.3c).

This second action potential can be explained as follows. The median fiber diameter is larger
than the two lateral fibers. Threshold due to an external stimulating source is lower in a large
fiber, roughly inversely proportional to the square root of the fiber diameter. Thereby, excitation
of the median fiber occurs first, with a lower stimulus magnitude. When the stimulus magnitude
increases, it will eventually be large enough to activate both median and lateral fibers. Thus there
will be two action potentials.
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Figure 5.4. Diagram to Show the Nomenclature Applied to an Action Potential and the
afterpotentials that may follow it.

Latency

Why is there a time difference between the first and second action potentials, as observed?
The answer is that the velocity of propagation within each fiber is proportional to the square
root of its diameter. Thereby, velocity for the median fiber exceeds that of the lateral fiber. This
difference in velocity accounts for the differential latency seen in Figure 5.3c.

The latency until the appearance of an action potential for either fiber as a function of separa-
tion between stimulating and recording electrodes, if examined, would show a linear dependency,
confirming the assertion of uniformity of propagation. For the median fiber a velocity of around
12 m/sec is found. Note that the wave shapes of the action potentials in Figures 5.3b and 5.3c are
similar in spite of the different stimulus levels—characteristic of the all-or-none behavior.

5.1.2. Extracellular Potential Nomenclature

The action potentials recorded in Figure 5.3 typify those obtained with extracellular elec-
trodes. It is possible, however, to place a microelectrode inside an axon and measure the intra-
cellular versus extracellular (i.e., transmembrane) action potential. Such a measurement more
nearly reflects the intrinsic membrane properties and is less dependent on the geometry of the
recording electrodes and axon (as will be discussed in detail in a later chapter).

A transmembrane action potential is shown in Figure 5.4 that is typical of those observed on
nerve and muscle (though with differences in some details). In all cases the membrane at rest is
negative by 60 to 100 mV. The activation process causes a sudden and rapid upstroke, ending in
a reversal in this potential to peak values up to +40 mV.

Following activation, a recovery phase restores the resting condition. The potential may,
however, return to a more hyperpolarized or depolarized level than the resting value for a period
of time. These afterpotentials, as illustrated in Figure 5.4, may or may not be observed; if present,
usually only one or the other is seen. (If a depolarized or hyperpolarized condition arises, then
reference is made to a depolarizing or hyperpolarizing afterpotential).
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Figure 5.4 depicts the transmembrane potential as a function of time. An action potential
propagating on a uniform fiber will also have an action potential as a function of distance along
the fiber. Such a spatial action potential has a similar shape to the temporal one, except that it
may be a mirror image and have a different horizontal scale.3

5.1.3. Nonlinear Membrane Behavior

As shown in Figure 5.3, for excitable membranes no response is elicited unless the stimulus
reaches a specific level, called the threshold. For all transthreshold stimuli to a single cell, the
resulting action potential is identical (all or nothing) as already noted. The threshold level may
vary from membrane to membrane or as a function of the stimulus location or duration.

For a stimulating current to activate the membrane, it must be of large enough intensity and
have the correct polarity. A given stimulating pulse must also have an adequate duration. The
dependence on these parameters will be described later in this chapter.

Membrane response to an increasing stimulus

The transmembrane potential responses from a stimulating current pulse on a crab axon is
shown in Figure 5.5, where the zero or reference potential is that at rest. The stimulating pulse
duration is shown and is held fixed while the stimulus amplitude and sign is varied.

A stimulus that causes the transmembrane potential (intracellular minus extracellular po-
tential) to be more negative than its value at rest is said to hyperpolarize the membrane. With
hyperpolarization, there is no excitation no matter what size stimulus, though an increasing pas-
sive (RC) response arises from an increasing stimulus strength, as described in Figure 5.5. On
the other hand, for depolarizing stimuli, and for increasing amplitudes, response C in Figure 5.5
is (suddenly) reached. This response shows the lower portion of an elicited action potential (this
is the threshold condition).

If one examines the responses to the subthreshold pulses, it is seen that they are essentially
those expected from a (passive) RC network. In fact, the responses in Figure 5.5 can be simulated
from fixed, lumped, RC elements. For the hyperpolarizing condition this correspondence is
exactly correct, but for depolarizing stimulation a deviation from strictly passive behavior begins
to arise beyond 50–80% of threshold.

Note the presence (or absence) of a mirror image in Figure 5.5 (as in parts a and b). For
depolarization to potentials lying between 50 and 100% of threshold, the response is not a mirror
image of the hyperpolarizing response for stimuli of the same magnitude and duration. Under
these conditions the depolarization response is not fully passive.

A lack of symmetry is present when a nonlinear active component of the membrane is
contributing. Such a response is known as a local response and reflects a regenerative phenomena
that will arise, though much more strongly, at threshold. The subthreshold passive behavior is
called electrotonic.
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Figure 5.5. Subthreshold Responses Recorded Extracellularly from a crab axon in the vicin-
ity of the stimulating electrodes. The axon was placed in paraffin oil, and, consequently the
measured extracellular potential is directly related to the transmembrane potential (accord-
ing to the linear core-conductor model described in Chapter 6). The heavy bar indicates the
stimulus period, which was approximately 50μsec in duration. The ordinate is a voltage
scale on which the height of the action potential is taken as one unit. From Hodgkin AL.
1938. The subthreshold potentials in a crustacean nerve fiber. Proc R Soc London, Ser B
126:87–121.

Linear and nonlinear responses to stimulus

Figure 5.6 is derived from Figure 5.5; here the voltage measured at 0.29 msec following the
stimulus is plotted. The voltage is expressed as a fraction of the peak action potential amplitude
and is shown as a function of stimulus amplitude.

One notes that the relationship between the stimulus and the resulting transmembrane volt-
age is linear for all hyperpolarizing stimuli. This observation supports a linear passive model.
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Figure 5.6. Relation between Stimulus and Response in a Crab Axon. This Figure was
derived from Figure 5.5. The abscissa shows the stimulus intensity, measured as a fraction
of the threshold stimulus. The ordinate shows the recorded potential 0.29 msec after the
stimulus, measured as a fraction of the action-potential peak. Reprinted with permission
from Hodgkin AL. 1938. The subthreshold potentials in a crustacean nerve fiber. Proc R
Soc London, Ser B 126:87–121.

Linearity is also seen for small depolarizing signals, suggesting that in this region the membrane
can also be characterized by a passive network.

For depolarizing stimuli of greater magnitude the behavior becomes nonlinear, and an active
system description is required.

Nonlinear membrane measurements

Another way of confirming the nonlinear behavior of the membrane is the following. The
behavior of an excitable membrane can be explored by placing a small membrane element at one
arm of a Wheatstone bridge. The Wheatstone bridge is a well-known device for making precision
measurements of resistance and capacitance of a sample. It works by comparing the unknown
sample to a reference sample, where the characteristics of the reference are known precisely. By
choosing a high frequency (≈ 1000 kHz) and a low-amplitude signal (compared to threshold),
the measurement process will not cause active responses of the membrane.

The procedure is to first balance the bridge with the membrane at rest. Balancing the bridge
means finding reference elements that have the same characteristics as the membrane. This step
identifies the resting values of resistance, Rm, and capacitance, Cm, for the membrane. These
resting values can be used when expecting linear behavior.



106 CH. 5: ACTION POTENTIALS

Then the bridge values of Rm and Cm are systematically perturbed from these values. If
during an ensuing action potential the bridge comes momentarily into balance, then the RC value
of the membrane for that instant is the RC setting of the bridge.

The procedure is indirect, and judicial guesses must be made. Within these limits it is
possible to accumulate enough data points to describe the variation of the membrane resistance
and capacitance throughout an action potential by direct measurement of the membrane’s R and
C. For the squid axon, Cm � 1 μF/cm2 and does not vary significantly throughout the action
potential. The membrane resistance on the other hand, is around Rm = 1000 Ωcm2 at rest and
falls to around 25 Ωcm2 at the peak of the action potential [5].

5.1.4. Resting and Peak AP Voltages

In the classical studies by Hodgkin and Huxley, some measurements were related to what
is now described as the Goldman–Hodgkin–Katz (GHK) equation for transmembrane potential,
which is derived in a later section of the chapter.

The GHK equation is obtained by integrating the Nernst–Planck equation across the mem-
brane, assuming the latter to be a uniform slab of infinite lateral extent where the potential varies
linearly across it (i.e., a constant electric field). It assumes, in addition, that the electric po-
tential discontinuity across the interface between the membrane and both the intracellular and
extracellular space is described by (the same) partition coefficient.

Description of the GHK equation

The result when the total ionic current is zero (i.e., at rest) is

Vrest = Vm =
RT

F
In
[
PK[K]e + PNa[Na]e + PCl[Cl]i
PK[K]i + PNa[Na]i + PCl[Cl]e

]
(5.1)

where

Pq = Dqβq/d (5.2)

In (5.2), the following symbols are used:

q is an index for any of the three ions; β is the partition coefficient for the qth ion
(βq = [Q]+/[Q]−).

The minus superscript designates the ion concentration in the bulk (extracellular) medium
just adjacent to the membrane, and the plus superscript the intracellular concentration at
the membrane surface.

The membrane thickness is d.

D is Fick’s coefficient, assumed constant.

The Pq’s are permeability coefficients and are seen to play a similar role in determining
the resting voltage that is played by the conductances in the parallel-conductance model
described in (3.31).
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While (5.1) is derived from biophysical principles, in contrast to the parallel-conductance
derivation, the permeabilities have in fact been found only from experimental measurements.

The GHK equations for currents are

J = JK + JNa + JCl (5.3)

Substituting the expressions for each specific ion enables the summation (5.3) to become

J =
VmF

2PK

RT

w − yeVmF/RT
1− eVmF/RT (5.4)

where

w = [K]e +
PNa

PK
[Na]e +

PCl

PK
[Cl]i (5.5)

and

y = [K]i +
PNa

PK
[Na]i +

PCl

PK
[Cl]e (5.6)

The derivations of these GHK equations for the resting potential and membrane current are
given in the appendix to this chapter (Section 5.6).

GHK versus parallel conductance

In the derivation of the parallel-conductance (3.31) and constant-field (GHK) (5.1) expres-
sions for the resting potential, the key constraining condition is that the total ionic transmem-
brane current is zero. The GHK and the parallel-conductance equations both evaluate the resting
transmembrane potential as a weighted average of the sodium, potassium, and chloride Nernst
potentials.

Recall that a space-clamped preparation is one that has been instrumented so that all mem-
brane elements are subject to the same transmembrane potential, all the time. If we study the
action potential in a space-clamped preparation, consider the total transmembrane current after
the transthreshold stimulus current is over. Thereafter total membrane current (ionic plus capac-
itive) must necessarily equal zero, because there is no place for current to go, other than across
the membrane, or to charge the membrane capacitance.

At rest and at the peak of the space-clamped action potential the total membrane current is
zero (because of the space clamp), and additionally ∂Vm/∂t = 0 (i.e., the capacitive current is
zero), because Vm is unchanging at rest and at the peak, by definition. Consequently, the total
ionic transmembrane current also must be zero, because the total current is the sum of its ionic
and capacitative components.

Thereby, the parallel-conductance and GHK expressions both apply at rest and at peak. (At
the action-potential peak, the conductivities and permeabilities are, however, different from what
they are at rest.)

Rest and peak

For a membrane at rest, and assuming that only the potassium channels are carrying current,
one notes that both the parallel-conductance and GHK expressions reduce to the (same) potassium
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Table 5.1. Mobile Ion Concentrations for Aplysia

Ion Intracellular Extracellular Nernst Potential
(mM) (mM) (mV)

K 280 10 −83.9
Na 61 485 52.2
Cl 51 485 −56.7

Nernst potential. Similarly, if one assumes that at the action-potential peak only sodium need be
considered, then both aforementioned expressions reduce to the sodium Nernst potential.

The peak of the action potential may be seen to approach the sodium Nernst potential but
never exceed it. This result is consistent with an elevated sodium permeability. In Hodgkin and
Katz [9] a good agreement between theory and experiment for the squid axon was demonstrated
by choosing

PK : PNa : PCl = 1.0 : 0.04 : 0.45 for membrane at rest
PK : PNa : PCl = 1.0 : 20.0 : 0.45 at an action potential peak

Note that there is an enormous change—almost three orders of magnitude—in sodium perme-
ability between these two sets of data.

We have noted that the contribution of chloride to membrane behavior is minimal and can be
essentially ignored. Doing so is reasonable because chloride is close to equilibrium at rest (see
the section on “Contributions from Chloride” in Chapter 3), while during the action-potential
peak the chloride permeability is relatively too small to contribute significantly. As a result, to a
first approximation,

At rest : Vm � EK =
RT

F
In
(

[K]o
[K]i

)
(5.7)

At the peak : Vm � ENa =
RT

F
In
(

[Na]o
[Na]i

)
(5.8)

Nastuk and Hodgkin [15] measured a linear variation of the peak value of Vm against the
logarithm of extracellular sodium concentration, when 20 mM < [Na+]o < 200 mM. Their
findings support the validity of (5.8) for this range of extracellular sodium.

The intracellular and extracellular ion composition of the Aplysia (sea hare mollusk) giant
nerve cell is given in Table 5.1, and the corresponding Nernst potentials are shown for each. Given
the relative resting permeabilities to be PK : PNa : PCI = 1.0 : 0.12 : 1.44, the application
of the GHK equation, (5.1), leads to a resting transmembrane potential of Vm = −48.8 mV.
Comparison of this value with the Nernst potentials in Table 5.1 shows that no ion is equilibrated,
though chloride is somewhat close to this condition.

For sodium, the resting potential is 107 mV from equilibrium, so that a large driving force
exists. It results in a sodium influx that is small only because the sodium permeability is small. The
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resting potential is not negative enough to equilibrate the outward potassium diffusion. Therefore
a potassium efflux results, the driving force being equal to (83.9 – 48.8 = 35.1 mV). In the steady
state the potassium efflux and sodium influx are essentially equal and opposite.

The conclusion reached here regarding the behavior of the Aplysia neuron at rest would apply
equally well to other nerve and muscle cells. A question arises as to how the normal intracellular
and extracellular compositions are maintained in view of the flux movements both at rest and
during action potentials. This question will be addressed subsequently when active transport is
considered.

5.1.5. Movements of Ionic Tracers

Membrane ion movement at rest and following an action potential was investigated by Keynes
[13]. He measured potassium and sodium ion flux through the use of radioactive tracers. Use
of tracers permits a measurement of ion movement directly, i.e., a direct measurement of the
particles carrying the current, rather than an indirect inference from changes in transmembrane
voltage. Additionally, use of tracers allows a separate determination of influx and efflux, even if
these are occurring simultaneously.

Using the cuttlefish Sepia giant axon, it was found that, at rest, there was a steady influx of
sodium and efflux of potassium, entirely consistent with EK < Vm < ENa, which is seen when
evaluating Vm from the GHK or parallel-conductance equation.

During an action potential the transmembrane potential’s initial reversal in polarity requires
an influx of positive charge (since Q = CVm, a change in sign of Vm requires a similar sign
change inQ). This charge is seen in the influx of 3.7 pmoles/cm2 of sodium per action potential. A
subsequent efflux of 4.3 pmoles/cm2 of potassium per action potential accounts for the restoration
of charge and transmembrane potential.

These values can be compared to the charge movement necessary to raise the transmembrane
potential from rest to a peak value, something on the order of 125 mV. With this value and
a membrane capacitance of 1.0μF/cm2, one obtains Q = CmV = 1.0 × 10−6 × 0.125 =
1.25× 10−7 Coulombs/cm2.

Because the ions are monovalent, the number of moles that corresponds to the aforementioned
charge (in Coulombs) is found by dividing by the Faraday to give 1.25 × 10−7/96500 = 1.3
pmoles/cm2. This corresponds in order of magnitude with the tracer values.

The use of tracers is not sensitive enough to follow ion movement as a function of time
during an action potential. In fact, the aforementioned tracer data on ion movement during an
action potential is based on averaged data taken over multiple action potentials. On the other hand,
direct measurement of the macroscopic transmembrane current, while providing an instantaneous
picture, has the complication that this current includes the capacitive component along with several
ionic currents.

These facts, and the limitations following from them, were addressed by the development of
voltage-clamp experiments.
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5.2. VOLTAGE CLAMP

The voltage and space clamp were techniques introduced by Hodgkin and Huxley and were
crucial to the task of separating the capacitive, sodium, and potassium components of membrane
current in their measurements on the squid axon. Because of the importance of such clamps, the
present section addresses their methodology in some detail.

The voltage clamp is a feedback arrangement where the transmembrane potential is held
constant electronically during an action potential or subthreshold response. It was conceived as
a way to eliminate the complication of the displacement current since, if dVm/dt = 0, then,
obviously, CmdVm/dt = 0 (i.e., the capacitive current is zero). Arranging matters so that the
entire membrane under study is activated synchronously further simplifies an analysis of these
measurements. This simplification comes about since the confounding effect of spatial (axial)
variations of currents and potentials is eliminated.

However, even with a space and voltage clamp the separation of the ionic flux into its sodium
and potassium components required an imaginative application of the Nernst–Planck equation
(by Hodgkin and Huxley) in a way that will be described presently.

5.2.1. Single-Channel Studies

To the aforementioned classical measurements of the macroscopic membrane undergoing an
action potential can be added the results from patch-clamp measurements. It has been pointed out
that these are intrinsically “space-clamped” since the spatial extent is negligible. Voltage-clamp
measurements eliminate the capacitive component in the same way as described above.

Additionally, assuming that only a single channel is accessed, separation of the several ion
components is automatically realized. By repetitive protocol applications and summation of
results, the macroscopic behavior is determined, a result that assumes the membrane process
to be ergodic (i.e., that successive responses mimic what would have been found from spatial
summation).

5.2.2. Voltage Clamp Design

The voltage clamp was carefully designed with particular goals in mind, made possible by a
carefully constructed experimental apparatus. Though the apparatus limited the types of cells that
could be evaluated, it was highly successful in providing the data needed. These data allowed the
investigators to separate the action potential, a composite event, into component currents, which
provided a mechanistic basis for understanding what was actually happening during the action
potential’s time course.

Goal: separation into individual ion components

An action potential is a composite effect of many kinds of currents, including currents in-
volved with charging the membrane capacitance, nonlinear currents associated with sodium and
potassium ions, and other currents. Each of the different kinds of current change the transmem-
brane voltage, so measurement of changes in the voltage are insufficient to allow one to know
which components produced any changes. On the other hand, one wishes to know the effects of
the components separately, so as to understand the mechanisms by which the action potential was
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generated. Figuring out how to determine the individual components was the challenge faced by
Hodgkin, Huxley, and other investigators of their time.

The components of the transmembrane current during an action potential (or subthreshold
transient) includes the ionic flux plus a capacitive (charging) current. Since the capacitance is
fixed during an action potential, its current, IC , is given by

IC = d(CmVm)/dt = CmdVm/dt (5.9)

Consequently, in a circuit arranged to apply a voltage step (i.e., a constant transmembrane po-
tential, hence dVm/dt = 0) across the entire membrane (in a space-clamped configuration), the
capacitive current component will be absent after the voltage step. The removal of capacitive
current simplifies analysis of the remaining current components, because they must then consist
entirely of ionic components.

Hodgkin and Huxley (HH) reasoned successfully, based on experiments described earlier,
that the chloride contribution to the total current did not need to be included explicitly. (It was
taken into account as a component of a small additional “leakage” current, to be described in a
following section.)

The major task that remained was to separate the ionic flux into its sodium and potassium
components. This separation turns out also to be facilitated by the measurements of current under
constant transmembrane potential conditions. To this end, the voltage-clamp and space-clamp
device illustrated in Figure 5.7 was developed. This experimental capability was accomplished
independently by Cole and Marmont [6], but particular credit is given to Hodgkin, Huxley, and
Katz [10]. In the voltage clamp as designed by Hodgkin and Huxley, a simple proportional
controller is used to keep the membrane potential at a preset value.

Clamp electrodes

Controlling the membrane potential is accomplished by controlling the current flow between
axial electrode A (inserted into the nerve axoplasm as described in Figure 5.7) and electrode E.
Electrode E is a concentric cylindrical electrode in the extracellular fluid. (The axial uniformity
of the device results in the elimination of any axial potential changes, hence achieving a space-
clamped condition.)

This control system allows the transmembrane potential, as developed between electrodes B
and C, to be locked to a preset value. In Figure 5.7 it can be seen how the error signal V − V0 is
developed and applied to the current generator. The resultant change in applied current reduces
V −V0 toward zero. The radial (transmembrane) current is determined from electrodes C and D,
where the known conductivity of the medium is used to convert the measured voltage differences
into membrane current.

Electrodes A and B are actually interleaved insulated wire helices wound on a 70-μm glass
capillary that are exposed over an axial extent, as shown. In view of its overall size (diameter
of 120 μm), the electrode was limited to nerve fibers, such as the giant axon of the squid, with
diameters in excess of 300 μm. (The squid giant axon is a nerve fiber whose large size has
made it useful in many electrophysiological studies.) In this situation large fibers are required
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Figure 5.7. Schematic Diagram showing the voltage and space-clamp apparatus as devel-
oped by Hodgkin, Huxley, and Katz [10]. Current electrodes are (A) and (E); potential
sensing electrodes are (B) and(C). Transmembrane current is determined from the potential
between (C) and (D) and the total resistance between these electrodes. (Since the mem-
brane current is uniform and in the radial direction only, the resistance can be calculated
if the electrode end-effects are neglected.) Transmembrane voltage V is compared with
the desired clamp V0, and the difference causes a proportional transmembrane current of
proper sign so that (V − V0) becomes 0.

to accommodate this axial electrode. Electrodes C and D are silver wires, while electrode E
is a silver cylinder. Exposed portions of the electrodes were coated electrolytically with chlo-
ride.

Electrodes B, C, and D are placed within insulating baffles, isolating compartments, and
hence confining flow to within an axial region; this eliminates end effects and achieves the
desired axial uniformity. Axial uniformity is important since, otherwise, an impulse at one point
on an axon is propagated to the remaining resting fiber, resulting in axial variability. In this
experiment, one objective is to eliminate the complication of such spatial dependence. Spatial
variability is eliminated in the above arrangement by causing the axon to behave synchronously
over the spatial extent of the recording electrodes.

Eliminating axial spatial dependence is referred to as space clamping. Space clamping
results in all potentials and current densities being functions of the radial variable alone (i.e.,
one dimensional). In effect, all membrane patches (all ion channels) are subject to identical
transmembrane potentials.

Suitable cell preparations

The device for achieving a space clamp, described in Figure 5.7, is limited to long cylin-
drical cells of large diameter. Furthermore, the internal electrodes being of small cross-section
and hence high resistance, are not completely isopotential and axial uniformity cannot be fully
achieved. For small cells, the patch-clamp electrode in the whole-cell configuration also provides
a space-clamped condition, avoiding the aforementioned difficulties.



BIOELECTRICITY: A QUANTITATIVE APPROACH 113

Figure 5.8. Illustrative Example of the Ionic Current for a Squid Axon assuming the
application of a voltage clamp of Vm = 20 mV at t = 0 sec. The assumed parameters
are: resting potential of Vm = Vrest = −60 mV; sodium and potassium Nernst potentials
EK = −70 mV and ENa = 57 mV.

5.2.3. Voltage Clamp Currents

A typical record resulting from the application of a step change in membrane voltage is
shown in Figure 5.8. In the lower panel of the figure, one notes an early inward current followed
by a rise to an asymptotic outward current. An initial capacitive surge is completed in 20 μsec,
corresponding to the presence of a capacitor with C = 1.0μF/cm2. Because of the very short
time constant, this current drops to zero before the ionic current becomes significant, and hence
is normally ignored in studies of the latter.

Illustrative example

The initial flow of ionic current arising from a transthreshold voltage step is due to the sodium
ion influx. This behavior is illustrated in Figure 5.8 based on typical parameter values. Here we
have a voltage change of 80 mV (so that Vm = 20 mV).

As we have seen, the activation process is characterized by a rapid increase in sodium perme-
ability. The net driving force for sodium is the difference between the transmembrane potential
of 20 mV and the sodium Nernst potential of 57 mV, resulting in a driving force of 20–57 or
–37 mV. Since this is negative, it is inward; consequently, a resultant inward (sodium) current
is expected. This inward flow constitutes a bulge, because the elevated sodium permeability is
transitory.

In fact, as the sodium permeability falls the potassium permeability rises and remains elevated.
This elevated permeability accounts for the “steady-state” or “late” outward current. (Assuming
a potassium Nernst potential EK = −70 mV, the potassium driving force is 20 − [−70] or 90
mV and, since the driving force is positive, the current is outward.)
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Figure 5.9. Measured Ion Currents for the SquidAxon following the application of a voltage
clamp of the value indicated. The sodium Nernst potential is reached with a step change
of 117 mV (since the resting potential is−60 mV and ENa = 57 mV). From Hodgkin AL.
1958. Ionic movements and electrical activity in giant nerve fiber. Proc R Soc 148:1–37.
After Hodgkin AL, Huxley AF, Katz B. 1952. Measurement of current voltage relations in
the membrane of the giant axon of Loligo. J Physiol 116:424–448.

Voltage-clamp measurements

Valuable insight on the early membrane current can be achieved by clamping to a value of
Vm = ENa. For a short interval there is no current at all, even though in this early phase of the
action potential sodium permeability is tremendously elevated. The reason is that there is no net
force to cause a sodium current to flow.

In Figure 5.9 the measured transmembrane currents arising from a series of voltage clamps
of different magnitude relative to a resting potential of −60 mV is shown. The figure includes
a clamp at vm = 117 mV (or Vm = 57 mV), which corresponds to the sodium equilibrium
condition, and we note the early measured current to be zero. The abolition of an early current
when Vm is at the sodium Nernst potential confirms that it is the sodium ions that are responsible
for this phase of total current. When vm > 117 mV, the net driving force on sodium (Vm−ENa)
is outward. Note that for this condition the early current bulge is outward.

A series of successively larger, early (depolarizing) voltage clamps shows that beyond thresh-
old the magnitude of the peak inward current gets progressively smaller. Ultimately it goes
through zero. The reversal potential is the value of voltage clamp for which the early inward
current equals zero. From the above argument, the reversal potential equals the sodium Nernst
potential. This equality proves to be only a good approximation, as will now be explained.

The GHK equation4 applies in these circumstances, because the total ionic and capacitive
current is equal to zero. It provides a more accurate estimate of Erev (the reversal potential).
Thus, because ∂/∂t = 0, then ΣIi = 0. Assuming the chloride contribution to be negligible, we
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Figure 5.10. A Typical Current–Voltage Relation for Squid Axon. Curve I1 shows the peak
inward current versus clamped transmembrane voltage Vm after holding at rest. Curve I2
plots the steady-state outward current versus the clamped voltage Vm. The voltage clamp
value of Vm is plotted on the abscissa. Note that I1 = 0 at Vm = Vrev ≈ ENa.

have

Erev =
RT

F
In

⎛
⎜⎜⎝

[K]o +
PNa

PK
[Na]o

[K]i +
PNa

PK
[Na]i

⎞
⎟⎟⎠ (5.10)

where PNa and PK are, respectively, the sodium and potassium permeabilities at the time of peak
inward current.

This expression permits the introduction of the small but possibly not negligible contribution
of the potassium ion component.

Current–voltage curves

Current–voltage curves are another way of describing membrane operating conditions. Ex-
amples of such curves are given in Figure 5.10.

The basic data are derived from voltage-clamp experiments carried out over a range of
transmembrane potentials Vm where the peak inward current (I1 in Figure 5.10) and peak outward
current (I2 in Figure 5.10) are the independent variables. From the intersection of I1 versus Vm
with the horizontal axis (I1 = 0), the reversal potential is found.

From the definitions of gK and gNa in (3.26) and (3.27) we can verify that these conductances
are always positive. They may be identified graphically in Figure 5.10 as the slope of a line from
Vm on the curve to either EK or ENa on the Vm axis. The ordinate is then Ip and the abscissa
Vm − Ep, where p represents either Na or K.
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Figure 5.11. Analysis of the Ionic Current in a Loligo axon during a voltage clamp. Trace
A shows the response to a depolarization of 56 mV with the axon in seawater. Trace B is the
response with the axon in a solution comprising 10% seawater and 90% isotonic chloride
solution. Trace C is the difference between traces A and B. Normal ENa = 57 mV, and
in the reduced seawater ENa = −1 mV. From Hodgkin AL. 1958. Ionic movements and
electrical activity in giant nerve fibers. Proc R Soc 148:1–37. After Hodgkin AL, Huxley
AF, Katz B. 1952. Measurement of current voltage relations in the membrane of the giant
axon of Loligo. J Physiol 116:424–448.

This slope is described as a chord conductance. It is interesting that for−75 mV< Vm− 45
mV roughly, the sodium slope conductance (i.e., dINa/dVm) is negative in Figure 5.10.

5.2.4. Strategies for Na/K Ion Separation

The voltage-clamp experiment described in Figure 5.11 is for vm = 56 mV (or Vm =
−60 + 56 = −4 mV). The transmembrane current that results is shown in Figure 5.11A and, as
discussed, contains an early inward current due mainly to sodium.

The transmembrane current also contains a late, steady-state, outward current due mainly to
potassium. A separation of the sodium and potassium currents is necessary in order to model the
behavior of each ionic component alone. This separation was accomplished through the following
procedure.
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Second extracellular medium

A second extracellular medium was constructed by replacing 90% of the extracellular sodium
by the inert element choline (the introduction of choline was simply to maintain isotonicity).
Thereby, extracellular sodium concentration was reduced by a factor of 10. Initially, ENa = 57
mV.

The reduction of extracellular sodium by a factor of ten should lower the Nernst potential by
58 log10 10 = 58 mV, so that the new value of ENa = −1 mV. Accordingly, if the voltage-clamp
experiment is repeated (with the same vm = 56 mV) in the 10% sodium seawater, the sodium
should be essentially in equilibrium. In this case the transmembrane current contains potassium
only. This condition is shown in Figure 5.11B.

Independence principle

Hodgkin and Huxley made a key assumption that the sodium and potassium ion fluxes are
independent of each other (asserting the independence principle). In other words, they assumed
that potassium current and sodium current crossed the membrane independently, each in its own
pathways. This was a bold assumption, as it would not be true if most sodium channels also leaked
potassium or vice versa. If one assumes independence, the potassium component in Figure 5.11A
should be precisely that in Figure 5.11B, and subtraction of Figure 5.11B from Figure 5.11A then
results in the sodium current alone. This subtracted curve is shown as Figure 5.11C, and its
behavior corresponds very closely to what is expected of sodium.

Additional evidence for the independence principle comes from the behavior of the squid
axon following the addition of certain toxins to the extracellular medium. For example, it was
noted that TTX (tetrodotoxin) blocks the sodium current almost completely while leaving the
potassium almost unaffected. Conversely, TEA (tetraethylammonium) blocks potassium but not
sodium channels.

These experiments support the existence of separate (independent) sodium and potassium
channels. On the other hand, deviation from independence is seen, particularly at higher ion
concentrations.

Procedure for Na/K ion separation

Hodgkin and Huxley performed a series of voltage-clamp experiments for increasingly de-
polarizing values. For each value of clamp voltage two experiments were performed.

The first was for normal composition seawater and the second with a low-sodium seawater
(replace 90% sodium chloride by choline chloride while potassium and remaining chloride ions
are unchanged).

In the second experiment, depicted in Figure 5.11B, a potassium (only) current arises, so that,
given the independence principle, separation into IK and INa is relatively easy. But, in general,
the voltage clamp voltage in the second experiment does not correspond to the sodium Nernst
potential and a sodium current is present along with the potassium.
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We now analyze the currents measured as to their significance. In the following, primes
designate both currents and Nernst potentials for the low-sodium voltage-clamp experiment.

Key assumptions

The Hodgkin and Huxley ion separation procedure is based on three assumptions:

1. Early current is sodium current alone, that is, IK = 0 for 0 ≤ t ≤ T/3, where T is the
time of peak inward current. The assumption here is that for small t, due to the rapid
response by the sodium system relative to potassium, the earliest current, if there is any,
is sodium alone.

2. Outside Na affects INa. If I ′Na(t)/INa(t) = A, that is, for two experiments at the
same voltage clamp, but different [Na+]o, only the driving force changes, going from
(Vm − ENa) to (Vm − E′Na). The driving force is constant with respect to time in each
case, although different from case to case. The time course of sodium conductance gNa(t)
depends on rate constants, which in turn depend on Vm. But the latter are the same in the
two experiments, since both have identical voltage clamps. Since

INa(t) = gNa(t)(Vm − ENa)

and
I ′Na(t) = gNa(t) (Vm − E′Na)

then
I ′Na(t)/INa(t) = (Vm − E′Na)/(Vm − ENa) = A

where A is a constant.

3. Ionic Independence. IK(t) = I ′K(t). Here, Hodgkin and Huxley assumed that since
[K+]i and [K+]o are unchanged, the potassium current (for the same voltage clamp) in
normal seawater is the same as in 10% sodium seawater—i.e., they assumed the indepen-
dence principle.

Deductions

The assumptions above are utilized in the following procedure. One first examines the early
portion of the total current for a normal voltage clamp Im(t) and the low-sodium current I ′m(t)
curves.

Assuming no potassium contribution, the ratio I ′m(t)/Im(t) gives the value of A in item 2
above. (One can plot this ratio for small t and confirm its constancy.)

For successive values of time, say at any t = t1,

Im(t1) = INa(t1) + IK(t1) (5.11)

and
I ′m(t1) = I ′Na(t1) + I ′K(t1) (5.12)
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Now, using items 2 and 3 above gives us [from (5)]

I ′m(t1) = AINa(t1) + IK(t1) (5.13)

From (5.11) and (5.13) we can eliminate either IK or INa to obtain the desired value of
sodium and potassium ion components. These are

INa(t1) =
Im(t1)− I ′m(t1)

1−A (5.14)

and

IK(t1) =
AIm(t1)− I ′m(t1)

A− 1
(5.15)

Hence the data obtained from the two experiments enable the two contributing function to
be determined.

5.3. HODGKIN–HUXLEY CONDUCTANCE EQUATIONS

The data collected by Hodgkin and Huxley from their voltage clamp experiments on the
squid axon were the basis of a quantitative model for the squid axon membrane behavior under
both subthreshold and suprathreshold conditions. The critical components of the model are the
equations for the conductances of sodium and potassium ions. The function of this section is to
show how these conductance equations were obtained from their experimental data.

A remarkable aspect of the resulting equations is that they allow a membrane model to be
constructed that not only reproduces the voltage clamp data itself but is capable of simulating
new phenomena, such as the propagating action potential. Each ionic current is described by the
product of a driving force with a conductance, as in the parallel-conductance model.

The driving force is the difference between the transmembrane potential and the ion’s Nernst
potential, and the conductance is a quantity that is determined experimentally. The formulation
corresponds to the description given in (3.26) and (3.27) for the potassium and sodium ionic
currents (chloride being neglected for the reasons given earlier). The same formulation has also
been applied to evaluation of single-channel ion currents, as in (4.1).

The Hodgkin and Huxley scheme for evaluating the ionic conductivities, gK(t) and gNa(t)
was as follows. Rearranging (3.26) and (3.27) gives

gK(t) =
IK(t)

(Vm − EK)
(5.16)

and

gNa(t) =
INa(t)

(Vm − ENa)
(5.17)
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Figure 5.12. Conductance Changes Brought about by Clamped Depolarizations of Different
Magnitudes. The circles represent values derived from the experimental measurements of
ionic current, and the curves are drawn according to methods described in the text. The
voltage clamp transmembrane potential values are in millivolts and are described relative
to the resting value (i.e., vm). From Hodgkin AL. 1958. Ionic movements and electrical
activity in giant nerve fibers. Proc R Soc 148:1–37. After Hodgkin AL, Huxley AF.
1952. A quantitative description of membrane current and its application to conduction and
excitation in nerve. J Physiol 117:500–544.

Because the denominators in (5.16) and (5.17) are constant during a voltage clamp, gK(t) ∝
IK(t) and gNa(t) ∝ INa(t). A series of voltage-clamp experiments leading to a determination of
IK(t) and INa(t) by the methods of the last section is readily converted into families of potassium
and sodium conductances. This procedure is illustrated in Figure 5.12.

5.3.1. Notation for Voltages and Currents

A major contribution of Hodgkin and Huxley was moving beyond their careful experimental
studies into a general, theoretical model, described mathematically, relating membrane voltages
and ionic current flows. That theory, as presented in the sections that follow, requires a recognition
of two significant notational aspects in the descriptions of transmembrane voltages and currents,
addressed here. These issues are not difficult but may be confusing if one does not realize the
outlook that was adopted.
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Notation for potentials and currents

Analyzing the time course of action potentials makes use of the introduction of an additional
transmembrane potential variable. As before, the symbol Vm, using a capital V, will continue
to be used for the transmembrane potential, measured as the potential just inside the membrane
minus the potential just outside, that is, Vm = Φi − Φe.

But in the material that follows, the symbol vm, using a lowercase v, will be used in some
places to designate the difference in the transmembrane potential from its resting value. In other
words, vm will be defined by vm(t) = Vm(t)− Vm(rest). Note that mathematically vm differs
from Vm only by a constant. This means that derivatives with respect to space or time of vm are
equal to the corresponding derivatives of Vm.

Why use vm instead of Vm, when vm seems to depend on a more complicated expression? To
answer this question, consider the shape of an experimentally recorded action potential waveform
such as that of Figure 5.4. The portion of the waveform showing the transmembrane potential
at rest is easily identified. Deviations from that value, vm, are easily measured as changes from
that baseline.

In this regard vm behaves like a “signal” in the engineering sense. In the absence of a signal
(i.e., under resting conditions) vm is appropriately zero. Thus, vm in some cases better charac-
terizes what is of most interest, namely, the magnitude and direction of changes in membrane
voltage from its “natural” value at rest.

Just as it is useful to characterize the changes in the transmembrane potential from its zero
or reference condition (i.e., vm = Vm − Vrest), other time-varying potentials may be similarly
described relative to their resting state. In particular, the value of the potential just inside or just
outside the membrane is described by Φi or Φe; the change in either of these relative to their
respective baseline value is designated φi or φe.

Flux J versus flow I

Another important notational issue involves fluxes versus flows. The careful reader will have
noted the use of the symbol IK (current) rather than JK (flux) in equations such as (5.16), and will
realize that the resulting conductance, gK , seems to be a conductance value in units of Siemens,
and not a conductivity. In fact, conductance gK is more often expressed in Siemens/cm2, or some
other “per unit area form.

Thus, for consistency with the notation used earlier in the text distinguishing flux versus flow,
Eq. (5.16) should have been written with JK instead of IK , if a resulting gK in Siemens per cm2

is intended. An analogous concern arises for flows of other ions. However, in the presentation
and use of Hodgkin–Huxley equations, a careful distinction in notation between flux versus flow
normally is not made.

Thus, following the frequently (but not universally) accepted convention, in Eq. (5.16) we
have used IK for flux or flow. In many of the subsequent equations in this and the following
chapters we have done the same.5

”
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The notational shortcut of writing both flux and flow with an I has the advantage that many
equations that otherwise would have to be written twice now can be written only once. Also,
some computer code can be used in both cases without modification, as the difference will be
signified by the choice of gK . Finally, use of this convention is consistent with many other texts
and references.

The price of this reduction in writing is that there is an increased possibility for confusion,
that is, the reader is dependent on context (or perhaps the units given for gK) to determine whether
flow or flux is intended.

5.3.2. Mathematical model for potassium

A mathematical model was constructed by Hodgkin and Huxley to fit the data in Figure 5.12.
The potassium conductance gK(t, vm) was set equal to a fixed maximum value, ḡK, multiplied
by n4 (0 < n < 1).

Potassium conductance equation

In a present-day interpretation (see Chapter 4), n4 evaluates the fraction of open channels
while ḡK is the conductance when all channels are open. Their product evaluates the conductance
as described in (4.24). Thus,

gK(t, vm) = ḡKn
4(t, vm) (5.18)

Hodgkin and Huxley assigned the power 4 to n in (5.18) because this choice gave the best
fit to a large amount of potassium ion data. However, as discussed in Chapter 4, one can now
give this choice a physical basis reflecting properties of the potassium protein structure. HH
interpreted n as the probability of finding any one of four particles in the open state (this particle
could be a subunit undergoing an “open” conformational change).

Assuming n to obey first-order kinetics, then just as explained in the material leading to
(4.30), we have

dn(t, vm)
dt

= αn(vm)(1− n)− βn(vm)n (5.19)

The rate constants αn and βn depend only on the transmembrane potential vm. Accordingly,
they are constant for a voltage-clamp experiment and permit (5.19) to be solved analytically. In
this case we seek the solution of a first order differential equation with constant coefficients: the
result is

n(t) = n∞ − (n∞ − n0)e−t/τn (5.20)

where
τn = (αn + βn)−1 and n∞ = αn(αn + βn)−1 (5.21)

These are the same results as obtained in (4.36) and (4.37). The temporal variation forn(t) arising
from the first-order solution (5.20) has the correct form to fit the experimentally derived curves
for gK(t) given in Figure 5.12.

One can combine the above equations, enabling one to rewrite (5.19) as

dn

dt
= (n∞ − n)/τn (5.22)
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Potassium rates of change

To obtain an optimal fit of Eq. (5.22) to the measured data, for the ith voltage clamp vmi
one may adjust τn and n∞. Note that since n0 is the n∞ of the rest period, just prior to clamp
application, it is not at our disposal for curve fitting. Then, corresponding to these optimal values
of τn(vmi) and n∞(vmi), one can evaluate the corresponding rate constants for each (ith) case.

These rates are found by solving, simultaneously, the equations in (5.21) to yield

αn(vmi) =
n∞(vmi)
τn(vmi)

and βn(vmi) =
[1− n∞(vmi)]

τn(vmi)
(5.23)

Here again the subscript i refers to a particular experiment whose voltage clamp is vmi.

One can treat the resulting set αn(vmi), βn(vmi) as samples of approximating analytic func-
tions α(vm), β(vm). Hodgkin and Huxley, through curve fitting, described these (for potassium)
to be

αn =
0.01(10− vm)[

exp
( 10−vm

10

)− 1
] (5.24)

and

βn = 0.125 exp
(−vm

80

)
(5.25)

where vm is in mV and α, β are in msec−1. Recall that vm = Vm − Vrest.

5.3.3. Mathematical Model for Sodium

For sodium ionic currents the same overall approach is followed as described above for
potassium, except that the sodium conductance is assumed to depend on the product of two
parameters, m and h, where

gNa(t, vm) = ḡNam
3(t, vm)h(t, vm) (5.26)

In (5.26), ḡNa is the maximum sodium conductance (a constant), m is an activation parameter
(0 < m < 1), while h is an inactivation parameter (0 < h < 1).

We may interpret m3h as the probability that a sodium channel is open. Hence, for a large
population, m3h is the fraction of the all-sodium channels that are open.

As with potassium, we can also assume that for the sodium protein structure to yield an open
pore we require conformational changes in which each of four subunits are in an open position.
For sodium three subunits have m as the probability of their being open, while the fourth is
described by the probability h of being open.

Both parameters satisfy first-order differential equations similar to that for potassium’s n
variable, namely,

dm

dt
= αm(1−m)− βmm (5.27)

and
dh

dt
= αh(1− h)− βhh (5.28)
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Maximum sodium conductivity

The value of ḡNa can be found from the measured Hodgkin and Huxley voltage clamp data
from the asymptotically largest value of conductance obtained. It also corresponds to the situation
where all-sodium channels are open. Thus, if there are NNa sodium channels per unit area and
each has a conductance of γNa, then ḡNa = NNaγNa.

Equations for m and h

Hodgkin and Huxley did not have knowledge of the structure and behavior of channels, except
by inference. They were led to Eq. (5.26) by curve fitting, noting that their measured voltage
clamp behavior of sodium conductance is second order (see Figure 5.12), and they achieved this
by assigning m and h first-order behavior.

Equations (5.27) and (5.28) can be solved under voltage clamp conditions (where α and β
are constants for each clamped value of vm), giving

m(t) = m∞ − (m∞ −m0)e−t/τm (5.29)

and
h(t) = h∞ − (h∞ − h0)e−t/τh (5.30)

where

m∞ =
αm

(αm + βm)
, τm =

1
(αm + βm)

(5.31)

and

h∞ =
αh

(αh + βh)
, τh =

1
(αh + βh)

(5.32)

Assuming application of a transthreshold voltage clamp, m is seen to increase rapidly while h
decreases slowly. The combination ofm and h behavior, as expressed in the equation for sodium
ion conductance (5.26), results in the expected second-order sodium conductance behavior (i.e.,
the conductance goes up and then comes down, even as the transmembrane potential remains
constant.) At the same time, m and h are individually first order (meaning that they move from a
starting to and an ending value).

Because the response to activation is for m to increase, it is called the activating parameter.
Because the simultaneous h response is to decrease, it is described as an inactivating parameter.

Response of m and h to a stimulus

For vm > 30 mV an action potential is certain to be elicited, and in the steady state that
follows, gNa ≈ 0. Consequently, since m is an increasing function, we deduce that h∞ ≈ 0
(complete inactivation). At rest we have seen that gNa is relatively small, so m0 ≈ 0. Using the
equation for sodium conductance (5.26) together with the asymptotic conditions onm and hwith
increasing time (5.31), and (5.32) gives

gNa(t) = gNam
3
∞h0

(
1− e−t/τm

)3
e−t/τh (5.33)
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Examination of (5.33) shows a functional form (the product of a rising and decaying exponential)
that is capable of matching the measured sodium behavior in Figure 5.12.

Time constants observed experimentally

For each voltage clamp vm and corresponding experimental curve gNa(t, vm), the values of
τm, τh, m∞ can be chosen in (5.33) so that it best fits the data. For a set of experimental voltage
clamps vmi one enumerates τm(vmi), τh(vmi), and m∞(vmi). From these values one obtains
the set of rate constants [rearrange (5.31) and (5.32)], namely,

αm(vmi) =
m∞(vmi)
τm(vmi)

, βm(vmi) =
1−m∞(vmi)
τm(vmi)

(5.34)

αh(vmi) =
h∞(vmi)
τh(vmi)

, βh(vmi) =
1− h∞(vmi)
τh(vmi)

(5.35)

Hodgkin and Huxley chose the following analytical expressions, which approximated their col-
lection of data described in (5.34) and (5.35). These are

αm =
0.1(25− vm)

exp [0.1(25− vm))]− 1
βm = 4 exp

(
−vm

18

)
(5.36)

and

αh = 0.07 exp
(
−vm

20

)
, βh =

{
exp

[
(30− vm)

10

]
+ 1
}−1

(5.37)

where, as before, vm is in mV while α and β are in msec−1. To obtain these results, valid also
for vm < 30 mV, an expression for h∞ was necessary, and its derivation is described below.

Evaluating h∞

In obtaining (5.36) and (5.37) it is necessary to first find h∞(vm) for all vm (including
vm < 30 mV). Finding h∞(vm) was accomplished through a separate set of experiments.

First consider the plot of the h∞ versus vm in Figure 5.13. Note that for vm > 30, h∞ ≈ 0,
as assumed above. For normal resting conditions h = 0.6, while for hyperpolarizations of 30 mV
or more h = 1.0, the maximum value. (This means that the largest action potentials are those
elicited following such hyperpolarization.)

From the resting voltage just prior to the initiation of a voltage clamp, the h∞ (t = 0−),
can be found from Figure 5.13. But in view of (5.30), h cannot change in value instantly, and
therefore h0(0+) = h∞(0−), which explains how h0 is determined in (5.33).

An analytic expression that approximates the data in Figure 5.13 was devised by Hodgkin
and Huxley:

h∞ =
{

1 + exp
[

(vm − vmh)
7

]}−1

(5.38)

where vmh is the value of vm for h∞ = 0.5 (in Figure 5.13, vmh = 2.5 mV).
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Figure 5.13. Sodium Inactivation Curve. The abscissa is the deviation from the resting
potential (i.e., vm). Dots are experimental points, and the smooth curve satisfies (5.38) for
vmh = 2.5 mV. The left vertical axis plots h as determined from these data, and the right
vertical axis plots peak measured INa on a normalized scale (see text). From Hodgkin AL,
Huxley AF. 1952. The dual effect of membrane potential on sodium conductance in the
giant axon of Loligo. J Physiol 116:497–506.

Two-step experiment to evaluate h∞

A two-step experiment was performed by Hodgkin and Huxley [11] to evaluateh∞. In step 1,
described as the “conditioning period,” a voltage clamp is established with a value vc. (Reference
to the conditioning period is indicated by the subscript c.) This clamp is maintained for a fixed
time Tc that is large compared with τh. This long time duration ensures that for the conditioning
step a steady-state value of h is reached, that is,

h(Tc) = (h∞)c (5.39)

At t = Tc a suprathreshold clamp of fixed value vt is applied. This second step was denoted the
“test period” and is designated by the subscript t. Since vmt > 30 mV the response is described
by (5.33), which, with the present notation and (h0)t as the initial h at the outset of the test period,
becomes

gNa(t) = ḡNam
3
∞(h0)t(1− e−t/τm)3e−t/τh (5.40)

Since, as we have noted, h cannot change discontinuously, the initial value of h in the test period
is the final value of h in the previous conditioning period. Thus,

(h0)t = (h∞)c (5.41)

In (5.40) the values of m∞, τm, and τh depend only on vt, which is always chosen the same.
Consequently, gNa(t) ∝ (h0)t.

In particular, because
INa(t) = gNa(t)(Vt − ENa)
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then

INa(t) ∝ gNa(t)

because Vt is fixed.

Thus, if the peak inward sodium current (INa)pk is measured, then

h∞(vc) ≡ (h∞)c ∝ (INa)pk (5.42)

For the largest (INa)pk, namely (INa)mpk, we assign h∞(vc) the value of unity. Then all
other values of h∞ are given by

h∞(vc) =
(INa)pk

(INa)mpk
(5.43)

Noting (5.41), it is this h0(vm) that is plotted in Figure 5.13.

Leakage current IL

Recognizing that there are currents other than those of sodium and potassium ions, Hodgkin
and Huxley introduced the leakage current, IL, as a third component of the total membrane
current. Leakage current takes into account, collectively, the currents of all ions other than those
of potassium and sodium. Currents such as those of chloride ions, those of calcium ions, and
those of any other charged particles moving through small holes in the membrane are a part of
leakage.

In the Hodgkin–Huxley formalism, by analogy to potassium and sodium, the leakage current
is written mathematically as

IL = gL(Vm − EL) (5.44)

In (5.44), EL is set to a value that produces the expected or observed resting voltage of Vm,
and gL has a fixed value, rather than varying in time in the fashion of gK or gNa. Most of the
time the leakage current has a small magnitude in comparison to the magnitudes of IK or INa.
Correspondingly, most of the time either gK or gNa is larger than gL.

Even so, the values of gL and EL and the presence of leakage current more generally are
not inconsequential. Leakage current is significant because its magnitude is comparable to that
of other ionic currents during critical time periods when the other ionic currents also are small.
Such time periods include times when Vm is near the resting state, and periods when sodium and
potassium currents are similar in magnitude but opposite in sign, such as near the action potential’s
peak. Leakage currents also serve as a damping mechanism to dynamic changes of Vm.

5.4. SIMULATION OF MEMBRANE ACTION POTENTIALS

Once equations for describing the individual ionic currents are developed, they can be inte-
grated into a model of the behavior of the membrane that finds membrane voltages and currents
not only for voltage-clamp experiments but also for naturally evolving voltages. This section
explains how that is done.
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It could reasonably be expected that Hodgkin–Huxley ionic current equations would satis-
factorily simulate any voltage-clamp experiment, because the model’s parameters were chosen to
fit the data from the voltage-clamp experiments that Hodgkin and Huxley performed. The critical
question is whether the equations accurately predict the results for non-voltage-clamp situations,
i.e., are the equations correct for naturally occurring action potentials? The answer is yes. This
predictive power is why the HH formulation came to be considered a true formulation of how the
membrane responds to many different situations and stimuli.

Because the use of the HH equations for membrane action potentials provides the foundation
for answering many other questions, the next several sections are devoted to development of all
the equations used, together with some results of using them.

Suppose one elicits an action potential for an axon in the chamber of Figure 5.7, but without
the voltage clamp. Because the setup nevertheless demands axial uniformity, the entire mem-
brane behaves synchronously. The action potential elicited therefore characterizes every patch
of membrane. Under these circumstances, the action potential is known as a membrane action
potential. Because Vm is a function of time, a membrane action potential is quite different from
a voltage clamp. Nevertheless, as will be shown, the Hodgkin–Huxley equations are successful
in simulating membrane action potentials.

5.4.1. Sum of Currents

Analytical evaluation of Hodgkin–Huxley membrane action potentials6 begins with the as-
sertion that the currents through the membrane follow the equation

Im = IK + INa + IL + IC (5.45)

The picture associated with Eq. (5.45) is as follows: The total current through the membrane
Im arises from three ionic components and one capacitative one. The ionic currents are IK,
INa, and IL. These currents reflect movement of potassium, sodium, and “leakage” ions through
the membrane. The fourth term, IC , is the current associated with charging or discharging the
membrane capacitance.

The notation of (5.45) does not make clear whether the currents in the equation are constant
or variable. In fact, at rest all the currents are constant. In contrast, during an action potential
each current varies with time by a factor of 100 or more, with each current following a different
time course. To make that explicit, Im might be noted as Im(t), IK as IK(t), and similarly for
each one.

State variables

Questions involving evolution with time often are framed in terms of “state variables.” State
variables are the set of variables whose values, when known at a particular time, allow the other
variables in the problem to be calculated for that same time. In the simulation of membrane
action potentials using Hodgkin–Huxley formalism, the state variables are vm, n, m, and h.
(This statement means that all the other time-varying quantities, such as IK and INa, can be found
from the values of the state variables.)
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The algorithm for time evolution focuses on state variables. That is, the algorithm must begin
with an initial value for each one of them, and the algorithm must provide a method for finding a
new value for each state variable at a later time. Most algorithms involve a time shift by a short
time step, with many steps in succession required to calculate changes throughout a significant
time interval. (Of course, the calculation also will use the values of other important quantities
that do not change with time, e.g., membrane capacitance C.)

Whether a variable is or is not a state variable is a different issue from the variable’s physical
or physiological importance. Many fundamental quantities are nonetheless not state variables.
For example, for a membrane action potential the sodium current, INa, is extremely important
electrophysiology. Even so, INa is not a state variable, because INa can be computed from Vm,m,
and h, together with constants such as ENa. (If a different problem were to be considered, such
as one with a long time duration where equilibrium potentials such as ENa varied, that problem
would required additional state variables, possibly concentrations.)

Tiny time steps

The independent variable for a membrane action potential is time. Though time varies
continuously, for numerical analysis time is discretized into a sequence of particular time instants.
Each time in the sequence is separated from the next by a time interval Δt.

An important consideration in finding a membrane action potential is the choice of a specific
value of Δt. Normally HH simulations use Δt values in the range of 1 to 100 microseconds, with
“small" time steps being those in the range of 1 to 10 msec.7

Suppose i is the index of listed times. An increase by one in this index corresponds to an
advance in time by interval Δt. A satisfactory numerical algorithm must begin with the values
of the state variables at time index i and then find the values of the state variables at time index
(i+ 1).

Voltage change for a time step

Equation (5.45) connects current components to the total current at a single instant of time.
These currents may or may not be functions of time. Amazingly, for time variation, (5.45) can
be turned inside out to become the central equation for determining changes in the membrane
voltage for each time step.

Transforming (5.45) can be done because the capacitative current IC is equal toCmdVm/dt,
thus introducing time explicitly. Further, the time derivative dVm/dt can be approximated as

dVm
dt
≈ ΔV m

Δt
(5.46)

While (5.46) is an approximation, it is an excellent approximation if Δt is sufficiently small.

After using (5.46) in Eq. (5.45), one can rearrange the result to be

ΔVm = Δt(Im − IK + INa + IL)/Cm (5.47)
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Figure 5.14. Membrane Voltage Change Due to Stimulus. The Figure shows a cartoon of a
stimulator as it imposes total current Im across a membrane (rectangle). The current from
the stimulator divides into the components given by Eq. (5.47), including the ionic currents
IK, INa, and IL. The remaining current is capacitive current IC , shown as a dashed line.
As IC charges the membrane capacitance it modifies the transmembrane voltage Vm.

thus introducing ΔVm and time increment Δt into what had seemed to be a static equation. In
fact, Eq. (5.47) estimates the change in Vm, ΔVm, that occurs when time advances by a short
interval Δt (Figure 5.14).

A simulation program for finding Vm(t) works by using (5.47) repeatedly. As an estimate
of a plausible number of repetitions, note that a 1-second simulation period accomplished with a
1-microsecond time step corresponds to a million repetitions.

The picture of the meaning of Eq. (5.47) now is extended from that used with (5.45). In
(5.47) one pictures the total current Im as a known value of the total current, a current imposed
on the membrane by its external environment, as shown in Figure 5.14. (At a particular time, the
value of Im might be zero, positive, or negative.) Equation (5.47) then shows how to get from
Im to one of the component currents, IC , and from IC to ΔVm. That is, (5.47) shows how to
connect the stimulus (or lack of one) to the transmembrane voltage change that follows.

Step by step, Eq. (5.47) says that to find the change in Vm, one begins with Im and subtracts
the ionic current Iion = IK + INa + IL (shown in brackets in Figure 5.14). The remaining
current is the current of interest, IC = Im− Iion (shown by dashed lines in Figure 5.14). IC is of
interest because it is the current that modifies the membrane voltage by charging the membrane
capacitance C. Thus IC modifies Vm during time Δt by adding to the capacitance a charge
Δt(Im − Iion).8
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Examination of the terms of (5.47) makes clear that ΔVm will sometimes be positive and at
other times will be zero or negative. The variable polarity will occur because some currents on
the right-hand side will usually be positive (IK), others will usually be negative (INa), and some
may be positive, negative, or zero (Im, IL).

Thus the sign of the result involves a summation of terms, some positive and some negative.
Furthermore, the magnitude of each component current is likely to change markedly from one
time to another, e.g., the stimulus current of step 1 varies markedly depending on whether, at a
particular time, the stimulus is on or off. Thus the sign of Vm will sometimes be positive and at
other times negative.

Changes in gating variables for a time step

A simulation program also must track changes in n, m, and h concurrently with tracking
changes in Vm. Concurrent tracking of n, m, and h is necessary to allow IK and INa to be
evaluated at each time, as is required to find Vm at the following time, as shown in (5.47). For n,
Eq. (5.19) gave its rate of change as

dn

dt
= αn (1− n)− βn n (5.48)

Again using the concept of (5.46) in (5.48), one can arrange the result to be

Δn = Δt [αn(1− n)− βn n] (5.49)

Equation (5.48) is the result that is needed, as it shows how to find the change in n, Δn, from the
values of the state variables present at a particular time. Analogous equations can be developed
in a similar fashion for Δm and Δh and are given is a section below.

5.4.2. Algorithm for Advancing through Time

We now describe in more detail the series of steps needed to simulate the sequence of
membrane events that occurs with the passage of time.

Starting values of the state variables

Living membrane exists continuously throughout its lifetime, so it has no fixed starting points
or conditions in a fashion analogous to starting an automobile. (The fact that “time 0” is simply
assigned arbitrarily to graphs is often frustrating to those new to the field, who want the time
chosen to embody more physiological meaning than it actually has.) In the absence of reasons
to do otherwise, however, starting conditions for each of the state variables normally are chosen
as those that exist at rest.

For Vm, the starting condition is normally Vm at rest:9

V om = Vr ≈ −60 mV (5.50)

Recall that the stability of Vm at its chosen resting level may require a choice of EL.
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For n, m, and h the starting conditions are taken from Eqs. (5.21), (5.31), and (5.32):

n0 = n∞ = αn/(αn + βn) (5.51)

mo = m∞ = αm/(αm + βm)
ho = h∞ = αh/(αh + βh)

where the α and β terms are evaluated using vm = 0, corresponding to Vm = Vr.

In Figure 5.15 membrane voltage Vm and probabilities n, m, and h hold their initialized
values through the period while t < 0. During this period one observes that Vm = −60, and
marked variation from one probability to another, i.e., n ≈ 0.3, m ≈ 0.5, and h ≈ 0.6.

During assignment of initial values, Im must be assigned an initial value (such as I0
m = 0),

consistent with the mathematical functions for Im given below.

Time is the independent variable. Simulations often are started with tnegative, e.g., t = −100
microseconds, so that a short baseline period corresponding to t < 0 is a part of the simulation
record.10

Advancing the state variables step by step

The values of Vm, n, m, and h are moved forward step by step by repeatedly executing the
steps that follow. Initially the starting set of values, which might be thought of as set i = 0, is
used as a basis for finding set i = 1, the values of Vm, n, m, and h for time t = Δt.

Then the cycle is repeated. In general the cycle of steps begins with the state variable values
for time index i to produce a set of values for time index i + 1. Such a cyclic process can be
repeated over and over, thus allowing the simulation of indefinitely long time periods.

Advancing the state variables from time index i to time index (i + 1) can be achieved by
completing the following steps, in order:

1. Determine Im, the total membrane current, for the interval Δt that extends from time (i)
to time (i+ 1).

2. Estimate the change of Vm during Δt based on values at time i.

3. Estimate the change of n, m, and h during Δt based on values at time i.

4. Advance all the state variables from time (i) to time (i+ 1).

In the following sections we consider each of these steps, in turn.

1. Determine Im For a space-clamped axon, the spatial uniformity ensures that no currents move
along paths parallel to the membrane surface, so there can be no transmembrane currents
created by adjacent segments of membrane. Thus the value of the total membrane current
is equal to the stimulus that is applied, as in Figure 5.14.
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For now assume that the stimulus consists of a depolarizing current Is(t) that begins at
time t = 0 and lasts for duration T. Then the total membrane current is:

Im = 0 t < 0
Im = Is 0 <= t < T

Im = 0 T ≤ t ≤ ∞ (5.52)

In Figure 5.15 the top line shows a plot of Is. One observes that Im initially is zero, rises
for a brief time when t = 0, and returns to zero shortly thereafter, as described in (5.52).
A second stimulus pulse occurs at 10 msec.

In (5.52) note the values assigned to Im at the time boundaries. For example, at time zero
total membrane current Im is set equal to Is, not equal to zero. That is, Im is assigned
the value of Is that will be present during the following time interval, Δt, because an
assignment is being made at time index i involving the interval from i to i + 1. By the
same reasoning, Im becomes zero when t = T .

Often the above expressions for Im are extended so that a stimulus train is created, with a
new stimulus beginning periodically, e.g., every 20 milliseconds, rather than there being
only a single stimulus. Also, Is is often a constant (so the stimulus is rectangular), but
nothing about the equation requires that to be so.

In general the stimulus might come from a natural source rather than one of artificial
origin, in which case the time course of the stimulus likely would be longer and be a more
complicated function of time.

2. Estimate ΔVm. Using (5.47), one finds the incremental change of Vm during time step Δt to
be:

ΔV im =
Δt
Cm

[Iim − Iiion] (5.53)

=
Δt
Cm

[Iim − IiK − IiNa − IiL]

where the individual ionic currents are known from (5.16), (5.17), (5.18), and (5.26) to
be

IiK = giK(V im − EK) (5.54)

IiNa = giNa(V im − ENa)
IiL = gL(V im − EL)

where the variable conductivities are

giK = n4
i (V

i
m − EK) (5.55)

giNa = m3
ihi(V

i
m − ENa)

For computation, either the equations would have to appear in reverse order, i.e., (5.55),
(5.54), (5.53), or, alternatively, the variables defined in later equations would have to have
these definitions substituted in earlier ones. An advantage of keeping the steps distinct
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Figure 5.15. Computed MembraneAction Potential Using the Hodgkin–Huxley Equations.
In addition to the temporal variation of Vm(t), the gating variables temporal behavior [i.e.,
m(t), n(t), h(t)] are shown. In this simulation resting vm = −60 mV, while the stimulus
current starting at t = 0 is 53 μA/cm2 for 0.2 msec. The temperature is 6.3◦C.

is that oftentimes such values as the conductivities (the g values) become of interest in
themselves, as well as serving as a means to determine Vm.

Note that many (but not all) of the quantities in Eqs. (5.53), (5.54), and (5.55) have a sub-
or superscript i. The presence of the indexing i identifies each one as a quantity that has
a value that changes from one time to another; quantities without an index hold constant
values with time. The fact that all indices are i (rather than, say, mixed with i+1) signifies
that the equations hold when all the quantities are for the same time instant.

In Figure 5.15 the second line of the Figure shows Vm plotted as it advances through
many individual time steps. The lower lines of Figure 5.15 show the time course of m,
h, and n. The changes in sodium and potassium conductivities and currents, associ-
ated with the passage of time and changes in Vm by the equations above, are shown in
Figure 5.16, as the 3rd and 4th line of traces.

It is noteworthy that gNa and gK follow such a different time course, as is seen by
comparing the solid and dashed lines in the figure, as these differences give rise to the
observed time course of Vm. It also is remarkable that, at first glance, IK and INa have
wave shapes that are more or less identical except for opposite polarity. Of course, careful
inspection of the Figure shows the INa wave shape to be slightly out of phase (and earlier
than IK).
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Figure 5.16. Membrane Potential and Currents following Stimulus. The stimulus is at
the top (A). Below it are the calculated changes in membrane potential (B), sodium and
potassium conductances (C), and sodium and potassium currents (D). All curves are for
a squid giant axon membrane patch. The second stimulus is seen to elicit essentially no
response even though it is of the same size and duration as the first (for which an action
potential results, as is seen). It therefore identifies the condition as refractory. Since a
larger stimulus would generate an action potential, this is a relatively refractory period.
The stimulus amplitude is 53 μA/cm2, and its duration is 0.2 msec. The second stimulus
is similar in amplitude and duration and occurs after a delay of 15 msec. The resting
potential is−60 mV while T = 6.3◦C. Calculations were based on the Hodgkin–Huxley,
equations.

In Figure 5.16 one notes the rapid rise and decay of gNa(t). In contrast, gK(t) has a
delayed rise and more lasting elevation in magnitude. This behavior might have been
anticipated as a result of what was learned from the voltage clamp measurements.

3. Estimate Δn, Δm, and Δh Estimation of the changes in state variables n, m, and h during
interval Δt is accomplished following (5.49) as applied at time i:

Δni = Δt[αin(1− ni)− βin ni] (5.56)

Evaluation of Eq. (5.56) is more complicated than Eq. (5.56) suggests. Several steps are
required. First one uses vim and Eqs. (5.24) and (5.25) for αn and βn to get the αin and
βin numeric values for time i.11 Second, one uses Eq. (5.56) to get Δni (the change in n
for the interval Δt beginning at time i).
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Analogous procedures are used to find Δmi and Δhi, making use of Eqs. (5.36) and
(5.37), so that

Δmi = Δt[αim(1−mi)− βimmi] (5.57)

and
Δhi = Δt[αih(1− hi)− βih hi] (5.58)

Though the procedure is analogous, the numerical values of Δn, Δm, and Δh will be
different, of course, since the α and β expressions for n, m, and h are different.12

The behavior of m(t), n(t), and h(t) during a membrane action potential is shown in Fig-
ure 5.15. One notes that the time constant associated with m(t), i.e., τm, is short relative to τn
and τh.13 The rapid rise and decay of gNa(t) is consequently a result of a similar time course for
m(t).

Early recovery following activation is seen to involve the decrease in h and the increase in n.
This latter causes gK(t) to increase relative to gNa(t), hence increasing the outward component
of current which is responsible for the reduction in Vm. Specific numerical study shows τm < 1
msec, while τn and τh are in the range 3–10 msec.

4. Advance to the next time

Using the results of (5.53) above, the value of Vm is readily advanced to determine V (i+1)
m

as
V i+1
m = V im + ΔV im (5.59)

Similarly, the values of n, m, and h are readily advanced, using (5.56), (5.57), and (5.58) as

ni+1 = ni + Δni (5.60)

mi+1 = mi + Δmi (5.61)

hi+1 = hi + Δhi (5.62)

There are several reasons why it is advantageous to group Eqs. (5.59) through (5.62) as a
separate 4th step, rather than commingling them with the computation of the various changes:

First, the equations themselves rest on a stronger mathematical foundation, since all
quantities in steps 1–3 are time coherent, i.e., are the values for the same time, time i, a
condition that is part of their mathematical derivation.

As a corollary, collecting the changes with time into a single region avoids inadvertently
introducing small errors from time misalignment, or making the algorithm unintentionally
sensitive to the ordering of steps 2 and 3.14

Third, if one records (or prints) values during the computational cycle, printing done prior
to step 4 will cause a coherent set of state variables and values derived from them (such
as time, Vm, rate constants, currents) to be recorded, rather that having some quantities
for one time and some for another.15
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Finally, positioning all the equations involving time transitions together allows passive
or voltage-clamp simulations to be more readily incorporated as simulation alternatives
(see below).

Units of calculation

In an algorithm for the simulation of HH transmembrane potentials, the use of a consistent
set of units for currents and voltages does not happen naturally. Conflict arises because different
parts of the calculation are done most naturally in different units. For example, specification of
the stimulus current, Is, is done most naturally in units of current, such as milliamperes, whereas
quantities such as ḡK are frequently read from reference tables in units of milliamperes per square
centimeter, i.e., current per unit area. Inspection of the equations of steps 1 to 4 show them to
remain valid either way, so long as the units are consistent.

The most common practice seems to be to use a “per-unit-area” formulation. Results found in
those units are most readily compared to other results in the literature, i.e., membrane capacitance
C becomes membrane capacitance per unit area Cm, which is known to be about 1 μF/cm2, and
no further conversion into the spatial dimensions of a particular preparation is required. In this
regard, it is helpful to remember that under space-clamped conditions each membrane patch has
an identical transmembrane voltage Vm(t), so that the meaning of currents through the membrane
are easily understood when they are expressed on a “per-unit-area” basis.

Time required to execute a simulation

By the year 2000, the power of desktop and laptop computers had grown to a level allowing

action potentials the time for execution of a simulation had largely ceased to be a limiting factor.
For more complex spatially distributed simulations (considered mainly in later chapters of this
text), time of execution continues to be a substantial consideration and often a limitation on what
can be done.

Such situations as those requiring consecutive analysis of many sequential action poten-
tials, or questions requiring analysis of action potential propagation in complicated anatomical
structures such as the heart or brain, remain limited materially by limits on execution time.16

Passive and voltage-clamp simulations

Often one wishes to compare results of HH simulations of an active membrane to the sequence
of transmembrane voltages and membrane currents that would result if the membrane were
passive rather than active. (Here “passive” is used to mean that the membrane has constant
conductivity, rather than having “active” sodium and potassium conductivities that change with
time and membrane voltage.)17

The response of a passive (rather than active) membrane will be found by the algorithm above
if parts of step 4, (5.60) through (5.62), are omitted. Conversely, the membrane can be voltage
controlled by omitting or adjusting (5.59).

one  to  routinely compute membrane action potentials in a minute or two, so that for membrane
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Other algorithms

The computational method outlined above is known as the explicit method, sometimes called
the forward Euler method. A number of other approaches can be found in the literature.18

Other algorithms usually are more complicated but also may provide more stability, accuracy, or
computational speed.

5.4.3. Action Potential Characteristics

Action potentials have a number of special characteristics that are important and interesting
in themselves. Several of these are detailed in this section.

Refractory periods

If an action potential is elicited, then a period ensues during which the membrane cannot be
re-excited, the so-called absolute refractory state. After an interval it becomes possible to elicit
an action potential, but it requires an abnormally high stimulus. This characterizes the relative
refractory condition. An illustration is given in Figure 5.16, where the second stimulus, though
equal in amplitude and duration to the first (which is transthreshold), fails to elicit an action
potential.

Refractoriness can be understood mainly by the behavior of the inactivating parameter h.
Following an action potential, h decreases to a very low value (see Figure 5.15). Consequently,
even a very large stimulus elicits only a small sodium current, and this prevents re-excitation from
occurring. Some time must elapse for h to recover to normal or near-normal values.

Time also is needed to permit n to decrease, because excitation requires bringing about the
condition that INa > IK. When that occurs, the net influx of cations increases Vm (algebraically).
Increasing Vm initiates the regenerative process that characterizes the rising phase of the action
potential (i.e., rising Vm creates a rising gNa. In turn, the regenerative process elevates Vm still
further, until a limit is reached).

Thus in Figure 5.15 it appears that the failure of the second stimulus to activate results from
a depressed h (thus lowering INa) and also an elevated n (thus increasing IK), as compared to
values during the first stimulus.

Return to rest

Though there are refractory periods, it also is noteworthy that transmembrane voltage Vm and
all the gating probabilities do return to their initial (resting) values gradually, as time elapses. In
the simulation shown in Figure 5.15 it is seen that Vm andm are close to their resting values after
about 6 milliseconds. Both n and h take longer, but are near their initial values by 15 milliseconds
after the initial stimulus.

In Figure 5.15, note that Vm is below its resting value at 5 msec. That negativity occurs
because n remains elevated so that the magnitude of IK is greater than at rest, thus forcing Vm
more negative. Ultimately the membrane returns to the same state as it was initially, where an
action potential can be initiated by another stimulus of magnitude similar to the first.
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Figure 5.17. Anode Break Excitation. Computed values ofm,n,h, andVm from Hodgkin–
Huxley equations. Space-clamped conditions. Values are computed during and after a
hyperpolarizing pulse of duration 2 msec and magnitude 11.7 μA/cm2, which starts at
t = 0. The resting potential is −60 mV and the temperature is T = 6.3◦C.

Anode break excitation

Figure 5.17 describes what happens after the termination of a 2-msec hyperpolarization and
the sudden restoration of normal transmembrane potential. Just prior to release of the hyperpo-
larization, the value of h is elevated while m and n are reduced. However, m rapidly regains its
normal value following restoration of normal Vm, since τm is relatively short.

The result, based on τm << τn, τh, is that there is a depressed n, normal m, and elevated h.
All three combine to promote INa > IK. The consequence can be the initiation of excitation.

We shall see in the next chapter that with extracellular electrodes the membrane under the
anode will be hyperpolarized during the stimulus. It is here that excitation can be initiated by the
process just described [after a prolonged stimulation (hyperpolarization)]; this accounts for the
name given it: anode break excitation.

5.5. BEYOND H-H MODELS

In the half-century since the advent of the Hodgkin–Huxley models, the quantitative analysis
of electrophysiological events has advanced along multiple lines. The remainder of this chapter
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considers a few of these, chosen both because of their pertinence to later chapters, and because
of their importance in their own right.

A reader who studies each of the following topics will obtain a more complete understanding
of action potentials. A reader who is instead seeking an overview of major topics in bioelectricity
may wish to move on to the next chapter, and then come back to each of these topics when it is
required for later study.

The topics are:

Changes in action potentials due to changes in temperature, and how temperature changes
are incorporated into Hodgkin–Huxley calculations.

Calcium current, a current essential to muscle function, and one that also plays a central
role in determining action potential duration in the heart,

Active transport, the mechanism by which sodium and potassium ions that diffuse across
the membrane during an action potential are returned across the membrane, a process
requiring the consumption of energy.

5.5.1. Temperature

Adaptations to changes in the external temperature are an essential component of living
systems, as most physiological systems function at different rates at different temperatures. The
expressions given by Hodgkin and Huxley for the α and β rate constants are for a temperature
of 6.3◦C, a natural temperature for a squid in seawater. Rate constants vary with temperature, as
described here. Such a variation is consistent with experience and was introduced analytically
in Chapter 3. As noted there, for equilibrium potentials, temperature is included in the equations
for the Nernst potentials of sodium and potassium, e.g.,

EK = −RT
nF

ln
[K]in
[K]out

(5.63)

Definition of Q values

For rate constants, temperature changes are taken into account by adjusting the α and β
values. Procedurally, one defines a parameter Q, also called Q10, as

Q = 3P (5.64)

where

P =
T − 6.3

10
(5.65)

In (5.65) the temperature must be specified in degrees Celsius. The reference temperature of
6.3◦C comes from the temperature used by Hodgkin and Huxley for their original equations.
That is, Q = 1 when the temperature is 6.3◦C. With no Q present, the equations apply when the
temperature is 6.3◦C.
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Temperature summary

The ratio of rate constants arising from a change of 10◦C is described as its Q10, and its
value is normally assumed to be 3. The α and β in earlier equations can be converted from 6.3◦C
to any temperature T by multiplying by Q = 3(T−6.3)/10 [e.g., α(T ) = Qα(6.3)].

Use of Q values

The Q value affects the rates of change of n, m and h in the following way:

dn/dt = Qαn(1− n)−Qβnn (5.66)

dm/dt = Qαm(1−m)−Qβmm (5.67)

dh/dt = Qαh(1− h)−Qβhh (5.68)

That is, each α or β value at 6.3◦C is replaced by Q times that value.

5.5.2. Calcium Currents

Intracellular and extracellular calcium concentrations are generally very small, as are calcium
transmembrane currents. The study of calcium behavior before the patch clamp electrode was
particularly difficult because sodium and potassium currents are so very much larger, making
isolation of the calcium component very difficult. However, with a voltage clamp patch electrode
it has been possible to obtain useful data in recent years.

A current–voltage curve for calcium is given in Figure 5.18. This was obtained using a patch
pipette and an isolated bovine chromaffin cell. The potassium current was eliminated by using
an intracellular potassium-free solution, which also included the potassium inhibitor Cs+ and
blocker TEA. The sodium current was blocked extracellularly with TTX.

The isolated calcium current is seen to be in the pA range, and roughly four orders of magni-
tude lower than peak sodium and potassium flux. A comparison with sodium also demonstrates
the much larger depolarization required to elicit (Ca++) activation (but, if the sodium action
potential is inhibited, a true calcium action potential is obtained). For increasing depolarizations,
the inward calcium current reaches a peak and then diminishes as the driving force (ECa − Vm)
decreases.

As noted above, the intracellular free calcium concentration in excitable cells is very low,
a typical value being 100 nM. Extracellular calcium may be four orders larger; the value in
Figure 5.18 is 5 mM.

For the calcium single channel the ohmic behavior seen in sodium and potassium channels,
and described in (3.26) and (3.27), cannot be expected. The reason is that at large depolarized
potentials membrane flux is limited by the lack of availability of (intracellular) calcium ions.
Because only a very small calcium efflux can take place, an inward-going rectification results.

The GHK current equation is an appropriate foundation for describing calcium currents [14].
Since calcium has valence zCa = +2, the calcium current, using (5.91), has the form

ICa = 4
PCaVmF

2

RT

[Ca]o − [Ca]ie2VmF/RT

1− e2VmF/RT
(5.69)
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Figure 5.18. Current–Voltage Relations for plateau current amplitudes measured in bovine
chromaffin cells. The cells contain CsCl, TEA, and EGTA and are bathed in a solution
containing TTX and 5mM Ca. (These steps inhibit the otherwise overwhelming sodium
and potassium currents.) From Fenwick EM, Marty A, Neher E. 1982. Sodium and calcium
channels in bovine chromaffin cells. J Physiol 331:599–635.

Figure 5.19. Theoretical I–V calcium Curve, as obtained from the GHK Eq. (5.69). The
dashed line denotes the calculated values assuming [Ca]i = 100 nM and [Ca]o = 2 nM.
Also plotted is the potassium current through the calcium channel based on (5.90), assuming
[K]i = 100 nM, [K]o = 2 nM, andPCa/PK = 1000. The solid curve is the total current.
From Hille B. 1992. Ionic currents. Sunderland, MA: Sinauer Associates.

The single-channel I–V curve obtained from (5.69) is plotted in Figure 5.19 utilizing the above
calcium concentrations. The curve shows the expected inward rectification.

The inward rectification is particularly large in view of the [Ca]o/[Ca]i = 20000 ratio and
also that calcium is divalent. The calcium Nernst potential, given by (58/2) log10 20000 = 124
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mV, is difficult to verify from the graph because of the small angle the curve makes with the
zero-current axis.

Following Hille [8], we may also examine the effect of the presence of potassium, which
while only slightly permeable in a calcium channel, can partially go through calcium channels
anyway because of potassium’s large concentration gradient. Assuming a relative permeability
of PCa/PK = 1000, the dotted curve in Figure 5.19 results for IK. Also plotted is the net current
Im = ICa + IK. This result shows the reversal potential at around 52 mV, less than half the
calcium Nernst potential.

5.5.3. Active Transport

As we have noted, the electrical excitability of nerve and muscle depends on the ionic
imbalance between intracellular and extracellular media. In view of the sodium influx both at rest
and in an action potential, and in view of the potassium efflux under these same conditions, one
would expect that after a while both intracellular and extracellular concentrations would reach a
Donnan equilibrium (i.e., when the resulting concentrations generate equal Nernst potentials of
all permeable ions resulting in equilibrium and an end to excitability).

This end would occur were it not for a process that transports these ions in the reverse
direction. Since the above-described ion movements are directed down their electrochemical
gradient, the reverse movement will require the expenditure of energy. For sodium, for example,
transport out of the cell must overcome both the inward electric field and (inward) diffusional
force.

Ion flow at rest and during an action potential is passive (down concentration gradients)
and consequently the restoration of baseline conditions requires a similar movement of ions but
necessarily against such gradients, hence requiring energy. The amount of energy must equal that
consumed by current while at rest and during propagating action potentials.

This energy comes from an active process, an ion pump, which derives such energy from
the hydrolysis of energy-rich ATP (adenosine triphosphate). The source of ATP is from the
metabolism of the foods we consume. This represents an interesting chain of events, leading to
the generation of electrical currents of the active cell.

Pump’s characteristics

An experiment that illustrates the above remarks was performed by Hodgkin and Keynes
[12] on the Sepia giant axon. The axon was first placed in a sodium-labeled potassium-free bath.
The axon then was repetitively stimulated for a period of time.

The result was that the intracellular space became loaded with radioactive sodium. The
axon then was transferred to a chamber, where it was perfused by normal seawater. The effluent
carefully monitored for the [Na+]-labeled ion (which is a measure of sodium efflux due to pump
action).

As shown in Figure 5.20, in the first 100 min of measurement a log-linear efflux is detected.
This log-linear relationship is explainable by a constant pump rate. With a constant rate, the
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Figure 5.20. The effect of the metabolic inhibitor 2:4-dinitrophenol (DNP) on the efflux of
radioactive sodium from a Sepia giant axon. From Hodgkin AL, Keynes RD. 1955. Active
transport of cations in giant axons from Sepia and Loligo. J Physiol l28:28–60.

efflux of labeled sodium is proportional to that present, a necessarily diminishing quantity. Stated
mathematically,

−d[24Na+]i
dt

= k[24Na+]i (5.70)

so

[24Na+]i = A exp(−kt). (5.71)

where [24Na+]i describes the intracellular concentration of the labeled sodium.

The addition of a metabolic inhibitor such as DNP or ouabain to the perfusate reduces the
sodium efflux to a very small amount, as seen in Figure 5.20. This reduction confirms that the
pump is metabolically driven and that the transport process is an active one.

Other experiments suggest that the rate of pumping is controlled by the intracellular (actual)
sodium concentration. Furthermore, if the potassium is excluded from the extracellular medium,
then the sodium efflux is reduced to one-third its normal value, suggesting that sodium extrusion
is loosely coupled with potassium uptake. In fact, it had been thought at one time that for each
sodium ion pumped out one potassium ion would be pumped in. If this were true, then there
would be no net contribution to transmembrane current from the pump.

However, we now know that three sodium ions are extruded for two potassium ions taken
up (a net current outflow) and consequently the active process contributes to the transmembrane
current. Under these circumstances, we say that the pump is electrogenic.
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Pump stoichiometry

A formal stoichiometric approach to pump behavior has been suggested by Chapman, Koot-
sey, and Johnson [3], namely,

ATP + x[Na]i + y[K]o −→ ADP + Pi + x[Na]o + y[K]i (5.72)

This expression describes the reduction of ATP to ADP + Pi in driving the process in an energy-
consuming direction (i.e., the energy required for sodium efflux and potassium influx is provided
by the energy derived from ATP).

As noted, x = 3, y = 2 appears to fit the experimental data, so that for each mole of ATP
split, three moles of sodium are extruded, two moles of potassium are taken up, and a net efflux
of one mole of cation occurs.

Pump included in steady-state model

The pump current can be included in a steady-state analysis. For example, it can be included
in the parallel-conductance model. We continue to require that the total transmembrane current,
I, under steady-state conditions be zero. However, the total current must now include the pump
current, Ip, and hence,

I = IK + INa + ICl + Ip = 0 (5.73)

Consequently, in place of (3.30) we have

gK(Vm − EK) + gNa(Vm − ENa) + gCl(Vm − ECl) = −Ip (5.74)

Solving forVm in (5.74) yields

Vm =
gNaENa + gKEK + gClECl

gK + gNa + gCl
− Ip
gK + gNa + gCl

(5.75)

It is seen in (5.75) that the pump current contributes to the resting potential. In fact, since
Ip (representing a net efflux of cation) is positive, Eq. (5.75) demonstrates (not surprisingly) that
the pump causes an additional hyperpolarization of the membrane.

An application of (5.75) arises with fibers that are loaded with (additional) sodium by first
being placed in a potassium-free medium at low temperature. Such a medium inhibits the pump
and causes the accumulation of intracellular sodium through normal passive influx.

Placed subsequently in a normal extracellular medium, such fibers show resting potentials
even more negative than the potassium Nernst potential, a result inexplicable from passive models
alone. This condition can be explained as arising from an elevated Ip (due to elevated intracellular
sodium concentration). Adrian and Slayman [1] obtained resting potentials 20 mV more negative
than EK in sodium-loaded muscle. Since the addition of ouabain (a metabolic inhibitor) to the
extracellular medium is found to abolish this hyperpolarization, its metabolic origin was verified.

Under resting conditions the net passive (p) plus active (a) flux must be zero [as demanded
in (5.73)]; however, this must also be true on an individual ion basis as well, since over time no
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change in intracellular or extracellular ionic composition can occur. Consequently,

pNa + aNa = 0 (5.76)

and

pK + aK = 0 (5.77)

where p is the passive and a the active flux of the subscripted ions; these are positive if outward,
negative if inward. If the ratio of sodium to potassium ions exchanged by the pump is r (we have
described r = 1.5), then more generally with r = |aNa/aK|, we have

raK + aNa = 0 (5.78)

Consequently, from (5.76) through (5.78) we get

rpK + pNa = 0 (5.79)

From (5.78) and (5.79) it is apparent that the pumped sodium/potassium ratio must correspond to
the passive ratio, a condition that must be true continuously while at rest and on the average under
active conditions. If the GHK equation is used, and chloride is assumed essentially in equilibrium,
then the resting condition (applied to the passive flux that is evaluated by this equation) requires

rIK + INa = 0 (5.80)

This result leads to

Vm =
RT

F
In
rPK[K]o + PNa[Na]o
rPk[K]i + PNa[Na]i

(5.81)

This resulting equation for Vm may be seen as a replacement or improvement over (5.1), because
it now takes ionic pumping into account. (Note that (5.81) reduces to (5.1) when r = 1].)

This expression (5.81) accounts for the resting potential lying closer to the potassium equi-
librium potential (i.e., more negative) than otherwise expected. It fails to account for special
situations (sodium loaded cells) where Vm is more negative than EK. However, these instances
appear to violate the assumption of a steady state (equilibrium) since the pump rate is abnormally
high to compensate for abnormally high intracellular sodium.

5.6. APPENDIX: GHK CONSTANT-FIELD EQUATION

The GHK equation is an equation giving the amount of current across a membrane, IK, as
a function of the transmembrane voltage across the membrane Vm. The GHK equation is an
alternative to the assumption by Hodgkin and Huxley that a linear approximation to the current–
voltage relation, e.g., IK = gk(Vm − EK), was sufficiently accurate.

Another aspect is that there are other ions than sodium, potassium, and chloride in the
extracellular and intracellular spaces of excitable cells. For squid axon these other ions play a
minor role and can be disregarded. In muscle and most nerve cells, however, calcium also is an
important permeable ion.
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5.6.1. Importance of Calcium Analysis

The calcium currents in physiological preparations are normally small. The small influx
nonetheless does have important consequences. One such effect is the influence of the calcium
ion on the gating properties of other ion channels. Calcium is also indispensable because of its
role as an “intracellular messenger.” By this term we refer to the action of calcium that results in
muscle contraction. In other tissues it results in synaptic (chemical) release.

5.6.2. GHK Assumptions

Until now, we have assumed that the instantaneous current–voltage characteristic of an open
ion channel is linear. Linearity, in addition to the independence principle, is the basis for the
single-channel model, the parallel-conductance model, and the Hodgkin–Huxley model. Linear
responses are, however, not quite right. Vertebrate Na and K channels in fact show a small
rectification (meaning the plot of current-versus-voltage curves rather than falling along a straight
line).

In other words, the relationship between current and voltage deviates from linearity. In this
case a possibly better description is provided by the GHK current equation. This improvement
is because, as we show below, the GHK current equation also shows an I–E curve that displays
rectification.

Derivation of the GHK equations begins again with the Nernst–Planck equation (Chapter 3)
and finds a description of current–voltage relationships. The goal is to do so without assuming
linearity of current with voltage, as was done by Hodgkin and Huxley.

A further simplification that is used in deriving the GHK equations is to recognize that each
membrane patch is essentially planar, in view of the very small membrane thickness. Thus a
one-dimensional mathematical treatment is a good approximation, even when the macroscopic
membrane shape is curved. One-dimensional variation allows variables to change as a function
of distance across the membrane from intracellular to extracellular.

The difficulty that remains in following this plan, based on mathematical arguments only, is
that the variation of Cp and also Φ within the membrane are unknown.

The assumption used by Goldman [17] to get around this difficulty was the following: Be-
cause the biological membrane is relatively thin, a plausible approximation to Φ within the
membrane is to assume that it varies linearly. That is, the assumption is that the electric field is
constant at each site within the membrane. With this assumption it becomes possible to integrate
the Nernst–Planck equation across the membrane. Thus one can address questions such as how
a change in electric potential across the membrane relates to changes in membrane permeability.
In the GHK derivation it also was assumed (a) that steady-state conditions apply and (b) that
variations in potential and concentrations within the membrane are transverse only.

These conditions are described in Figure 5.21 and in the following expression:

dΦ/dx = [Φ(d)− Φ(0)]/d = −Vm/d (5.82)
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Figure 5.21. One-dimensional membrane model with linear variations of intramembrane
potential for derivation of the constant-field equations of Goldman [17].

where Vm is the transmembrane potential and d is the membrane thickness, as shown in Fig-
ure 5.21. The polarity results from an association of x = 0 with the intracellular membrane edge
and x = d with the extracellular edge. For simplicity, we also restrict the following result to
univalent cations (extension to multivalent ions is straightforward).19

5.6.3. Analysis for One Ion

Because ∇Φ = dΦ/dx and ∇Cp = dCp/dx we obtain from (3.6)

jp = −Dp

[
d[Cp]
dx

+
CpF

RT

dΦ
dx

]
(5.83)

as the flux of the pth ion per unit area. Specifically for the potassium ion, inserting the constant-
field assumption expressed in (5.82) into (5.83) gives

d[CK ]
dx

= − jK
DK

+
VmF

RTd
[CK ] (5.84)

Rearranging (5.84) results in
d[CK]

− jK
DK

+ VmF [CK]
RTd

= dx (5.85)

Equation (5.85) relates quantities at differentxpositions within the membrane. As such, it does not
directly give the flux or flow across the membrane in terms of values across the membrane, or on
its intracellular or extracellular edges. With the goal of finding the flow across the membrane from
quantities known on the surface of the membrane, we integrate Eq. (5.85) across the membrane
from the left (x = 0) to the right edge (x = d).
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Performing the integration requires that one assume that the flow is at steady state. Under
this condition, jK is constant and has the same value at every x coordinate. (Otherwise, ionic
concentrations would be changing at x positions where jK changed.) Also,DK is simply assumed
to be constant within the membrane. The only variable quantity on the left-hand side of (5.85) is
thus CK(x).

With these assumptions, integration with respect to x results in

RTd

VmF
1n

[
VmF
RTd [CK]d− jK

DK

VmF
RTd [CK]0 − jK

DK

]
= d (5.86)

Equation (5.86) can be solved for jK to yield

jK =
DKVmF

RTd

[CK]d − [CK]0eVmF/RT

1− eVmF/RT (5.87)

5.6.4. Boundaries at Membrane Surfaces

In Eq. (5.87) the concentration of potassium required is that within the membrane. This
concentration within the membrane is, however, unknown, as the known potassium concentrations
are those in surrounding intracellular and extracellular volumes.

The concentrations in these intracellular and extracellular spaces, however, do provide an
important boundary condition for the concentrations within the membrane.

In other words, near the surfaces of the membrane the ionic concentrations within the mem-
brane [i.e., those described in (5.87)] are related to those just outside the membrane, both on the
intracellular and extracellular sides. They are linked by partition coefficients β. These partition
coefficients are assumed to be identical at the two interfaces.

Consequently, if we denote edge 0 of the membrane to be in contact with the intracellular
space of a cell and edge d in contact with the extracellular space (see Figure 5.21), then

[CK]d = βK[K]extra and [CK]0 = βK[K]intra (5.88)

where [K] denotes the potassium concentration in the bulk media.

The electric current density due to potassium ion flow is JK, which equals FjK. We also can
define potassium permeability PK as

PK ≡ DK βK/d (5.89)

5.6.5. GHK equation for J

Using (5.88) and the definition (5.89) equation (5.87) becomes

JK =
PKVmF

2

RT

[K]o − [K]i eVmF/RT

1− eVmF/RT (5.90)
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Expression (5.90) is a major result. It is referred to as the Goldman–Hodgkin–Katz (GHK)
current equation, in recognition of the contributions of these investigators [10]. If the ionic
valence is not equal to +1, then a more general expression (for the pth ion) results, namely,

Jp =
z2
pPpVmF

2

RT

[p]o − [p]i ezpVmF/RT

1− ezpVmF/RT (5.91)

where, as usual, subscripts o and i refer to the extracellular and intracellular (bulk) media, and zp
is the valence.

5.6.6. Combined Flow of Several Ions

An expression similar to (5.90) arises for JNa (replace K by Na), while for anions, such as
JCl, only a slightly different expression results [substitute z = −1 in (5.91)], namely,

JCl =
PClVmF

2

RT

[Cl]i − [Cl]o eVmF/RT

1− eVmF/RT (5.92)

Our particular interest in potassium, sodium, and chloride currents arises since they are important
components of the ion flux in most biological membranes. The total ionic current is the sum of
the constituent ionic components and, assuming none in addition to K, Na, and Cl, we have

J = JK + JNa + JCl (5.93)

Substituting the expression for the indefinite ion p (5.91) into the term for each specific ion enables
the summation (5.93) to become

J =
VmF

2PK

RT

w − yeVmF/RT
1− eVmF/RT (5.94)

where

w = [K]e +
PNa

PK
[Na]e +

PCl

PK
[Cl]i (5.95)

and

y = [K]i +
PNa

PK
[Na]i +

PCl

PK
[Cl]e (5.96)

5.6.7. GHK Resting Membrane Voltage

In a steady state, ∂Vm/∂t = 0 and J = 0. (For a passive membrane, J is the total ionic flux,
as in (5.93.) For J = 0, the GHK equations require that

(w − yeFVm/RT ) = 0 (5.97)

Hence one can solve the above equation for the resting transmembrane potential, Vrest, to get

eVrestF/RT = w/y (5.98)

or

Vrest =
RT

F
ln
w

y
(5.99)



BIOELECTRICITY: A QUANTITATIVE APPROACH 151

Applying (5.95) and (5.96) to (5.99) gives

Vrest =
RT

F
ln
PK[K]o + PNa[Na]o + PCl[Cl]i
PK[K]i + PNa[Na]i + PCl[Cl]o

(5.100)

Equation (5.100) is the GHK equation for resting transmembrane potential. It is a major result,
as it allows the computation of an expected resting potential from a knowledge of membrane
permeabilities. It applies specifically to an active membrane, for the case J = 0.

As with the parallel-conductance equation, the resting membrane potential is established by
weighted contributions of the potassium, sodium, and chloride constituents. The weighting is
described by permeabilities, in this case. While the permeabilities have the advantage of being
defined in terms of basic physical parameters, in fact they are found experimentally.

5.7. NOTES

1. Some choices are available to the reader with the material in this chapter. A reader interested primarily in understanding
the experimental and analytical methods used by Hodgkin and Huxley may wish to focus primarily on the first three
sections. Conversely, a reader interested only in HH simulations may wish to move quickly to the fourth and fifth
sections, referring back to earlier work only as needed. All readers may wish to use material from the sixth section
selectively, depending on specific interest.

2. As compared to circuits designed by humans, the membrane’s threshold response is more similar to that of a digital
circuit, rather than the linear response of many analog systems.

3. Explain why the spatial action potential may (or may not) be a mirror image and changed in scale, compared to the
temporal AP. Refer to Figure 8.2 to check your answer.

4. The Goldman-Hodgkin-Katz (GHK) equation is derived in the appendix of this chapter. Here this text quotes the
GHK result and gives an explanation of its terms.

5. Note also that the distinction between flux and current used in this book so far is essentially their units, with current
often in milliamperes and flux in milliamperes/cm2. This association of the terms with these units is not used by
everyone, i.e., one sees a number of variations in the units associated with the terms “current” and “flux” in the
references and literature.

6. The Hodgkin and Huxley equations arise from measurements of transmembrane current from a very large number of
channels. Consequently, they describe the space-averaged behavior of this ensemble. The HH model can be applied to
any membrane element that has a number of channels large enough to allow a good statistical average. This condition
is met in most experimental preparations and tissue models.

7. Making a choice of Δt involves issues of computational stability and accuracy, and also questions of what time
resolution is needed in the result. In general more resolution and accuracy flow from smaller values of Δt, but shorter
computation time and a smaller number of significant digits in intermediate results are benefits of larger values.

8. Recall that for a capacitor ΔV = ΔQ/C.

9. Vr ≈ −60mV for nerve. At rest it also is true that Vm = (gKEK + gNaENa + gLEL)/(gK + gNa + gL) as
shown in chapter 3.

10. Because calculations depend fundamentally on Δt rather than on absolute time t, the choice of time origin is arbitrary.
Even so, certain conventions, such as applying the first stimulus at t = 0, often are followed.

11. Note that the HH equations for α and β require vm as their argument, i.e., they are given by equations for deviation
from baseline, rather than for Vm, the absolute transmembrane voltage. More recent membrane models usually define
the functions with absolute voltage Vm as the argument.

12. There are several alternative plans for time-shifting values of n, m, and h that make use of known analytical results.
For example, one such plan for n comes from (5.20). In this plan, first advance vm. Then use vi+1

m to obtain αi+1
n

and βi+1
n . With these now obtain ni+1∞ and τ i+1

n using (5.21). An updated ni+1 is now obtained from ni assuming
a step change to vi+1

m which is held for a time Δt.

ni+1 = ni+1
∞ − (ni+1

∞ − ni)e−Δt/τi+1
n

Such a procedure is superior for simulating a voltage clamp, and might be superior otherwise when Δt is large.
However, for short Δt, such a procedure is numerically sensitive and not an improvement, as can be seen from using
a power series expansion of the e−u term in the equation above.
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13. That is, m changes quickly as Vm changes. Conversely, n and especially h respond, but more slowly.

14. Of course, one may wish to make the algorithm sensitive to the order of computation in steps 2 and 3, but if so one
wants to do so in a planned and purposeful fashion rather than in some accidental manner.

15. Mixed times are especially pernicious when manually recalculating results to check for errors.

16. Historical footnote: Around 1950 Hodgkin and Huxley performed some of the first simulations of membrane action
potentials. In the absence of present-day tools for high-speed numerical computation, the procedure used by Hodgkin
and Huxley to simulate an action potential was the following. They assumed a uniformly propagating impulse, which
enabled them to write an expression for the temporal behavior of the (propagating) action potential; the velocity is
a parameter in this equation. A correct guess of the velocity was confirmed by a simulation that converged. More
details of their simulation are given in Hodgkin AL, Huxley AF. 1952. A quantitative description of membrane current
and its application to conduction and excitation in nerve. J Physiol 117:500–544. However, by 1980 digital computer
capability had advanced to the point where later investigators performed simulations of membrane action potentials
routinely, although specialized facilities were required.

17. Such variations are of interest in their own right and also have value as a means of checking the calculations.

18. For example, Moore and Ramon (1974) were pathfinders; Beeler and Reuter adapted models to cardiac ventricular
simulations (1977); Pollard, Hooke, and Henriquez (1992) show large-scale methods; Roth and Wikswo (1994)
include the bidomain; and Cloherty, Dokos, and Lovel (2005) consider models from a more recent perspective. See
the references at the end of this chapter.

19. In early models of the biological membrane it was viewed as analogous to an ion-exchange membrane (a homogeneous
structure with uniformly distributed fixed charges). Both potential and permeable ion concentration was considered
a function of a single transverse variable. A more recent view, the one largely taken in previous chapters, is that the
membrane is predominantly an insulator pierced periodically by conducting channels that open and close. The latter
are quasi-ohmic when open. The channel walls are lined with charges which add electrostatic forces to the electric
field and diffusional forces. The constant-field model can be thought to apply, approximately, to all open ion channels.
Hence, taking account of channel density, it applies to the macroscopic membrane itself.
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6
IMPULSE PROPAGATION

If a long thin fiber is initially depolarized at one end, the initial stimulus and initial depolarization
at first has a limited extent. Thereafter propagation from the active (already depolarized) region
to adjoining regions will take place.

This chapter considers “impulse propagation” (action potential conduction) in a single fiber.
We note that the cylindrical fiber configuration is one that is found in nerve and striated muscle
and is of interest in its own right. Furthermore, one can utilize the results from this specialized
geometry in more complex and realistic preparations such as the nerve trunk, muscle bundle, and
even for cardiac muscle.

It is helpful to keep in mind that broader usage of the word “propagation” has several distinct
meanings. In one meaning, which does not apply to action potentials, propagation refers to
an object that moves from place to place, such as a bowling ball rolling down the lane of a
bowling alley. More abstractly, one thinks of a packet of energy moving from one place to
another. In another meaning, which does apply to action potentials, propagation refers to a series
of events where each event triggers one nearby, such as a wave of flame advancing through
trees in a forest fire. In electrophysiology, “propagation” is used in the sense of the second
meaning: each patch of excitable membrane initiates an action potential at an adjacent patch,
which then creates its own sequence of action potential events, including initiating yet another
patch.

The process by which excitation at one patch on a membrane initiates excitation at an adjacent
patch is complex in that it involves multiple things happening at the same time. Each thing by
itself is, however, relatively simple. Thus this chapter has a series of sections that consider each
of the component parts. The challenge to the reader is to put these parts together, mentally, into
a unified picture of propagation.
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Figure 6.1. The Linear Core-Conductor Model for a single fiber lying in a restricted
extracellular space. Longitudinal extracellular and intracellular currents are Ie and Ii,
while extracellular and intracellular potentials are designated Φe and Φi respectively.

6.1. CORE-CONDUCTOR MODEL

The phrase core-conductor model refers broadly to a set of concepts used for analyzing
problems existing mostly along one dimension, such as an excitable fiber. The phrase also refers
to a set of fairly formal assumptions about the location and direction of allowed current flow.

The core-conductor model is closely tied to a collection of equations, called the cable equa-
tions, that show quantitatively how variables along and across the fiber relate one to another. The
core-conductor model is extremely useful in electrophysiology, and it is the easiest framework for
understanding propagation. Thus we consider each of the aspects of the core-conductor model,
in turn.

6.1.1. Electrical Model for Single Excitable Fiber

An electrical model of a single fiber can be developed based on concepts from electric circuits.
If the reasonable assumption of axial symmetry is made, then the resultant model is essentially
one dimensional. For an excised fiber with a confined bounding fluid, extracellular currents
flow in the longitudinal direction, except where they cross the membrane. Inside the confined
intracellular region, current is again mostly one directional, along the fiber’s axis.

The model depicted in Figure 6.1 reflects this basic expectation. In the figure, Ie is the
longitudinal current in the extracellular region and Ii the longitudinal current in the intracellular
region.1

The extracellular and intracellular resistance to flow is basically that of a cylindrically shaped
resistance; it is portrayed in Figure 6.1.

In Figure 6.1 the potential along the extracellular path is designated Φe, while that along the
intracellular path is Φi. For a graphical representation the structure is illustrated as a repetitive
network of segment length Δx, but in fact Δx → 0, and the analysis here is based on the
continuum. The model illustrated in Figure 6.1 is known as the linear core-conductor model.
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Figure 6.2. Electrical Representation of a Cylindrical Fiber Membrane element of length
Δx. Under (linear) subthreshold conditions, rm is constant.

Figure 6.3. Electrical Representation of the Membrane for a fiber of length Δx under
transthreshold conditions. The conductances gK, gNa and gl are found from the Hodgkin–
Huxley equations and converted to units of S/cm for the linear core-conductor model.

The transmembrane electrical behavior of a fiber depends on the properties of the membrane.
There are two distinct conditions of interest. The first is under subthreshold excitation when, as
we have noted, each membrane segment behaves as a simple, passive, RC structure. The second
is under transthreshold (or near-threshold) conditions when the membrane behavior is nonlinear
and requires a description such as given by the Hodgkin–Huxley equations. The open box in
Figure 6.1 is a symbol for either one of these two membrane conditions.

In Figure 6.2 we show, graphically, the model of a membrane element. Under subthreshold
conditions, both R and C are nearly constant.

Figure 6.3 shows (the electrical representation under transthreshold conditions. In the latter
Figure the schematic expression of the Hodgkin–Huxley model for ion current plus the capacitive
current is given. The conductivities in Figure 6.3 are nonlinear and determined from the Hodgkin–
Huxley equations (gK = gKn

4, gNa = gNam
3h, etc.). This representation is required for both

transthreshold or near-threshold conditions (i.e., when the membrane behavior is nonlinear).
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Figure 6.4. Photomicrograph of a Transverse Section of a Cat Saphenous Nerve Fascicle.
Few fibers have a circular cross-section and some are quite convoluted, but they can be
approximated as circular or, better, as elliptical. Except near the periphery the interstitial
currents can be expected to be essentially axial. If all fibers are approximately the same
and behaving synchronously, and if the total number is N while the total interstitial cross-
sectional area is Ae′ , then each fiber is associated with an interstitial cross-sectional area
of Ae/N . Figure 6.1 would then apply to a typical fiber with re = Re/(Ae/N). This
Figure is taken from Olson W. 1985. PhD dissertation. Ann Arbor: University of Michigan;
also, Olson W, Wit X, BeMent SL. 1981. Compound action potential reconstructions and
predicted fiber diameter distributions. In Conduction velocity distributions. Ed LJ Dorfman,
KL Cummins, LJ Leifer. New York: Liss. Reprinted by permission of Wiley-Liss Inc., a
subsidiary of John Wiley and Sons.

However, the Hodgkin–Huxley equations will also reduce to the linear lumped parameter network
given in Figure 6.2 for subthreshold signals.

6.1.2. Core-Conductor Model Assumptions

The assumptions that underlie the linear core-conductor model are as follows:

1. Axial symmetry is assumed, that is, ∂/∂ξ = 0 (where ξ is the azimuth angle).
Thereby all field quantities are functions of r and x (cylindrical coordinates) at most.
In fact, we usually assume that transmembrane and longitudinal currents as well as intra-
cellular and extracellular potentials are functions only of the axial coordinate x (i.e., one
dimensional). It is in this sense that the linear core-conductor model is linear.

2. Consistent with item 1, it is assumed that the external path carries axial current only.
Thus the model may represent an excised fiber lying in the air but with a small film of
extracellular fluid (appropriate in an in vitro study). But it would also describe a typical
fiber in a large fiber bundle, such as illustrated in Figure 6.4. In this case extracellular
(interstitial) current is also confined to the axial direction, except possibly for peripheral
fibers.

For a single fiber in an extracellular medium of considerable extent, sometimes one can
set re ≈ 0 in Figure 6.1, because the extracellular potentials are small. (Resistance re is
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low because there are wide pathways for parallel current.) In setting re = 0, one forgoes
an ability to determine extracellular potential variations from this model, because they
are set equal to zero at the outset. On the other hand, the linear core-conductor model
may correctly evaluate all other (mainly intracellular) fields; the extracellular field can
then be found subsequently using a field approach.

3. The internal conductive path is assumed to confine current to the axial direction alone.
Since in general the fiber radius is many times smaller than fiber length, this approximation
is normally very well satisfied.

4. For nerve and muscle under passive conditions the membrane is represented by a parallel
combination of the leakage resistance rm (Ωcm) and membrane capacitance cm (μF/cm).
Under active conditions, a constant rm no longer suffices in determining the transmem-
brane ionic current because it is not a constant, and the Hodgkin–Huxley (or similar)
formulation is required.

The core-conductor model and its mathematical children, the cable equations, apply imper-
fectly to any real situation. It is remarkable, however, how valuable they have been found to be,
both in bioelectricity and in other problems (such as the trans-Atlantic telegraph cable). Their
value arises because they capture essential relationships that are present between variables along
and across the cable at each position along its length.

6.2. CABLE EQUATIONS

Application of Kirchhoff’s laws (for electrical circuits) to the core-conductor model network
leads to the cable equations, which are described in the sections that follow. These equations are
the basic mathematical relationships used to study the electrical response of a uniform fiber to
subthreshold and transthreshold stimuli.

The following sections are organized to answer three questions in succession:

1. How are axial currents related to the voltage across the membrane, Vm? The answers to
this question provide the foundation required for answering the next two.

2. How does one find the membrane current, im, if one knows only Vm? Answering this
question is critical to the sequence of steps in analyzing or simulating propagation.

3. Finally, if one knows the transmembrane potentialVm, how does one find the potentialsφi
and φe, the intracellular and extracellular potentials individually? Relating the potentials
inside and outside to the transmembrane potentials is fundamental to understanding what
occurs within and around fibers as a consequence of transmembrane voltage changes.

Essentially, these questions ask how all the other important variables can be found from
Vm, if one knows, at a particular moment, Vm at all the positions up and down the length of the
fiber. The questions are posed in this way because Vm often is the base variable known from
measurement or computer simulation. If Vm is known, other values can usually be deduced.
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6.2.1. Axial Currents

Axial currents from potentials

The decrease in potential per unit length along the intracellular (or interstitial) axial path
equals the axial current times the resistance/length (i.e., the “IR drop”) according to Ohm’s law.
Consequently,

∂Φe
∂x

= −Iere (6.1)

and
∂Φi
∂x

= −Iiri (6.2)

In (6.1) and (6.2) Ie and Ii are the axial extracellular and intracellular current, and re and ri are
the intracellular and extracellular axial resistances per unit length. The axial variable is x. The
minus signs (the lack of which are the source of many errors) arise because we define positive
longitudinal currents to be flowing in the positive x direction. The potential must decrease with
increasing x for current to flow in the positive x direction (because current flows from a higher to
a lower potential region).

Axial current linked to membrane currents, stimulation

Intracellular Axial. If current leaves the intracellular space by crossing the membrane, then
the longitudinal intracellular current will show an axial decrease while a positive transmembrane
current will also be seen. The loss of longitudinal current (per unit length) must precisely equal
the transmembrane current (per unit length), because the total current must be conserved. This
conclusion is a simple application of the conservation-of-current principle of Kirchhoff’s current
law.

Expressed mathematically, where im is the transmembrane current per unit length, we have

∂Ii
∂x

= −im (6.3)

Thus in Figure 6.5 Ii increases at b because im is negative (inward), and Ii decreases at d because
im is positive (outward).

Extracellular Axial. The extracellular longitudinal current may increase with increasing axial
distance x either from the arrival of current that crosses the membrane (transmembrane current,
im) or due to the introduction of a stimulus current from outside the preparation through inserted
electrodes.

For convenience, the stimulus current is expressed as a current per unit length, ip, where ip
is positive for current entering the extracellular space via polarizing electrodes. These units then
correspond to the same units used for im. Taking both ip and im into account, we have

∂Ie
∂x

= im + ip (6.4)

Thus in Figure 6.5 Ie increases at a, because some of the stimulus current remains on the extra-
cellular side, that is, in the Figure im is negative, but ip is even more positive.
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Figure 6.5. Current Pathways Cartoon. A membrane (dotted line) separates the extracellular
space (above) from intracellular space (below). Letters a through e at the bottom identify
particular x coordinates. Stimulus current Ip enters the extracellular space through an
extracellular current source at b, and leaves the extracellular space through an extracellular
current sink at d. As drawn, the stimulus current divides into an intracellular component
Ii and an extracellular component Ie at b, then returns at d. A negative transmembrane
current (negative because inward) exists at b and a positive transmembrane current exists
at d. Total current I is zero at a and e but equal to Ip at c. For purposes of discussing an
example, it is convenient to assign Ip = 3 and Ii = 1, so Ie = 2. Thus the membrane
current is −1 at b and +1 at d.

It is also possible to insert polarizing electrodes into the intracellular space via microelec-
trodes, in which case ip must be included in (6.3) and not (6.4).

Since ip describes applied current density, current from a point electrode will require a
delta function description. A single electrode at the origin inserting 1 mA will be described by
ip = 1.0δ(x) mA; δ is a unit delta function, namely, δ(x) = 0 (x �= 0), δ(x) =∞ (x = 0), and∫
δ(x)dx = 1 (assuming the limits include the origin).

Total Axial Current. The total axial current refers to the sum of the currents in the intracellular
and extracellular regions at each point along the fiber. Analytically, use of the total axial current
is particularly helpful in determining the effects of stimuli, where one knows the total current
applied but not always its division across the membrane. Suppose I is defined as

I = Ii + Ie (6.5)

Then from (6.3) and (6.4) one has

∂I

∂x
= im + (−im + ip) = ip (6.6)

Thus in Figure 6.5 I = 0 at a and e, but I = Ii + Ie = 3 at c. (An interesting exercise is to apply
each of Eqs. (6.3)–(6.5) to each of the x coordinates a to e in Figure 6.5.)
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Figure 6.6. Transmembrane Potential and Axial Current from simulation of propagation
on squid axon of diameter 600 μm at T = 6.3◦C. Hodgkin–Huxley membrane parameters
and equations are utilized. Ri = 30 Ωcm and Re = 20 Ωcm. The Figure describes the
spatial behavior of the transmembrane potential (scale on the left) and the intracellular axial
current (scale on the right). The lines overlap so that the time relationships are evident. Vm
is given in mV and Ii in μA.

Axial currents linked to transmembrane potentials

Since, by definition, Vm ≡ Φi − Φe, we have

∂Vm
∂x

=
∂Φi
∂x
− ∂Φe

∂x
= −riIi + reIe = −riIi + re(I − Ii) (6.7)

where (6.1) and (6.2) have been employed.

Now, by simplifying (6.2), we obtain

∂Vm
∂x

= −(ri + re)Ii + Ire (6.8)

Rearranging this equation (6.8) algebraically, one obtains

Ii =
−1

(ri + re)

[
∂Vm
∂x
− Ire

]
(6.9)

An example of the relationship of axial current and Vm is seen in Figure 6.6, where Vm and
Ii are plotted on a common horizontal axis. As expected from expression (6.9), axial current Ii
is most positive in the Figure near x = 24 cm, where the slope of the Vm waveform is its most
negative.

In the simulation plotted in the figure, the time shown is after the stimulus is over; hence
I = 0, so that (6.9) shows that Ii is proportional to the negative of the derivative of Vm. As
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the action potential moves to the right (in the figure, toward positive x), one sees that the largest
intracellular current is also to the right. The direction of the axial current is to the right, toward
the part of the fiber not yet depolarized.

6.2.2. Membrane Currents

With the core-conductor model it is easy to find membrane current at any point along the
fiber from Vm(x) or from φi(x). The following sections consider these cases in turn.

Membrane current from Vm

The equations developed above to answer the first question now provide us a base of refer-
ence information that can be immediately exploited to answer a critical question: How can the
membrane current at a particular point along the fiber be found, if one knows Vm along the fiber?

If (6.8) is differentiated with respect to x, then

∂2Vm
∂x2 = −(ri + re)

∂Ii
∂x

+ re
∂I

∂x
(6.10)

Substituting for the derivatives of Ii (6.3) and I (6.6), we have

∂2Vm
∂x2 = (ri + re)im + reip (6.11)

Equation (6.11) is valid under the core-conductor assumptions made earlier. Here again we note
that the use of either Vm or vm is correct, since both will have the same spatial derivative.

Algebraic rearrangement of (6.11) gives the expression for the membrane current as

im =
1

(ri + re)

(
∂2Vm
∂x2 − reip

)
(6.12)

Equation (6.12) shows that the membrane current, im, is proportional to the second spatial deriva-
tive of the transmembrane potential Vm, if ip = 0. The proportionality involves both the intra-
cellular and extracellular quantities, ri and re. These relationships are illustrated in Figure 6.7,
where one sees that the outward (positive) peak of transmembrane current im is at the leading
edge of the action potential, as it moves to the right. The peak inward current occurs during the
upstroke of vm. Two later and much smaller peaks of inward and outward current occur later in
the action potential.

Membrane current from Φi

Consider now the equation for im that results from differentiating Eq. (6.2) with respect to
x and then using (6.3) for ∂Ii/∂x. The result is

im =
1
ri

∂2φi
∂x2 (6.13)

Equation (6.13) is valid whether or not the assumption of axial extracellular current [necessary
for (6.1), and hence (6.23), to be true] is satisfied. Here im is found solely from intracellular
quantities.
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Figure 6.7. Propagating Action Potential and Transmembrane Current. The data come
from a simulation of propagation on squid axon of diameter 600 μm at T = 6.3◦C. The
parameter values follow those of Hodgkin–Huxley, whose equations are utilized.

Note that up to this point no assumptions have been made about whether the membrane is
subthreshold or transthreshold and few regarding the presence or absence of stimulating currents.
The expressions reflect the linear (resistive) character of the intracellular and extracellular regions.
The expressions, in other words, describe the intrinsic electrical properties of fibers (aside from
their membranes).

6.2.3. Potentials φi and φe from Vm

We now pick up again from the answer to question 1 to pursue a different line of reasoning,
that of finding φi and φe if one knows Vm(x)

From (6.8), the equation for the spatial derivative of Vm, and using (6.2), which gives the
derivative of φ with respect to x, one obtains

∂Vm
∂x

=
(ri + re)

ri

∂Φi
∂x

+ Ire (6.14)

Rearranging (6.14) gives
∂Φi
∂x

=
ri

ri + re

∂Vm
∂x
− rire
ri + re

I (6.15)

because
∂Φe
∂x

=
∂Φi
∂x
− ∂Vm

∂x
(6.16)

Then substituting (6.15) into (6.16) results in

∂Φe
∂x

=
(

ri
ri + re

∂Vm
∂x
− rire
ri + re

I

)
− ∂Vm

∂x
(6.17)
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and therefore
∂Φe
∂x

= − re
ri + re

∂Vm
∂x
− rire
ri + re

I (6.18)

If it is assumed that all applied currents lie in a finite region near the coordinate origin, then at
x =∞ the membrane may be assumed to be in the resting state and hence vm = 0.2

We also choose as a reference φe(∞, t) = 0, so that φi(∞, t) = 0. If (6.18) is now integrated
from an arbitrary value of x to∞, then

φi(∞, t)− φi(x, t) =
ri

ri + re
[vm(∞, t)− vm(x, t)]− rire

ri + re

∫ ∞
x

I(x)dx (6.19)

and, recalling boundary conditions at infinity, we have

φi(x, t) =
ri

ri + re
vm(x, t) +

rire
ri + re

∫ ∞
x

I(x)dx (6.20)

In (6.20), the first term on the right corresponds to the homogeneous solution of (6.15) (i.e., with
I = 0), while the second term is the particular solution. Similarly, from (6.18) integration yields

φe(∞, t)− φe(x, t) = − re
ri + re

[vm(∞, t)− vm(x, t)]− rire
ri + re

∫ ∞
x

I(x)dx (6.21)

for which

φe(x, t) = − re
ri + re

vm(x, t) +
rire
ri + re

∫ ∞
x

I(x)dx (6.22)

Consider a propagating action potential, aside from some short initial period of stimulation.
Under this circumstance,

I = 0 and the integrals in (6.20) and (6.22) drop out.

If all ip lie in the region x ≤ 0, say, then for x ≥ 0 it is again true that I = 0 and the
integrals drop out (for x ≥ 0).

For these conditions φi, φe, and vm are linked by voltage-divider expressions.

The voltage-divider expressions are

φi =
re

ri + re
vm (6.23)

and

φe = − ri
ri + re

vm (6.24)

Note that (6.23) and (6.24) satisfy the requirement that vm = φi − φe.
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6.3. PROPAGATION

When excitation is initiated at a site on an excitable fiber, the changes at the site of initiation
include a rapid increase in sodium permeability, an influx of sodium ions, and a change in
transmembrane potential to a voltage approaching the sodium Nernst potential. These changes
are those of a membrane patch undergoing an action potential, as described in the preceding
chapter.

That is not all that happens, as it is observed that the action potential at the first patch somehow
initiates excitation at the sites nearby, and then those patches at sites at still greater distances, until
a chain-reaction process has occurred, and all adjacent excitable membranes have undergone the
action potential sequence. The question arises naturally as to how this sequence happens, that
is, why does any portion of the fiber become excited, other than the first? One might argue that,
after all, excitation was initiated only in one place.

6.3.1. Local Circuit

To understand why a single patch on a continuous, excitable and unmyelinated fiber cannot
be active alone, consider the currents that flow in the vicinity of the leading edge of an action
potential. As shown in Figure 6.6, there is an intense intracellular axial current in the midst of
the action potential upstroke.

In Figure 6.6 the influx of sodium associated with the rising phase of the action poten-
tial crosses the membrane and then flows in the direction of propagation. The current in
the direction of propagation is responsible for depolarizing the axon ahead of the excitation
wave (i.e., the spike of axial current in the Figure is positive, so its direction is +x, or to the
right in the figure.) At a particular site, there is temporally increasing depolarization ahead
of the action potential, which eventually results in activation of the membrane at that site.
Thereby the region of excitation shifts, and propagation of the activation wave moves to the
right.

Corresponding to the intense axial current over a short length of the axis, there are intense
transmembrane currents. As shown in Figure 6.7, there is an intense outward transmembrane
currents in the region where the transmembrane potential begins to rise, and an intense inward
current midway through the upstroke. This inward current, largely due to an influx of sodium
ions, powers the overall excitation process.

A cartoon depicting the currents flowing during activation is shown in Figure 6.8. In the
figure, propagation is moving from left to right. The band in the middle is the membrane, with
the region above the extracellular volume and the region below the intracellular volume. Multiple
current pathways during the sodium influx of activation are illustrated in the figure, crossing the
membrane toward the intracellular side around point A. Some sodium influx near A is offset by
potassium efflux and is ignored. Also not depicted is the constant resting potential and associated
membrane charges. One might consider these to be superimposed on the time-varying component
under consideration.
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Figure 6.8. Local Circuit Pattern. Panel I (top): The arrow indicates the direction of
excitation. Sketches from Figure 6.7 of a segment of the Vm and Im curves also are
present. Panel II (bottom) is a sketch of possible current pathways. The two horizontal lines
represent the fiber’s membrane, with the extracellular volume above and the intracellular
volume below. Five possible current flow pathways are depicted (and discussed in the text).
LettersA, B, and C along the axis at bottom identify three major regions asA, sodium influx;
B, transition; C, potassium outflux. Along the fiber at the moment depicted, currents of
propagation are inward at A, due to the inward movement of sodium ions. At B there is an
outward movement of potassium ions. At C there is in effect an outward capacitative current
associated with axial current down the longitudinal pathways. Horizontal locations A, B,
and C drawn in panel II show currents that correspond approximately to the transmembrane
potentials and currents at the same horizontal position.
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Five numbered current flow pathways are sketched. These are

1. Sodium influx at A along path (1) charges the membrane at A, causing rising Vm. This
effect is recognized by the rising transmembrane potential at A (based on Vm = Q/Cm).

2. Path 2 identifies sodium influx near A moving down the fiber’s interior, and then moving
back out across the membrane (near C), perhaps as a potassium current. This portion of
the sodium influx is a closed current circuit linking A with more distal region C.

3. Sodium influx near (A) moving down the fiber and charging the membrane near (C), that
is, path 3 becomes the capacitative current IC near C. This current results in the initial
depolarization at the “foot of the action potential.”

4. Sodium influx initiates currents moving down the fiber’s interior, and moving back out
across the membrane (near B). We describe in path (4) ion flow across the membrane at
B as a component of the closed circuit, perhaps through potassium channels.

5. Sodium influx nearA moves down the fiber and charges the membrane near B, i.e., forming
the capacitative current IC near B. Charging the membrane in this region, because of rising
Vm, triggers sodium currents. As the regenerative process associated with activation is
triggered, there is a rapid rise in vm associated with the large sodium influx signaled by
the inward im.

Other points to note about the cartoon:

In the membrane at A the ion flow is mainly due to sodium, as we learned in the previous
chapters.

Within the intracellular or extracellular space, current loops shown in Figure 6.8 do not
represent a simple continuation of sodium ion flow but rather represent other carriers
which are present in the intracellular and extracellular media. Their relative contribution
depends on their transfer number and their relative concentration.

An important aspect of local circuit behavior is seen at B, where depolarization of the
membrane is underway. That depolarizing is happening can be confirmed either by
examining the capacitance [where the depolarization is given by

∫
(Imc/Cm)dt) or the

resistance (where there is an ImrRm drop of the same magnitude, where Im = Imr +
Imc). Eventually the depolarization at B will cause the transmembrane potential to reach
threshold, at which time conditions at B become those shown in Figure 6.8 for site A (i.e.,
site B will then become the point of high sodium influx). Such a shift occurs continuously
with uniform propagation.

During the early phase of the action potential at C, when the membrane can be char-
acterized as passive and linear, it is an outward membrane current that accounts for the
depolarization.

The cartoon is illustrative but not comprehensive. It includes artistically drawn attributions
of the dominant effects. In fact, a mixture of current components of all aforementioned
kinds are present at A, B, and C.
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As an aside, we note that when the active region of the membrane is at a distance from a
resting patch, an outward membrane current at the patch depolarizes it slightly. The current flow
at the patch arises solely from the electric circuit currents from the active region some distance
away. In contrast, when propagation results in the patch itself becoming an active site, an inward
current depolarizes it further. In the latter case it is essentially diffusional forces which are
responsible for the depolarizing current. Circuit theory does not recognize this non-electrical
generator, making the matter seem paradoxical when forced into a circuits perspective.3

In summary, the local currents are a consequence of differences of potential between the
portion of the fiber where the action potential is occurring and the adjacent region. These currents
are known as action or local circuit currents. They create an unstable transmembrane potential
pattern, because the currents flowing forward from the excitation wave into the adjacent unexcited
regions have the effect of starting an action potential there too. The overall result is that action
potentials are created in sequence down the fiber, with each active region on the fiber exciting the
next unexcited region nearby.

6.3.2. Mathematics of Propagating Action Potentials

We now consider propagation again, this time from a mathematical perspective. Propagation
requires an action potential at one site to initiate an action potential at an adjacent site. To
understand this process, it is helpful to begin again with the membrane current equation:

Im(x, t) = Iion(x, t) + IC(x, t) (6.25)

The membrane current equation (6.25) is written here with the functional dependence (x, t)
included explicitly, so as to emphasize that the equation must hold at each site along the fiber,
and at each time in the action potential’s evolution. In that sense, the equation might be thought
of as identifying a large set of relationships, of which each particular x and t is one example.

As for a patch, conversion of the seemingly static relationship of (6.25) into an equation for
temporal variation requires recognition that the capacitative current involves the equation for the
Vm time derivative, i.e.,

IC(x, t) = Cm
∂Vm(x, t)

∂x
(6.26)

so that
∂Vm(x, t)

∂t
=

1
Cm

(Im(x, t)− Iion(x, t)) (6.27)

The above equation (6.27) is integrated with respect to time, usually numerically, to find the
temporal evolution of Vm. [Units for Eqs. (6.26) and (6.27): If Cm is in Farads, then Im is in
Amperes. Alternatively, if the units of Cm are F/cm2 then Im and Iion must be A/cm2. The latter
are chosen more frequently, so as to have units compatible with HH and most other membrane
models.] Performing an integration of equation (6.27), whether analytic or numerical, requires
an expression for each of the two currents on the equation’s right-hand side, the ionic current
Iion, and the total current Im. Such expressions are given in the sections that follow.

So far this sequence of equations follows the pattern of development that was used for an
action potential for a single patch, as was done in Chapter 5. The formal inclusion of the (x, t)
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dependence identifies the fact that action potentials can vary from one site to another, but it does
not show how one site connects to another, or that they are linked in any way.

Why therefore is there propagation, rather than simply individual action potentials at indi-
vidual sites along the fiber? In other words, how does any spatial linkage or temporal sequence
become a part of the mathematics? To resolve this question, each of the two currents in (6.27)
must be examined carefully.

Membrane ionic current

The ionic current arises because transmembrane current density is related to the transmem-
brane potential Vm through intrinsic membrane properties.

The particular relationship depends on the species and type of tissue, and is exemplified by
the membrane equations that were given by Hodgkin–Huxley, as described. Thus from that work
we have the ionic current equation

Iion(x, t) = gK(x, t) (Vm(x, t)− EK)
+ gNa(x, t) (Vm(x, t)− ENa)
+ gL (Vm(x, t)− EL) (6.28)

In equation (6.28) the dependence of ionic current on location and time is noted explicitly by the
inclusion of the dependence (x, t) after those values that change in these respects. Note that the
transmembrane potential Vm is used to determine in all three ionic components to determine the
total ionic current. The transmembrane potential is a function of (x, t), i.e., in general it will have
a different value at each time and at each position at that time. Conductances gK and gNa also
are functions of space and time because they depend on the underlying probabilities n, m, and h.

The ionic current equation (6.28) does not, however, give any particular insight into the
mechanisms of propagation. That is, Iion depends only on the transmembrane voltage and the
conductances at its own site. Thereby, there is nothing in the ionic current equation that links one
point on the fiber with any other.

Total membrane current for fiber

The mechanism of linkage, and thereby of propagation, only becomes evident when one
examines the total current term Im(x, t) in the equation for the Vm time derivation (6.27). Recall
from (6.12) above that

im =
1

(ri + re)

(∂2Vm
∂x2 − reip

)
(6.29)

Recall (from Chapter 2) that the transmembrane current per unit area, Im, is related to im (the
current per unit length) through the cylindrical geometry, i.e.,

Im = im/(2π a) (6.30)

Thus we get the membrane current equation

Im =
1

(2πa)(ri + re)

(∂2Vm
∂x2 − reip

)
(6.31)
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This equation contains within its terms the explanation for linkage and propagation, as discussed
below.

Alternative forms for the membrane current equation

There are several alternative forms and special cases of the membrane current equation (6.31)
that frequently appear. These include:

Transmembrane stimulus. In this general form for Im, an explicit term Is is added to account
for a transmembrane stimulus, in the fashion of Chapter 5, giving

Im =
1

(2πa)(ri + re)

(∂2Vm
∂x2 − reip

)
+ Is (6.32)

Membrane current if no stimulus. A condition associated with a propagating action potential
on a single fiber is that, generally, ip = 0 and Is = 0. That is, once propagation is initiated
propagation continues even in the absence of any external stimulus. Furthermore, essentially
from the equations for defining I (6.5) and differentiating it (6.6), Ii = −Ie. Under these
conditions the equation for the second derivative of Vm (6.31) specializes to

Im =
1

(2πa)(ri + re)

(∂2Vm
∂x2

)
(6.33)

Membrane current if high extracellular conductance. Frequently, the fiber is considered to
lie in an extensive extracellular medium where one can assume re ≈ 0 (e.g., the Hodgkin–Huxley
experimental chamber for study of squid axon permits this approximation).

In addition, the conversions of Chapter 2 can be used to express resistance per unit length,
ri, in terms of intracellular resistivity, Ri (Ωcm). With these changes (6.33) converts to

Im =
a

2Ri

(∂2Vm
∂x2

)
(6.34)

Discussion of membrane current equations

The membrane current equation (6.31) relates density of current crossing the membrane
(also called the transmembrane current density) to the second spatial derivative of transmembrane
potential. Note in particular that the spatial derivative of Vm appears in (6.31), and that the spatial
derivative depends on the relationship of Vm at x with Vm at other points in its neighborhood.

Said differently, even if Vm were to remain constant at a particular x, a change in Vm at
points in its neighborhood will change the spatial derivative of Vm at x.4

From a more physical or physiological perspective, the relationship expressed in (6.31) is tied
to the fact that in a fiber currents can flow axially. Regions are linked by currents coming inward
across the membrane at one place, and moving outward at another. Thus if one looks again at
regions A and B in Figure 6.8, one sees membrane currents flowing inward across the membrane
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at A, axially down interior of the fiber, and then across the membrane outward in region B. That
is, the membrane current going out at B depends on the membrane current coming in at A.

Equation (6.31) also ties transmembrane currents to the curvature of Vm(x). The association
of these transmembrane currents with the transmembrane voltage was seen in Figure 6.7, where
the peaks of im occur at the points of peak curvature (extrema of 2nd spatial derivative) of the
curve for Vm(x).

Note that the relationship of transmembrane voltage to membrane currents arises from a
condition imposed by the structure of the conducting region (of the load seen by the membrane),
and is thereby embodied in the mathematics of the membrane current equation (6.31). It is this
dependence of membrane current at one x on the transmembrane voltages in the surrounding
neighborhood that is the cause of propagation.

In other words, the mechanism that allows an action potential at one place to trigger an
action potential at a site nearby is the mechanism of axial currents from one place to another. The
result is that current exits the membrane at places different from those where it enters, leading to
excitation at a different membrane location.

6.3.3. Numerical Solutions for Propagating Action Potentials

A numerical solution for propagating action potentials is built on the mathematics above and
then furthered by a series of additional steps. The necessary steps are:

Division of the continuous variable time into a list of discrete times separated by interval
Δt, and division of the length of the fiber into a discrete set of spatial segments of length
Δx.

Presentation of the key mathematical equations of propagation in a form that corresponds
to the discretization of time and space.

Development of a step-by-step procedure for the numerical solution of the discretized
variables.

We consider each of these items in turn.

Division into discrete steps in space and time

First we divide the fiber into a sequence of discrete axial elements with membrane crossings
at the ends, as illustrated in Figure 6.9. The division also establishes sequential points (or nodes)
spaced at intervals Δx as sites of membrane crossings. The nodes and crossings start at one end
of the fiber and continue to the other.

The significance of the division is that one now thinks of most quantities that vary with
axial position, such as Vm(x), as having a tabulated value at each node, and changing in some
simple fashion (such as linearly) in between nodes, so that the values at the nodes are a sufficient
representation of what is happening. In this fashion the description of the actual continuous
function is replaced by a list of values. With enough nodes, there is not much difference in



BIOELECTRICITY: A QUANTITATIVE APPROACH 173

Figure 6.9. Fiber Model for Propagation. The fiber is represented by a network of electrical
components, as in Figure 6.1. The continuous fiber lies along the x axis. There is a resistive
extracellular path (along top line) with resistance per length re, a resistive intracellular path
(along bottom line) with resistance per length ri, and a discrete set of membrane crossings.

practice between one view and the other. However, because of the large changes occurring in
short distances within an action potential, a good choice of node spacing is not always apparent,
and the best choice may vary depending on the goal of the analysis.

We also choose a temporal discretization, Δt.5

An example of a discretized fiber is given in Figure 6.9. Here there are only five membrane
crossings, separated by axial distance Δx and numbered 0 to 4.6 A stimulator is connected to
the extracellular nodes outside of crossings 0 and 4. The stimulator has its current sink at a and
current source at e. Each membrane crossing represents a segment of the fiber surrounding the
crossing, as suggested by the dotted lines around crossing 1. The width of each band is Δx,
except for the bands at the ends, which have a width half this much, because membrane is present
on only one side of the node.

Propagation equations discretized

The equation for the total current (6.25), given in discretized form, is

Ii,jm = Ii,jion + Ii,jC (6.35)

In (6.35) i is present as an index of time. One might think of i as the line number for a list of
the times to be evaluated. The j is present as an index of spatial position, so in Figure 6.9 j = 0
signifies the leftmost membrane crossing, j = 1 the next to the right, up to j = 4 as the crossing
on the right.
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Thus I0,2
m stands for the value of the total membrane current, Im, at the initial time instant

(i = 0), for membrane crossing number 2 (j = 2). The same convention for indices i and j is
also followed with Ii,jion and Ii,jC in (6.35), and is applied in a corresponding way in the equations
below.

There are several aspects of this notation worth keeping in mind. First, the presence of the
indices serves as a reminder that the numerical value of each of the quantities so indexed has
a different value at each time i and each position j. Another aspect is the relative timing and
location: Often equations are derived on the basis that all variables are for the same time and
same position. If so, then all variables must have the same indices (i, j). When there is present
a different index value—i.e., j + 1, j − 1 as in the case for spatial derivatives—one knows that
different positions or times are included.

Finally, when no particular numerical values are given to indices i and j, the implication is
that the equation holds for every choice of (i, j), so long as it is within the index’s range (e.g., j
in the range of 0 to 4 for the problem in Figure 6.9).

The equation for capacitative current (6.26) becomes, in discretized form,

Ii,jC = Cm
∂V i,jm
∂x

≈ CmΔV i,jm
Δt

(6.36)

and the discretized equation for the capacitative current (6.36) can be rearranged and substituted
into the equation for the total membrane current (6.38).

A central result follows: The equation for the change in Vm during interval Δt is:

ΔV i,jm =
Δt
Cm

(Ii,jm − Ii,jion) (6.37)

Note that in these last two equations, the change in voltage ΔVm and change in time Δt were
treated as ordinary variables. Thus Δt was moved from one side of the expression to the other
in the discretized capacitative current (6.36) and in the equation for the change in Vm, where Δt
appears on the equation’s right-hand side.

The numerical solution will proceed by evaluation of the equation for the change in Vm, that
is, solutions will be found by using (6.37) repeatedly. The evaluation is, at each time step, first
done for each of the spatial locations along the fiber. Then time is stepped forward, and another
set of ΔV values is found.

To find the total membrane current term of (6.37), Im, one begins with Eq. (6.31), converting
each term to discretized form, with the result:

Ii,jm =
1

(2πa)(ri + re)

(
Δ2V i,jm

Δx2 − reii,jp
)

(6.38)

A special issue arises with the second spatial derivative of Vm. How is the approximation found?
The second derivative is the spatial rate of change of the first derivative, so one finds it useful first
to find approximations the first spatial derivative. An approximation to the first spatial derivative
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of Vm at the midpoint of the interval to the right of position j (position jp) is

ΔVm
Δx

(i,jp)

≈ (V i,j+1
m − V i,jm )

Δx
(6.39)

A similar approximation to the first derivative at the midpoint of the interval to the left of j
(position jn) is

ΔVm
Δx

(i,jn)

≈ (V i,jm − V i,j−1
m )

Δx
(6.40)

With the first derivatives available, it is straightforward to express the second spatial derivative
of Vm at position j as the approximate spatial rate of change between them, or

Δ2V i,jm
Δx2 ≈

(
ΔV (i,jp)

m

Δx
− ΔV (i,jn)

m

Δx

)
/Δx (6.41)

≈ V i,j+1
m − 2V i,jm + V i,j−1

m

Δx2 (6.42)

That is, (6.41) estimates the second spatial derivative ofVm at time i and position j. Geometrically,
this derivative quantifies the curvature of Vm, its change with distance of the slope.

Sequence of operations

0. Initialize. One must first assign values to structural constants (a, Ri, Cm), to equilibrium
potentials (EK, ENa, EL), to maximum conductances (ḡK, ḡNa, gL), to magnitude and
timing parameters for the stimulus, and perhaps to other constants. Further, one must
assign initial values to all the state variables.

Although the evolution of transmembrane events depends only on Δt, normally a absolute
time variable t must be initialized, because some parameters (such as stimulus on/off)
usually depend on absolute time. Time often is kept as an integer number, in microseconds
(or tenths of microseconds) so that there is no ambiguity in the edges of the timing of
stimuli, and often is initialized at a negative time (such as –100 microseconds), so that a
first stimulus can be delivered at t = 0, with the record showing unequivocally the rise
from baseline due to the stimulus, and so that there is no accumulated round-off in t after,
say, a million iterations.

In an HH fiber, an initial value will be needed for Vm and for channel probabilities n, m,
and h. In contrast to the situation for a patch simulation as described in Chapter 5, for
propagation these state variables must be assigned values at every position along the fiber,
i.e., throughout the range of index j. If the membrane is to begin at rest, then channel
probabilities n, m, and h are initialized by assigning each of them the value at t = ∞
(5.21), (5.31), and (5.32). Specifically, for all j,

n0,j = n∞ = αn/(αn + βn) ≈ 0.3 (6.43)

m0,j = m∞ = αm/(αm + βm) ≈ 0.05
h0,j = h∞ = αh/(αh + βh) ≈ 0.6

where the α and β terms are evaluated using vm = 0, corresponding to Vm = Vr.
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Additionally, for a start from rest Vm must be initialized to its resting value, at all nodes,
so for all j:

V 0,j
m = Vr ≈ −60 mV (6.44)

Recall that the stability of Vm at its chosen resting level may require a choice of EL. At
rest it also is true that Vm = (gKEK + gNaENa + gLEL)/(gK + gNa + gL), as shown in
Chapter 3, so for Vr and EL to be consistent at rest, EL must be

EL = [(gK + gNa + gL)Vr − (gKEK + gNaENa)]/gL (6.45)

1. Find Ii,jm . That is, for time i, find Ii,jm , the total current, at all positions j. So doing can be
accomplished by inserting the results for the second spatial derivative of Vm (6.41) back
into the equation for Im (6.38) to reach

Ii,jm =
1

(2πa)(ri + re)
(
V i,j−1
m − 2V i,jm + V i,j+1

m

∂x2 − reii,jp ) + Ii,js (6.46)

From the perspective of understanding the mechanism of propagation, the equation for
the total membrane current (6.46) is critical, for it is the only step in the algorithm where
a result at central position j depends on values of variables at adjacent positions j − 1
and j + 1. That is, the total membrane current of a central segment is determined by the
relationship of the transmembrane potential at the central segment to that of its neighbors,
not the status of the central segment alone.

The complexity of this step often is underestimated, for there are special cases galore.
First, there are special cases at the ends of the fiber, where the 2nd derivative expression
cannot apply (e.g., at node 0 there is no V i,j−1

m . Then there are special cases for both types
of stimuli, both in time and, for ip, in position. For stimuli, transitions are important, and
normally the stimulus must be considered “on” if it is to have effect between time index
i and i+ 1.7

2. Find Ii,jion. That is, for time i, find Ii,jion, the sum of ionic currents, at all positions j.

Iion = gi,jK (V i,jm − EK) + gi,jNa(V i,jm − ENa) + gL(V i,jm − EL) (6.47)

where

gi,jK = gKn
4
ij (6.48)

gi,jNa = gNam
3
ijhij (6.49)

Note that Iion is an addition of terms frequently having varying signs, where the net
residual often has a smaller magnitude than that of any individual term. Thereby, addition
with many significant digits is required, lest the result lose any significance, numerically.

3. Estimate ΔV i,jm . That is, using data for time i, estimate ΔV i,jm , the estimated Vm change
between time i and time i+ 1, for all positions j:

ΔV i,jm =
Δt
Cm

(Ii,jm − Ii,jion) for all j (6.50)
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The summation intrinsic to this computation again is numerically sensitive and requires
high precision, as the sum may require adding numbers that are large in magnitude but
having different signs. The summation is especially sensitive because the Iion term is itself
a sensitive summation. Further, in many situations (such as a stimulus near threshold),
the physiologically meaningful result is computed as the accumulation over time of many
small changes.

4. Estimate Δn, Δm, Δh. That is, using data for time i, estimate Δni,j , Δmi,j , and Δhi,j ,
the estimates of n, m, and h changes from time i to time i + 1. In mathematical form,
these estimates are:

Δni,j = Δt[αi,jn (1− ni,j)− βi,jn ni,j ] (6.51)

Δmi,j = Δt[αi,jm (1−mi,j)− βi,jm ni,j ] (6.52)

and
Δhi,j = Δt[αi,jh (1− hi,j)− βi,jh hi,j ] (6.53)

Note that every position along the fiber will have its own set of changes for n, m, and h,
and that, correspondingly, each position will have different α and β rates.8

5. Advance time by one step. Use the data from time i, as found in the preceding steps, to
compute values for all the state variables for time i+ 1:

V i+1,j
m = V i,jm + ΔV i,jm for all j (6.54)

The values of n, m, and h are readily advanced by

ni+1,j = ni,j + Δni,j (6.55)

mi+1,j = mi,j + Δmi,j (6.56)

hi+1,j = hi,j + Δhi,j (6.57)

This sequence of computational steps advances Vm and n, m, and h by one time step. The
process can be repeated through successive time steps by returning to step 1 and repeating steps
1 through 5. This method is called an explicit method (or sometimes Euler’s method) and has
the advantages of being fast and relatively simple. The Euler method also serves as a point of
reference for many other methods, such as predictor-corrector algorithms.9

6.3.4. Stability and the Mesh Ratio

It is well known that algorithms such as the one above contain the potential for numerical
disaster. The disaster occurs when the computed results begin to oscillate wildly and nonsensi-
cally over a series of time steps, with values taking on greater and greater magnitudes, until the
computation fails.

Because such disasters have occurred many times in the simulation of propagation, such
questions also have been studied specifically in the context of the Hodgkin–Huxley equations.
As a consequence, a literature is available that includes descriptions of the properties of many
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algorithms. Most are more complicated than the one above, but thereby have advantageous
properties10.

One result of numerical analysis as well as practical experience is the identification of the
mesh ratio11 as an important numerical indicator. The mesh ratio is

mesh ratio =
Δt

ricmΔx2 (6.58)

Numerical procedures for finding solutions for Vm in time and space remain stable, when values
for Δt and Δx are selected that make the mesh ratio small, as compared to one. Conversely,
solutions may become unstable when the mesh ratio becomes greater than one.

The origin of the mesh ratio can be seen from the following example. Suppose we picture a
simple fiber represented by the grid shown in Figure 6.9, extended to be 10 segments long (with
11 nodes 0 to 10). The conductivity of the extracellular region is high compared to that of the
intracellular region. Further, assume there is no stimulus, and assume the membrane supports no
ionic currents.

Consider a situation where Vm at time 0 (i = 0) is zero everywhere, except at node 5 (j = 5),
the center of the extended fiber. At node 5, V 0,5

m = 1. Units are unspecified but the problem
occurs even if the “1” is only a small deviation, e.g., 1× 10−6 Volts. Of course, what one would
expect to happen in a physical environment with these characteristics is that the perturbation at
the one point spreads out and dies away, because there is no mechanism to keep it in place or
increase it.

To compare that intuitive result to the outcome of the propagation algorithm, we use the
equation for ΔVm, from the given starting conditions. In particular, at the time i we have for site
j from (6.50)

ΔV i,jm =
Δt
Cm

[Ii,jm − Ii,jion] (6.59)

and for Im from (6.46) we have

Ii,jm =
1

(2πa)(ri + re)

[V i,j−1
m − 2V i,jm + V i,j+1

m

Δx2 − reii,jp
]

+ Ii,js (6.60)

We now substitute equation (6.60) in (6.59). To simplify the analysis (and to show that the
result does not depend on special cases), we make the stimulus current Is = 0, the ionic current
Iion = 0, and the extracellular resistance re = 0. The result is

ΔV i,jm =
Δt
Cm

(
1

2πari

[
V i,j−1
m − 2V i,jm + V i,j+1

m

Δx2

])
(6.61)

From (2.57) we know that Cm = cm/(2πa). With that substitution in (6.61) and some factoring,
(6.61) becomes

ΔV i,jm =
( Δt
ricmΔx2

)
[V i,j−1
m − 2V i,jm + V i,j+1

m ] (6.62)

Note that the term in the parentheses is the mesh ratio, and note that the mesh ratio always has a
value that is greater than zero.
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Table 6.1. Mesh Ratio and Changes in Vm.

node time 0 1 2 3 4

0 0 0 0 0 0
1 0 0 0 0 16
2 0 0 0 8 -128
3 0 0 4 -48 448
4 0 2 -16 120 -896

5 1 -4 24 -160 1120

6 0 2 -16 120 -896
7 0 0 4 -48 448
8 0 0 0 8 -128
9 0 0 0 0 16
10 0 0 0 0 0

Each table entry is a value of Vm for a node (rows) and time (columns). Entries
were calculated with (6.62), with a mesh ratio of 2. The calculation was unstable,
so the lone nonzero value of Vm at time zero (node 5) produced Vm entries at
later times that showed increasing magnitudes.

Inserting values from the example stated above, one can see the consequences. For the first
step Vm = 1 at node 5 and Vm = 0 at all other nodes. That is, at node 5 the first time step
produces a change in Vm at position 5 of [from (6.62)]

ΔV 0,5
m =

( Δt
ricmΔx2

)[− 2V 0,5
m

]
. (6.63)

Equation (6.63) is unsettling, even as it shows explicitly the significance of the mesh ratio. In
other words, (6.63) shows that the magnitude of Vm may not get smaller, as it should, because
the change will be proportional to the mesh ratio. In fact, inspection of (6.63) shows that the
magnitude of Vm will actually increase if the mesh ratio is greater than one.

Furthermore, the increase may continue from the first time step to the second, and on and on
thereafter. Thus Vm at j = 5 may grow without bound.12

Such a result is shown in Table 6.1, where the “time 0” column gives initial values at each
node, showing all zeros except for an initial entry of 1 at node 5. The table follows with values
through four time steps (successive columns).

At time 1, one can see that Vm at node 5 has a larger magnitude (4) and the opposite sign
(now negative). Additionally, at time 1 the entries for Vm at nodes 4 and 6 have become nonzero
(value of 2). At time 2, Vm at node 5 has grown to 24 (the previous magnitude times 6); at time
2 there are 5 nonzero values. This process continues, so that by time 4, Vm at node 5 has grown
to a value of 1,120. Moreover, nonzero values extend from sites 1 to 9, with alternating signs.
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Figure 6.10. Simulation of Propagation on squid axon of diameter 600 μm at T = 6.3◦C.
Hodgkin–Huxley membrane parameters and equations are utilized. The Figure describes
the behavior of gating variables and transmembrane potential as functions of the axial
coordinate. The velocity of propagation is 13.3 m/sec. Following Hodgkin–Huxley, Ri =
30 and Re = 20 Ωcm.

Mesh ratios often are increased into the unstable range inadvertently. For example, an initial,
approximate solution may be done with a large Δx so as to test a computer program with faster
execution and smaller output files. If the solution then is refined to get better spatial resolution
by shrinking Δx by a factor of 4, then the mesh ratio increases by a factor of 16. The increased
mesh ratio easily can move the solution from stability to instability.

The result may be answers that are wrong, in that they are a product of an unstable algorithm,
not the underlying electrophysiology. The remedy for the problem is to make Δt smaller, so that
the mesh ratio remains well below one,13 even though decreasing Δt will cause a corresponding
increase in computation time.

6.3.5. Simulated HH Propagating Action Potentials

The propagation of two successive action potentials is illustrated in Figure 6.10. These
waveforms result from a simulation of action potential propagation on a uniform fiber with squid
axon parameters based on the Hodgkin–Huxley equations, the Hodgkin–Huxley description of
the squid axon, and at 6.3 ◦C.

In this Figure the values of the gating variables m, n, and h from the initiation to the
termination of the action potential are shown. Because the Figure is plotting spatial variation, it
gives a different perspective than that obtained with a temporal plot for a membrane patch, which
was depicted in Chapter 5. Spatially, the variable m may be observed to rise and fall in spatial
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synchrony with the rise and fall of vm, characterizing the activation process. In contrast, recovery
of gating variables n and h trails well behind, and in this case extends over nearly 10 cm.

In this example, the second action potential is elicited 10 msec after the first, and is possible
because the gating variables are by that time nearly back to resting conditions. An interesting
detail is that because m, n, and h are not quite back to their initial resting values, the second
action potential is slightly different in morphology.

The velocity of propagation of 13.3 m/sec. This velocity is less than the value 18.8 m/sec
obtained by Hodgkin and Huxley, and arises because their velocity was found for a higher tem-
perature, 18.5 ◦C, in contrast to Figure 6.10, which is at 6.3◦C.

6.3.6. Velocity Constraint for Uniform Propagation

For uniform propagation, the space–time behavior ofVm(x, t) must satisfy the wave equation,
namely,

Vm(x, t) = Vm(t− x

θ
) (6.64)

where θ is the velocity of propagation. Using (6.64) and the chain rule gives

∂Vm
∂x

= (−1/θ)
∂Vm
dt

(6.65)

Applying the chain rule a second time results in

∂2Vm
∂x2 = (1/θ2)

∂2Vm
dt2

(6.66)

Consequently, (6.34) can be written

Im =
a

2Riθ2

∂2Vm
∂t2

(6.67)

Hodgkin and Huxley used this relationship to solve for the action potential waveform by equating
it to the ionic current expression, Eq. (6.67). For a uniformly propagating wave (where I0 = 0,
because there is no stimulus during uniform propagation) we have

a

2Riθ2

∂2Vm
∂t2

= C
∂Vm
∂t

+ gK(Vm − EK)

+ gNa(Vm − ENa) + gL(Vm − EL) (6.68)
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Numerically, the procedure followed by Hodgkin and Huxley was to guess at θ and then step
through the solution as a function of the single time variable, t. For incorrect θ the solution was
found to diverge, but with the correct θ the Vm went through an appropriate action potential and
then returned toward the resting values.

Their procedures have now been replaced by procedures more suitable to digital computer
methods. With these methods, solutions are found as functions of both space and time and for
the full action potential’s time course, for structures of moderate complexity.

Velocity and diameter

Inspection of (6.68) shows that an important result can be deduced without having to solve
the equation explicitly. Note that any solution to (6.68) for Vm(t) will continue to be a solution if

a

2Riθ2 = constant =
1
K

(6.69)

so long as the membrane properties (reflected in the behavior of gK, gNa, and gL) remain un-
changed.

Consequently, for unchanging membrane properties, velocity θ relates to radius a by

θ =
√
aK

2Ri
(6.70)

One pair of experimental values of θ and α are required for its evaluation of K, a value that is
constant only within a particular context. That is, K depends on the species, type of membrane,
and temperature. Ri is tied to the composition of the intracellular volume.

Although the change in velocity θ associated with changes in K or Ri can be predicted by
(6.70), often K and Ri are constant in any one nerve bundle. Thus the significance of (6.70) is
most often that it then ties velocity to fiber diameter when other values do not change.

Squid nerve example

Such predictions are reasonably well confirmed by particular experimental results. For
example, where d is the fiber diameter in μm, for squid axon at 18.3◦C it was reported by
Hodgkin and Huxley that the velocity roughly followed the following equation:14

θ =
√
d m/sec (6.71)

One can see that for this particular membrane and temperature the fraction K/2Ri ≈ 1, in the
units chosen. Similar empirical coefficients can be developed for other kinds of tissues and
temperatures.
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Figure 6.11. Diagram Showing the Structure of a Myelinated Nerve Fiber. Reprinted
with permission from Aidley DJ. 1978. The physiology of excitable cells. Cambridge:
Cambridge UP.

6.4. PROPAGATION IN MYELINATED NERVE FIBERS

6.4.1. Myelin Sheath

Most nerve fibers are myelinated, that is, they are coated with an essentially lipid material
except at periodic points of exposure. An illustration of a myelinated fiber is given in Figure 6.11.
The gaps in the myelin are called nodes of Ranvier, and these are regularly spaced with internodal
distances ranging from 1 to 2 mm. (As a rough empirical rule the internodal length equals 100d,
where d is the fiber diameter in μm.)

Study of the myelin sheath in a given internode shows that it is made up of a single (Schwann)
cell that has wrapped around the axon many times. This process is described in Figure 6.12, and
one notes that after the growth process is completed almost all axoplasm has been squeezed out,
leaving only layer after layer of plasma membrane. The myelin is, indeed, lipid in the same sense
that the plasma membrane is predominantly lipid.

Some very rough data on the internodal leakage and capacitive properties in comparison with
that of a single plasma membrane are given in Table 6.2. Since the myelin sheath is composed
of layers of cell membranes, its leakage resistance should be the sum of the membrane leakage
resistances and its capacitance the membrane capacitance divided by the number of layers. The
data in Table 6.2 are consistent with this view if one assumes that the myelin contained 100
membrane layers.

Table 6.2. Electrical Properties of Myelin Sheath and Cell

Specific leakage resistance Specific capacitance

(Ω cm2) (F/cm2)
Myelin sheath 105 10−8

Cell membrane 103 10−6
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Figure 6.12. The Development of the Myelin Sheath by Vertebrate Schwann Cells in the
Sequence. A → B → C. Reprinted with permission from Robertson JV. 1960. The
molecular structure and contact relationships of the cell membrane. Prog Biophys 10:343–
417. Copyright c©1960, Pergamon Journals Ltd.

6.4.2. Saltatory Propagation

Because of the relatively high myelin leakage resistance, little transmembrane current leaves
the cell in the internodal region. Instead, transmembrane currents are confined essentially to
the node (of Ranvier). An electrical description of the node is therefore of special interest; its
subthreshold properties are described by a specific resistance and capacitance of

Rm = 20Ω cm2 Cm = 3μF/cm2 (6.72)

The Frankenhaeuser–Huxley model [1] for frog nerve provides these values as well as those under
active conditions. (The F–H equations are described in Chapter 12.) The gap width itself is on
the order of 1 μm.

More recently, it has been found that sodium channels are mainly confined to the nodes while
potassium channels appear to be located mainly in the internodal region. The high concentration
of sodium channels at the node contributes to an intensive inward current when excited: a current
that is needed to depolarize the long internode and following node (currents needed to charge the
associated capacitances) [2].

Figure 6.13 reproduces the Tasaki–Takeuchi experiment [5]. A special chamber was prepared
that permits the division of extracellular space into three isolated compartments. With this, one
can force any ionic current that normally flows between the central and outer compartments to
pass through a resistor; the voltage measured across the resistance is, consequently, a measure of
the transmembrane current in the central compartment.

With the fiber arranged so that there is no node in the central compartment, one sees only
a capacitively coupled voltage (Figure 6.13A). But if the central region contains a node, then a
clearly measured transmembrane current arises (Figure 6.13B). The experiment clearly supports
the conclusion that transmembrane current is essentially confined to the nodes.

Propagation in a myelinated fiber proceeds from an active node to the next adjoining node
by virtue of local circuit currents. Since there is little current loss in the internodal space,
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Figure 6.13. The Radial Currents in a short length of a myelinated fiber during the passage
of an action potential. The upper part of the Figure describes the recording arrangement
and the lower part the recorded currents. (A) The tracing shows the membrane current
when the middle pool of Ringer does not contain a node. (B) The membrane current is
measured when the middle pool contains a node. Nodes are identified asN0, N1, N2. The
three extracellular compartments are insulated from each other by the indicated insulating
diaphragm. From Tasaki I, Takeuchi T. 1942. Weitere studien über den aktionsstrom der
narkhaltiger nervefaser und über die elektrosaltatorische übertragung des nervenimpulses.
Pflugers Arch Ges Physiol 245:764–782.

activation can more easily influence a more distal excitable membrane than with an equivalent
unmyelinated fiber. One consequence is a higher velocity for myelinated fibers. In contrast to
(6.71), an empirical expression for myelinated fibers at frog temperature is

θ = 6d m/sec (d inμm) (6.73)

Since activation spreads from node to node (jumping from one to the next), propagation is said
to be saltatory (from saltare—to leap or dance).

Considerably more information about myelinated nerves and the electrodes and protocols
used to control them is presented in Chapter 12, Functional Electrical Stimulation (FES).

6.5. NOTES

1. In some places we use the subscript o (outside) to signify that a parameter is applied to the extracellular space. In this
chapter we use the subscript e instead. There is no uniform convention regarding this notation. In many situations
there is an extracellular space within the organ itself (frequently called the interstitial space). Sometimes the symbol
e is used to designate the latter space and o to designate the (passive) space surrounding the organ.

2. From Chapter 5, recall that lowercase vm, φi, and φe are used to signify changes from the resting values of Vm, Φi,
and Φe. Note, however, that because resting values are constant ∂Vm/∂x = ∂vm/∂x, ∂Φi/∂x = ∂φi/∂x, and
∂Φe/∂x = ∂φe/∂x. In the equations that follow, all potentials are expressed in terms of their values relative to rest,
in contrast to the immediate previous treatment.

3. An entertaining and instructive discussion of this matter is given by Jewett [3].
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4. Note that a variation in Vm(x) in the neighborhood of a point x0 changes the slope and curvature of the Vm at x0,
even though Vm at a particular x0 may remain the same. For example, compare y = x to y = x3 at x = 1.

5. Δx is possibly 25 μm, and Δt is possibly 10 μsec. These are nominal values for Δx and Δt. More systematic

choices are to compute λ =
√
rm/(ri + re) and then to set Δx = λ/15, i.e., to a fraction of the resting space

constant (see Chapter 7). Thereafter, set Δt to make the mesh ratio equal to 0.1 (see below).
6. In the Figure only a handful of membrane crossings is portrayed so as to simplify the illustration. Often simulations

used to model real fibers have hundreds or even thousands of such crossings.

7. See discussion of stimulus timing for the patch simulation, in Chapter 5.

8. Also, as noted in the discussion of the related steps for a patch simulation in Chapter 5, it is important to realize
that the α and β values are, in the Hodgkin–Huxley equations, functions of vm = Vm − Vr , the deviation of the
transmembrane voltage from rest, in millivolts. Also, it is important to recall that α and β have units of msec−1, so
that Δt must be expressed in (or converted to) milliseconds prior to their multiplication.

9. In general, other methods offer improvements in algorithm characteristics in exchange for an increase in complexity.

10. For example, see Crank J, Nicholson P. 1947. A practical method for numerical evaluation of solutions of partial
differential equations of the heat-conduction type. Proc Camb Phil Soc 43:50–67

11. For example, see Smith GD. 1985. Numerical solution of partial differential equations, 3rd ed. Oxford: Clarendon
Press.

12. “Without bound” here means that a perturbation that starts as only a microvolt will grow to millivolts and multiples
thereof, until the membrane’s nonlinear properties begin to affect (but not necessarily limit) what happens thereafter.

13. An alternative is a different algorithm, as this kind of instability arises from the way this method extrapolates from
the current time instant to a future one.

14. This equation is unlikely to be a good approximation for other temperatures or types of membrane.
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7
ELECTRICAL STIMULATION

OF EXCITABLE TISSUE

In designing systems for stimulation, a qualitative understanding together with mathematical
descriptions of responses to stimulation are essential. The response of excitable cells to naturally
occurring or artificial stimuli is a subject of great importance in understanding natural function of
nerve and muscle, because most stimuli are produced by the natural system itself. Both electric and
magnetic field stimulation are used in research investigations and in clinical diagnosis, therapy,
and rehabilitation. This chapter focuses primarily on responses to electrical stimuli, which are
more frequent, and examines several biological preparations.

The core idea of stimulation is the following: A current, arising from an external stimulator or
natural source, is introduced into a cell or its neighborhood. The current creates transmembrane
voltage in nearby membrane. The membrane responds passively (i.e., with constant membrane
resistance), so long as the voltage produced is below a threshold level. When the threshold level
is reached, the membrane responds with an action potential, or some other active response.

From the perspective of the analysis of the effects of stimulation, critical issues revolve
around what strength and time duration of a stimulus is required for the stimulus to cause the
tissue to move through its initial, passive state to reach the threshold level for active response.1

The answers depend, as one would expect, on a number of variables, importantly including the
geometry of the tissue being stimulated, its electrical characteristics, and the location of the
stimulus electrodes.

Analysis of stimuli focuses especially on mathematical relationships between the current
applied as the stimulus and the resulting transmembrane potentials. Such knowledge, when
quantitative, then allows one to draw quantitative conclusions about the strength and duration of
stimuli that will result in transmembrane potentials above the threshold level in new or future
situations, as well as those already explored experimentally.2

The initial sections of this chapter provide the simple mathematics giving the transmembrane
voltages produced by a constant current stimulus, in a spherical cell. These current–voltage
equations then are manipulated to produce strength–duration curves. A few real cells can be
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idealized as spherical, and the idealization is useful and interesting because, in a spherical cell,
the response to stimulus depends only on time.

In other words, the spherical cell has a geometrical uniformity that avoids the additional
complexity of spatial variation. Thereby the results for a spherical cell serve as a relatively
simple beginning point and reference for more complicated cellular structures. As might be
expected, more complicated cell structures lead to a correspondingly more complicated space–
time behavior. That is, though idealized and relatively simple, the spherical cell analysis shows
most clearly many of the fundamental concepts of stimulation, and also introduces most of the
terminology used in stimulation.

The main part of the chapter considers fibers. Here fibers are idealized as having cylindrical
geometry. Initially, the mathematical expressions relating currents to voltages along the fiber
are established. Using these relationships in one spatial dimension, we then evaluate a stimulus
just outside the membrane, initially just the steady-state response. Thereafter, the time evolution
response (also called the transient response) for an intracellular electrode is found.

With one-dimensional analysis completed, the chapter moves on to field stimulation, a three-
dimensional situation as the stimulus electrodes may be moved away from the fiber surface. With
field stimulation, we examine both subthreshold and transthreshold situations. Fiber simulations
under transthreshold conditions evaluate circumstances where stimuli may lead to propagating
action potentials. Such simulations permit an evaluation of the classical concept of threshold,
revealing conditions where it is not dependable.

Most fibers evaluated in this chapter are assumed to be infinitely long. That obviously is an
approximation, as often a real fiber is much longer than the region affected by a stimulus. To
examine it more carefully, however, in the final section, we examine the differences in behavior
of a fiber that has a finite rather than infinite length.

7.1. SPHERICAL CELL STIMULATION

We begin with the study of the spherical cell, as illustrated in Figure 7.1. While the spherical
cell’s shape is a poor model for most biological cells, the simplicity of its electrical behavior
makes it of interest. It is interesting because one can analyze the cell’s response to a stimulus
in a thorough way, taking into account all the central factors. Since the same central factors are
present for a much broader set of cell shapes and circumstances, the response of the spherical
cell serves as a guide to those also.

An analysis of the response of a spherical cell to an intracellular subthreshold stimulating
current shows that the intracellular region is isopotential, to a good approximation. If one pictures
the cell placed within an extensive extracellular region, then the extracellular volume also will
be virtually isopotential. Consequently, all points on the cell membrane elements will have
very nearly the same transmembrane potential. (The transmembrane potential has to be uniform
because all intracellular potentials are nearly the same, and all extracellular potentials are nearly
the same).

Consequently, the response of any patch on the cell’s membrane will be the same as any
other patch, and the entire membrane will behave synchronously.
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Figure 7.1. Top: A stimulator (left) applies a current I0 to the center of a spherical
cell. Current flows symmetrically outward (arrows) through the membrane (solid circle).
Current is collected symmetrically at the periphery of the surrounding extracellular bath
(dashed sphere). Bottom: A current step of magnitude Io is applied (lower left) by the
stimulator between the intracellular and extracellular electrodes. The stimulus current
continues indefinitely during time t. The current produces a rising transmembrane voltage,
vm (solid curve), that does not have the step waveform of I0. Even though the stimulus
current I0 continues on, the rise of vm approaches limiting level vm = S. Level S is
called the “strength” of the stimulus. Of particular interest is the time T required to reach a
“threshold” voltage level VT = L (short lines crossing vm curve at lower right). The vm
curve is sketched as the response if membrane resistance Rm is constant. Furthermore,
the concept of this simplified view of stimulation is thatRm will change abruptly once vm
reaches threshold voltage level L, as an active membrane response will occur thereafter.

7.1.1. Spherical Cell’s Response to a Current Step

What is the response of an spherical cell to the application of a stimulating subthreshold
current step? The arrangement is depicted in Figure 7.1.

Because the intracellular and extracellular regions are essentially isopotential, all membrane
elements are electrically in parallel. Thus the entire cell in Figure 7.1 can be represented by a
single lumped-RC circuit, and both R and C will be constant under subthreshold conditions.

The corresponding electrical circuit is illustrated in Figure 7.2, where, for a membrane surface
area A, we have from (2.57)

R =
Rm
A

(7.1)
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Figure 7.2. Equivalent Electrical Circuit for the Ppreparation of Figure 7.1. The membrane
resistance of the cell as a whole is R, and the capacitance of the cell is C. The stimulator
(box on left) creates a stimulus current I(t) that is a function of time. In particular, the
stimulus current is a current step of magnitude I0 starting at time zero. Analysis is done
forR and C constant. (However, in a real cellR will change when the cell becomes active
and ion channels open.) The spherical symmetry of the cell in Figure 7.1 allows this simple
electrical equivalent.

and (2.54)
C = CmA (7.2)

Here, Rm is the specific leakage resistance (Ωcm2), Cm is the specific membrane capacitance
(μF/cm2), while R and C are the total membrane resistance (Ω) and capacitance (μF).3

The transmembrane potential developed in the cell of Figure 7.1 is readily found from the
equivalent circuit in Figure 7.2 and is

vm = I0R(1− e−t/τ ) (7.3)

Rewriting (7.3) for a stimulus just strong enough and long enough to reach a threshold voltage
level VT with stimulus duration T , we have

VT = S(1− e−T/τ ) (7.4)

In Eq. (7.4) time constant τ = RmCm = RC and stimulus strength S = I0R. Note that
parameter S is the steady-state voltage approached by vm as t → ∞. The quantity S can be
thought of as a measure of the depolarizing strength of the applied stimulus current I0; in fact,
it is the maximum depolarization that can be produced passively by I0. We also note that the
time constant τ is independent of A (the cell area). Finally, in (7.3) we use vm (rather than Vm)
since the quantity of interest is the change in the transmembrane potential caused by the stimulus,
relative to its baseline.

7.1.2. Strength–Duration

It is well known experimentally and theoretically that as stimulus strength S is increased, a
shorter stimulus duration T is needed to reach a particular transmembrane voltage. To examine
the correspondence mathematically, suppose that the transmembrane voltage threshold needed
for initiate activation is fixed at vm = VT ,4 and a stimulus strength S greater than VT is used. The
consequence by (7.4) will be that membrane voltage VT will be reached with a shorter stimulus
duration, T , than T →∞.
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What stimulus duration T is necessary? Rearranging (7.4) to isolate the term containing T ,
one gets

eT/τ =
1

(1− VT /S)
(7.5)

By taking the natural log of (7.5), one can find either T or τ if the other parameters are known.
Thus, where log is the natural logarithm,

T = τ log(
1

(1− VT /S)
) = τ log(

S

(S − VT /S)
) (7.6)

A more subtle use of (7.5) occurs when one wishes to find τ from two pairs of values of S
and T . In this case one can solve for τ by writing (7.5) twice, and taking the ratio before taking
the log.

Weiss–Lapicque equation

Rearranging (7.4) in a different way, one sees that the relationship between stimulus strength
S and threshold voltage VT can be written as

S = VT /(1− e−T/τ ) (7.7)

Division on both sides of (7.7) by the membrane resistance R leads to

Ith =
IR

(1− e−T/τ )
(7.8)

Eq. (7.8) often is called the Weiss–Lapicque equation.5 There is a specialized terminology used
in connection with this equation, as discussed in the next section.

Rheobase

In (7.8) IR is named the rheobase, while Ith is the minimum current required to reach
threshold with stimulus duration T .

From (7.8) one sees that the rheobase, IR, is the minimum stimulus intensity that still produces
a threshold value of transmembrane voltage, as the stimulation duration grows long (conceptually,
as T → ∞). VT is the strength at rheobase, or rheobase voltage. The colorful terminology of
rheobase and chronaxie was introduced by Lapicque [2].6

A plot of S versus T for fixed VT is given in Figure 7.3. The curve depicts the strength–
duration relationship for a threshold stimulus. The curve shows an exponential decay to the
rheobase voltage, and divides all strength–duration combinations into two groups. Those in
region A produce transmembrane voltages that exceed threshold. Combinations precisely on the
line VT = L produce transmembrane voltages exactly equal to threshold. Strength–duration
combinations in region B produce transmembrane voltages less than threshold. Of these, the
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Figure 7.3. Strength–Duration Curve. Line VT = L shows the combinations of stimulus
strength S (on the vertical axis) and stimulus duration T (on the horizontal axis) that
are just sufficient to reach the threshold level. Combinations on side A of line L are
above threshold and may lead to action potentials, while combinations on sideB are below
threshold. Rheobase is the value of stimulus current that is just sufficient to reach L with
a long stimulus duration T . Chronaxie is the stimulus duration required to reach L if the
stimulus current is set to twice rheobase.

graph makes clear that stimuli with a strength less than the rheobase voltage will never reach
threshold, whatever their duration.

Chronaxie

The pulse duration when the stimulus strength S is twice rheobase is called chronaxie. From
(7.7) chronaxie, Tc, can be found analytically, since at chronaxie S = 2VT . Multiplying through
by the term in parentheses, we have

VT = 2VT (1− e−Tc/τ ) (7.9)

Equation (7.9) can be simplified to
e−Tc/τ = 1/2 (7.10)

so after inverting, taking the natural log, and solving for Tc one has

Tc = τ ln 2 = 0.693τ (7.11)

Chronaxie is significant as a practical time period required to reach the threshold voltage when
using a practical stimulus strength. In a comparison of different membranes or the same membrane
under different conditions, chronaxie provides a nominal measure of excitability.
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7.1.3. Stimulus Theory vs Experimental Findings

When the previous analysis is compared to experimental studies the results are modestly
in accord, both qualitatively and quantitatively. The agreement is good enough to be useful in
providing a qualitative understanding of the way experimental results change, as one or more
experimental variables change. For example, the theory provides a guide to understanding why
a greater stimulus current can create an action potential despite a shorter stimulus duration, or
understanding why a sufficiently low stimulus current never creates an action potential, whatever
the stimulus duration.

Even so, significant differences between the simple spherical-cell theory and experimental
findings also are evident. Some reasons for such differences are as follows:

1. We assumed that the network in Figure 7.2 was valid up to threshold transmembrane
potentials, while from Figure 5.6 we know that linearity holds up to 50% of threshold (if
that much). Beyond 50% the assumption is at best a weak approximation.

2. The spherical cell stimulated with an intracellular electrode is a special case. In general,
stimulating electrodes are extracellular and produce a response which depends on elec-
trode location as well as the cell geometry. These parameters all affect the distribution and
extent to which various membrane elements are depolarized, the conditions that ensue
following termination of the stimulus, and hence the outcome regarding the initiation of
an action potential. An example will be considered toward the end of this chapter. Some
improvements in the model have been suggested based on a time-varying threshold, but
even this possibility seems sensitive to the specific geometry and stimulus waveform.

3. A fixed threshold fails to account for its increase with time when the stimulus duration
is comparable to the time constant of the inactivation parameter h (i.e., τh). The effect
is described quantitatively by the Hodgkin–Huxley model based on the change in h with
depolarizing or hyperpolarizing stimuli. This phenomena is known as accommodation
and conflicts with the idea of a fixed threshold. For example, if the stimulus waveform
were a ramp that reaches “threshold” after a time delay comparable to τh, then a diminished
value of h at that point would require a yet higher stimulus. The “threshold,” in other
words, is now elevated. A slowly rising ramp could be chasing an ever elusive threshold
and excitation fail to be elicited even though very high values of voltage are reached.

4. For stimuli with durations that are short (less than the sodium activation time constant
τm), stimulation will grow more difficult, in that threshold vm will rise (a fact noted
by Lapicque [2]). Because the regenerative activation process will not be initiated at
termination of the stimulus, even the transmembrane voltage that would be threshold, if
the stimulus was longer, the stimulus may fail to produce a response. In this situation one
must investigate whether the effective RC membrane can retain an adequate depolarizing
voltage following the brief stimulus to continue opening sodium channels to the point
that activation occurs. This question will be considered later on in this chapter with an
example using an active membrane.

The above reasons are not a rationale for discarding the theory. Rather, they simply say that
the theory has to be used with recognition that it is an approximation.
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7.2. STIMULATION OF FIBERS

In the preceding section we considered the subthreshold response of a spherical cell, where
all parts of the cell membrane were affected or changing in the same way, all the time. Now we
examine the response to stimulation of a fiber.

At first we examine the behavior of the fiber under subthreshold (electrotonic) conditions,
as was the case for the sphere. In fibers we expect subthreshold behavior that is similar to that
of spherical cells in some respects, but we also expect that there will be some major differ-
ences.

One kind of difference occurs because of the length of fibers. Events at different sites along
the fiber will occur at different times, because of the capacitance in the fiber’s membrane. A
second kind of difference is the corollary of the first: Adjoining segments of the fiber often are
responding to a stimulus to different degrees and thus have differing transmembrane voltages, with
the result that there are currents flowing within and along the fiber. Finally, fibers are evaluated
using stimuli placed in different locations, which may be inside or outside the membrane, or
distant from the whole fiber.

All of these aspects of fiber stimulation may occur in real fibers. Because of their number
and complexity, addressing these aspects requires a number of the sections that follow.

When the excursion in transmembrane voltage is sufficiently small, the corresponding mem-
brane current can be found from a passive admittance. Such subthreshold conditions are referred
to as linear or electrotonic. For nerve (and approximately for muscle), the membrane can then be
characterized electrically with a parallel RC network with constant values of R and C. This passive
description is in contrast with the nonlinear behavior beyond threshold, where the potassium and
sodium conductances are no longer independent of vm.

An examination of membrane properties under linear (subthreshold) conditions is important,
since these are frequently present in clinical and experimental studies. Furthermore, in the case of
a propagating action potential, regions ahead of the activation site, where critical depolarization
is taking place (e.g., region C in Figure 6.5), will be subthreshold during a critical initial interval.
In addition, in the design of a stimulator, the membrane may often be considered as linear up to
the point of activation.

7.2.1. Fiber Equations

It is immensely valuable in subsequent sections (and in analyzing fibers in general) to have
available some basic equations for relationships among voltages and currents at points along the
fiber. Thus we develop some of those here. They are of interest in their own right but will prove
to be essential starting points in later sections.

Under subthreshold conditions, we have

im =
vm
rm

+ cm
dvm
dt

(7.12)
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where rm is the membrane resistance times unit length (Ωcm), cm is the capacitance per unit
length (μF/cm), and im is the transmembrane current per unit length (mA/cm). (At transmembrane
voltages above threshold (7.12) still applies, but it is less useful because rm must be treated as a
variable.)

An interesting and useful result can be found from (7.12) if one recalls from the cable
equations (6.11) that

∂2vm
∂x2 = (ri + re)im + reip (7.13)

Substituting (7.12) into (7.13) gives

λ2 ∂
2vm
∂x2 − τ

∂vm
∂t
− vm = reλ

2ip (7.14)

where we have defined the following normalizing parameters:

λ =
√

rm
ri + re

τ = rmcm (7.15)

For steady-state conditions (∂/∂t = 0), Eq. (7.14) simplifies to

λ2 d
2vm
dx2 − vm = reλ

2ip (7.16)

When the stimulus current is zero (ip = 0), Eq. (7.16) becomes simply

λ2 d
2vm
dx2 − vm = 0 (7.17)

[which is also the homogeneous form of equation of (7.16)]. The solution of (7.17) is

vm = Ae−x/λ +Bex/λ (7.18)

where A and B are arbitrary constants. Rather than introducing the stimulating current ip explicitly
in (7.16) to obtain the particular solution, we can, instead, impose boundary conditions on the
solution for the region where ip = 0, namely, |x| > 0. But this solution is that given by (7.18).
The boundary conditions at x = 0 and x = ∞ will serve to evaluate the constants A and B in
(7.18). This approach is illustrated in the following sections.

7.2.2. Space and Time Constants

In the previous section we introduced the constants λ and τ (7.15). These quantities are
referred to as the space (or length) constant and time constant of a fiber, respectively. Both are
important parameters that characterize the response of a fiber to applied stimuli.

Under steady-state conditions λ is the distance over which the voltage and current change
by the factor e, as identified in Eq. (7.18). For spherical-like cells only, τ is the time for the
transient response to a current step to differ from its steady-state magnitude by the factor 1/e, as
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seen in (7.4). For a fiber, we will presently show that τ is a measure of the time it takes for the
transient response to a current step to reach a particular fraction of its steady-state value, where
the fraction depends on the distance from the site to the point of stimulation.

Constants λ and τ are important because, frequently, they can be measured directly. Fur-
thermore, λ and τ have a consistent meaning for many different fiber structures, so they may be
used for characterization and comparison.

For circular cylindrical axons with constant membrane properties and with re ≈ 0,

λ =
√

rm
ri + re

≈
√
rm
ri
. (7.19)

(The condition re ≈ 0 applies when the extracellular space is large.) Converting ri to Ri and rm
to Rm, by using (2.55) and (2.52), gives

λ =

√
Rm/2πa
Ri/πa2 (7.20)

When simplified this equation becomes

λ =
√
aRm
2Ri

(7.21)

where a is the fiber radius. Note that λ varies directly as the square root of fiber radius.

7.3. FIBER STIMULATION

The stimulus currents to be discussed are introduced into a biological preparation with the
goal of changing the transmembrane voltage. In most situations, the electrode or electrodes
through which the current is injected are outside the target fiber(s).

If injecting current extracellularly changes the transmembrane potential, by how much does
it do so? And where? The following material examines these questions in an idealized geometry,
but one that nonetheless includes the essential elements needed for insight into a experimental
and clinical situations.

7.3.1. Extracellular Stimulus, Steady-State Response

Suppose a single small electrode is placed in the bounded extracellular space just outside
a cylindrical fiber, while a pair of electrodes to remove the current lie extracellularly at ±∞.
Suppose the fiber is at rest, infinitely long, the location of the proximal electrode identifies the
coordinate origin (x = 0), and the fiber structure satisfies the assumptions of the core-conductor
model. Note that this arrangement imposes symmetry between positive and negative regions.
Also, we expect that a portion of the injected current will enter and flow within the intracellular
space of the fiber; it will be constrained to flow longitudinally along the x axis.

With the above arrangement, where will current go? As a first guess it might seem that the
injected current would remain in the extracellular space until removed by the distal electrodes.
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This would be the case if the membrane was a perfect insulator. But for biological membranes it
is reasonable to expect current to cross the membrane, particularly if the fiber is long (since the
effective leakage resistance can become very low given an adequate axial distance).

With increasing x, this inflowing transmembrane current builds up the total intracellular
current, Ii, while the extracellular current decreases by an equal amount. An equilibrium is
reached for large enough x, where riIi = reIe. At this point the spatial rate of decreasing
voltage is the same in both intracellular and extracellular space so, from a Kirchhoff loop, the
transmembrane voltage and hence transmembrane current is zero. (Thus for x→∞ there is no
further change in either Ie or Ii.)

In summary, one can expect the transmembrane current to be greater in the region near the
stimulus site and to diminish to essentially zero at sites more distant from the stimulus. In the
limited region where the stimulus produces a transmembrane current it must also produce an
associated transmembrane potential. Thus we conclude somewhat intuitively that stimuli from
extracellular electrodes can be used to create hyperpolarizing or depolarizing potentials over an
extent of fiber near the stimulus electrode.

We now move to examine these expectations quantitatively. The current entering the prepa-
ration from the electrode can be idealized as a spatial delta-function source, that is,

ip = I0δ(x) (7.22)

where δ(x) is a unit delta function.

The definition of δ(x) has three parts:

δ(x) = 0 forx �= 0
δ(0) = ∞∫ ∞

−∞
δ(x)dx = 1 (7.23)

Note that the delta function is zero except at the origin, where it is infinite, but its integral is finite
(equal to unity) provided the interval of integration includes the origin.

From (7.22) and (7.23) we can identify I0 as the total applied current while ip(x) is the current
density (current per unit length); the latter is zero except at the origin, where it is infinite. If the
delta-function source is used in the equations governing vm under subthreshold and steady-state
conditions, we have from Eq. (7.16)

λ2 d
2vm
dx2 − vm = reλ

2I0δ(x) (7.24)

Now we seek the solution to the differential equation in (7.24). A good strategy is to first find
the solution to the corresponding homogeneous equation, as that solution will apply to all points
other than x = 0. Then, with that solution viewed as a boundary-value problem, we evaluate
undetermined coefficients through the boundary conditions at the origin (which result from the
introduction of the applied current at this point). We will follow that strategy in the following
section.
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Boundary conditions around the stimulus site

To establish the boundary condition at the stimulus site, the origin, suppose Eq. (7.24) is
integrated from x = 0− to x = 0+, i.e., from just to the left of the origin to just to the right of it.
The result is

λ2 dvm
dx

∣∣∣
x=0+

− λ2 dvm
dx

∣∣∣
x=0−

− [vm(0+)− vm(0−)]Δx = reλ
2I0 (7.25)

where Δx = 0+ − |0−|. As distance Δx approaches zero, the middle term goes to zero, since
(on physical grounds, at least) vm is continuous. Note that the term on the right-hand side no
longer contains the δ function (whose integral was replaced by unity).

Rewriting (7.25) we obtain

λ2
(
dvm
dx

∣∣∣
x=0+

− dvm
dx

∣∣∣
x=0−

)
= reλ

2I0 (7.26)

and we note that ∂vm/∂x is discontinuous at x = 0. The discontinuity, furthermore, is propor-
tional to the strength of the current source I0.

We will use this result below and evaluate derivatives near the stimulus site, to get the
boundary condition needed there.

The homogeneous solution at steady state

For sites along the fiber away from the origin there are no applied currents, so the homoge-
neous equation (7.17) applies, namely,

λ2 d
2vm
dx2 − vm = 0 (7.27)

Equation (7.27) has the solution

vm(x) = Ae−x/λ +Bex/λ (7.28)

Thus one sees that vm at all points along the fiber can be found from (7.28) once values for
constants A and B are determined from the boundary conditions.

We now consider the appropriate choices of constants A and B. The choices must satisfy the
conditions imposed by the source at x = 0 and also the requirements when |x| → ∞.

The necessary outcomes are summarized in Table 7.1. The choice of A = 0 for x < 0 and
B = 0 for x > 0 is necessary because the solution for vm caused by applying a finite current I0
must go to zero as the distance from the stimulus becomes large. Because vm must be symmetric
about the origin, there being no physical difference between the positive x side versus the negative
side, it is also concluded in Table 7.1 that both A and B are equal to the same constant, C.
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Table 7.1. Boundary Conditions

x range A B

x < 0 0 C
x > 0 C 0

These choices ofA andB are required
for the transmembrane potential to de-
cline to zero far from the stimulus site.

Imposing these conditions results in equal but opposite axial currents at symmetric points
about the origin, an outcome that is consistent with the symmetry. Thus Eq. (7.28) can be
written as

vm(x) = Cex/λ x ≤ 0
vm(x) = Ce−x/λ x ≥ 0 (7.29)

A more compact form of (7.29) is

vm(x) = Ce−|x|/λ (7.30)

Imposing the boundary condition at the origin

The coefficient C in (7.30) can now be found, since the solution must also satisfy (7.26).
To impose this boundary condition at the origin dvm/dx is first evaluated from Eq. (7.29). The
result is

dvm
dx

=
C

λ
ex/λ x < 0

dvm
dx

= −C
λ
ex/λ x > 0 (7.31)

Substituting (7.31) into (7.26) gives

(
−C
λ
e−x/λ

∣∣∣
x=0+

− C

λ
ex/λ

∣∣∣
x=0−

)
= reI0 (7.32)

The solution for C from (7.32) is

C = −reλI0
2

(7.33)

The steady-state solution

Using the value of C obtained in (7.33) and substituting into (7.30) gives the desired solution,
namely,

vm = −reλI0
2

e−|x|/λ (7.34)
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Inspection of Eq. (7.34) provides a quantitative response to the questions and speculations
posed at the beginning of this section. These are summarized below.

1. The stimulus clearly affects the transmembrane potential, since vm is nonzero for all
values of x.

2. The effect of the stimulus varies markedly with x. The largest change in transmembrane
potential occurs at the site of the stimulus, where x = 0. As one moves away from the
stimulus site, vm decreases exponentially, falling by a factor of e every length λ.

3. For a given stimulus current I0, the magnitude of the change in transmembrane potential
increases as extracellular resistance re increases.

4. Note from the sign of (7.34) that a positive current injected at the origin leads to a
more negative transmembrane potential. That is, membrane under an anode becomes
hyperpolarized as a result of current influx into the intracellular region.

5. Note that the space constant λ may also be regarded as a measure of the distance from a
source (at the origin) to which the disturbance in vm essentially extends.

7.3.2. Intracellular Stimulus, Time-Varying Response

We now turn our attention to an investigation of the temporal transient behavior under the
same stimulus condition, rather than the steady-state response evaluated above.

Determining transient behavior requires a solution to the general expression of (7.14). As
before, we first seek a solution to the homogeneous equation and introduce the applied current
through a boundary condition at the origin. We consider an unbounded extracellular medium and
assume that the stimulus current is introduced intracellularly.

This geometry permits introducing the simplification that re ≈ 0. The resulting equation is

λ2 ∂
2vm
∂x2 − τ

∂vm
∂t
− vm = 0 (7.35)

The space constant λ and time constant τ are as defined in (7.15). (If the applied current is intro-
duced extracellularly, the solution obtained here can be converted to this condition, as described
in a later section.)

A simplified notation results from introducing the normalized spatial and temporal variables
(X,T ), defined by

X =
x

λ
and T =

t

τ
(7.36)

Hence (7.35) becomes
∂2vm
∂X2 −

∂vm
∂T
− vm = 0. (7.37)

We seek the transmembrane potential, vm, arising from the introduction of a current step at the
origin.
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Reduction to one variable by the Laplace transform method

We proceed by taking Laplace transforms with respect toT of each term in (7.37). The Laplace
transform of ∂vm/∂T is svm − vm(0, X), where the overbar indicates a Laplace transform.

The initial condition of vm at t = 0, namely vm(0, X), is assumed to be zero. It is initially
zero because we consider the response of a resting cable to an applied current that starts at t ≥ 0.
Consequently, we get

∂2vm
∂X2 − (s+ 1)vm = 0 (7.38)

The advantage of introducing the Laplace transform is that the partial differential equation (7.37)
in X and T has been converted into an ordinary differential equation in X (7.38).

The solution to (7.38) is

vm = Ae−X
√
s+1 +BeX

√
s+1 (7.39)

Because vm cannot increase without bound for x→∞, B = 0 (for the infinite cable). Thus

vm = Ae−X
√
s+1, X ≥ 0 (7.40)

The boundary condition at the origin

At x = 0, the site of introduction of the current I0 into the intracellular space, because of
symmetry, I0/2 flows into the positive x region and I0/2 into the region x < 0.

This applied current as a function of time is in the form of a step that we designate u(t), the
unit step function. This function is described by u(t) = 0 for t ≤ 0 and u(t) = 1 for t ≥ 0.
There is a discontinuity at t = 0. Applying Ohm’s law in the intracellular space at x = 0, we
have

∂Φi
∂x

∣∣∣
x=0

= −I0u(t)ri
2

. (7.41)

For the extracellular space at x = 0 there is no longitudinal current (it begins to appear when
x > 0), so

∂Φe
∂x

∣∣∣
x=0

= 0 (7.42)

If we subtract (7.42) from (7.41) and then note from (7.36) that ∂/∂x = (1/λ)∂/∂X,7 we
get

∂vm
∂X

∣∣∣∣
x=0

= −I0u(t)riλ
2

(7.43)

Taking the Laplace transform of both sides of (7.43), where the Laplace transform of u(t) is
included as 1/s, gives

∂vm
∂X

∣∣∣∣
x=0

= −I0riλ
2s

(7.44)
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We also can evaluate the left-hand side of (7.44) from (7.40). So doing gives

∂vm
∂X

∣∣∣∣
X=0

= −A
[
(s+ 1)1/2e−X(s+1)1/2

]
X=0

= −A√s+ 1 (7.45)

One obtains an equation for A by equating (7.45) and (7.44). This yields

A =
riλI0

2s
√
s+ 1

(7.46)

Substituting (7.46) into (7.40) gives vm as a function of s, namely,

vm =
I0riλ

2s
√
s+ 1

e−X
√
s+1, X > 0 (7.47)

Time-varying response to stimulus

The desired solution for the time-varying response is found by taking the inverse transform
of (7.47). Finding the inverse transform is most readily accomplished by consulting a table of
Laplace transforms,8 which demonstrates that

vm(X,T ) =
riλI0

4

{
e−X

[
1− er f

(
X

2
√
T
−
√
T

)]

− eX
[
1− er f

(
X

2
√
T

+
√
T

)]}
(7.48)

This result is for an infinite cable, based on the introduction of I0 at X = 0, and describes
conditions for x > 0 (those for x < 0 can be found by symmetry). One can also replace x by |x|,
which gives the expected symmetry and an expression valid for all x. On restoring the original
coordinates x and t, (7.48) becomes

vm(x, t) =
riλI0

4

{
e−|x|/λ

[
1− erf

( |x|
2λ

√
τ

t
−
√
t

τ

)]

−e|x|/λ
[
1− erf

( |x|
2λ

√
τ

t
+
√
t

τ

)]}
(7.49)

In (7.47) and (7.48), erf is the error function defined by

erf(y) =
2√
π

∫ y

0
e−z

2
dz (7.50)

Note that erf (∞) = 1 and erf (−∞) = −1. The result in (7.49) tacitly assumes sinks of strength
−I0/2 at x = ±∞.9

7.3.3. Examination of Temporal Response

For a given value of time the spatial behavior is exponential-like but not exponential. For
t >> τ (i.e., for the temporal condition approaching the steady state), vm(x) tends toward a
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Table 7.2. Temporal Morphology at Different Values of x

Steady-state fraction
x at t = τ

0 0.843
λ 0.632
2λ 0.372
3λ 0.157
4λ 0.0453
5λ 0.00862

Stimulus: current step at x = 0.

true exponential in x, as shown in (7.34), and also as obtained from (7.49). The presence of the
membrane leakage resistance is responsible for a continuous decrement of vm with increasing x
while λ describes the rate of this effect.

In the temporal behavior of vm(x, t) given by Eq. (7.49), τ characterizes this behavior.
Thus as noted, when t > τ the response rapidly approaches steady-state values. Figure 7.4
plots families of curves derived from Eq. (7.49), which expresses the above ideas graphically.
These results show that time is required to reach steady state owing to the presence of membrane
capacitance and resistance, and this membrane time constant is a measure of that time. Further,
the response is spatially confined to a region near the site of the stimulus and λ is a measure of
its extent.

For a fixed x, the temporal behavior is not a true exponential; its shape is not readily apparent
by inspection of (7.49). If we determine from (7.49) the fraction of steady-state amplitude reached
at t = τ as a function of x, the data in Table 7.2 are obtained. The rapid decrease in value seen
in Table 7.2 also reflects a temporal waveform that is not exponential. Only at x = λ does the
magnitude of the fraction of steady-state amplitude reached at t = τ equal that obtained with an
exponential waveform (i.e., 1− 1/e).

7.4. AXIAL CURRENT TRANSIENT

Questions: How much axial current does the stimulus generate? Does the axial current start
quickly? Where? Current is injected intracellularly, so does it all flow down the intracellular
volume, or does some go outside? Is the current flow pattern quickly established, or does it take
a long time to reach equilibrium?

Stimuli often are used to manipulate the actions of excitable tissue, so understanding a
fiber’s response to stimuli as a function of the magnitude or position of the stimulus site has a
natural interest and utility. As an example of the mathematical results developed to this point,
let us evaluate the response of a semi-infinite fiber with a bounded extracellular space to such a
stimulus. In particular, let us consider the application of an intracellular current step, of magnitude
I0, at the coordinate origin (x = 0) at t = 0. (To simplify the consideration, we assume that the
remote electrode is at +∞.)
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Figure 7.4. Theoretical Distribution of Potential Difference across a passive nerve mem-
brane in response to onset (a and c) and cessation (b and d) of a constant current applied
intracellularly at the point x = 0. (a) and (b) show the spatial distribution of potential dif-
ference at different times, and (c) and (d) show the time course of the potential at different
distances along the axon. Time (t) is in time constants, τ , and distance (x) is in space con-
stant, λ. From Aidley DJ. 1978. The physiology of excitable cells. Cambridge: Cambridge
UP. After Hodgkin AL, Rushton WAH. 1946. The electrical constants of a crustacean nerve
fiber. Proc R Soc London, Ser B 133:444–479. Reprinted with permission of Cambridge
University Press.
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To find quantitative answers to the questions, first we examine the given parameters and
observe that

At t = 0, vm = 0 everywhere since the membrane capacitances have yet to receive any
charge from the applied current.

Because vm ≡ 0 signifies a short-circuited membrane, the applied current, at t = 0,
divides instantaneously between intracellular and extracellular space in inverse proportion
to the axial resistances [i.e., Ii = (re/(ri + re))I0 and Ie = (ri/(ri + re))I0].

Because extracellular space is assumed bounded re is not negligibly small.

Now for x >> λ and at steady state, (7.34) describes vm ≈ 0, so riIi = reIe.

Also, because Ii + Ie = I0, then Ii = reI0/(ri + re), and Ie = riIe/(ri + re), hence
approximating their initial values.

This close approximation to the initial values suggests that at large x there is a transient of
negligible magnitude. It further suggests that the axial current response to a step is essentially
instantaneous. We will examine this hypothesis quantitatively by deriving and evaluating an
expression for the axial intracellular steady-state current. That is,

Ii =
re

ri + re
I0 when x→∞

so at a more proximal site (smaller x) Ii will be greater than this limiting value. It will be greater
by an amount equal to the total outflow of transmembrane current between x and infinity.

That is, for finite values of x

Ii(x) =
re

ri + re
I0 +

∫ ∞
x

imdx (7.51)

Equation (7.34) gives the steady-state vm for a current I0 applied extracellularly at the origin
of an infinite fiber; I0/2 is removed at ±∞. In view of the intracellular–extracellular symmetry,
we obtain a similar expression for a current applied intracellularly by interchanging subscripts i
and e; also, there is a change in sign (since transmembrane current is oppositely directed).

Using this reasoning, and since we are now taking I0 to be the total current in the positive x
direction rather than I0/2 in (7.34) (since this is a semi-infinite cable), we get

vm = riλI0e
−|x|/λ (7.52)

At steady state the transmembrane current is entirely through rm (i.e., there is no capacitive
current), so im = vm/rm. With this relationship and using (7.52), Eq. (7.51) becomes

Ii(x) =
re

ri + re
I0 +

∫ ∞
x

riλI0
rm

e−x/λdx (7.53)
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where 0 < x <∞. Performing the integration and simplifying the results leads to the expression

Ii(x) =
re

ri + re
I0(1 + αe−x/λ) (7.54)

where α = ri/re. Note that Ii(0) = I0, while Ii(∞) = (re/(ri + re))I0, as expected. For
muscle bundles and for cardiac tissue, experimental data support α = 1 for estimates of Ii.

It also is informative to use Table 7.2 to examine issues related to the temporal response:

For values of x equal to 2λ or less, the transient amplitude becomes large (> 13%). For
this x range, as shown in Table 7.2 the transient time is on the order of τ .

At x = 5λ we have the result that Ii(5λ) changes its relative magnitude from t = 0
to t = τ by only 0.862%. From (7.49), we can determine that the time required to
achieve 65% of steady state (an effective time constant) is roughly 3τ , hence fairly long.
Nevertheless, since the change is so small, so that the time required to achieve it may not
matter.

For x = 10λ achieving steady state will take much longer (≈ 5τ ), and the change in
magnitude during this transient will be even smaller (0.005%). Under many circumstances
these changes are insignificant.

7.5. FIELD STIMULUS OF AN INDIVIDUAL FIBER

In this section we examine the subthreshold membrane response of a single fiber of infinite
length. The fiber is assumed to be lying in an unbounded conducting medium. The stimulus field
arises from an external point current source. We picture our goals as follows:

The site of the stimulus may be away from the fiber, so an expression is to be derived for
the induced transmembrane potential given the source–fiber distance, h. Also known is
the current magnitude, I0, and fiber and medium properties.

We wish to find an expression that will permit an examination of the relationship between
induced transmembrane potential and the stimulating source field.

The analysis and thus the result depend on the assumption of linearity (subthreshold
conditions) and that a/h << 1, where a is the fiber radius.10

In the subsequent sections the same physical arrangement is considered, but under transthresh-
old stimulus levels. This additional analysis permits an examination of threshold and a determi-
nation of its constancy as various parameters are changed.
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Figure 7.5. Geometry of Source and Fiber. A single current point source of magnitude I0 is
placed at a distance h from a circular cylindrical fiber of length 2L. The extracellular region
is unbounded, uniform, and has a conductivity σe. The fiber radius is a and its intracellular
conductivity is σi. The fiber’s centerline lies along the coordinate z axis. The length is
divided into elements Δz for numerical calculations.

7.5.1. The Electric Field from a Point Source

Let us consider the response of an unmyelinated fiber lying in an unbounded conducting
medium due to an applied electric field of a point current source. The field, φa, has the form
described in (2.21):

φa = I0/(4πσer) (7.55)

In (7.55) I0 is the current strength, and σe the conductivity of the medium, where the extracellular
space being designated with subscript e, and r is the distance from the source to an arbitrary field
point. A description of the geometry is given in Figure 7.5.
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Under many circumstances the perturbation of the extracellular field resulting from the pres-
ence of the fiber itself can be ignored when the fiber diameter is small compared to its distance
from the (point) source [5].11 This condition for small perturbation is generally satisfied under
the usual conditions of fiber stimulation.

As a consequence, the extracellular electric field along the fiber is essentially the applied
field. Use of the unmodified field is a particularly important simplification for the evaluation of
fiber excitation.

The linear core-conductor equation for transmembrane current im per unit length of unmyeli-
nated fiber is, from (6.13),

riim = ∂2φi/∂z
2 (7.56)

where ri is the intracellular resistance per unit length, and z now denotes the axial variable. This
current must also equal the intrinsic ionic plus capacitive current of the membrane, as discussed
in obtaining (6.31). The membrane current is described by iion + cm∂vm/∂t, where cm is the
membrane capacitance per unit length.

With these substitutions and some rearrangement, (7.56) may be written as

ri
∂vm
∂t

=
1
cm

(
−iionri +

∂2vm
∂z2 +

∂2φe
∂z2

)
(7.57)

where φi is replaced by vm + φe.

7.5.2. The Activating Function

Rattay [7] considered the activation of an isolated fiber as quantified by (7.57). He noted
that at t = 0 the membrane is at rest. At rest several conditions apply:

vm ≡ 0
∂2vm/∂z

2 = 0
iion = vm/rm = 0. (7.58)

Using these resting conditions with (7.57), he established that, initially upon application of the
stimulus,

ri∂vm/∂t = (1/cm)∂2φe/∂z
2 (7.59)

Initial change follows activating function

Rattay argues that (7.59) provides a foundation for the following conclusions: Where acti-
vation may occur corresponds to the region where ∂2φe/∂z

2 is positive, since having ∂2φe/∂z
2

positive will make ∂vm/∂t > 0 initially. Conversely, the region that will hyperpolarize (i.e.,
where ∂vm/∂t < 0 for small t) is where ∂2φe/∂z

2 is negative, according to (7.57), and this
region will not initiate activation. Because of the role played by

A(x) = ∂2φe/∂z
2 (7.60)

Rattay named the function the activating function.
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For subthreshold linear conditions the ionic current may also be evaluated by vm/rm, where
rm is the fiber membrane resistance per unit length. Under steady-state conditions (∂vm/∂t = 0)
and with iion = vm/rm, (7.57) becomes

∂2vm
∂z2 −

vm
λ2 = −∂

2φe
∂z2 (7.61)

where, of course, λ =
√
rm/ri. Since the axial applied electric field, Ez , is the negative z

derivative of φe, Eq. (7.61) can also be written as

∂2vm
∂z2 −

vm
λ2 =

∂Ez

∂z
(7.62)

Equation (7.62) describes the effect of the applied field on the target fiber through the solution
for vm, the induced transmembrane potential. The axial derivative ofEz is seen as the applied or
“forcing” function in the differential equation for vm. For a fiber of infinite length, the response
as described by vm(z) should correspond, more or less, to the applied function.

Thus the peak depolarization, of particular interest in clinical design, could be expected to
be located where ∂Ez/∂z attains its maximum values. To the extent that such a correspondence
is true, the activating function is a valuable tool since a possibly complex solution for the actual
vm is avoided.

The activating function is only the beginning

The activating function is not the solution for Vm(t), but only its initial rate of change. Vm(t)
changes over time during and after the stimulus interval, and it is clear that the vm arising from
∂Ez/∂z depends in some way on the entire function Ez , not just the location and magnitude of
its initial values or its peak values.

Furthermore, the vm response can be expected to depend in some way on the fiber properties,
as perhaps described simply by the parameter λ. In addition, for finite fibers, boundary conditions
must be introduced into the solution of (7.62) and the boundary conditions may have an important
influence on the morphology of vm.

7.5.3. The Vm Response over Time

From a formal point of view the activating function has the role of an applied function in the
differential equation (7.62). While the form of vm(x) may evolve to become similar to that of
the forcing function, another possibility is that vm(x) will not be the same in important respects.

Consequently, more mathematical results are needed to know what the stimulus does, quan-
titatively. Thus we now proceed to find a solution for vm. When that solution is obtained, there
will be the opportunity to compare it to the activating function to see what looks the same, and
what looks different.

The following mathematical development will show that the transmembrane potential re-
sponse, over time, can be found by means of a convolution. The convolution shows the interaction
between the effects of the external field on the fiber, and the response of the fiber to that field.
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In particular, we are considering the case where the stimulus is sufficiently small, so that
the membrane behavior is linear and may therefore be described by a parallel resistance and
capacitance (rm in Ωcm and cm in μF/cm). Equation (7.62) may then be written as

ricm
∂vm
∂t

+ ri
vm
rm
− ∂2vm

∂z2 =
∂2φe
∂z2 u(t) (7.63)

where iion = vm/rm and u(t) is a unit step (included here to signify that the activating function
is switched on at t = 0).

Initial rate of change of Vm

Examining (7.63), one sees that if a stimulus is initiated when the fiber is at rest, then both
vm and ∂2vm/∂z

2 are zero. Thus, rearranging (7.63), one has an equation for the initial rate of
change of vm along the fiber as

ricm
∂vm
∂t

=
∂2φe
∂z2 u(t) (7.64)

That is, ∂vm/∂t is proportional to the activating function, as noted above. The proportionality
coefficient is determined by characteristics of the fiber, specifically its time constant ricm.

Transformations to find Vm response

We will find it useful here to have the fiber response to a unit intracellular point source.
Thus, using (7.63) we seek the solution of

λ2 ∂
2vm
∂z2 − τ

∂vm
∂t
− vm = −riλ2δ(z)u(t) (7.65)

where δ(x) is a unit Dirac delta function (7.23). We see that the desired solution to (7.65) is the
solution found for (7.35).

We assume that the extracellular medium being unbounded supports the assumption that
re ≈ 0.12 An examination of (7.65) is facilitated by introducing normalized variables defined by

X =
z

λ
and T =

t

τ
(7.66)

where τ = rmcm and λ =
√
rm/ri. Substituting (7.66) into (7.65) results in

∂2vm
∂X2 −

∂vm
∂T
− vm = −riλ2δ(z)u(t) (7.67)

which is essentially (7.37), except that in (7.67) the stimulus current is included explicitly.

The solution to (7.67) is given in (7.48). Since we seek a unit impulse response which divides
into the positive and negative z directions, we require I0 = 1 in (7.48). Hence

G(X,T ) =
riλ

4

{
e−X

[
1− erf

(
X

2
√
T
−
√
T

)]

−eX
[
1− erf

(
X

2
√
T

+
√
T

)]}
(7.68)
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Function G thus gives the transmembrane voltage produced by a unit current at position X and
time T .13

Transmembrane potential’s response to stimulus

We now wish to extend the results found for a delta function source to find results from a
distributed source. Applying (7.67) to (7.63) yields

∂2vm
∂X2 −

∂vm
∂T
− vm = −λ2 ∂

2φe
∂X2 u(t) (7.69)

Comparison of (7.69) and (7.67) shows that they differ only in the forcing function (the terms
on the right). Additionally, the one equation (7.67) provides the impulse response while the other
equation (7.69) is for a continuous forcing function (namely, ∂2φe/∂X

2).

Moreover, the system is linear, since we are restricting consideration to passive membrane.
Thus the solution to (7.69) is the convolution of ∂2φe/∂X

2 with the fiber impulse response.

If we take into account the additional factor ri in (7.67) as well as the normalized coordinates,
we obtain

vm =
λ

ri

∫ ∞
−∞

f(ξ)G(X − ξ, T )dξ (7.70)

where ξ is a dummy variable for X and f(ξ) = ∂2φe/∂z
2|z=ξ. The coefficient λ in (7.70) arises

from the change in variable, where dz = λdξ.14

The interpretation of Eq. (7.70) is a follows. Function f(ξ) comes from the field stimulus,
as it affects the fiber. Function G(X − ξ) is the fiber’s response to a stimulus given at one point
along the fiber. The convolution integrates (in effect, it adds up) the fiber’s responses to the stimuli
created along the fiber by the external field.

Equation (7.70) is an application of linear systems theory, where the output to an arbitrary
input is expressed in terms of the impulse response (system function). A similar expression
appropriate for myelinated fiber stimulation was derived by Warman et al [10].

Note that any stimulus may be considered a sequence of impulse functions.

7.5.4. Isolated Single Fiber and a Point Current Source

The problem at hand is described in Figure 7.5, but with L = ∞. In other words, the point
current source is located at a distance h from the unmyelinated fiber of infinite extent. The foot
of the perpendicular determines the origin of the coordinate system. The desired solution is given
formally by Eq. (7.70).

Again we consider the subthreshold response. This response can be evaluated using the
Fourier transform. Now the Fourier transform of a convolution is the product of the Fourier
transform of each convolving function.
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Thus if F denotes the Fourier transform and F−1 the inverse transform, then (7.70) can be
expressed as

vm(X,T ) =
λ

ri
F−1[F [f(X)]F [G(X,T )]] (7.71)

The applied field arising from the point current source, (7.55), is simply given by

φe(z) =
I0

4πσe
√
h2 + z2

(7.72)

The spatial second derivative of Φe, in the direction of the fiber’s axis, is

f(z) =
∂2Φe
∂z2 =

I0
4πσe

2z2 − h2

(h2 + z2)5/2 (7.73)

Consequently, where H = h/λ,

f(X) =
I0

4πσeλ3

2X2 −H2

(H2 +X2)5/2 (7.74)

Accordingly, substituting (7.68) and (7.74) into (7.71) gives [5]

vm(X,T ) =
λ

ri
F−1

{
I0

16πσeλ
× F

[
2X2 −H2

(H2 +X2)5/2

]
×

F

[
e−X

(
1− erf

(
X

2
√
T
−
√
T

))

− eX
(

1− erf
(

X

2
√
T

+
√
T

))]}
(7.75)

7.5.5. Activation Function’s Prediction versus Response

With the results above, we now can compare the activating function with the actual membrane
response. It is helpful to visualize the results. To this end, the transmembrane potential created by
(7.75) for one example is plotted in Figure 7.6 at three times following the onset of the stimulus.
The example has a point cathodal stimulus at distance h from a fiber, with details given in the
Figure caption.

At the first of the three times plotted, 0.01 msec after the start of the stimulus, the wave
shape of the activating function is a good approximation to that of the transmembrane potential.
Recall that the impulse response, G(X,T ), for small T, is approximately a delta function (see
Figure 7.4). The consequence is that the early transmembrane potential response has a shape like
that of the activating function, consistent with the convolution equation (7.70). Thus for a very
short stimulus (short in comparison to the time constant), the activating function is a good predictor
of the resulting transmembrane potential and correctly shows the regions of depolarization and
hyperpolarization produced by the stimulus.
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Figure 7.6. Time Evolution of the Induced Transmembrane Voltage along a Fiber. The
response is that from a field stimulus, and the three lines shown the response at three times
following stimulus onset, i.e., Vm(x) at 0.01, 0.10, and 1.00 msec after the start of a
stimulus. The point current stimulus is at distance h = 0.02 cm from a fiber described
in Figure 7.5. [Other parameters are λ = 0.86 mm. τ = 1.5 msec, σe = 33.3 mS/cm,
and I0 = −0.44 mA.] In the top panel (A), the vertical axis plots Vm on a normalized
scale to facilitate comparison of the plots. (A value of 1.0 on the normalized scale is
approximately 30 mV.) In the lower panel (B), three horizontal bars show the extent of the
depolarized region. The horizontal axis (bottom) applies to both (A) and (B). Distances
along the horizontal axis are given in millimeters from the point directly under stimulus and
thus also are approximately the distance in space constants. (Only one half of the spatial
response is shown, because the two sides are symmetric.) The activating function has a
wave shape similar to that of the 0.01 msec curve. Adapted from Plonsey R, Barr RC.
1995. Electric field stimulation of excitable tissue. IEEE Trans Biomed Eng 42:329–336.
Copyright c©1995, IEEE.

It would be convenient if what happened at later times were simple multiples of the result
for 0.01 msec. However, such is not the case. Thus the limitations of making estimates using the
activating function are seen when examining the true response as the stimulus grows longer, as
shown in the plots for 0.10 and 1.00 msec. The result of a longer stimulus is that the transmembrane
potential grows larger in magnitude, but not linearly. Thus the peak vm for the 0.10-msec plot is
roughly three times that of the plot for 0.10 msec, and the plot for 1.00 msec is roughly two times
that of 0.10 msec, even though the stimulus has 10× the duration. Finally, the peak amplitude
never increases much beyond that for 1.00 msec (for this example), even for much longer stimuli.

The transmembrane potential response also grows wider. As the stimulus gets longer, the
extent of the fiber that is depolarized by the stimulus grows larger, as seen explicitly in Figure 7.6B,
where the extent of the depolarized region is identified by a horizontal line for each time. Further,
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the portion of the fiber depolarized changes from a small fraction of a space constant (at 0.01
msec) to substantial fractions (at 0.10 and 1.00 msec). Such a change can be critical to the
initiation of a propagated response.

In summary, in this example, the activating function locates the site of maximum depolar-
ization and is a good indicator of how the fiber responds at the start of the stimulus, showing
depolarizing and hyperpolarizing regions. However, it fails to delineate the extent of the region
of depolarization for realistic stimulus durations and provides only a weak basis for estimates of
their peak magnitude. The extent of the depolarized region grows rapidly as the stimulus duration
increases, while the activating function corresponds to the initial conditions. Thus the activating
function is not a good predictor of the magnitudes or the regions of the fiber that are depolarized
and hyperpolarized, for most stimuli used in practice.

7.6. STIMULUS, THEN SUPRATHRESHOLD RESPONSE

In this section we again consider the response of a fiber from a point current stimulus (as de-
scribed in Figure 7.5). Here the active membrane properties are included to admit a suprathreshold
stimulus. The Hodgkin–Huxley membrane model, described in Chapter 5, is chosen to describe
these membrane properties. Since the evaluation was carried out numerically, specific electro-
physiological and dimensional values were chosen to reflect realistic conditions.

7.6.1. Numerical Methods for Finding Vm

As in the previous section, the fiber and source geometry is specified in Figure 7.5. The fiber
is assumed to be circular cylindrical with radius a = 0.002 cm. A stimulus current of magnitude
I0 is located a distance h from the fiber. The duration of the stimulus is denoted by td and is
varied, as is h.

The stimulus threshold was determined for various combinations of h and td by repeated
trials. Threshold was judged by the presence or absence of a propagating action potential at sites
several space constants, λ, from the site of excitation. The threshold stimulus was such that a
10% increase resulted in propagation. (It was the largest stimulus for which propagation did not
result.)

7.6.2. Results of Space-Clamped and Field Stimulation

Space-Clamped Threshold. For a reference, threshold was determined for a transmembrane
stimulus under space-clamped conditions. A space clamp can be achieved by considering an
axially uniform transmembrane potential stimulus. The result is plotted in Figure 7.7 (inset) [1].
One sees that with a space clamp the threshold is nearly independent of stimulus duration and
requires 7 mV of depolarization.

Field Stimulation. An examination of Figure 7.7 shows that for field stimulation, the threshold
voltage is no longer independent of stimulus duration, in general. The degree of deviation from
the space-clamped result is seen to depend on both the stimulus–fiber distance h and the stimulus
duration td.
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Figure 7.7. Threshold Values of vm versus Stimulus Duration for a Point Stimulus. (Inset:
results for patch geometry for comparison.) The transmembrane voltage at the end of the
stimulus is shown for a stimulus condition that is just below threshold. Patch data are for
the condition of no spatial variation. All potentials shown are relative to a baseline of−57
mV. Outer: Each curve is for a different source–fiber distance as shown (h given in cm).
Results shown are for z = 0, the shortest fiber–stimulus distance. Membrane properties are:
EK = −72.1 mV,ENa = 52.4 mV, gNa = 120 mS/cm2, gK = 36 mS/cm2, gl = 0.30
mS/cm2. Fiber properties are: Rm = 0.148 Ωcm2, λ = 0.086 cm, Cm = 1.0 μF/cm2.
From Barr RC, Plonsey R. 1995. Threshold variability in fibers with field stimulation of
excitable membranes. IEEE Trans Biomed Eng 42:1185–1191. Copyright c©1995, IEEE.

The highest thresholds were measured for the smallest duration and smallest value of h. Thus
for td = 0.04 msec and h = 0.01 cm, a threshold value of 118 mV was obtained. In contrast, for
long stimulus duration and large source–fiber distance, results were obtained that are similar to
those for the patch. For example, when h = 0.5 cm, the threshold value of 8 mV corresponds to
stimulus durations of 0.04–4.0 msec. (One could have anticipated such a result, since the axial
variation of the applied field is increasingly uniform, approaching space-clamped conditions, for
increasing h.)

Temporal Transmembrane Potential Waveforms. The temporal response following a just
subthreshold stimulus is given in Figure 7.8 and is helpful in interpreting all results shown in
Figure 7.7. For the shortest durations of 0.01 msec, we see that a transmembrane potential of 118
mV marks the threshold voltage. This elevated voltage is required to maintain a large enough
voltage following the termination of the stimulus to open sufficient sodium channels, since the
activation gate time constant τm is several tenths of a millisecond.

The effect of stimulus decay based on the membrane time constant is a contributing factor
in Figure 7.7. But a second contributing factor affecting the membrane decay depends on the
source–field distance. To understand this effect, a plot of the spatial transmembrane potential
vm(z) is given in Figure 7.9. Here, we note that the central depolarized region is flanked by
hyperpolarized regions.

Thus the depolarized membrane decay is also accelerated by longitudinal current flow into
the hyperpolarized regions. This current will be enhanced for smaller values of h, which reduces
the distance to the peak hyperpolarized position (in Figure 7.9 it is at around 0.15 cm).
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Figure 7.8. Transmembrane Potential as a Function of Time for stimuli that are just below
and just above threshold. Inset: Curve A is for a just transthreshold stimulus and B for
a just subthreshold stimulus. The source–fiber distance is 0.01 cm. Stimulus magnitudes
were 1.40 (A) and 1.30 mA (B). Outer: Temporal responses for just subthreshold stimuli
for stimulus duration as shown (in msec). From Barr RC, Plonsey R. 1995. Threshold
variability in fibers with field stimulation of excitable membranes. IEEE Trans Biomed Eng
42:1185–1191. Copyright c©1995 IEEE.

Figure 7.9. Spatial Distribution of Transmembrane Potential, vm(z), at the End of the
Stimulus. Each curve is labeled with the duration of the stimulus. The source–fiber distance
is 0.10 cm. In each case the stimulus magnitude is for a just subthreshold response. From
Barr RC, Plonsey R. 1995. Threshold variability in fibers with field stimulation of excitable
membranes. IEEE Trans Biomed Eng 42:1185–1191. Copyright c©1995 IEEE.
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This factor explains the very large threshold requirements for small values of h, seen in
Figure 7.7. For h = 0.5 cm, the depolarized region is so broad that the behavior is similar to that
shown for the patch (membrane decay is entirely due to the RC component alone).

7.6.3. Comments on the Concept of Threshold

For the design of a practical stimulator, it is highly desirable to specify a target threshold that
can be relied on to achieve fiber activation. Specifying a target threshold allows one to use linear
analysis to estimate stimulus parameters. Other factors that arise in a practical stimulator design
are introduced in Chapter 12.

What is clear here is that the actual threshold value that exists at the end of just a transthreshold
stimulus may range from 7 to 118 mV, depending on the stimulus duration and the distance from
the stimulus electrode to the fiber. If a value of h ≈ 0.5 cm or h ≈ 0.1 cm and td ≈ 0.5 msec is
consistent with other design criteria, then a fixed threshold of around 8 mV can be assumed for
an HH membrane. Otherwise, an elevated threshold value must be initially assumed in a linear
treatment. In every case, a nonlinear membrane analysis is eventually desired to be followed by
appropriate animal and human measurements.

7.7. FIBER INPUT IMPEDANCE

Many questions about the electrical properties of fibers can be framed in terms of the input
impedance. For example, the effects of cable length are examined in the section below by
comparing the input impedance for realistically short lengths with that of infinite lengths.

The input impedance, Z0, is defined to be

Z0 = vm/Ii (7.76)

and is evaluated at the point where the stimulus is applied. This evaluation requires both polarizing
electrodes to be at the origin with one in the intracellular and the other in the extracellular space;
the subthreshold applied current, Ii, and the resulting voltage, vm, enter (7.76) to evaluate the
input impedance. Note that the transmembrane voltage appearing in (7.76) is compared to the
longitudinal intracellular current Ii.

We note first that the assumed stimulus satisfies the condition under which (7.76) is derived,
namely, that ip = 0 for 0 < x <∞. Consequently, using (7.30), we have

vm = Ce−|x|/λ (7.77)

Assuming re = 0 permits (6.9) to be expressed as

Ii = − 1
ri

∂Vm
∂x

= − 1
ri

∂vm
∂x

(7.78)
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Substituting (7.77) in (7.78) results in15

Ii =
C

riλ
e−|x|/λ (7.79)

Since λ ≈√rm/ri when re ≈ 0,

Ii =
C√
rmri

e−|x|/λ (7.80)

and Z0 (at x = 0+) is given by

Z0 =
Ce−|x|/λ
C√
rirm

e−|x|/λ
(7.81)

or
Z0 =

√
rirm (7.82)

So, for an infinitely long cable with re ≈ 0, the input impedance is the square root of the product
of membrane and intracellular resistance.

7.7.1. Cables of Finite Length

Much of the above analysis has been based on the assumption of an infinitely long cable.
Of course, no cables are infinitely long. In this section, the consequences of this discrepancy are
examined. Specifically, the differences in the steady state are compared for cables of finite and
infinite lengths.

The overall strategy used here is based on the cable input impedance. We have seen that for
an infinitely long cable, Z0 is

√
rmri. Now we consider the input impedance Zin of a cable of

arbitrary length, L, terminated by an arbitrary impedance, ZL.

For the specific case of a fiber of length L terminated in a short circuit (ZL = 0), the input
impedance, Zin, will be of interest. This is because the extent to which Zin corresponds to
Z0 provides a quantitative measure of the extent to which the finite cable approaches the input
behavior of the infinite length cable.

There are a number of important applications. One arises in an examination of the behavior
of a network of neurons, such as found in the central nervous system. This is shown to depend in
part on the impedance behavior of short fibers (neurons). Interest in neural networks is not limited
to neurophysiologists but to those working on artificial neural networks as computer processors.
Further material on both topics is given in [3, 6, 11].

7.7.2. Finding Zin for a Finite Length Cable

Consider an axon in an extensive extracellular medium (re ≈ 0), of finite length (x = L),
and terminated with an arbitrary load impedance ZL. Assume an input voltage to the cable of
vm = v0 applied at x = 0. For x > 0, ip = 0, so the homogeneous form of (7.16) applies,
namely, (7.17) or

λ2 ∂
2vm
∂x2 − vm = 0 (7.83)
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The solution of (7.83) has already been given as (7.18)

vm(x) = Ae−x/λ +Bex/λ (7.84)

Note that since the cable is finite in length we can no longer set B = 0 based on the boundary
condition at infinity. Now the relationship between vm and Ii is available from the cable equations.
Since ip = 0, except at the origin, (7.78) is valid, and we rewrite it here for convenience as

Ii =
1
ri

∂vm
∂x

(7.85)

Substituting (7.84) into (7.85) and evaluating Ii gives

Ii(x) =
1
Z0

(Ae−x/λ −Bex/λ) (7.86)

where Z0 =
√
rmri from (7.82).

At x = 0 we have Zin = V (0)/I(0), so from (7.84) and (7.86) Zin is given by

Zin = Z0

(
A+B

A−B
)

(7.87)

For a cable of infinite extent, we must set B = 0 to avoid a potential that grows indefinitely,
and consequently from (7.87), Zin = Z0, which corresponds to earlier results (i.e., the input
impedance of an infinite cable is Z0).

For cables of finite length and arbitrary termination the input impedance requires the eval-
uation of A and B in (7.87). This evaluation is facilitated by an evaluation of a factor involving
the terminal impedance known as the reflection coefficient. In the next section we define the
reflection coefficient and show how it introduces the boundary condition at the load located at
x = L.

Reflection coefficient: Now at x = L,ZL = Vm(L)/Ii(L), so dividing (7.84) by (7.86) for
x = L gives

ZL = Z0

(
Ae−L/λ +BeL/λ

Ae−L/λ −BeL/λ
)

(7.88)

We define the reflection coefficient, Γ, as

Γ =
ZL + Z0

ZL − Z0
(7.89)

Substitution of (7.88) in (7.89) and simplification of the resulting expression yields the following
relationships:

Γ =
Ae−L/λ

BeL/λ
(7.90)

ZL =

[
Ae−L/λ
BeL/λ

+ 1
Ae−L/λ
BeL/λ

− 1

]
Z0 = Z0

(
Γ + 1
Γ− 1

)
(7.91)
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Table 7.3. Normalized Input Impedance of Finite Length Cable

L/λ Zin/Z0

0.1 10.0
0.5 2.16
1 1.31
2 1.04
3 1.01

By substituting (7.90) into (7.87) we obtain an expression for Zin in terms of Γ:

Zin = Z0

(
Γe2L/λ + 1
Γe2L/λ − 1

)
(7.92)

The name “reflection coefficient” comes about from similar definitions used in the study
of traveling electromagnetic waves, where the wave may by reflected in whole or in part from
discontinuities in a cable, such as at its termination.

For example, when ZL = Z0 the termination is equivalent to an infinite cable and conse-
quently the finite cable itself behaves as the proximal element of an infinite cable. In this case
nothing will be “reflected,” of course. From (7.89), a termination of ZL = Z0 results in Γ =∞.
In contrast, if ZL = 0 (short circuit) or ZL = ∞ (open circuit), then Γ = ±1, and the termina-
tion introduces a maximum discontinuity (everything “reflected”). This outcome is recognized
in (7.92) with both Γ = ±1 and small L/λ.

While the present nomenclature has been utilized due to a superficial analogy with EM waves,
the physical situation is, of course, quite different.16

7.7.3. Zin for an Open Circuit Termination

A finite cable with a sealed end can be regarded as a cable that ends in an open circuit. That
is, ZL =∞ and Γ = 1. For a cable of length L with such a termination, we have from (7.92)

Zin = Z0

(
e2L/λ + 1
e2L/λ − 1

)
= Z0 coth

(
L

λ

)
(7.93)

Equation (7.92) confirms that Zin = Z0 when Γ =∞, while when Γ = ±1, Zin depends on L/λ
[e.g., Zin = Z0 tanh(L/λ) for Γ = −1]; further details are found in the next section.

Table 7.3 shows the result of evaluating (7.93) numerically to find Zin/Z0. It indicates that
for short cables, defined by L < λ, there are substantial deviations in behavior from that of
an infinite cable. On the other hand, Table 7.3 also shows that as L increases beyond λ, the
input rapidly becomes indistinguishable from that of an infinite cable. In particular, the input
impedance is within 1% of Z0 if L is 3λ or more.
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7.8. MAGNETIC FIELD STIMULATION

For an applied time-varying magnetic field, Faraday’s law describes an induced (free-space)
electric field, namely, ∮

E · dl = − d

dt

∫
s

μ0H · dS (7.94)

where μ0 is the permeability (normally taken as free space) and H the magnetic field. Induced
secondary sources at conductive discontinuities (in particular, the torso–air interface) must be
included in a realistic evaluation ofH and hence the induced electric field at human nerve/muscle
from applied external magnetic fields. The electric field at nerve/muscle fibers, once obtained,
follows all principles described in this chapter. An overview of magnetic field applications can
be found in Stuchly [9], and some theoretical considerations in Plonsey [4].

7.9. NOTES

1. The concept of a voltage threshold as a fixed point of sudden transition to an active response, a classical conceptual
starting point, does not hold up consistently when examined in detail.

2. It is worth noting that the behavior of the tissue after it crosses threshold and becomes active (which often means
once the sodium channels open) is not usually a focus of the analysis of stimuli. That is because most of the time the
active response depends primarily on the tissue’s intrinsic membrane response and cellular structure rather than on
external stimuli. However, active response also is affected if the external stimulus is large enough and long enough,
e.g., in cardiac defibrillation.

3. Often Rm and Cm are used directly, and Io is converted to Amperes/cm2.

4. Later in the chapter we examine critically the classical notion that activation is automatically achieved once the
transmembrane potential reaches a critical transmembrane voltage.

5. One sees Eq. (7.8), sometimes with alternative variable names, used to relate threshold current and rheobase in many
contexts. For example, in Chapter 12 the same equation is used in connection with functional electrical stimulation.

6. Lapicque gave the equation i = α/(1 − e−βt), where i was intensity, t was duration, and α and β were two
constants.[2]

7. If the current had been applied extracellularly, then ∂Φi/∂x = 0 at x = 0 and ∂Φe/∂x = −I0u(t)re/2 at x = 0.
In this case we would replace (7.43) by ∂vm/∂X = I0u(t)reλ/2 (i.e., replace −I0ri by I0re). From symmetry,
we interchange subscripts i and e and, in addition, change the current sign to reflect it being oppositely directed. These
expressions, however, assume a limited extracellular space where currents are essentially axial and a one-dimensional
Ohm’s law applies.

8. One can use Eq. 30 in Appendix V of Carslaw HS, Jaeger JC. 1959. Conduction of heat in solids. Oxford: Oxford
UP.

9. If the current were introduced into (a bounded) extracellular rather than intracellular space, then the coefficient on the
right-hand side of (7.49) would equal −reλI0/4, and one can confirm that this expression reduces to (7.34) when
t→∞. Note that (7.49) applies even if re = 0 for a fiber in an unbounded extracellular region. For an extracellular
applied current, it is required that re �= 0 to invoke the aforementioned symmetry.

10. The importance of the subthreshold case is the following: even if the goal of the stimulation is to bring the fiber above
threshold, it must pass through a subthreshold state first. Thus the results are broadly applicable.

11. The assumption of a thin fiber and relatively large source–fiber distance assures that the azimuthal potential variation
is relatively small compared with the axial variation. For the azimuthal potential behavior, the fiber roughly doubles
the values of the applied field at the nerve periphery; these potential variations are relatively small for a thin fiber at
a large distance from the source, compared to variations along the axis. The secondary field arising from the axial
variations can be shown to be negligible [6].

12. The stimulating current, I0, is relatively large in order that the field it generates in the extracellular volume conductor,
given by (7.55), can induce subthreshold or suprathreshold depolarization of the target fiber. When considering the
response of the fiber itself to an intracellular unit impulse current, its behavior is little affected by the relatively
small extracellular field when the extracellular medium is unbounded. The linear core-conductor equation therefore
describes the intracellular fields correctly with re = 0; the large extracellular point source and its field are zero in
this situation.

13. Exercise: what are the units for G?
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14. Exercise: give the units for each quantity on the right side of (7.70) and show that they combine to give the units
needed on the left side.

15. The reason why Eq. (7.79) differs from (7.54) might not be apparent. However, this arises because in deriving (7.54)
we assumed an intracellular applied current I0 located at x = 0 with the removal of this current at infinity (whether
it is removed intracellularly or extracellularly will have no effect in the region 0 < x < L so long as L is finite). In
(7.79), the electrode pair carrying I0 into the intracellular space and out of the extracellular region are both at x = 0.

16. Propagation of microwave energy along cables or waveguides results from the injection of energy at the proximal
end; this energy diminishes with distance due to losses. For nerve/muscle, only a trigger to initiate a propagating
action potential is assumed at the proximal end; the energy is derived and expended all along the fiber and there is no
attenuation. An analogy to the biological case (regarding energy) is the behavior of a fuse, except that the fuse can
be used only once.
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8
EXTRACELLULAR FIELDS

8.1. BACKGROUND

Even body surface electrodes detect the small currents that flow as part of membrane activa-
tion deep within the torso volume. The electrocardiogram is a familiar such example: the sources
of these body surface potentials are the combined action currents of many cardiac cells.

The electroencephalogram arises from the brain, and the electromyogram and electroneuro-
gram arise from other organs. In each case the electric potential field in the surrounding volume
conductor arises from nerve or muscle sources within the region. These sources are generated by
cellular membrane activity.1 Where do the extracellular wave shapes come from? How can one
extracellular waveform have a different wave shape from another nearby? How do they relate to
the transmembrane potential waveforms? These are the questions this chapter seeks to answer.

One knows that the extracellular potentials must arise from the transmembrane currents and
therefore must be linked to the transmembrane potentials, but the basis of this relationship is not
apparent from inspection of the temporal waveforms. Thus the focus of this chapter is to develop
the relationship between the intracellular and transmembrane events that satisfies the governing
equations.

An ongoing research goal is to understand the details of the origins of the measured signals
through both qualitative and quantitative examination of the signal generation, and to do so in
enough detail that one can formulate clinical interpretations of the timing, wave shapes, and
amplitudes of specific features of the measurements. The goal of this chapter is a more limited
one: to develop and describe mathematical relationships that link the cellular action potential
with the volume conductor fields (action current fields) associated with them, and thus to provide
a basis for understanding the origin of the extracellular wave shapes such as those shown in
Figure 8.1.

To this end, the first section of the chapter focuses on providing a framework of ideas that
can serve as background knowledge from which more quantitative analysis can take hold. This
background includes comparing temporal to spatial transmembrane potential relationships. The

223
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Figure 8.1. Intracellular and Extracellular Temporal Waveforms. A sketch of a short
section of a long cylindrical fiber is shown in the middle panel. Transmembrane electrodes
(closed circles) and extracellular electrodes (open circles) are drawn at three points along
the axis, with their respective columns labeled A–C. Transmembrane potentials Vm(t) for
each column are shown in the panel below. Extracellular waveforms Φe(t) are shown in
the panel at the top. (These are unipolar waveforms, i.e., potential with respect to a distant
reference.) The vertical bars (top, bottom) give a voltage calibration. Each trace has a 10-ms
duration. Locations A, B, and C are at x = 0, 1, 2 mm, respectively. Radius a = 0.1 mm
and distance b = 1.0 mm. These waveforms are based on a computer simulation that uses
a mathematically defined template function for Vm(t). Ri = 100 and Re = 30 Ωcm.
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section also introduces and explains some terminology used, so as to provide a language and
general background about the origin of extracellular observations.

A qualitative explanation is insufficient, however, so the next major portion of the chapter
provides a quantitative explanation for the origin of extracellular fields from single fibers. This
framework is one that is often referenced because it offers a well developed basis for understanding
extracellular measurements quantitatively. (Extracellular fields from planar excitation waves,
often used for cardiac excitation, are evaluated in the next chapter.)

Here we restrict attention to a single cylindrical fiber. This cylindrical shape is ubiquitous
in nerve and muscle, and adaptation of the results to other shapes is often possible. This section
includes discussion of how potentials are found from membrane currents, how the membrane
currents are found if they are at first unknown, and how the membrane currents can be grouped
together (“lumped”) for simplicity. The mathematical formulation of fiber fields has relative
simplicity and thus intuitive appeal.

The final major portion of the chapter lets go of the single-fiber cylindrical-fiber geometry
and starts the analysis again from scratch. Here the goal is to examine the extracellular potentials
generated by a single cell of arbitrary shape. On its face, this problem is a narrow one of interest
only in an experimental or research context.

This impression is deceiving. In fact, because an arbitrary shape is used, the solution can be
applied to many different situations (including gaining a better understanding of waveforms from
cylindrical fibers). The more general approach also can be extended to multicellular organs such
as the heart (as is done in Chapter 9). That is, while the approach is more abstract, this portion
of the chapter produces results that embody fewer assumptions and that can be applied to more
situations.

8.1.1. Opportunities

Because all excitable tissues lie within a volume conductor, extracellular currents extend
throughout the entire conducting space, diminishing in amplitude with distance from the source.

Thus the opportunity provided by extracellular fields is that potentials can be sampled outside
cells, or even at a distance, without damage to the electrically active cells, or signal perturba-
tion resulting from electrode entry into the tissue of the organ. Noninvasive measurements from
the surface of the thorax, extremities, and head were among the first electrophysiological mea-
surements historically and remain the most numerous and valuable in clinical electrophysiology
today. The temporal signal so obtained corresponds to the electrophysiological behavior of an
organ and therefore contains information of clinical value.

The challenge is in the interpretation of the extracellular measurement. Extracellular potential
waveforms are weaker in magnitude and thus have features more easily obscured by measurement
noise, and also are more variable in wave shape.

Consider Figure 8.1, which shows the temporal transmembrane potential waveforms Vm(t)
and extracellular waveforms Φe(t) around a cylindrical conductor. As seen in the bottom panel,
the transmembrane potential waveforms all have similar wave shapes. Conversely, the three
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extracellular waveforms at three positions 1 mm from the fiber’s axis have markedly different
wave shapes from each other and from the transmembrane potential waveforms beneath them.
(Note the lack of correlation between the shape of the extracellular waveform in column A, above,
and that of the transmembrane potential waveform in column A, below, and similarly for columns
B and C). Additionally, the peak-to-peak magnitudes of these extracellular waveforms are much
smaller, roughly a thousand times smaller than those of the transmembrane potentials. Moreover,
the duration of the major deflections of the extracellular waveforms is shorter.

The predominant mode of interpretation of clinical waveforms is the accumulation of a
large number of measurements in a standardized way from patients with known conditions, and
then the retrospective classification of waveforms into categories, using both the intuition of the
investigators or more formal statistical procedures.

Wave shape interpretation based on understanding of the mechanism of origin, coupled with
quantitative evaluation of amplitudes, is nonetheless of great interest. As knowledge of the
mechanisms of origin for particular situations increases, the approach is gradually changing to a
more mechanistic mode of interpretation.

8.1.2. Spatial Rather than Temporal

To understand qualitatively (as well as quantitatively) how extracellular waveforms come
to be what they are, it is necessary to model the underlying electrophysiological process. The
model, while simplified from the actual tissue structure, must take into account the core elements
of the process: the tissue membrane properties, geometry, and the various electrical parameters
(e.g., volume conductor impedances, inhomogeneities, and anisotropies).

The temporal waveforms of Figure 8.1, when redrawn as spatial distributions (Figure 8.2,
panel A), show some unexpected additional waveforms.2 Inspecting the series of Vm(x) distri-
butions and the cartoons of Figure 8.2, one observes the following:

As seen in Figure 8.2A, excitation begins at the center of the fiber (at x = 0). This
conclusion is reached by looking at the progression of Vm(x) patterns for t = 8, 6, 4, 2
and extrapolating backward to time t = 0.

As seen in Figure 8.2A in the line for 2 milliseconds, a series of wave shapes for Vm(x)
have patterns that do not recur at later times.

As seen in Figure 8.2B, the initial deflection seen spatially evolves into two distinct
excitation waves, one on the positive x side and the other on the negative x side.

Once the excitation waves in opposite directions are separated, each one, considered
separately, propagates uniformly. As a pair, however, they do not propagate uniformly,
because the velocities on the left and right sides have opposite sign.

Once separated, the spatial action potentials are mirror images. Note that the one on the
left looks like Vm(t) in that the fast upstroke is on the left, while the one on the right has
a wave shape that is reversed, in that the fast upstroke is on the right.

To understand the origin of extracellular waveforms, a key first step is to describe the un-
derlying transmembrane potentials as distributions in space, which of course change with time,
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Figure 8.2. Spatial Transmembrane Potentials. PanelA shows the transmembrane potential
as a function of distance along the fiber, for early times after excitation. Panel B shows
Vm(x) for several later times, given by the number beside each trace. For illustration, the
different traces are displaced vertically. Note the multiplicity of wave shapes present in the
Vm(x) traces, as compared to Vm(t), which is shown in Figure 8.1.
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rather than describing the transmembrane potentials as a set of voltages versus time at various
locations.

8.2. EXTRACELLULAR POTENTIALS FROM FIBERS

It is not possible to find extracellular potentials from transmembrane potentials without
intermediate steps. Broadly the intermediate steps are as follows.

1. Temporal information must be converted to spatial.

2. The intracellular axial current and or the membrane currents from the action potential
must be found from Vm(x).

3. Extracellular potentials at one or more spatial sites are found from the membrane current,
or alternatively, the axial current.

4. Finally, the extracellular waveforms in spatial form are converted back to temporal wave-
forms, if that is the desired final form.

8.2.1. Source Density im(x)

We first consider how to find the axial and membrane currents from Φi(x) or from Vm(x).
Once one or the other of these is known, the following sections will show how to use them to
get the extracellular waveforms. (Note that the beginning here involves a spatial rather than a
temporal set of values for Φi or Vm.)

Of course, the procedures for finding the axial and membrane currents are closely related to
those used in Chapter 6, where they were based on the core-conductor model. They are not quite
the same, however. Among the differences are that here the extracellular volume is extensive and
current flow is not assumed to be one dimensional outside the fiber.

One possibility is that these currents already are known, either from measurement or com-
putation. That is unusual, however, as normally Ii(x) and im(x) are not directly measured or
initially known. More commonly, at the end of an experiment or the beginning of analysis, one
has values or estimates of Vm(x),3 so usually the question is how to move from Vm to im. This
part of the section addresses that question.

Currents from Φi

The cable equations, based on the core-conductor model (of Chapter 6), give a fiber’s axial
current Ii(x) in terms of its intracellular potential Φi(x) as

Ii = − 1
ri

∂Φi
∂x

(8.1)

This relationship continues to hold here even though the extracellular volume now is extensive,
rather than one dimensional. Similarly, if one knows the axial current one can determine the
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membrane current by

im = −∂Ii
∂x

(8.2)

As shown in chapter 6, substitution of (8.2) into (8.1) gives

im =
1
ri

∂2Φi
∂x2 (8.3)

For circular cylindrical axons the axial intracellular resistance, ri, per unit length, assuming
uniform axial current density, is

ri =
Ri
πa2 (8.4)

where a is the axon radius and Ri is the resistivity of the axoplasm (Ωcm). Accordingly, (8.3)
becomes

im =
πa2

Ri

∂2Φi
∂x2 = πa2σi

∂2Φi
∂x2 (8.5)

In (8.5), σi = 1/Ri is the conductance per centimeter (S/cm) of the axoplasm.

Thus, if one knows the intracellular potential Φi as a function of distance along the fiber,
then the computation of im(x) is done by finding the second spatial derivative, and using (8.5).
The resulting im(x) then is used to find Φe(x) at one or more field points, as described below.4

Currents from Vm

Often, however, one does not know Φi(x) but instead has Vm(x). If there is a simultaneous
set of values for Φe(x) just outside the fiber membrane, then one can use the definition Vm(x) =
Φi(x)−Φe(x) to get Φi(x). Then one can use (8.5) above. That is an unusual situation, however,
so usually one resorts to the following argument.

We noted when discussing the core-conductor model that if the extracellular space were
extensive, re << ri, and we could choose re ≈ 0. If re ≈ 0, then Φe << Φi and Φe ≈ 0.
Consequently, Vm = Φi − Φe ≈ Φi.5 Using this approximation, one has

im =
1
ri

∂2Φi
∂x2 ≈

1
ri

∂2Vm
∂x2 (8.6)

In the above expressions, recall that ∂Vm/∂x = ∂vm/∂x and ∂Φi/∂x = ∂φi/∂x.

Using the definition of ri as done above (8.4), one gets

Ii = −πa
2

Ri

∂Φi
∂x

= −πa2σi
∂Vm
∂x

(8.7)

and

im =
πa2

Ri

∂2Vm
∂x2 = πa2σi

∂2Vm
∂x2 (8.8)

As an example, consider Figure 8.3, which gives a transmembrane potential and the intra-
cellular and membrane currents as determined using equations (8.7) and (8.8). Specifically,
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Figure 8.3. Transmembrane Potential Vm, Intracellular Current Ii, and Transmembrane
Current im. The Figure shows a transmembrane potential (middle). Other traces give
the transmembrane (top) and intracellular axial (bottom) currents, as determined from the
transmembrane potential using Eqs. (8.7) and (8.8).

A. The top panel (A) gives the transmembrane current. As the negative of the spatial deriva-
tive of Ii, it has markedly positive and negative deflections on the leading and trailing
edges of the Ii waveform.

B. The middle panel (B) gives the transmembrane potential along the fiber, as specified by
a mathematical template function.

C. The lower panel (C) gives the intracellular axial current. Note that it has a sharp upward
spike in the region of the action potential’s upstroke.

It seems contradictory that here we assume that the extracellular resistance is insignificant,
while in the following sections a nonzero extracellular resistance is essential for the creation of
extracellular waveforms. To resolve the paradox one remembers the context. Here the extracellu-
lar resistance per length is assumed small relative to that of the intracellular space. That can be so
if the extracellular resistivity is of significant value. One aspect is that the extracellular resistance
per length is the extracellular resistivity divided by by the cross-section for extracellular current
flow. In an extensive extracellular volume, that cross-section is large.

8.2.2. Action Currents

Action currents are those associated with action potentials, and their propagation. Drawings
of action current loops provide a formative mental picture of the origin of extracellular potentials.
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Figure 8.4. Action Current Cartoon. Panel A shows the transmembrane potential as a
function of distance along the fiber for 4 and 8 milliseconds. Excitation began at x = 0
and spread from there in both directions. Panel B shows a cartoon of the current flow
at 4 msec, and Panel C for 8 msec. Labels identifying elements of the current loops of
panels B and C are given in panel D. The open and closed dots in B and C are hypothetical
electrode positions. In B–D, for purposes of illustration the source–sink distance is widened,
compared to that implied by the upstrokes of panel A.

These depictions are helpful even when they are only qualitative, as such pictures can be refined
as individual elements become quantitative through mathematical analysis.

Here we start first with a qualitative depiction. The cartoon of Figure 8.4 redraws (in panel A)
the curves of the spatial distribution of transmembrane potentials, for times of 4 and 8 milliseconds.
Cartoon drawings of the action currents at 4 milliseconds are given in panel B. Two current patterns
are drawn, each associated with one of the two excitation waves progressing outward from x = 0.
(Each component of the current path is identified in panel D.) Note that the elements of these
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drawings are similar to the graphs given in Figure 8.3. There is one large positive spike for axial
current, and one large outward and one large inward deflection for membrane currents.

At a later time (8 milliseconds) the transmembrane potential is broader (panel A), and the
action currents have moved outward (panel C). Note that at early times the two outward excitation
waves produce a spatial current pattern that must, to some degree, overlap (even though such
overlap is not drawn here). At later times the overlap diminishes as the separation grows larger.

Notable points in cartoons

By inspecting the series of Vm(x) distributions and the cartoons of Figures 8.2 through 8.4,

Excitation begins at the center of the fiber (marked x = 0). This conclusion is reached
by looking at the progression of Vm(x) patterns for t = 8 and t = 4 milliseconds and
extrapolating backward to time t = 0.

Thereafter there are two excitation waves, one in the positive x direction and the other in
the negative x direction.

As seen in panels B and C, there is a small tornado of current around the leading edge of
each excitation wave, with a multiplicity of intracellular, transmembrane, and extracellular
components.

The intracellular axial current flows in the direction of wavefront movement.

Transmembrane current has a “source” on the wavefronts leading edge and a “sink” on
the trailing edge. (This terminology is based on an extracellular perspective, so that a
“source” is a site where current emerges into the extracellular space.)

Extracellular currents (double lines) flow throughout the available extracellular space.

The advance of the excitation wave from t = 4 ms to t = 8 ms (panel A) is accompanied
by a outward movement in position of the two current loops from about x = 8 to x = 16
mm (panels B to C).

The electrode near the center (open circle) is always closer to sinks than sources, so its
potential is always negative. (Compare to trace A of Figure 8.1.)

The electrode away from the center (solid circle) initially is closest to a source (panel B)
and then closest to a sink (panel C), so one expects its potential to change from initially
positive to later negative. (Compare to trace C of Figure 8.1.)

Cartoon limitations

One draws the conclusions listed above from the cartoons rather cautiously, as they lack
any rigorous quantitative basis, i.e., they are just drawings. For example, comparison with the
quantitative graphs of Figure 8.3 makes it clear that the cartoons are not quite right on the following
points:

Intracellular current flows most intensively in one region, as drawn, but also flows in the
opposite direction in a different site, not drawn.

one observes the following:
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Figure 8.5. Element of a Fiber. (a) An action potential is propagating on a fiber in the
positive x direction. The fiber is divided into mathematical segments, and one such segment
is drawn. The fiber lies in a uniform extracellular medium of conductivity σe that is infinite
in extent. The field arising from the action currents at an arbitrary field point P is desired.
The coordinates of P are (x′, y′, z′). The source element is at (x, y, z). Shown is the
current emerging from the fiber element dx (magnitude imdx). (b) The monophasic action
potential Vm(x).

Transmembrane current exists outside of the one source and one sink drawn for each
excitation wave.

It is unexplained how the sources and sinks translate into specific extracellular currents
or how their magnitudes diminish with increased distance from the fiber axis.

No provision was available for understanding overlapping effects from two or more ex-
citation waves.

For these reasons and others, it is essential to focus and strengthen the analysis of action currents
and extracellular potentials through a more quantitative approach, as is done in the following
section.

8.2.3. Quantitative Formulation of Extracellular Potentials

A cylindrical fiber carrying an action potential propagating in the x direction produces po-
tentials throughout the surrounding medium. Here we assume the fiber is lying in an extensive
conducting medium, so the geometry is shown in Figure 8.5a. A sketch of a monophasic action
potential in the fiber is drawn in Figure 8.5b.

For analysis the fiber is divided conceptually into small elements along its length. Fiber
element dx, identified in Figure 8.5, lies within the region occupied by an action potential. Out
of this differential fiber element a current emerges into the extracellular region. The amplitude of
this current from the element is the transmembrane current per unit length, im, times the length dx
(i.e., imdx). From the perspective of the large extracellular region, the transmembrane current
emerges from a very small spatial region into an effectively unbounded space (except for the
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fiber itself). In other words, within the extracellular volume the current from element dx creates
potentials as, effectively, a point source.

For simplicity we have assumed the fiber to be thin relative to the extracellular volume, so
that it can be treated mathematically as a line. The current source element described here has a
ring shape, corresponding to the ring-shaped membrane element around the fiber. Even so, at a
distance a diameter or more away from the fiber surface, the current source behaves virtually as
a point source within the extensive conducting medium.

Extracellular potentials from a true point source

For a point source currents and potentials are uniform in all directions. Recall from (2.8)
that

Φe =
1

4πσe
I0
r

(8.9)

where r is the distance from the point source to the field point, σe is the extracellular conductivity,
and I0 is the source’s amplitude. The currents from a fiber obey related equations.

Extracellular potentials from a distributed sources

In the case of a cylindrical fiber, the analog to the point source I0 is the transmembrane
current im dx. The transmembrane current is, of course, not confined to a point, but instead
varies along the fiber. However, that distribution can be considered to be the same, in the limit,
as a distribution of point sources. Therefore the contribution of im dx to Φe can be rewritten, by
analogy to (8.9), as

dΦe =
1

4πσe
im
r
dx (8.10)

Finding the potential requires an integration over the full length of the fiber, as shown in (8.11),

Φe(P ) =
1

4πσe

∫
L

imdx

r
(8.11)

In writing (8.9), (8.10) and (8.11) one recognizes the following points:

The expression imdx is used instead of I0, since imdx is the current emerging from one
segment of the fiber, as shown in Figure 8.5.

Current sources are considered to lie on the fiber axis, even though currents emerge from
rings around the fiber.

The expression (8.10) is a differential contribution to the extracellular potential dΦe. To
get Φe, an integral over the length of the fiber is required, so that all segments along the
fiber that have nonzero membrane current are taken into account.

In (8.11), r is the distance from each element of current along the fiber imdx to the field
point P , the location for which Φe is to be determined.

LengthL, over which the integration is performed, must be long enough that all membrane
currents are contained within that length.
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Different extracellular potentials Φe will be present at different field points P because
each field point will lead to a different set of values of variable r, even though im(x)
is unchanged. That is, different extracellular locations will give different weights to the
same set of transmembrane currents (sources) along the fiber’s length.

Putting (8.8) into (8.11) gives the desired expression for Φe from Vm as

Φe =
a2σi
4σe

∫
∂2Vm/∂x

2

r
dx (8.12)

Equation (8.12) is used widely as it depends on Vm, which often is known. The equation may be
used to find potentials at field points that may be chosen to be either close to or far from the active
fiber. The same equation can be used to find the potential at only one position, or repeatedly to
find potentials for each location within a family of positions.

By using (8.12) twice, one can find the voltage between two field points. Often such a voltage
is needed to predict or confirm a measurement. For example, since linearity will apply in the
volume conductor outside the fiber, the voltage Vab between two field points a and b will be

Vab = Φe(a)− Φe(b) (8.13)

where Φe(a) is found using (8.12) and the geometrical coordinates for field point a, with an
analogous procedure for b.

As a matter of terminology, when position a is close to an electrophysiologically active mem-
brane and b is relatively far away, the voltage so measured often is called unipolar, while if a and
b are close together (e.g., within a millimeter), the measurement often is called bipolar. (Bipo-
lar recordings are approximations of a measurement of the spatial derivative of the potentials.)
This terminology can be misleading, as two electrodes are used both for unipolar and bipolar
recordings.

Transfer function in convolution form

The geometrical mathematics can be confusing because one often thinks of a set of field
points along the fiber’s direction (variable x), some distance away. At the same time each field
point involves summing contributions from points on the axis of the fiber for its whole length
(another variable x).

To keep things straight, a more formal writing of variable r is helpful, where these variables
are separated into x and x′. Specifically, if the element imdx is located at the coordinate (x, y, z),
and if the point at which the potential field is desired is located at (x′, y′, z′), then

r =
√

(x− x′)2 + (y − y′)2 + (z − z′)2 (8.14)

Often the coordinate origin is placed on the fiber axis so that points on the axis have y = z = 0.
Then with r as written above, integrating along the axis of the fiber involves varying x (with
y, z = 0), keeping everything else constant. Conversely, moving the field point along the direction
of the x axis involves varying x′, while keeping y′, z′ constant (but not both zero).
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Writing r in this way, one has

Φe(x′, y′, z′) =
1

4πσe

∫
L

im(x)dx√
(x− x′)2 + (y′)2 + (z′)2

(8.15)

The integral in (8.15) extends over the interval in x occupied by the action potential; also, as
discussed above, we have set y = z = 0 in (8.15).

The equation for Φe (8.15) can be rewritten, in the form of a convolution, as

Φe(x′, y′, z′) =
1

4πσe

∫
L

H(x− x′)im(x)dx (8.16)

where H(x− x′) is defined by

H(x− x′) =
1√

(x− x′)2 + (y′)2 + (z′)2
(8.17)

In convolution form equation (8.17) for Φe(x) has H(x − x′) is its kernel. Convolution form
has the advantage of making separating the terms for the sources imdx from the terms linking
the sources to the field points H(x− x′).6 In engineering, function H often is referred to as the
transfer function.

Examples of the quantities shown in the convolution equation for the extracellular potential
(8.16) are given in Figure 8.6. In the figure:

A. Panel A plots the function H for several field points. The solid line is for a field point
at x = −10 millimeters, while the two dotted lines are for x = 0 (center) and x = 10,
respectively. One notes that the same wave shape is present in each of these H plots, but
shifted in space so that the peak occurs at the x coordinate of the field point.

B. Panel B shows im for 4 msec, and in a second trace shows the extracellular potential
waveform φe(x) computed from im(x) and H . In panel A one notes that the H wave
shape has a significant breadth, implying that the extracellular potential at x = 0 will be
a weighted sum of membrane currents around x = 0, not just those at x = 0 precisely.
That expectation is seen demonstrated in panel B, where the sharp deflections and return
to the baseline near x = 0 (center) on the im waveform become more rounded. Note that
the trace for φe(x) does not return to zero at x = 0, even though the im curve does return
to zero there.

C. Panel C of Figure 8.6 shows waveforms for im(x) and φe(x) for 8 ms. At this later time
(as compared to panel B) the two excitation waves are separated. While the separation is
evident from φe(x), the waveform in notably smoother than is im(x). A more favorable
way of viewingφe(x) on this trace is that its observation shows not only what is happening
underneath the field point but also the time course of propagation as it approaches or moves
away. A spatially broader response often is advantageous in following the movement of
excitation waves.

The major conclusion from this Figure is that the wave shape of φe(x) follows that of im(x).
However, the φe(x) wave shape is smoother, and it reflects membrane currents some distance
away (laterally), as well as the membrane current at the position directly beneath the field point.
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Figure 8.6. Transfer Function H , Membrane Current im(x), and Extracellular Potentials
Φe(x). Panel A: Plots of the transfer function H . Transfer function H(x − x′) is given
for three values of x′. The solid line is for x′ = −10 mm, while the two dashed lines
are for x′ = 0 (centered) and x′ = 10 (on right). Panel B: Membrane current im(x) at
4 milliseconds and extracellular potential Φe(x) along a line a distance of 1 mm from the
fiber axis. Panel C: Membrane current im(x) at 8 milliseconds and extracellular potential
Φe(x) along a line a distance of 1 mm from the fiber axis. The extracellular potential
distribution Φe(x) for 4 ms (thick line) and 8 ms (thin line). The 4-ms potential function
comes from the convolution of H with im for 4 ms, and similarly for 8 ms.
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Waveform changes with radial distance

An extremely important aspect of extracellular potentials is that they can be measured at a
distance from the active membrane. The extracellular potential waveform changes with distance,
however, because the transfer function H changes with distance. Examples of such changes are
seen clearly in Figure 8.7.

In Figure 8.7 the waveforms of the membrane current for times of 4 and 8 ms (panel A,
bottom) are sharply defined. The time progression is obvious. Panels B and C show results for
distances of 0.2 mm from the axis of the active fiber (labeled “close”) and 4 mm (called “far”),
even though 4 mm is still not very far in relation to the dimensions of humans.

When the radial distance to the field points is small (panel B, distance 200 micrometers),
the transfer function H is narrow (panel B, below). At this distance the extracellular potential
waveform is detailed and similar to the membrane current waveform, both for 4 and 8 ms.

When the distance grows larger (4 mm, panel C) the transfer function H grows wider, and
in fact is still at about 10% of its peak value at the edges of the plot. Thus at this distance the
extracellular potential waveform φe(x) grows smaller in amplitude, because it is more nearly the
summation of the whole membrane current waveform (which sums to zero). Moreover, φe(x) at
4 mm is much smoother in shape than at 0.2 mm. Consequently, at 4 or 8 ms it is not entirely
clear whether there are one or two excitation waves below. Not shown but also the case is the
relative magnitude, which grows smaller as distance grows greater.

Monopole element source density

A particular terminology is used in referring to the terms of Eq. (8.12), the equation for
Φe. While knowing this terminology is not necessary to find Φe, it is helpful to have the terms
in mind when discussing the properties of equations or when comparing alternative calculation
methods, of which there are several. In particular, Eq. (8.12) contains a term often called the
“source density function.”

Specifically, in (8.12) one can think of ∂2Vm/∂x
2 as a source density function of x. That is,

if we wished the equation to have the form

Φ =
1

4πσe

∫
I�
r
dx (8.18)

then we would think of I� as constituting a source density (line density) function that lies along
the x axis. A comparison of (8.12) with (8.18) identifies the linear current source density. I�,
more completely as

I� = πa2σi
∂2Vm
∂x2 (8.19)

where the dimension of Il is current per unit length. Sometimes one loosely refers to the source
density as ∂2Vm/∂x

2, ignoring the (constant) coefficient πa2σi, but the coefficient must be
included in any quantitative evaluation.

An element of the source defined here is called a monopole source. A characteristic of
monopole sources is that they have 1/r dependence in the equations for Φe. This kind of source
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Figure 8.7. Changes with Distance of Extracellular Waveforms. Panel A shows the trans-
membrane current waveform. Panel B shows data for a distance of 200 micrometers from
the fiber axis. Data plotted isH for positions –10, 0, and 10 mm, andφe(x). Panel C shows
the same data at a distance of 4000 micrometers (4 mm). In all panels, the small numbers
4 and 8 are to identify curves for 4 milliseconds and 8 milliseconds after excitation begins
at the center. (For illustration, the 8-ms plot is slightly displaced downward.)
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distribution is sometimes called a single source density in contrast to the dipole (or double) source
density which we discuss in a later section. There are many analogies between these sources and
those with similar mathematical forms in the study of electrostatics, from which this terminology
comes.

8.2.4. Lumped-Source Models

In some of the sections that follow we examine the properties of “lumped-source models”
for a fiber. Such models are given this name because the source currents that exist in a region are
lumped together, as if they were all arising from a single place.

This mode of analysis came to exist in the pre-computer age, presumably to reduce the
amount of calculations.7 Such methods have not disappeared, however. Their ongoing merit is
that the process of their creation also simplifies the concepts of the relationship between, for
example, a fiber and its surroundings to its essentials. In one sense such methods say that to a
first approximation the fiber’s environment sees the fiber as if the true distributed currents were
reduced to a small number of current sources, a relationship that is much more easily visualized
and understood, as well as computed with fewer steps.

It is important to realize that lumped-source models often are created in such a way as to
model extracellular fields only, that is, often they do not estimate the intracellular field. Hence
they are not approximations of the true sources within the fiber. Rather, they are equivalent
sources, i.e., sources that produce extracellular fields equivalent to the ones that the real sources
would have produced, at least approximately.

8.2.5. Monopole Lumped-Source Models

In the following section we examine the properties of a monopole lumped-source model
for the fiber. The lumped-source model evaluates extracellular fields. (It does not give the
intracellular field, and hence the monopole sources are not true sources.)

For example, suppose there is an action potential in a fiber, as shown in Figure 8.2A, where
transmembrane current is leaving the inside of the fiber and entering the extracellular space, as
shown in the figure’s panel B. Inspection of the Figure shows that current enters and leaves the
fiber’s membrane for some length along the membrane, though most current enters or leaves over
a relatively short portion of the fiber.

As an approximation, the whole length of fiber may be represented by a few current sources,
called the “lumped sources.” These lumped sources, shown diagrammatically in the figure’s panel
C, have magnitudes set so that the lumped sources generate the same total amount of current in
the extracellular space, from approximately the same sites of origin, as does the actual membrane
current distribution of panel B. Of course, the fields generated by the lumped sources are not
exactly the same as those of the true distributed sources, except perhaps asymptotically at large
source–field distances.

The question arises as to how to determine the magnitudes and positions of each of the
lumped sources, so that they create, to a good approximation, the same extracellular waveform as
did the original im(x) distribution. There are several ways to do this process. One way is given
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in the paragraphs that follow. This way involves two steps: (1) approximate the actual action
potential by a triangular shaped waveform, and then (2) find the exact sources that would arise
from the waveform with this altered shape.

Triangular action potential approximation

In Figure 8.8D the action potential of panel A is redrawn. As redrawn, the original wave
shape of Vm(x) is approximated by a triangular action potential. The triangular action potential
has an activation slope that corresponds to the peak slope of the depolarizing phase of Vm and
has a recovery slope that corresponds to the peak slope in the recovery phase of Vm. (For the
figure, the triangle was formed by drawing straight lines over the original action potential that
had slopes the same as the maximum slope in the depolarization and repolarization phases.)

Once triangularized, the width of the activating phase of the triangular action potential is
wa = x1−x2, and the width of the recovery phase iswr = x2−x3 (panel D). As a consequence,
the slope of the triangularized waveform during depolarization is Amax = Vpp/wa, and the
slope during recovery is Bmax = Vpp/wr. Note that Vpp is the peak-to-peak magnitude of the
triangularized action potential, not the value of the transmembrane potential at the peak.8

Three lumped sources

A quantitative basis for the lumped monopole approximation may be developed by first
recalling (8.12), the expression for the extracellular potential from an action potential, which was

Φe =
a2σi
4σe

∫
L

∂2Vm/∂x
2

r
dx (8.20)

Note that, once triangularized, the second derivative is zero outside of the corner points. Thus
the question arises as to how to evaluate the integral across the corners. Consider in particular
corner 3, which has xa to the left of this corner and ∂2Vm/∂x

2 = 0 at xa. With xb to the right
of corner 3, then at xb ∂2Vm/∂x

2 again equals zero.

We then can find the magnitude of the source at corner 3 by integrating from xa to xb:

M = πa2σi

∫ xb

xa

∂2Vm
∂x2 dx = πa2σi

(
∂Vm
∂x

∣∣∣∣∣
xb

− ∂Vm
∂x

∣∣∣∣∣
xa

)
(8.21)

Aside from the coefficient, the result is simply the difference between the first derivatives evaluated
at the ends of the interval.

In the triangular waveform, the derivatives are readily available from the peak-to-peak trans-
membrane voltage, Vpp, together with spatial widthswa andwr of the activation and repolarizing
phases, as shown in Figure 8.8. Because the derivatives are used in several combinations, it is
convenient to define the maximum slope during activation, Amax, as

Amax = Vpp/wa (8.22)

and the maximum slope during repolarization as

Bmax = Vpp/wr (8.23)

Note that Amax and Bmax are defined in a way that makes both of them unsigned quantities.
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Figure 8.8. Monopole Sources. (A) Monophasic action potential Vm(x). The activation
and recovery phases are identified with the small letters a and r. (B) Membrane current
im(x). (C) Lumped equivalent monopole sources. (D) Triangularized action potential.
The sides of the triangle have a slope equal to the maximum slope of Vm of panel A. Widths
wa and wr are for the activation and recovery phases, spatially. (E) Triangular action
potential with encircled sites where there is a slope change. Sites 1 to 3 lead to monopole
sourcesM1 toM3. The activation phase of Vt has slopeAmax and the recovery phase has
slope Bmax.
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Since the second derivative is triphasic, there are three lumped sources, and, in particular, the
central region is negative and is flanked by positive side regions. We designate the total monopole
strength in the aforementioned regions M1,M2,M3, corresponding to points 1, 2, and 3 on the
figure.

Making use of the same procedure used for M3 above, and making use of the definitions of
Amax and Bmax, we can find the whole set lumped sources as

M1 = πa2σiAmax (8.24)

M2 = −πa2σi(Bmax +Amax) (8.25)

M3 = πa2σiBmax (8.26)

Thus the single-layer sources for the triangular action potential consist of three discrete
monopoles with magnitude and locations as follows:

πa2σiAmax

at the “activation” vertex,

πa2σiBmax

at the “recovery” vertex, and

−πa2σi(Amax +Bmax)

at the foot of the altitude from the triangle’s peak. These monopoles constitute exact equivalent
sources for the triangle. Consequently, they are also approximations to the sources of an actual
action potential for which the triangle is an approximation.

The above source model is sometimes referred to as a tripole model because it consists of the
three monopoles M1,M2,M3. It is often cited as a practical approximation to the true sources
associated with a propagating action potential in nerve and skeletal muscle.

The field generated by the three point sources is the sum of fields from the three sources,
namely,

Φp =
a2σi
4σe

(
M1

r1
+
M2

r2
+
M3

r3

)
(8.27)

In terms of the slopes of the triangularized action potential, the equation is

Φp =
a2σi
4σe

(
Amax

r1
− Amax +Bmax

r2
+
Bmax

r3

)
(8.28)

where the distance from the field point to each point source of magnitudeAmax, (Amax +Bmax),
and Bmax is r1, r2, and r3, respectively.
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Test of approximations

If the field point is at a distance r1 from the midpoint of this interval that is large compared
to (xb − xa), then the mean-value theorem permits the approximation of

Φ1
e =

a2σi
4σe

∫ xb

xa

∂2Vm
∂x2

1
r1
dx (8.29)

by the equation with r factored out from under the integral sign, so that

Φ1
e ≈

a2σi
4σe

1
r1

∫ xb

xa

∂2Vm
∂x2 dx (8.30)

A comparison of these results can provide a quantitative test of the degree of approximation
in the lumped model. One sees from inspection of the equation that the degree of approximation
is likely to be poor for a field point close to the membrane surface, but excellent for field points
distant from the membrane surface, because that will determine the variability of r over the
interval from xa to xb.

8.2.6. The Dipole Formulation

A wonderful thing happens in this subsection of the chapter. The analysis presented to this
point shows how extracellular potentials can be found from a knowledge of membrane currents.
With the magic of mathematics, that formulation is here transformed into another formulation,
one not at all obvious from the work done so far, and one that has a completely different physical
interpretation. To wit, earlier we had

Φe =
a2σi
4σe

∫
∂2Vm/∂x

2

r
dx (8.31)

If we write (8.31) in the form

Φe =
a2σi
4σe

∫ ∞
−∞

∂

∂x

(
∂Vm
∂x

)
1
r
dx (8.32)

then we can integrate by parts using the standard formula∫
L

udv =
∣∣∣
L
uv −

∫
L

v du (8.33)

with the assignments of v = ∂Vm/∂x and u = 1/r).

The result is an alternate expression for Φe, namely,

Φe =
a2σi
4σe

{[∞
−∞

∂Vm
∂x

1
r

]
−
∫ ∞
−∞

∂Vm
∂x

d(1/r)
dx

dx

}
(8.34)

In (8.34) the integrated part drops out so long as the action potential is not at the ends of the
fiber, because far to the left (i.e., x → −∞) and far to the right (i.e., x → ∞) the membrane is
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at rest and ∂Vm/∂x ≡ 0. Additionally, in the term on the right, it is necessary to integrate over
only the region where ∂Vm/∂x is nonzero. Thus

Φe =
a2

4
σi
σe

∫
L

[
−∂Vm
∂x

]
d(1/r)
dx

dx (8.35)

where length L on the final integral is only long enough to include the region where Vm �= 0.

The directional derivative was shown in Chapter 1 to be

d(1/r)
dx

= ax · ∇
(

1
r

)
(8.36)

Substitution of the directional-derivative relationship (8.36) enables (8.35) to be rewritten as

Φe =
a2σi
4σe

∫ [
−∂Vm
∂x

ax

]
·
[
∇
(

1
r

)]
dx (8.37)

Dipole interpretation

The integral in (8.37) can be given a physical interpretation. Recall that a dipole in the x
direction (p = p ax) generates a field in the surrounding uniform conducting medium as described
in Chapter 2, resulting in

Φd =
1

4πσe
p · ∇

(
1
r

)
=

1
4πσe

p ax · ∇
(

1
r

)
(8.38)

We now wish to identify, in Eq. (8.37) for Φe, the terms that correspond to the dipole moment,
p, in Eq. (8.38). To this end, note that in Eq. (8.37) an element of fiber, dx, contributes to the
total potential an amount

dΦe =
a2σi
4σe

(
−∂Vm
∂x

)
ax · ∇

(
1
r

)
dx (8.39)

so that after multiplying and dividing by π and rearranging slightly, one has

dΦe =
1

4πσe

(
−πa2σi

∂Vm
∂x

)
ax · ∇

(
1
r

)
dx (8.40)

A comparison of (8.38) with (8.40) permits the identification of

−πa2σi ∂Vm/∂x ax

as the dipole element p. More precisely, because the equation is for dΦe, the identified term is
an axial dipole element.
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Dipole source density

Rather than the generic p, a distinct notation for a linear axial dipole source density function
proves convenient, so we define τ � as

τ � ≡ −πa2σi
∂Vm
∂x

ax = Iiax (8.41)

where τ � has the dimensions of current (current times length per unit length) and is oriented in
the x direction.9

Making use of the earlier Eq. (8.7) for axial current Ii, one has

τ � = Iiax (8.42)

showing that the axial dipole density is proportional to the axial current.10

Thus we can write an equation for Φe in terms of dipole sources as

Φe =
1

4πσe

∫
τ � ·

[
∇
(

1
r

)]
dx (8.43)

or

Φe =
1

4πσe

∫
Iiax ·

[
∇
(

1
r

)]
dx (8.44)

Dipoles throughout cross-section

In the derivations above we assumed that the fiber had a negligible cross-sectional area, i.e.,
the sources are essentially concentrated on the axis as line sources. A more rigorous treatment
will show that with respect to external fields the sources in (8.37) fill the fiber cross-section, so that
for field points very close to the fiber in this distribution would have to be taken into account. In
fact, it would be seen that the source is uniform through the cross-section. Since the cross-section
is πa2, then from (8.41) we would deduce that a more general source specification is

τv = −σi ∂Vm
∂x

ax (8.45)

where τv is a volume dipole density. Each axial element of the fiber therefore represents a double-
layer disk of source. Plonsey [4] gives further details, and this subject is explored more below in
the section on potentials from a single cell.

Lumped dipole source model

The propagating action potential of a nerve fiber is given in Figure 8.3 along with its axial and
membrane currents. As noted earlier, the action potential propagates axially at a uniform velocity,
so that waveforms in Figure 8.9 all satisfy the functional form of a traveling wave f(t−x/θ), where
θ is the velocity of propagation. Since the spatial behavior of Vm(x) is illustrated in Figure 8.9,
with activation on the “right” and recovery to the “left,” the wave necessarily propagates in the
positive x direction. As discussed in a previous section, the equivalent double layer source density
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Figure 8.9. Dipole Sources. The action potential Vm(x) and its first spatial derivative are
given along with the approximating triangularized action potential Vt(x) and axial current
Ii, as found from the spatial derivative of Vm. Depolarization and repolarization spatial
widths wd and wr are for the approximating triangular action potential.
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is proportional to Ii [see Eq. (8.41)]. These functions and a sketch of the dipole sources are given
in Figure 8.9.

The total dipole strength arising from the equivalent dipole sources in any interval x1 to x2
is given by

D = −πa2σi

∫ x2

x1

∂Vm
∂x

= πa2σi[Vm(x1)− Vm(x2)] (8.46)

using (8.41).

The specific interval from the leading baseline of activation backward (along x) to the peak
of the action potential is one where all dipoles are oriented in the positive x direction (as is clear
in Figure 8.9). Hence the total dipole strength (a single dipole) associated with this interval is

Dp = πa2σi(Vpeak − Vrest) = πa2σiVpp (8.47)

That DP is positive corresponds to Ii being positive in this region.

In a similar way, we note that the dipole sources in the recovery phase of the action potential
are negative and their sum, from (8.46), is simply

Dn = πa2σi(Vrest − Vpeak) = −πa2σiVpp (8.48)

8.2.7. Discussion of Dipole Fields

A rich mode of interpretation of the effects of excitation waves comes from picturing the
intracellular current moving forward along the fiber as creating a dipole field, which in turn creates
extracellular fields throughout the surrounding volume conductor. From the expressions above,
one sees that the field generated is more precisely imagined as coming from an infinity of tiny
dipoles, each with a magnitude in proportion to the differential axial current at that position.

Using the lumped sources, especially, it is remarkable to observe that the total dipole pointing
backward (pointing back in the direction from which the waveform has come) has just as great
a magnitude as the one pointing forward, a conclusion that seems to be in conflict with the plot
of intracellular current versus distance (Figure 8.3), which shows a much larger peak current
flowing forward (positive) than the peak flowing negative. The paradox is resolved, however, by
observing that backward flow exists over a much greater extent than forward flow, so both can be
equal when integrated.

Mathematically, it is remarkable that two integrals that appear so much different on their
faces (monopole versus dipole) in fact give exactly the same result. Of course, numerically that
might not be so, since the sequence of calculations is not the same, but outside of extraordinary
cases the results are very close.

8.2.8. Dipole Asymptotic Field Configuration

This section discusses the characteristics generated by dipole sources as the distance from
the sources gets large, in comparison to the spatial extent of the action potential. The spatial
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extent of action potentials varies markedly, because the variations in duration and velocity vary
according to species, location, and the presence or absence of myelination. Nonetheless, both
skeletal muscle and nerve examples show that sometimes the entire spatial extent of the upward
deflection of an action potential is accommodated simultaneously along an excitable fiber.

For instance, for skeletal muscle, there might be an action potential 2 msec in duration and
a velocity of 3 m/sec, and therefore an action potential extent of 0.6 cm.11 Many muscles are
this long, or longer. In the last section we saw that the source associated with a spatial action
potential can be described, approximately, by two equal but oppositely directed dipoles, and at
large distances the volume conductor field is therefore that of a quadrupole. As discussed below,
quadrupole fields vary with distance as O(1/r3).

However, there are situations where the field is essentially dipolar and characterized by a
dependence on r of O(1/r2), and this dipole component will tend to dominate any simultaneous
quadrupole component that is also present. For example, dipole fields dominate in the case
when examining cardiac muscle because, in distinction to nerve and skeletal muscle, the cardiac
action potential has a duration of 200–300 msec, so that normally the “activation dipole” and the
“recovery dipole” do not exist on a cardiac fiber (or in the whole heart) at the same time. Thus
in the chapter on cardiac electrophysiology we shall see that activation and recovery sources and
their fields are treated separately because they are temporally separate.

Even for skeletal muscle and nerve, conditions arise that introduce “asymmetry” to the leading
and trailing dipole. For example, when a propagating action potential reaches a termination (e.g.,
when an action potential on a motoneuron reaches the neuromuscular junction), the leading dipole
will fade away and, for a short time, the trailing dipole alone will remain. In this interval the source
would be described as dipolar. Propagation along curved fibers could also introduce asymmetry,
since the leading and trailing dipoles are no longer collinear. A discussion with experimental
illustrations can be found in Deupree and Jewett [2].

Another consideration regarding an expected dipole or quadrupole field concerns practical
source–field distances. We have seen that a quadrupole far field requires that the dipole separation
to source–field distance ratio be small. Using the skeletal muscle parameters above, the dipole
separation would be, say, 0.3 cm, and hence the far field, if at a distance which is, say, ten times
larger, would start at ρ = 3 cm. But if measurements are made within a muscle itself or even at
the surface of an extremity, the dipole fields will not have fully canceled and the dominant dipole
contribution would still be observed.

8.2.9. Quadrupole Source Density

Many readers will want to skip over this material on quadrupoles on first reading, as many peo-
ple consider it to be a theoretical embellishment that moves too far beyond intuition or application
to justify the time required for its understanding. Nonetheless, we include a quadrupole presen-
tation here as quadrupole concepts are straightforward extensions of concepts developed already.
For a reader willing and able to deal with a little more mathematical complexity, quadrupole
concepts offer the reward of a different and more unified understanding of the nature of the
extracellular fields of nerves and muscle, and how they change with distance from their sources.
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Our discussion of quadrupolesbegins by noting that equation (8.35) may be integrated by
parts once again. The result is

Φe = −a
2σi

4σe

∣∣∣∣∣
∞

−∞
Vm

d(1/r)
dx

+
∫
Vm

d2(1/r)
dx2 dx. (8.49)

The integrated part drops out, since the functions and their derivatives are zero outside the region
occupied by the action potential which is of finite extent. Thus

Φe =
a2σi
4σe

∫
Vm

d2(1/r)
dx2 dx (8.50)

This expression can be interpreted if we first consider the field from two unit dipoles oriented
along x but in opposite directions and separated by a differential amount. If they were both placed
at the origin, they would cancel and produce no field. But if the one pointing in the positive x
direction (labeled as plus) is then moved a small distance dx along +x, there will be a residual
field (incomplete cancellation).

This field is simply the change in the positive dipole field arising from its displacement by
dx. The change can be expressed mathematically as the directional derivative of the dipole field
expression with respect to source coordinate x times dx. The result is

Φq =
∂Φd
∂x

dx =
1 ∂

4πσe∂x

(
d(1/r)
dx

)
dx =

1
4πσe

d2(1/r)
dx2 dx (8.51)

The field, Φq, is a quadrupole field arising from the equal and opposite axial dipoles. The
quadrupole magnitude is the product of the dipole strength times the separation. It should be
evaluated in the limit that the dipole magnitude becomes infinite as the separation goes to zero
such that the product remains finite; this would place the quadrupole source at the origin.

If we let q(x) represent an axial quadrupole source density, then from (8.50) and (8.51)

q(x) = πa2σiVm(x) (8.52)

Because Vm(x) is ordinarily monophasic, then from (8.50) we recognize that Φe is a sum-
mation of elementary quadrupole contributions whose coefficient, Vm(x)dx, is all of one sign.
For increasing values of r, the direction from each quadrupole element to the field point will
be increasingly similar and we will have, asymptotically, a lumped quadrupole source whose
magnitude is πa2σi

∫
Vm(x)dx.

Lumped quadrupolar source

In (8.47) and (8.48) we showed how the positive and negative dipole distributions can each be
approximated by a single (lumped) dipole. From (8.47) and (8.48), we note that each equivalent
dipole is of equal magnitude but has opposite signs (oppositely oriented).

If each lumped dipole were located at the “center of gravity” of its respective distributed
dipole moment densities, then their fields would best approximate the true field (the field of the
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distributed source). Intuitively, one expects this lumped approximation to improve for field points
at increasing distances from the active region, since the distance from each source element to the
field becomes essentially equal and the spatial distribution of dipole source elements no longer
influences the summation.

The above source description of two equal and opposite axial dipoles corresponds to the
axial quadrupole that we described earlier. The quadrupole strength is given by the product
of dipole magnitude and the separation of the two component dipoles. The lumped dipole ap-
proximates the distributed source, an approximation that improves for increasing source–field
distance. Consequently, the lumped quadrupole description is also an approximation that is im-
proved asymptotically for increasing the source–field distance; it not only depends on the extent
of each dipole distribution but also on the separation of the two distributions.

Suppose the waveform of an action potential were rectangular with a magnitude equal to the
peak value of Vm, as shown in Figure 8.8. Then the (exact) distributed source would consist of a
negatively oriented lumped dipole at the activation site and a positively oriented dipole (of equal
magnitude) at the recovery site. That these dipoles are discrete is verified by using (8.42), which
shows the density function to be zero everywhere except at the two discontinuities in Vm, where
they are infinite.

Accordingly, the source is discrete. While the density function is infinite the total source is
finite (the function is integrable). In fact, the lumped dipole magnitudes are evaluated in (8.47)
and (8.48). Thus an approximate lumped dipole representation for Figure 8.8 can also be regarded
as an exact solution for an approximating action potential of rectangular shape (with initiation of
activation and recovery corresponding to the “center of gravity” position noted above).

Quadrupole approximation

The extracellular potential at large distances from a fiber carrying an action potential is,
asymptotically, the stereotyped waveform corresponding to an axial quadrupole source. This
conclusion is reached in several ways, including recognition that the source is approximately that
of two opposed dipoles of equal magnitude.

The dipoles are separated by a finite distance, so if the ratio of dipole separation to source–field
distance is small a quadrupole field will result, because dipole cancellation is almost complete.
Thus for field points at distances which are large compared to dipole separation, the resulting
field is essentially that of a quadrupole.

An expression for generating a true (mathematical) quadrupole field was derived in (8.51).
Also, an algebraic expression for an axial quadrupole can be found by summing expressions for
each of the two contributing dipole fields. We choose the axial dipoles to lie along x equidistant
from the origin by xΔ = dx/2.

The geometry is described in Figure 8.10. We define p throughρ2 = y2+z2 and consequently,
if the field point is at (x, y, z), then its radial distance from the coordinate origin is

r =
√
ρ2 + x2 (8.53)
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Figure 8.10. Two equal and opposite dipoles in the x direction are located symmetrical
about the origin. Their separation, 2xΔ = dx, is very small compared to the distance to
the field point. The polar angle with the x axis is θ.

We require
∂2(1/r)
∂x2 =

(
3x2 − r2

r5

)
(8.54)

and, using (8.51), evaluate the quadrupole field at point P:

Φp =
1dx
4πσe

(
3 cos2 θ − 1

r3

)
=
Qd

4πσe

(
3 cos2 θ − 1

r3

)
(8.55)

In (8.55), the quadrupole strength,Qd, equals the dipole strength (here unity) and separation
(dx) while θ = arc cos(x/r). This waveform can be fully explored in the xz plane in view of
rotational symmetry about the x axis; it is seen to be symmetrical and triphasic as described
through (8.55). The field has a negative peak at x = 0 and positive peaks at x = ±√1.5 z.

Note, therefore, that the separation of positive peaks increases linearly with the radial (in
cylindrical coordinates) distance of the field point. Using these values one can confirm that the
ratio of positive to negative peak amplitudes is 0.8.

Using the triangle action potential approximation, each lumped dipole strength equals (vtm)max.
Since the quadrupole strength depends on both the dipole magnitude and dipole separation, and
taking the lumped dipoles at the center of their distribution, the results equals

Q = Vpp

(
D1 +D2

2

)
(8.56)

8.3. POTENTIALS FROM A CELL

The material presented so far in this chapter has focused on finding the extracellular potentials
from a single cylindrical fiber in a large volume conductor. In this section we “erase the board” and
start again. This time the goal is to examine the potentials, especially the extracellular potentials,
generated by a single active cell. The cell may have any cell shape or size.
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Figure 8.11. An Excitable Cell of Arbitrary Shape. The intracellular and extracellular
regions are assumed to have constant conductivities σi and σe, respectively. The potentials
inside and outside the cell are Φi and Φe, which vary with position and over time. The
cell membrane (solid line) is treated as an interface (i.e., as a boundary but having zero
thickness). The extracellular volume extends out to bounding surface Sb.

Such a cell is sketched in Figure 8.11. Here the cell has an irregular shape, with intracellular
conductivity σi and extracellular conductivity σe. The extracellular volume is large, ultimately
limited by bounding surface Sb, which here is assumed to be a long distance away. The goal
is to find the potential generated by the cell at point P , a point outside the cell but within the
extracellular volume. In the cell an action potential may have been evoked and may be propagating
over the membrane surface, S. Consequently, Vm may vary from one point to another over the
cell surface.

8.3.1. The Membrane as Primary Source

The cell’s membrane is thin in comparison to other dimensions of the cell (a membrane
thickness of roughly 5 nanometers as compared to a diameter of 10,000 nanometers or more).
We shall consider the membrane to be of zero thickness and of high resistance, as a volume of
small magnitude. Not much current flows within the membrane, but at some points along the cell
surface there is intracellular current crossing the cell membrane into the extracellular volume, or
vice versa.

Continuity of normal current

Currents associated with such a crossing are pictured in Figure 8.12. As shown diagram-
matically in the figure, conservation of current requires that the component of the intracellu-
lar current normal (perpendicular) to the membrane surface on the intracellular side be equal
to the component to the current normal to the membrane surface on the extracellular
side, i.e.,

Ii · n = Ie · n (8.57)

where n is a unit vector that is normal to the point on the membrane surface, and Ii and Ie
are intracellular and extracellular current vectors. Note that n is the same unit vector, pointing
outward, on both the left and right side of the equation.



254 CH. 8: EXTRACELLULAR FIELDS

Figure 8.12. Current Crossing the Membrane. The intracellular and extracellular regions
are assumed uniform with conductivities σi and σe, respectively. The cell membrane (solid
line) is treated as an interface (i.e., it has zero thickness). By convention, unit vector n is
normal to the surface and points outward. Only a portion of Ie (its normal component)
crosses the membrane to become Ii.

To express this condition in terms of potentials, one recalls that the current is proportional to
the gradient of the potential, so that the condition becomes

σi∇Φi · n = σe∇Φe · n (8.58)

where Φi and Φe are the intracellular and extracellular potentials, respectively just inside and
outside the membrane, while n is the outward surface normal.

Nonzero Vm

By definition of Vm, we have a second membrane boundary condition, namely,

Vm = Φi − Φe = Vm �= 0 (8.59)

That is, Vm is not zero in general, though it varies with position on the membrane, across a
physiological range, and with time. Most of the time the transmembrane potential is not zero,
i.e., usually

vm = φi − φe = Vm �= 0 (8.60)

That is, we are not assuming that the voltage variables have their baseline values.

Primary sources

In examining whether or not Laplace’s equation holds in different locations one realizes that
in some locations Laplace’s equation holds, but not others. In particular

In the intracellular volume, there are many small charged ions that move under the in-
fluence of the electric fields within the cell, but have no net movement otherwise. Thus
Laplace’s equation holds in this region.

In the extracellular volume, there again are many small charged ions that move under the
influence of extracellular fields, but have no net movement otherwise. Extracellular ionic
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Figure 8.13. Green’s theorem surfaces around cell.

concentrations are different than those of the intracellular volume, so the conductivity is
different, but we assume the conductivities can be assumed constant in each region.

Within the membrane, charges may move forcefully because of concentration differ-
ences across the membrane, as well as in response to electric fields across the membrane.
Because the concentration differences play a major role in charge movement, and con-
centration differences are a non-electrical effect, Laplace’s equation cannot be expected
to hold in this region. Rather, the diffusion-based effects drive the currents throughout the
extracellular and intracellular volumes, so they are the primary sources for the electrical
currents throughout the intracellular and extracellular volumes.

8.3.2. Solution for the Cell’s Potential

We now wish to find the extracellular potential from the cell by exploiting the power of Green’s
second identity as applied to this problem’s geometry. Recall from Chapter 1 that Green’s second
identity is ∫

U

(a∇2b− b∇2a) du =
∮
S

(a∇b− b∇a) · 	dS (8.61)

In (8.61) note that the symbolU is used for volume, rather than the conventional V , so as to avoid
confusion with voltages.

The power of (8.61) is that one can choose any scalar functions of position for a and b
(excepting only a few pathological cases) and (8.61) still holds.

Another remarkable aspect is that the surface S surrounding the volume can be quite com-
plicated. In particular, we choose a surface that has three parts, as shown in Figure 8.13.

Mathematical surfaces are placed just inside and just outside the physical cell surface, as
shown by the dotted lines labeled Si and Se. A gap is shown between the cell surface (heavier
solid line) and mathematical surfaces Si and Se, but the gap is for the purpose of illustration only,
as Si and Se are intended to be adjacent to the cell surface on the intracellular and extracellular
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sides, respectively. Another mathematical bounding surface Sb, assumed far away, encloses the
volume.

All of these are mathematical surfaces chosen to facilitate analysis, i.e., they usually are not
physical surfaces. With the surfaces chosen as described, the volume they contain includes both
the intracellular volume of the cell and the extracellular volume out to the bounding surface.
Within the bounding surface, the only volume excluded is that of the cell membrane itself.

LocationP is a fixed location chosen at any point in either the intracellular or the extracellular
volume. Distance r is a variable that extends from point P to any other point in the volume.

The goal is to find an equation for the potential at point P that depends on the potentials
across the cell surface, the conductivities, and the geometry. With the advantage of having done
this problem before we make some informed choices for a and b, namely,

a = 1/r b = σΦ (8.62)

In (8.62) distance r extends from point P to any surface point, and Φ is the electric potential.
Note that conductivity σ is a variable that takes on the value σi for points inside the cell or σe for
points outside.

We also get to choose the surface enclosing the volume. We choose as the surface the com-
bination of bounding surface Sb and surfaces Si and Se just inside and outside a cell membrane,
respectively. Thus the associated volume is all the volume inside the surrounding boundary,
excluding only the cell membrane itself.

Thus, using the assignments (8.62) in Green’s identity (8.61), and defining as S = Sb+Si+
Se, we have ∫

U

[
1
r
∇2(σΦ)− σΦ∇2(

1
r

)
]
du =

∮
S

[
1
r
∇(σΦ)− σΦ∇(

1
r

)
]
· 	dS (8.63)

We will now consider the individual terms that are present in (8.63) and see that many of them
are special in one way or another. Consider first the terms on the left hand side of the equation.
First, ∫

U

[
1
r
∇2(σΦ)

]
du = 0 (8.64)

This integral equals zero because ∇2(σΦ) = σ∇2(Φ) = 0 at all points in both the intracellular
and extracellular volumes. Conductivity σ can be factored because it is a constant within either
the intracellular volume or the extracellular volume, and there are no differential elements du
where σ makes a transition.

Second, consider the other term on the left hand side of (8.63). This term is nonzero at only
a single point, namely, ∫

U

−σΦ∇2(
1
r

) du = 4πσeΦe(P ) (8.65)

That is, ∇2(1/r) = 0 everywhere except at point P , where r becomes zero. There the integral
equals −4π and σ = σi or σ = σe according to whether P is intracellular or extracellular (as
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discussed in chapter 1). Also, at this point variable Φ = Φe(P ). Thus one reaches the result
shown.

Now consider the terms on the right-hand side of (8.63). First, we assume that

∮
Sb

[
1
r
∇(σΦ)− σΦ∇(

1
r

)
]
· 	dS = 0 (8.66)

because both Φ and its gradient become smaller with distance, and in both cases there is an
increasing divisor as r grows larger. That is, we assume the bounding surface is too far away to
have any effect on the result. It is simpler to make this assumption, which is a good one for many
situations, but a solution still can be found with a closed boundary.

Second, consider the terms involving the gradient of potential, as integrated over Si and Se:∮
Si+Se

[
1
r
∇(σΦ)

]
· 	dS = 0 (8.67)

These integrals sum to zero because of the continuity of current condition given in the section
above. In this regard, note that every point on the cell surface is, geometrically, virtually a point
on surfaces Si and Se. The same current passes through both surfaces, so at each point their sum
is zero, because the surface vectors point in opposite directions.

Thus the remaining terms result in

4πσΦe(P ) =
∫
Si

−σiΦi∇(
1
r

) · 	dS +
∫
Se

−σeΦe∇(
1
r

) · 	dSe (8.68)

Solution as a surface integral

Using the relationship d	Se = −d	Si, these two integrals can be merged, with the resulting
surface simply referred to as S, so that

Φe(P ) =
1

4πσ

∮
S

(σeΦe − σiΦi)∇(
1
r

) · 	dS (8.69)

where σ is equal to σi or σe, depending on the location of point P .

Equation (8.69) is the result we were trying to obtain, as it gives the extracellular potential
at an arbitrary point outside the cell in terms of the potentials just inside and just outside the cell,
and the related conductivities.

Thus the potential at P from a cell with boundary S also can be written as

Φe(P ) =
1

4πσ

∮
S

(σiΦi − σeΦe)	ar · 	an
r2 dS (8.70)

Equation (8.70) applies to any shape cell and identifies the source as a double layer of strength
(σiΦi − σeΦe)an in the outward normal direction.
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Figure 8.14. Gauss Surface around Cell. The dotted lines just inside the cell membrane
draw the Gaussian surface. The small separation between the Gaussian surface and the cell
membrane (dark solid line) is simply for illustration. An element of this surface is �dS, an
outwardly pointing vector. VolumeU is the intracellular volume of the cell, and the volume
within the Gaussian surface.

It differs from the equivalent sources discussed earlier in this chapter in that it generates
fields intracellularly as well as extracellularly. Because of the variable σ coefficient, it is also
an equivalent source. There are many fewer approximations in its derivation, essentially that the
membrane thickness is ignored. If (8.93) is applied to a circular cylindrical cell, making several
approximations would lead to the earlier expressions [5].

The equation for Φe(P ) also can be expressed in terms of the solid angle as

Φe(P ) =
1

4πσ

∮
S

(σiΦi − σeΦe) dΩ (8.71)

where dΩ is the increment of solid angle of the surface, as seen from location P .

Solution as a volume integral

Remarkably, the solution for the potential at P can be transformed from the form of (8.69), a
surface integral, into a volume integral that has an interesting interpretation. To do this requires,
first, defining the surface function (σiΦi − σeΦe) on the cylindrical volume.

We assume that (σiΦi − σeΦe) is a function of z only.

Assuming such axial symmetry one can take (σiΦi − σeΦe) as uniform through any cross-
section, and otherwise a function only of z within the fiber. This, of course, maintains its correct
value at the surface. Then the transformation that we want is straightforward and as follows.

We define vector function A as giving the excitation along z:

A = (σeΦe − σiΦi)∇(
1
r

) (8.72)

If cell excitation is along a single axis, such as the x axis, we can extend the definition through the
cell volume by giving the function the same value in the interior as on its surface, e.g., constant
within cross-sectional planes. (See also details in Plonsey [4].)
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With this extension, (8.69) can be rewritten as

Φe(P ) =
1

4πσe

∮
S

A · 	dS (8.73)

Recall that when surface S surrounds volume u then by Gauss’s Theorem (Chapter 1)∮
S

A · d	S =
∫
u

∇ ·Adu (8.74)

Thus,

Φe(P ) =
1

4πσe

∫
u

∇ ·Adu (8.75)

Recall that for a scalar multiplier b and vector function B, a vector identity (Chapter 1) is

∇ · (b 	B) = 	B · ∇b+ b∇ · 	B (8.76)

To subdivide A as defined in (8.72) according to (8.76), one makes the assignments

b ≡ (σeΦe − σiΦi) (8.77)

and
	B ≡ ∇(

1
r

) (8.78)

Thus, making use of Eqs. (8.75) through these definitions, we have

Φe(P ) =
1

4πσe

∫
v

{
∇(

1
r

) · ∇(σeΦe − σiΦi) + (σeΦe − σiΦi)∇2(
1
r

)]
}
du (8.79)

In the equation for potentials (8.79), ∇2(1/r) = 0 everywhere in the volume, because P is
extracellular, so r never approaches zero within the cell. Thus

Φe(P ) =
1

4πσe

∫
v

{
∇(

1
r

) · ∇(σeΦe − σiΦi)
}
du (8.80)

In (8.80), suppose the variation in the term (σeΦe−σiΦi) is along only one axis, the x axis.
Then the gradient of the term can be found as its partial derivative of this term with respect to x.
Then

Φe(P ) =
1

4πσe

∫
U

[
∂

∂x
(σiΦi − σeΦe)

]
	ar · 	ax
r2 du (8.81)

Equation (8.81) is an expression for the potential at pointP that depends on a volume integral.
Equation (8.81) identifies an equivalent dipole moment volume density source, τ , which fills the
fiber. It is given by

τ =
∂

∂z
(σiΦi − σeΦe)az (8.82)
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Figure 8.15. Cylindrical Fiber with Cross-Sectional Lines. The axial coordinate is x, and
cross-sectional lines are indicated at x = b and x = d. Potentials Φi vary with x only.
Within the cell Φe is defined to have the value of Φe just outside the membrane at the same
x position.

Figure 8.16. The field from a double layer planar circular disc is evaluated along the axis.
The Figure shows the geometry where the disc axis is assigned the z direction, while the
radial direction on the disc is ρ, so that an annular source area is 2πρ dρ.

Equation (8.82) is a rigorous expression from which previous expressions may be derived
by introducing one or more approximations. In vitro nerve experiments provide an opportunity
to examine the model and its approximation [2].

8.3.3. Field Evaluation

The above section shows that the field from a cell that is excited along one axis can be
understood with a source term given as a dipole volume density. In the following we examine
more carefully the nature of this kind of source term. It is especially useful to examine the
field along the axis of a uniform double-layer disc that is planar, and circular with radius a (see
Figure 8.16).

Based on the results for analyzing this field given in Chapter 2, the field can be evaluated as:

Φ(z) =
1

4πσe

∫
disc

τar · dS
r2 =

τ

4πσe

∫ a

0

z2πρ dρ
(ρ2 + z2)3/2 (8.83)

where the dipole strength per unit area (assumed uniform) is τ = τaz , dS is in the z direction,
and the dot product introduces z/r.

The integral is elementary, and the result is

Φ(z) =
τ

2σe

[a
0
− z√

ρ2 + z2
= − τ

2σe

(
z√

a2 + z2
− z

|z|
)
. (8.84)
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The first term within the parentheses of (8.84) is a uniform linear function of z, which for small
z passes through zero at z = 0. The second term equals −1 for negative z and +1 for positive z.

Consequently, the change in field strength in crossing the disk from z = −ε to z = +ε is

Φ(+ε)− Φ(−ε) ≡ ΔΦ =
τ

σe
(8.85)

because the first term of (8.84) contributes nothing and the second a discontinuity of τ/σe.

It is of interest to examine the behavior of ∂Φ/∂z in crossing the membrane. We note that
in taking the derivative of the expression within the parentheses of (8.84), the second term drops
out while the first has a constant value of 1/a for −ε < z < +ε.

Consequently,
∂Φ(+ε)
∂z

− ∂Φ(−ε)
∂z

= 0 (8.86)

Thus the field at P from the double-layer disc of strength τ may be written, using (8.83)
through (8.86), as

ΦP =
1

4πσe

∫
disc

τar · dS
r2 =

1
4π

∫
disc

ΔΦar · dS
r2 (8.87)

where ΔΦ is given by (8.85). Note that the final field expression for the double-layer source does
not depend on the conductivity when expressed in terms of the potential discontinuity as a source
expression.

For a double-layer surface of arbitrary shape and varying strength, the behavior of its field
in crossing the double layer can be argued as follows.

At the point of crossing the surface, a very small (double-layer) disc is cut out.

If small enough, the double-layer strength is constant over its extent.

If small enough, the shape can be approximated as planar.

If the contribution of the remainder of the double layer is examined along the aforemen-
tioned path, the fields and derivatives are everywhere continuous and well-behaved (since
r �= 0).

So, discontinuities are those introduced by the disc alone.

Thus (8.85) is satisfied at every surface point, where τ(S) is evaluated at that point.

In addition, (8.86) will also be satisfied (i.e., continuity of the normal derivative).

Thus, if the surface is closed, the field produced by the surface can be written as (8.87),
except that the integral is over the entire closed, finite, surface rather than a small disc.
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That is,

Φp =
1

4π

∮
ΔΦ ar · dS

r2 (8.88)

Although derived under these specific circumstances, in fact (this can be confirmed directly) this
expression describes the scalar function Φ to be simply a solution of Laplace’s equation with the
discontinuity ΔΦ on S while satisfying (8.86) on S.

For the active cell described in Figure 8.11 it should be clear that both intracellular and
extracellular spaces are passive (contain no sources). The active membrane supplies currents into
those spaces, and the source of this field can only come from the membrane.

Suppose the membrane source was a double layer lying in the membrane. Then the generated
field would necessarily satisfy (8.85) and (8.86).

If we compare (8.85) with (8.60), we see that we could find τ to satisfy (8.60). However, (8.86)
does not satisfy (8.58) except in the special case that σi = σe (which is unusual physiologically).

We can circumvent this difficulty by defining a related scalar function for which a double-
layer source, alone, is appropriate. This function is

ψ = σΦ (8.89)

where Φ is the scalar potential generated by the active cell and σ is the intracellular or extracellular
conductivity. Since σ is piecewise constant and, necessarily, ∇2Φ = 0, then ψ also satisfies
Laplace’s equation. In crossing the membrane of the active cell ψ must satisfy

ψi − ψe = σiΦi − σeΦe = Δψ �= 0 (8.90)

This inequality follows, since both Φ and σ are discontinuous across the membrane of an active
cell.

The condition on the normal derivative of ψ can easily be found from

∂ψi
∂n
− ∂ψe

∂n
= σi

∂Φi
∂n
− σe ∂Φe

∂n
= 0 (8.91)

which follows from continuity of current [as utilized in writing (8.58)]. In view of (8.90) and
(8.91), a double-layer source will generate the ψ field.

This field is described by (8.88), which satisfies the boundary conditions (8.85) and (8.86)
corresponding to (8.90) and (8.91). Thus

ψP =
1

4π

∮
Δψ ar · dS

r2 (8.92)

Substituting for Δψ from (8.90) and then replacing ψ from (8.89), we now have

ΦP =
1

4πσ

∮
(σiΦi − σeΦe)ar · dS

r2 (8.93)
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where the unsubscriptedσ is the conductivity at the field point, P (namely, eitherσi for intracellular
or σe for extracellular).

The result, utilizing the divergence theorem, is

Φp =
1

4πσe

∫
v

∂

∂z
(σiΦi − σeΦe)ar · az

r2 dv (8.94)

where the field point lies extracellularly and hence σe must be used in the coefficient of (8.94).

8.3.4. Inhomogeneities—Secondary Sources

Biological tissues give rise to volume conductors that are inhomogeneous (and possibly
anisotropic). The torso, being made up of several organs, is a good example. In a first-order
treatment one approximates each region (organ) to be uniform, so that the volume conductor is
composed of two or more composite regions each of which is homogeneous.

At the interface between regions of different conductivity a boundary condition must be
satisfied, namely, that the potential and normal component of current be continuous. If the two
adjoining regions are designated by a prime and a double prime (i.e., their conductivities are σ′

and σ′′), then

Φ′ = Φ′ and σ′
∂Φ′

∂n
= σ′′

∂Φ′′

∂n
(8.95)

These boundary conditions may also be expressed relative to the scalar functionψ, introduced
in (8.89). This gives

ψ′ − ψ′′ = Φ(σ′ − σ′′) �= 0 (8.96)

and

σ′
∂Φ′

∂n
− σ′′ ∂Φ′′

∂n
=
∂ψ′

∂n
− ∂ψ′′

∂n
= 0 (8.97)

By applying the results in the previous section, it is seen that the boundary conditions,
involving a discontinuity in potential but continuity of the normal derivative, correspond to an
equivalent double-layer source at the interface (but now considering all of space to otherwise be
homogeneous). The source strength is given by (8.96) and it generates a field

ψP =
1

4π

∮
Φ(σ′ − σ′′)ar · dS

r2 (8.98)

the double-layer source being
Φ(σ′ − σ′′)an (8.99)

where an is a unit vector normal to the interface.

The above equivalent source is considered a secondary source, since it arises only when a
primary source has established a field and current flows across the interface separating the regions
of different conductivity.
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This view provides a conceptual (and possibly a computational) approach to considering the
effect of inhomogeneities. In this approach, one finds the primary source field as if the volume
conductor were uniform and infinite and then adds the fields generated by the secondary sources.

Carrying out this concept gives the following contribution from secondary sources:

ΦP =
1

4πσP

∑
i

∮
Si

Φi(σ′i − σ′′i )
ar · dS
r2 (8.100)

where i denotes the ith surface on which a discontinuity in conductivity occurs. Note that in
obtaining (8.100) the conductivity at the field point, P, enters the coefficient of the expression.

One should add the homogeneous medium primary source contribution to the field evaluated
in (8.100). Φi arises from both primary and secondary sources.

8.4. NOTES

1. The sources of the EEG are associated with postsynaptic potentials rather than the action potential, but the fundamental
source–field relations are the same.

2. In principle “redrawing” the time waveforms in the form of a spatial distribution requires a time waveform from every
spatial position. Usually fewer time waveforms are available than that, so the spatial distribution is constructed from
a few temporal, together with estimates of the velocity. In Figure 8.2A the waveforms arise from a mathematical
description of Vm, so the number of temporal waveforms is not an issue.

3. Actually it is more common to know Vm(t) for a few points, together with some velocity estimates, from which
Vm(x) is inferred.

4. Note that im(x) does not have to be found repeatedly for multiple field points as long as Φi (or Vm) remain the same.

5. The fact that Φe is not always near zero is one of the motivations for the more general mathematical approach given
in the second section of this chapter.

6. Another advantage of using this terminology is that it links to the mathematical and numerical literature that evaluates
properties of equations of this kind.

7. Thus lumped sources come to us as a kind of dinosaur bones from an earlier age, and a computer-oriented reader may
wish to skip over them.

8. These values will be different since the potential at the peak is often given relative to a zero reference other than the
baseline value.

9. We may loosely refer to −∂Vm/∂x as a measure of the axial dipole density, but the coefficient in (8.41) should be
included in any quantitative discussion.

10. Note that when Ii is positive the corresponding dipole elements are oriented in the positive x direction, even though
∂Vm/∂x is negative. See also Plonsey R. 1977. Action potential sources and their volume conductor fields. Proc
IEEE 65:601–611.

11. Of course, the time required for the gating variables to return to baseline will be longer, perhaps 12 msec, and in that
sense the spatial extent of an action potential is greater.
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9
CARDIAC ELECTROPHYSIOLOGY

The application of quantitative and engineering methods in electrophysiology is extensive; its
early history developed with studies on the heart. As an electrical generator the heart forces
electrical currents throughout the whole body volume. Its signal strength is considerably larger
than that from other bioelectric sources; body surface signals of a millivolt or more are typical.

This chapter is designed to introduce the reader to topics in cardiac bioelectricity that fall
within three categories, as beginning points within what is now a huge field of studies. These
categories are:

1. Intercellular communication, by which an organ with a great number of cells produces
synchronized heartbeats over a lifetime, including propagation of activation from its site
of origin throughout the ventricles.

2. Cardiac cellular models, by which the sequential action of cardiac membranes and groups
of cells is determined. In a fundamental way, these models provide the basis from which
the properties of the organ as a whole are created, and their response to stimulation is
understood.

3. Electrocardiography, the measurement of cardiac events from the body surface, a subject
of historical significance and broad usefulness in present application.

We have selected these categories because of their significance, and because the engineering
of instruments, methods of analysis, and quantitative models has played an important role in the
development of each one.1

The topics in this chapter are presented more or less in the order of increasing anatomical
size scale. They were not, however, developed in this order historically. Thus they have many
points of separation of terminology and style, and gaps in knowledge of how one ties to another.2

The relative ease of measurement of cardiac electrical waveforms, and the recognized impor-
tance of heart disease as one of the major causes of human morbidity and mortality in the world,

267



268 CH. 9: CARDIAC ELECTROPHYSIOLOGY

Figure 9.1. Pacemaker (SA node) and Specialized Conducting Regions (AV node, right
and left bundles) of the Mammalian Heart.

has attracted the early and sustained attention of physicians, but also of quantitative physiologists,
engineers, and mathematicians. The consequences have been increasingly comprehensive and
detailed electrophysiological models, as well as analytical tools and medical devices, used for
evaluating cardiac function and treating some cardiac conditions. At the same time, much re-
mains unknown, so the medical and engineering understanding and treatment of cardiac electrical
rhythms remains a major research enterprise.

9.1. INTERCELLULAR COMMUNICATION

How do millions of cells, each an independent physiological unit, link together to produce
a coordinated, durable, and adaptable functioning whole? To address this question requires an
overview of the major functional components of the heart and then a more detailed discussion of
how cells communicate electrically with their neighbors.

The major cellular components of the heart are the working muscle (cells) of the atria and
ventricles, the specialized conduction cells, and the pacemaker cells. The general anatomical
structure is shown in Figure 9.1. An analysis of cardiac anatomy from an electrophysiology
viewpoint was provided by Spach and Barr [35].

The pacemaker cells, found at the SA node, are characterized by being self-excitatory. That
is, in pacemaker cells the transmembrane potential spontaneously increases until threshold is
reached and an action potential takes place, as shown in Figure 9.2b. As a consequence, a regular
succession of action potentials originates from the SA node. These action potentials lead to a
regular series of heart beats.
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Figure 9.2. (a) Ventricular action potential; (b) pacemaker action potential. Phase 0
corresponds to activation, 1 to rapid recovery, 2 to the plateau, 3 recovery, 4 rest or slow
depolarization (for pacemaker or automatic cells). From Hoffman BF, Cranefield P. 1960.
Electrophysiology of the heart. New York: McGraw-Hill. Copyright c©1960, McGraw-
Hill.

Action potentials initiated by the pacemaker cells excite neighboring cells, and these excite
their neighbors, so that a spread of excitation on a cell-to-cell basis takes place in the atria.
(A compendium of the action potentials recorded from different structures within the heart was
provided by Hoffman and Cranefield [ ].) When this excitation reaches the AV node, special-

separates the atria from the ventricles, activity reaches the ventricles only through theAV junction.
The specialized tissue of the AV junction conducts very slowly, hence introducing a latency
between atrial and ventricular excitation that is useful for the pumping action of the heart.

In the ventricular region the Purkinje tissue conducts the impulse rapidly to numerous sites
in the right and left ventricle from which further conduction takes place on a cell-to-cell basis
within the working ventricular muscle. This latter phase of ventricular excitation is characterized,
grossly, by a spreading from endocardium to epicardium and from apex to base. The transmem-
brane action potential of the pacemaker and the ordinary ventricular cell are shown in Figure 9.2.
The Purkinje cell action potential is similar to the ventricular action potential except for a sharper
initial peak. While the Purkinje tissue behaves in many ways like a nerve axon, it is simply a
variety of cardiac muscle as is true of the other tissue discussed here.

That excitation in the working myocardium spreads contiguously from initiating sites to all
other points has been known for a long time. In this sense the heart behaves like a single large
cell having a complex shape. Because of the observed uniform contiguous activation, the heart is
said to behave as a functional syncytium. This syncytial behavior raised questions regarding the
mechanism of the observed cell-to-cell spread, because of the recognition that each cell of the

1960
ized conduction cells carry the impulse into the ventricles. Because nonconducting fibrous tissue



270 CH. 9: CARDIAC ELECTROPHYSIOLOGY

Figure 9.3. Structure of Cardiac Muscle. The Figure shows three camera lucida draw-
ings from a series of 42 consecutive 2-μm-thick plastic sections showing multiplicity of
interconnections of the myocytes at intercalated disks. Shaded areas denote prominent
interstitial vessels and septae. From top to bottom are shown sections 12, 6, and 22. My-
ocyte A is followed in its entirety and makes contact at intercalated discs with cells B–K.
Hoyt RH, Cohen ML, Saffitz JE. 1989. Distribution and three-dimensional structure of the
intercellular junctions in canine myocardium. Circ Res 64:563–574.

heart is surrounded by a plasma membrane. The presence of that membrane, a very good electrical
insulator, would seem to preclude electrical current from moving from the interior of one cell
directly into the interior of an adjacent one. It is now known that such intracellular connection is
accomplished by specialized intercellular junctions. These junctions, which include cell-to-cell
electrical pathways, have been the subject of much study.

9.1.1. Gap-Junctional Structure

It is known from electron microscopic studies that cardiac cells are arranged in a brick-like
structure. Each cell is somewhat cylindrical in shape and roughly 100 μm long and 15 μm in
diameter. Every cell is in contact with several neighboring cells. A two-dimensional projection
of cardiac cells (myocytes) that illustrates their interdigitating structure is given in Figure 9.3,
and this also identifies the location of intercellular junctions. The opposing cell membranes form
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Figure 9.4. Details of the Communicating-Type Intercellular Cardiac Junction (connexon
array) are shown. Each unit (connexon) is a protein channel running transverse to the
opposing membranes. Connexons from abutting cells align themselves to form structural
continuity. The structural detail shown is based on morphometry obtained from x-ray
diffraction, electron microscopy, and chemical studies. The gap spacing is given as 35

◦
A.

Plonsey R. 1989. The use of a bidomain model for the study of excitable media. Lect Math
Life Sci 21:123–149. From Makowski L, Caspar DLD, Phillips WC, Goodenough DA.
1977. Gap-junctional structures, II: analysis of x-ray diffraction. J Cell Biol 74:629–645.
Reproduced from the Journal of Cell Biology (1977) 74:629–645, by copyright permission
of the Rockefeller University Press.

what is known as an intercalated disk structure.3 It is the specialized gap junction which provides
for cell-to-cell transfer of ions and hence electric current. These currents behave as local circuit
currents as they flow from an active cell into an adjoining resting cell, via gap junctions, and
cause the depolarization of the adjoining resting cells.

The gap junction is characterized by the narrowing of the intercellular space from around
200 to 30

◦
A. EM sections transverse to the long axis reveal a hexagonal array of cylindrical

elements that fill the intercellular space. Each element is called a connexon and has a structure
somewhat similar to that for a membrane ion channel (as described in Figure 9.4), including a
gate. The connexon protein is a hexamer whose six polypeptide subunits surround a core channel.
The connexons from the two abutting cells align themselves to be physically continuous: their
central channels form a uniform link between the cells (insulated from the extracellular medium).
This (aqueous) channel runs from the intracellular space of one cell through the intercellular
gap into the intracellular space of the following cell, making for actual cytoplasmic continuity.
A drawing of the gap-junctional region which illustrates the hexagonal array of connexons and
their morphometry is shown in Figure 9.4.
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Figure 9.5. Cable Analysis of Rabbit Purkinje Fiber. (a) Steady-state electrotonic response
to an applied current step. Inset shows fiber geometry and the location of the current
passing and voltage recording microelectrode impalement sites. (b) Temporal response at
labeled sites. From Colatsky TJ, Tsien RW. 1979. Electrical properties associated with
wide intercellular clefts in rabbit Purkinje fibers. J Physiol 290:227–252.

The intercellular channels are around 20
◦
A in diameter and have been shown to permit

molecules up to 1000 Dalton to pass from cell to cell (fluorescent tracers such as Procion yellow
are used to explore this pathway). These same channels explain how current introduced into one
cell readily affects the voltage in an adjoining cell. The channels are characterized as aqueous,
since they introduce relatively little selectivity as long as the molecule is sufficiently small so
as not to be excluded sterically. The junctions are characterized as “low resistance” because the
effective resistance is several orders of magnitude less than what would result simply from two
plasma membranes butted together. The intercellular resistance is affected by the calcium ion
concentration, the pH, longitudinal electric fields, and possibly sodium concentration.

9.1.2. Functional Continuity

Experimental evidence for the electrical continuity between the intracellular space of neigh-
boring cardiac cells is typified by the electrotonic experiment illustrated in Figure 9.5. Here,
Colatsky and Tsien [9] injected intracellular current at one end of a rabbit Purkinje fiber and
measured intracellular potentials at increasingly distal points. The steady-state potential has an
experimentally demonstrated exponential character even though the fiber contains between 2 and
20 separate cells in any cross-section and where individual cells (around 100 μm long) are a small
fraction of the length constant of around 1 mm.

The interconnections are essential to the measured continuous character. The behavior is
functionally that of a single uniform cell (cable). In fact, the spatial and temporal dependence
as shown in Figure 9.5 corresponds closely (solid lines) with that seen in Figure 7.4, which is
for a uniform linear cable. So in spite of the discrete multicellular structure of this heart muscle
preparation, it behaves, functionally, as a single uniform cell. Such a behavior would not result if
the junctional resistance were high since, for increasingly high junction resistance, only the cell
into which current is injected would show significant transmembrane current.
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From the data in Figure 9.5 we obtain an effective space constant, λ, of approximately 1 mm.
The temporal potential curves at several axial positions (a, b, c, d) are well represented by a time
constant τ = 18 msec. From the dimensions, the authors were able to show, also, that the total
effective intracellular resistivity is Ri = 350 Ωcm.

Chapman and Fry [8] investigated ventricular trabeculae4 from frog ventricle and also ob-
served linear cable behavior. For their preparation they found λ = 0.328 mm from measurements
similar to those described in Figure 9.5. They also determined a value of τ to fit their step responses
measured at five different axial positions and obtained τ = 4.15 msec.

A total average (effective) value ofRi obtained was evaluated as 588 Ωcm. Chapman and Fry
independently measured the cytoplasmic resistivity to be 282 Ωcm and consequently inferred that
the remaining 306 Ωcm was a contribution to the total intracellular resistivity by the junctional
resistance. We note that the junctional resistance contribution is roughly equal to the cytoplasmic
one and is consequently half the total. The lumped junctional resistance per cell can be calculated
from these data and is

Rd =
306× 131× 10−4

π(7.5× 10−4)2 = 2.27 M Ω (9.1)

for the estimated cell length of 131 μm and radius of 7.5 μm.

The specific junctional resistance rd (Ωcm2) equals the above Rd times the cellular cross-
sectional area, so that

rd = Rd × π × (7.5× 10−4)2 (9.2)

= 306× 131× 10−4

= 4 Ω cm2

The result for rd, expressed as a specific resistance in (9.2), is independent of the actual cross-
sectional area. Its size compared to the resting membrane resistance of a cardiac cell (of around
20,000 Ωcm2) is the basis for describing it as a “low-resistance” junction, though it roughly
doubles the effective intracellular resistivity. Consequently, it is not negligible but considerably
less than what would be the case with the two aforementioned plasma membranes (2×20, 000 =
40, 000Ω cm2).

9.1.3. Gap Junction Resistance

Junctional resistance is never measured directly. Rather, values for junctional resistance are
only inferred through an interpretation based on assumed structure. Invariably, this inference
involves a number of approximations and uncertainties regarding cardiac morphometry. For
example, one makes estimates of the number and extent of intercellular connections, the number
of cells, and membrane folding. An approach which has fewer uncertainties utilizes a preparation
consisting of a pair of attached myocytes and the use of two patch electrodes. This approach is
described in the following paragraphs.

In Chapter 5 we noted the difficulties in the early investigation of cardiac membrane electro-
physiology owing to the small size of a cardiac cell (myocyte). Experiments were performed on
cell aggregates, in view of their larger size, but such multicellular preparations cannot be readily
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Figure 9.6. Diagram of Experimental Arrangement. Each cell of a cell pair is connected
to a voltage-clamp circuit via a patch electrode in the whole-cell configuration. Separate
voltages V1, V2 can be applied to each cell and the resulting currents, I1, I2, measured.
(Subscripts 1 and 2 refer to cells 1 and 2, as described in A.) The equivalent circuit is shown
in B. The sarcolemmal resistance is denoted by rm1, rm2, the junctional (nexal) resistance
by rn, and the access (pipette) resistance, shown dotted, by rs1, rs2. From Weingart R.
1986. Electrical properties of the nexal membrane studied in rat ventricular pairs. J Physiol
370:267–284.

voltage clamped. A breakthrough came with the availability of patch-clamp electrodes, since this
could be applied to individual myocytes.

A patch clamp was applied to a preparation consisting of two attached myocytes. The
preparation was obtained through an enzymatic technique for isolating cardiac cells, a technique
that yields cell pairs as well as single cells. In the study by Weingart [40] to be described, adult
rat hearts were used. Figure 9.6A describes the experimental arrangement. Patch electrodes are
shown attached to each cell in the whole-cell configuration.

Each cell is separately voltage clamped. As noted in describing spherical cells (see “Single
Spherical Cell” in Chapter 7), each cytoplasmic region is approximately isopotential, so that the
sarcolemmal membrane has a uniform transmembrane potential; under a time-invariant voltage
clamp this entire membrane can be modeled as a lumped resistance, rm.

The junctional membrane resistance is designated rn, while the pipette resistance plus that
introduced by the presence of membrane elements lying in the pipette tip (resulting from the
whole-cell procedure) are shown as an access resistance, rs. The resulting circuit is described in
Figure 9.6B. Neglecting the access resistances and applying Ohm’s law evaluates the two pipette
currents I1 and I2 as

I1 =
V1

rm1
+
V1 − V2

rn
(9.3)

and

I2 =
V2

rm2
+
V2 − V1

rn
(9.4)
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Figure 9.7. Current Flow in a Cardiac Cell Pair under Voltage-Clamp Conditions. (A)
Symmetrical pulse application (V1 = V2 = 27 mV applied for 200 ms). The associated
current signals I1 and I2 show a time-dependent inward component; this reflects a sar-
colemmal current only. (B) asymmetrical pulse application [V1 = 27 mV for 200 ms; as in
(A), V2 = 0]. The signals I1 and I2 now show large amplitudes and no time dependency.
[Note the tenfold increase in scale compared to (A).] The holding potential VH = −42
mV in (A) and (B). From Weingart R. 1986. Electrical properties of the nexal membrane
studied in rat ventricular pairs. J Physiol 370:267–284.

where V1 and V2 are the voltage-clamped potentials relative to a prior VH holding potential. Thus
currents evaluated in (9.3) and (9.4) are relative to that under the holding condition.

If V2 is kept at the holding potential (V2 = 0) while V1 is pulsed, then

I1 =
V1

rm1
+
V1

rn
and I2 = −V1

rn
(9.5)

Equation (9.5) evaluates the pipette current flowing into the pulsed cell 1 as the sum of two
components (junctional and sarcolemmal), while the current of cell 2 is junctional only.

A pair of experiments is described in Figure 9.7, whereA shows equal voltage-clamped pulses
of 27 mV (from a −42 mV holding potential).5 Each pipette current is similar and describes a
sarcolemma component only. The holding potential of −42 mV suppresses the fast Na+ inward
current.

What is seen is the inward Ca++ followed by an outward K+ current. Figure 9.7B describes
the experiment giving Eq. (9.5), where I2 is a junctional (nexal) current only. The junctional
current is much greater than the sarcolemmal current, so the scale in B differs from A by a factor
of ten.

Although I1 also contains the sarcoplasmic current, its relatively small magnitude is not
evident in B where the junctional current component predominates. Further experiments show
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each cell to behave similarly (i.e., if conditions 1 and 2 are interchanged). If in (9.5) V1 is varied,
data are found that show that I1 versus V1 is linear over a range ±40 mV. The linearity identifies
rn as resistive. Additionally, the slope of the V1/I1 curve gives the nexal membrane resistance
value.

Over a number of experiments the average resistance was rn = 3.25 MΩ. Additional
experiments showed this resistance to be independent of the holding potential and independent
of the duration of the voltage-clamp pulse duration. These results also held if cell 1 and cell 2
were interchanged.

The value of rn evaluated above is actually that of rn plus the access resistance rs1. A
correction for the latter was made by Weingart [40], and, since the value rs1 ≈ rn, a final value
of rn was

rn = 1.7 MΩ (9.6)

Values of this order have been reported by others. A demonstration of the importance of the
gap-junctional structure is seen in the simulations by Spach and Heidlage [36, 37] based on a
realistic 2D cellular structure.

If one assumes the nexal resistance to represent the total end-to-end junctional resistance
between two abutting cells and that the cross-sectional area is 7.5 μm× 7.5 μm≈ 56 μm2, 6 then
a specific resistance of 1.7 × 106 × 56 ×10−8 = 0.95 Ωcm2 is obtained that is somewhat lower
than that found in the experiments of Chapman and Fry [8]. The uncertainty in these experimental
measurements concerns the relationship between the number of open gap-junctional channels in
an in-vivo preparation and the number of (open) channels in the in-vitro preparation achieved
through enzymatic dissociation of cardiac cells.

A similar experiment on chick embryo cell pairs, performed by Veenstra and de Haan [39],
yielded the junctional current shown in Figure 9.8. It is assumed that only a few junctions
contributed to this current, and the opening and closing of a single channel is responsible for
the observed current pulse of 5 pA magnitude. This result is obtained for V1 = −40 mV and
V2 = −80 mV, so that the junctional voltage Vj = −40 mV and the single-channel conductance
is evaluated as

gj =
5× 10−12

40× 10−13 = 125 pS (9.7)

The conductance obtained in this way is an approximate value. The value corresponds,
roughly, to the ohmic conductance of an aqueous pore of length 15 nm, diameter 1 nm, and
resistivity ρ = 100Ωcm. If the access resistance is approximated as 2ρ/πd, then with the
aforementioned values a channel conductance of 94 pS is found.

If the gap-junctional region of abutting cells contains 62,000 open channels, as estimated by
Weingart [40], then the value of junctional resistance using gj = 125 pS is

rj =
1

62, 000× 125× 10−12 = 0.13 MΩ (9.8)

an order of magnitude less than the direct measurement by Weingart. These data have been
included here to demonstrate the difficulty in finding consistent values of this extremely important
parameter in cardiac electrophysiological studies.
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Figure 9.8. Two-Cell Preparation with V1 = −40 mV, V2 = −80 mV. The sarcoplasmic
currents were measured separately by applying equal values of V1 and V2 and subtracted
from the total current with the above values ofV1 andV2, leaving only the junctional current
Ij = ±(V2 − V1)/rn. The five distinct quantal events (numbered) are assumed to result
from single channel openings. From Veenstra RD, De Haan RL. 1986. Measurements
of single channel currents from cardiac gap junctions. Science 233:972–974. Copyright
c©1986, American Association for the Advancement of Science.

9.1.4. Propagation in the Ventricles

The cardiac fibers, grossly, spiral around the heart. Consequently, the fibers are oriented
parallel to the endocardium and epicardium, the inner and outer surfaces of the heart wall, though
the angle made with a fixed reference changes continuously from the inner to the outer surface.
Contraction of fibers so organized achieves a wringing action thought to efficiently squeeze out
(pump) blood.

While electrical activation along the fiber direction yields the highest velocity of propagation,
the gross activation wavefront can be expected to progress in a direction orthogonal to the fiber
axis (the direction of difficult or slow conduction). For example, a point stimulus initiates an
elliptical wavefront with its long axis along the fiber direction so the broad front of the ellipse
moves in the cross-fiber direction. In fact, we have seen that propagation does occur normal to
the epicardium, hence transverse to fiber orientation.
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Figure 9.9. 15-Electrode Needle. There is a distance of 1 mm between lead-off points.
Reprinted from Selvester RH, Kirk Jr WL, Pearson RB. 1971. Propagation velocities
and voltage magnitudes in local segments of dog myocardium. Circ Res 27:619–629, by
permission of the American Heart Association Inc.

Because of the interconnections among cardiac cells, propagation can occur in any direction,
but the conductivities and hence velocities have different effective values in each direction (i.e.,
anisotropic), with the highest conductivity and velocity along the fiber axis.7 Consequently, the
uniform cross-fiber propagation seen in Figure 9.4 could be thought to arise from conduction
through a system of equivalent fibers oriented from endocardium to epicardium, provided its
conductivities are adjusted to correspond to the actual cross-fiber system.

Intramural electrodes

Cardiac intramural electrodes are extracellular macroelectrodes. The electrode size is about
1 mm, much larger than the 1- to 10-μm diameter of a cardiac microelectrode. The larger size is
needed to provide the stiffness required for insertion, as well as allow for multiple small wires.
Nevertheless, they must be as small as possible, mainly to minimize tissue damage. Normally,
the signals derived from these electrodes are interpreted in terms of underlying source behavior
rather than as a sample of a field. Both unipolar and bipolar arrangements are used.

Cardiac needle electrodes are used to map the activation isochrones. Each needle (possibly
an actual hypodermic needle) is inserted normal to the epicardium and passes completely through
the wall (and possibly the septum as well). The needle interior contains a bundle of wires each
of which is exteriorized through a small hole in the needle wall. The tip is uninsulated. In this
way a linear array of electrodes is formed along the surface of the needle (each electrode being
insulated from the needle shank). A needle electrode with a similar structure, but without use
of a hypodermic needle, is shown in Figure 9.9 (the Figure was chosen because it illustrates the
basic configuration).

When a needle electrode is inserted into the free wall of the left ventricle, roughly ten point
electrodes spaced 1 mm apart will lie within the 1 cm of wall thickness. Assuming that an
activation source is a uniform double layer, one can estimate the expected waveform along the
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needle and from these determine a relationship between source and signal. We assume the double
layer itself to have an overall thickness of ≈ 1.0 mm.

A calculation of the field arising from such double-layer sources can be facilitated by dividing
the (thick) dipole layer into a number of component lamina layers (where the double-layer strength
of each lamina can be assumed constant in the lateral direction). For each lamina the potential
field can then be found from the solid angle expression of (9.25). This idea is discussed in detail
below.

Reference Electrodes: For intramural measurements a second electrode is, of course, re-
quired. This reference electrode often is chosen at a location physically removed (but electrically
connected) from the sources responsible for the field under examination, such as the left leg.
Such a reference is a remote reference.

Unipolar and bipolar waveforms

In Figure 9.10 we show a needle electrode and unipolar and bipolar potentials measured with
them by van Oosterom and van Dam [38]. These signals are recorded from the free ventricular
wall. The bipolar waveforms were obtained from each successive pair of lead-off points and
generally show the monophasic waveforms suggested in Figure 9.11.

One also notes the increasing latency in moving from endocardium to epicardium. Since the
electrodes are spaced 1 mm apart, it is possible to estimate the outward (phase) velocity from
these data. The (spatial) potential profiles are determined at successive instants of time. One
notes the expected (though approximate) rapid potential change across the double-layer source.

Ventricular isochrones

If one uses the timing of the bipolar peaks to give a time of excitation to each site where
there is an electrode on one of a number of intramural electrodes, and if one then draws lines
connecting the sites excited at the same time, then a set of excitation isochrones are determined.
Such a set is shown in Figure 9.12, as reported by Durrer et al. [12]. These isochrones shown that
activation, once started at a point in the tissue, continues contiguously to all surrounding tissue.

The points of earliest activity seen in this Figure depend on the location of terminal endings
of the conduction system. These are, typically, in the left-ventricular septum about a third the
distance from apex to base. One should also note the regular propagation in the outer wall in
which the wavefronts are more or less planar and conduction takes place from endocardium to
epicardium.

This work, and that of others, shows how well cardiac intracellular space is electrically
interconnected.

9.1.5. Waveforms Arising from Free Wall Activation

Measurement of the electrical waveforms arising from the activation of the free walls of
the cardiac ventricles has played a critical role in understanding the way that ventricular muscle
functions. Such an understanding remains fundamental to recognizing and interpreting the wave-
forms observed in present-day clinical procedures, where ventricular waveforms are observed
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Figure 9.10. Needle Electrode (plunge electrode) with 20 Electrode Points. Associated
unipolar and bipolar (adjacent pairs) signals also shown. The profile is the spatial distribu-
tion at the time shown at the right. Electrodes 7–20 lie within the ventricular wall. From
van Oosterom A, van Dam R. 1976. Potential distribution in the left ventricular wall during
depolarization. Adv Cardiol 16:27–31, by permission from S. Karger AG, Basel.
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Figure 9.11. Waveforms Measured by Bipolar Needle Electrodes (similar to those described
in Figure 9.9) of an activation wave in the left ventricular free wall. In (a) electrode
separation corresponds to 1 of Figure 9.13, (b) corresponds to electrode separation 2, (c)
corresponds to electrode separation 3, and (d) for condition 4 in Figure 9.13.

Figure 9.12. Isochronous Lines of Activation of the Human Heart (RV = right ventricle, LV
= left ventricle). Values in msec. From Durrer D, et al. 1970. Total excitation of the isolated
human heart. Circulation 41:899–912, by permission of the American Heart Association.
Redrawn in Liebman J, Plonsey R, Gillette P. eds. 1982. Pediatric electrocardiography.
Baltimore, MD: Williams and Wilkins.
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Figure 9.13. Total Activation Wave, subdivided into eight layers (lamina).

from catheter electrodes placed into the ventricles for the purpose of evaluating human cardiac
function.

Wave thickness

In Figure 9.13 the total double-layer source has been divided into eight double-layer laminas.
Since the double-layer strength (density) varies in the axial direction (as we note in connection
with Figure 9.18), this quantization permits assuming each component lamina to have a uniform
and fixed net strength. Assuming each double layer to be fairly extensive (and uniform) laterally
results in the solid angle at a point close to it to being +2π on one side and −2π on the other.

As a consequence those laminas lying between a closely spaced electrode pair contribute
a net potential difference, since for each lamina the solid angle subtended by one electrode is
+2π while that by the other is −2π. The potential difference is then the sum of the double-layer
strengths of the included laminas times 4π. (If both electrodes are on the same side of a double-
layer lamina, then the potential at each, assuming the extent of the layer is large compared to the
electrode separation, is the same and the difference is zero.)

For unipolar recordings the passage of the double layer across the electrode is recorded by a
change in potential from +2π times the net double-layer strength to -2π times the net double-layer
strength. The rapid transition results from the electrode first being on one side and then the other
side of the wave.
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This transition occurs in an elapsed time equal to the wave thickness divided by the velocity.
Assuming a velocity of 50 cm/sec and a thickness of 1 mm, the time is evaluated to be 1 mm/500
mm/sec = 2 msec, during which the waveform will depend on the geometry and double-layer
density function in the axial direction.

If we consider configuration 1 (Figure 9.13), we expect the waveform illustrated in Figure 9.11a.
The initial increase in potential comes about as the wave (double layer) enters the space between
the electrodes until the space is filled. The further increase arises because successive laminas
have increasing strengths.

The peak results when the center of the excitation wave is midway between the electrodes.
The total signal duration, T, may be evaluated from

T =
wave thickness + electrode separation

wave velocity
(9.9)

In the following, a subscript is added corresponding to each electrode separation shown in
Figure 9.13. For electrode spacing 2 (Figure 9.13) we obtain the waveform shown in Figure 9.11b.

Because the electrode spacing is greater than in 1 a greater number of laminas can lie between
the electrodes, so the amplitude will be greater. In addition, T determined from (9.9) will be larger
on account of increased electrode spacing, so T2 > T1.

For electrode separation 3, the amplitude of the recorded signal will reach the maximum
value possible. This condition arises when the total wave lies between the electrodes. It occurs
for a moment only. The waveform for this case is shown in Figure 9.11c. From Eq. (9.9) we
determine that T3 > T2 > T1.

In condition 4 of Figure 9.13, a period of time arises when the wave lies entirely between the
electrodes. During this interval, at least according to our idealized model, no change in potential
should occur and a flat-topped signal is expected.

A flat-topped waveform is illustrated in Figure 9.11d. The extent of the flat top is dependent
on the electrode spacing. From (9.9), we expect the duration to be the longest of the four examples
(T4 > T3 > T2 > T1). Actual recordings tend to confirm the basic expectations noted here,
as illustrated, in Figures 9.23 and 9.24. Thus, in Figure 9.14 we display the potentials between
electrodes spaced 2 mm apart and lying on a needle placed normal to endocardium and epicardium.
The electrodes are numbered consecutively.

For the recording pair 9–11 (4-mm separation) no increase in amplitude but an increase
in width occurs, as expected, since the wave thickness is less than 2 mm. An even greater
width is seen in recordings 7–11, as expected, since the dimensions correspond to condition 4 of
Figure 9.11.

The bipolar recording resulting from two closely spaced electrodes can be expressed as a
spatial derivative of the unipolar recording. Thus a determination of the time of passage of
a wavefront can be linked to the appearance of the peak in the bipolar monophasic signal or,
correspondingly, the maximum derivative of the unipolar signal.
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Figure 9.14. An 11-Electrode Needle with a distance of 2 mm between the lead points was
used. Electrodes are numbered consecutively, and the bipolar signal measured between
numbered electrodes is shown. From Durrer D, van der Tweel LH, Blickman JR. 1954.
Spread of activation in the left ventricular wall of the dog, III. Am Heart J 48:13–35.

The use of the bipolar signal is sometimes favored, because signals from distant sources
tend to have similar values at both electrodes and subtract to zero so that only local sources are
recorded. This discrimination is also evident in the dipole versus monopole lead fields. The
unipolar electrode responds better to distant as well as local fields, since its lead field has the
lowest order in inverse distance. If the goal is to examine timing, then the first derivative unipolar
signal also is useful.

Assuming electrode separation equal to or greater than the wave width, then at the peak of
the signal (when the double-layer sources are entirely between electrodes) and assuming each
electrode “sees” a solid angle of ±2π, applying (9.25) gives the peak wave magnitude ΔΦpk
(which we also have referred to as Vwave) as

|ΔΦpk| = 4πδ
4πσ

=
δ

σ
(9.10)

Consequently, the double-layer strength δ is given by

δ = σΔΦpk (9.11)

Equation (9.11) describes a method of evaluating the double-layer strength based on measured
signal strengths. For measurements described in Figures 9.25 and 9.26, we note that ΔΦpk ≈ 40
mV. These correspond to the estimates described in Eq. (9.13).

An equivalent transmural fiber

In Figure 9.15 we illustrate a hypothetical fiber structure that is oriented normal to the free
wall. This arrangement was chosen because it utilizes the single-fiber activation studied earlier
and because the resulting wave of activation (isochrones) has a shape that is essentially the one
observed experimentally.

The syncytial structure of actual tissue permits this model to be advanced as “equivalent”
electrophysiologically, in that it will have similar electrical characteristics to the real structure.
Thereby the equivalent fiber is a useful theoretical entity, even though histologically it does not
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Figure 9.15. Hypothetical Fiber Orientation and Corresponding Activation Wave. A rise
time of approximately 1 msec and a velocity of around 50 cm/sec means that the source
region would be roughly 0.5 mm thick. From Liebman J, Plonsey R, Gillette PC. eds. 1982.
Pediatric electrocardiography. Baltimore, MD: Williams and Wilkins.

describe the actual cell structure. We also assume an idealized temporal action potential. This
action potential is in the form of a trapezoid and is illustrated in Figure 9.16. The rising phase is
linear and has a duration of 1 msec, and there is a flat plateau of around 200 msec in duration.
Action potential recovery is linear and is approximately 100 msec in duration.

Assuming a uniform velocity of 50 cm/sec, the spatial distribution can be determined from
the temporal waveform, because a propagating wave must be of the form f(t − z/θ), where θ
is the velocity. Fields arising in the structure in Figure 9.15 are well described by the linear
core-conductor model, where we have shown in (6.22) that

φe = − re
ri + re

vm (9.12)

Data from Roberts and Scher [33] give the following effective resistivity parameters for propa-
gation in the cross-fiber direction (that which normally prevails): ri = 1680 Ωcm and re = 1250
Ωcm. These values consider that each region fills the entire tissue space, a bidomain viewpoint
(to be described in a later section).

Consequently, if vm = 100 mV we should measure an extracellular (interstitial) potential
signal with a magnitude given by

[φe]peak =
1250
2930

× 100 = 43 mV (9.13)

This value is the order of magnitude of experimentally determined values.8
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Figure 9.16. Idealized Temporal Cardiac Action Potential Consisting of Rapid Depolar-
ization, Plateau, and Slow Recovery. (The rising phase is not drawn to scale.) Note that at
an expected velocity of propagation of 50 cm/sec the spatial counterpart of this temporal
action potential would require a tissue of at least 15 cm in thickness.

Figure 9.17. Spatial Variation of Rising Phase of Action Potential vm(z). The variation
of φe(z) is similar, except for a change in sign and multiplication by scale factors of 0.43
[see Eqs. (9.12) and (9.13).

Based on the above we can estimate the spatial variation of vm andφe as shown in Figure 9.17.
The rising phase has been rounded from the idealized waveform in Figure 9.16; it corresponds to
the experimental observation of vm(t) and the assumption of uniform conduction velocity of the
activation wave.

If the temporal waveform of Figure 9.16 is converted into a spatial waveform based on a
uniform velocity, the result cannot be completely correct because the wall thickness of the heart
would have to be at least 15 cm to encompass the wave, while it is actually only around 1 cm.
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Even more important is that, while activation is propagated, the action potential duration is
determined in part by intrinsic tissue properties, so the recovery sequence may not be the same as
the activation sequence. Consequently the spatial variation of potential during recovery cannot be
found utilizing propagated behavior. The presence of the plateau shown in Figure 9.16 is correct,
so long as one recognizes the limited size of the heart and that the duration of the plateau varies
somewhat with position. (In fact, the cardiac action potential morphology is, itself, a function of
position).

Double-layer sources

The structure of Figure 9.15 and the vm(z) described in Figure 9.17 permits applying (8.70)
to determine the axial dipole source density associated with each fiber. We have (8.82), namely,

τ(z) =
∂

∂z
(σiφi − σeφe)az (9.14)

where τ(z) is a current dipole moment per unit volume which fills each fiber. Since φi and φe
have been defined to be uniform in any fiber cross-section, τ(z) is also uniform (and hence only
a function of z) in any fiber.

While in (9.14) a possible interaction between fibers appears to have been ignored, such
modifications would be introduced through the behavior of φi and φe over the tissue cross-
section. The conductivities σi and σe are the microscopic values for intracellular and interstitial
space, respectively. Except near the periphery of the tissue, the linear core-conductor model
should apply, assuming the tissue itself to be reasonably uniform.

Repeating (6.21) and (6.22) we have

φi =
ri

(ri + re)
vm (9.15)

and
φe = − re

(ri + re)
vm (9.16)

where ri and re are the intracellular and interstitial axial resistances per unit length.

When Eqs. (9.15) and (9.16) are applicable, the source is seen to depend solely on the spatial
derivative of the transmembrane action potential. In the case of uniform propagation, this can be
determined from knowledge of the temporal action potential and the local conduction velocity.
The extracellular field can be found from the integral of the dipole density source elements as
described in (9.14), and this gives

(φe)P =
1

4πσe

∫
cells

∂

∂z
(σiφi − σeφe)az · ∇(1/r)dv (9.17)

where the subscript n denotes the direction of propagation. The integration is taken over the
volume occupied by all active cells, of course.

If the relative volume occupied by the cells in Figure 9.15 (essentially, the intracellular space)
is denoted Fi and the remaining interstitial volume designated Fe, where (Fi + Fe = 1), then

ri =
1

σiFi
and re =

1
σeFe

(9.18)

where ri and re are the resistances per unit length per unit cross-section of tissue.
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Note that this definition of the resistances is different from the earlier definition in which the
resistances were evaluated per fiber; however, (9.15) and (9.16) continue to be correct with this
new understanding since the ratio ri/re is unchanged.

Substituting (9.15), (9.16), and (9.18) into (9.17) results in

(φe)P =
1

4πFi

∫
cells

re
(ri + re)

∂vm
∂z

az · ∇(1/r)dv (9.19)

Because cardiac cells occupy approximately 80% of the total tissue space (i.e., Fi ≈ 0.8),
it is convenient to regard the sources as if they occupy the entire volume (with respect to distant
extracellular fields). When integrating a source assumed to fill the entire tissue, the results require
multiplication by Fi to maintain the correct total source.

The result found from (9.19) is then

(φe)P =
1

4π

∫
tissue

re
(ri + re)

∂vm
∂z

az · ∇(1/r)dv (9.20)

and the integration is throughout the entire tissue volume. Assuming reasonably uniform tissue,
then [re/(ri+re)](∂vm/∂z) should be defined and uniform over any cross-section that is normal
to the direction of propagation.

The above equations, (9.14) to (9.20), are based on the equivalent tissue model in Figure 9.15,
whose geometry must be evaluated from that of the actual tissue. Assuming uniformity, both the
actual and equivalent tissue will permit uniform propagation of a plane wave in the endocardium
to epicardium direction, and either defines the same equivalent intracellular, interstitial resistances
per unit length, ri and re.

So these values, which enter (9.20), can be simply considered to be evaluated from a plane
wave experiment in which vm, φi, and φe are measured and (9.15) and (9.16) used to evaluate
the aforementioned resistances.

For field points within the tissue (i.e., the interstitial space), (9.19) simplifies into. (9.16).
In particular, we learn from (9.16) that the difference of interstitial (i.e., measured) potential on
opposite sides of the activation wave, Vwave, is the change in transmembrane potential vm from
rest to peak (plateau) multiplied by the extracellular resistance divider ratio.

That is,

Vwave = Δvm
re

ri + re
= (vpeak − vrest)

re
ri + re

(9.21)

This axial source density occupies a region of width≈ 0.5 mm, and τ(z) as determined from
an axial derivative of vm using Figure 9.17 is error function (like) in shape. The total source is
that of a thick (∼ 0.5 mm) double layer whose axial density is proportional to −∂vm/∂z.
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Figure 9.18. Effective Source Distribution associated with activation of the free wall of the
heart. From Liebman J, Plonsey R, Gillette PC. eds. 1982. Pediatric electrocardiography.
Baltimore, MD: Williams and Wilkins.

A description of this source is given in Figure 9.18. For field points outside the heart and
at a distance large compared to 0.5 mm, perhaps at the torso surface, then the axial extent of the
source is unimportant and can be considered to be a (mathematical) double-layer surface (i.e.,
zero axial thickness) and uniform in the lateral direction.

A consequence of the above is that the activation wavefront (isochrones) can also be inter-
preted as the site of a uniform double-layer source distribution with strength given by (9.21).
Using the dipole expressions of Chapter 2, such as (2.29), one such surface can be designated S0,
at which the double-layer strength (dipole moment per unit area) is δ (constant).

Then the generated field at the field point P is φP , given by

φP =
1

4πσ

∫
s0

δ · ∇
(

1
r

)
dS (9.22)

When (9.21) is considered valid, δ = Vwaveaz . Since dS is in the direction of the outward surface
normal to the activation wavefront, we can also write (9.22) as

φP =
δ

4πσ

∫
s0

∇
(

1
r

)
· dS (9.23)
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The integrand of (9.23) is an element of solid angle and the integral is consequently the total solid
angle at the field point P subtended by the surface S0. If S0 is a closed surface, then since the
solid angle is zero, (9.23) is also zero.

The activation surfaces in Figure 9.12 are almost entirely open surfaces and contribute,
according to (9.23), in proportion to the solid angle subtended at the field point.

The solid angle is designated by Ω and, for Eq. (9.23), we have

φP = − δ

4πσ

∫
dΩ = − δ

4πσ
Ω0 (9.24)

where Ω0 is the total solid angle subtended by S0 at P (see Chapter 1, Solid Angles).

If activation isochrones at any instant consist of several open surfacesS0, S1, S2, . . . (possibly
lying in the right ventricle, septum, and left ventricle, each of which may contribute one or more
surfaces), their summed effects can be found by superposition.

That is, we can express the field as the sum of the separate contributions. We have

φp = − δ

4πσ

∑
i

Ωi (9.25)

assuming that δ is the same for all surfaces.

Interestingly, though many arguable approximations underlie Eq. (9.25), it appears to give
reasonable results in simulations of electrocardiographic fields.

9.2. CARDIAC CELLULAR MODELS

Within cardiac cells the smallest units of propagation are clusters of 50 to 100 cells. The
fundamental driving force of excitation arises from action potentials across cell membranes, but
the fundamental properties of propagation arise from how groups of cells are connected to one
another, and the collective properties that result. The following sections give first a recent model
of cardiac membrane, and follow with models of propagation based on the cardiac multicellular
structure.

9.2.1. Luo-Rudy Membrane Model

Over the years there has been considerable interest in the formulation of a Hodgkin–Huxley
type model for cardiac membrane. This interest arises from the attention given to heart disease,
which is one of the main causes of death in humans. There have additionally been many studies
of the electrocardiogram as a tool in cardiac diagnosis and direct measurements of electrical
waveforms from the hearts of animals and people. These findings have, in turn, sparked interest
in theoretical studies to strengthen the clinical interpretation of electrocardiograms, motivating
clinical investigations of cardiac arrhythmias and other abnormal conduction processes.

Analytical studies ultimately rest on appropriate membrane models. While the Hodgkin–
Huxley equations have been found useful in a variety of vertebrate excitable cells, cardiac action
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Figure 9.19. Typical Ventricular Cardiac Action Potential (Membrane Action Potential).
This is obtained using the Beeler–Reuter model. From Beeler GW, Reuter H. 1977. Recon-
struction of the action potential of ventricular myocardial fibers. J Physiol 268:177–210.

potentials are more complex in the origin. An immediate and striking difference is that the cardiac
action potential is two orders of magnitude longer in duration (see Figure 9.19) than in nerve and
striated muscle.

The first of the modern cardiac models was that of DiFrancesco and Noble [13], as it included
all the membrane currents for which there was experimental evidence, and it included the internal
calcium currents closely associated with muscle contraction.

One of the more recent of the specialized cardiac muscle models is that of Luo and Rudy
[26]. We include here only a brief description. The Luo–Rudy (L-R) model is a contemporary
cardiac ventricular membrane model that extends previous ventricular models (notably those of
Ebihara and Johnson [14], Beeler and Reuter [5], and DiFrancesco and Noble [13], utilizing the
more recent single-channel and single-cell patch-clamp measurements.

In fundamental respects the approach of Hodgkin and Huxley, originated more than fifty
years ago, remains consistent with a greatly enlarged accumulation of data, as well as some
entirely new aspects. At the same time, the recognition of the greater complexity of the cardiac
membrane leads to a much more extensive model, with many new features.

Earlier efforts to develop cardiac models were hampered by the difficulty in clamping cardiac
cells which are individually too small (around 100 μm long and 15 μm in diameter) or pose other
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Figure 9.20. Schematic Diagram of Cardiac Cell Model. The abbreviations representing
ionic currents are further described in the text. For those representing pumps and ion
exchangers the Luo-Rudy paper should be consulted [26]. From Luo C-H, Rudy Y. 1994.
A dynamic model of the cardiac ventricular action potential. Circ Res 74:1071–1096.

difficulties (arising from cellular interconnections), such as in the use of cell clusters (discussed
in Ebihara et al. [15]).

A schematic diagram of the single-cell structure and membrane paths for the L-R phase II
model is given in Figure 9.20. The model contains several compartments, including the network
sarcoplasm reticulum (NSR) and the junctional sarcoplasm reticulum (JSR). These compart-
ments allow for changes in ion concentration resulting from active and passive ion movement as
introduced earlier in the DiFrancesco–Noble Purkinje model [13]. Provision for both active and
passive ion movement is included.

While the model reflects many interesting biophysical processes, we limit attention here to
the passive K, Na, and Ca flux for comparison with the Hodgkin–Huxley model to identify where
the original model is still electrophysiologically sound. Each current component is described
separately below.

INa, the fast Na+ current

The fast sodium current expression evaluates the sodium current through the fast sodium
channel and accounts, mainly, for the rapid upstroke in transmembrane potential. In addition
to sodium inactivation discussed for the squid axon, there is also included a slow inactivation
parameter, j, to reflect observations of this type in cardiac cells.

The fast sodium current expression is

INa = ḠNam
3hj(Vm − ENa) (9.26)
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where the remaining parameters have the same meaning as in HH. All gating variables (m, h, j)
satisfy the differential equation described earlier, namely,

dy

dt
= αy(1− y)− βyy (9.27)

where y is m,h, j. Equation (9.27) is precisely the first-order rate process that we have assumed
earlier to describe channel gating and the HH parameter behavior.

Rate constants for m, h, j are given in Luo–Rudy; we show here only that for m, as an
illustration. This equation for m is

αm = 0.32(V + 47013)/{1− exp[−0.1(V + 47.13)]}
βm = 0.08 exp(−V/11) (9.28)

A comparison of (9.28) with the Hodgkin–Huxley definitions of αm and βm (Chapter 5)
demonstrates a similar mathematical structure but quantitative differences. In both cases the
expressions are, of course, empirical and reflect a process of curve-fitting to experimental data.

IK , the time-dependent potassium current

The activation parameter is designated X and the conductance depends onX2. An inactivation
parameter, Xi, is defined and this also provides for an inward rectification for the IK − V curve.
The expression for IK is

IK = ḠKXiX
2(Vm − Ek) (9.29)

In comparison with the comparable expression for potassium current in the HH squid axon, n4 is
replaced byX2, Xi is added, and also, here, ḠK is not assumed to be constant but its dependence
on [K]o is recognized through

ḠK = 0.282
√

[K]o/5.4 mS/μF (9.30)

Also, EK is given by

EK = (RT/F )ln [([K]o + PNa,K[Na]o) / ([K]i + PNa,K[Na]i)] (9.31)

This expression differs from the potassium Nernst potential in that it allows for a small sodium
current through the potassium channels. The expression is obtained from the GHK equation in
evaluating the potassium reversal potential with PNa/PK = PNa,K.

IK1, the time-independent potassium current

This potassium channel has a single-channel conductance that varies with the square root of
[K]o and also has a high selectivity for potassium. (The reversal potential is, accordingly, the
potassium Nernst potential.)

This channel is closed for elevated transmembrane potentials. Also, since its time constant
is very short (τK1 ≈ 0.7 msec), its inactivation gate, K1, can be assigned its steady-state value,
K1∞. Accordingly

IK1 = ḠK1K1∞(Vm − EK1) (9.32)
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where
EK1 = (RT/F )1n([K]o/[K]i) (9.33)

and
ḠK1 = 0.6047

√
[K]o/5.4 (9.34)

From the Hodgkin–Huxley analysis of chapter 5, we know that because an equation of the form
of (9.27) describes change over time, then K1∞ = αK1/αK1 + βK1). The rate constants are

αK1 = 1.02/{1− exp[0.2385(Vm − EK1 − 59015)]}
βK1 = {0.49124 + exp[0.08032(Vm − EK1 + 5.476)]}

+ exp[0.06175(Vm − EK1 + 594.31)]}
{1 + exp[−0.5143(Vm − EK1 + 4.753)]} (9.35)

IKρ, the potassium plateau current

This channel contributes a potassium plateau current that is time independent but also insen-
sitive to [K]o. We have

IKρ = ḠKρKρ(Vm − EKρ) (9.36)

where EKρ = EK1 and Kρ = 1/{1 + exp[(7.488− Vm)/5.98]}.

ICa, the calcium current

For the cardiac cell the calcium current plays an important role in initiating ventricular
muscle contraction. It contributes, electrophysiologically, to the long plateau seen in intracellular
ventricular action potentials (as seen in Figure 9.19).

For reasons given above, the calcium current formulation is best described by the GHK
equation. The L–R model expresses the calcium current ICa as

ICa = dffCaĪCa (9.37)

where d is an activation gate and f an inactivation gate.

Then letting the parameter s stand for Ca, K, or Na (but all flowing through the calcium chan-
nel) and using the general expression for current from the Goldman–Hodgkin–Katz equations,
we get

Is = Psz
2
s

VmF
2

RT

γsi[S]i exp(zsVmF/RT )− γso[S]o
exp(zsVmF/RT )− 1

(9.38)

The ionic activity coefficient, γ, used in (9.38) has values

γCai = 1, γCao = 0.341, γNai = γNao = γKi = γKao = 0.75 (9.39)

Equation (9.38) serves to describe current flow through L-type calcium channels by Ca2+,
Na+, and K+. The calcium channel currents due to sodium and potassium are included since,
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while their permeability is small, their relatively high concentration gradients result in a flow that
must be included (as discussed earlier in connection with Figure 9.20). These potassium and
sodium currents are given by

ICa,K = dffCaICa,K and ICa,Na = dffCaICa,Na (9.40)

In (9.37) and (9.40), as noted above, d is an activation gate and f an inactivation gate. Because
of short time constants, these are given by their steady-state values, which are

d∞ = 1/{1 + exp[−(V + 10)/6.24]} (9.41)

and

f∞ = {1 + exp[(Vm + 35.06)/8.6]}−1 + 0.6{1 + exp[(50− Vm)/20]}−1 (9.42)

We also require fCa, which is given by

fCa = {1 + ([Ca2+]i/Km,Ca)2}−1,Km,Ca = 0.6μmol/� (9.43)

The total potassium current is given by four components described above. Consequently,
no comparison to the HH potassium current (simulated with a single term) is possible. In this
case the extended duration of the cardiac action potential is an underlying reason for the more
complex formulation of potassium current. The model accounts for additional currents arising
from the active processes. While our treatment here of the L–R model is incomplete, it is clear
that the fundamental approach of Hodgkin and Huxley has been retained.

9.2.2. Two-Dimensional Cell Model

A two-dimensional cell model based on realistic cell size and shape was introduced by Spach
and Heidlage [36]. The cell arrangement of 33 cells that formed the basic unit of the model is
shown in Figure 9.21. The individual cell shapes are irregular, following the shapes of isolated
cardiac myocytes, fit together as if they were pieces of a puzzle. Thus the pattern of cell positions
is similar to patterns seen on histological preparations. The cell-to-cell connections likewise are
located with a realistic frequency and pattern.

Simulations based on this cell pattern made use of a resistive grid formed by a large number
of repeating grid elements, as shown in Figure 9.22. The Figure is drawn for a central node k. As
the intracellular arrangement is two dimensional, there are connections to adjacent elements xn

and xp along the x axis, and adjacent elements yn and yp along the y axis. Additionally, there is
a transmembrane connection of each intracellular node to a corresponding extracellular node. (In
this sense the model is what is sometimes called 2.5 dimensional.) The membrane properties are
indicated in the Figure by the RC combination, where Cm is the membrane capacitance for the
element and Rm represents the pathway for all ionic membrane currents of a cardiac membrane
model.

One can analyze a two-dimensional grid by beginning (as was done in Chapter 6) with the
membrane current equation (9.44), namely

Im(x, t) = Iion(x, t) + IC(x, t) (9.44)
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Figure 9.21. Cell Arrangement. Arrangement of 33 cells that formed the basic unit of
the 2D model. The Figure shows the location of each cell (the dotted areas represent the
regions of the interplicate disks), and the distribution of the connections (symbols) between
adjacent cells within the 33-cell unit. Figure by MS Spach and F Heidlage.

Figure 9.22. 2D Grid. Four intracellular current pathways in the x–y plane (the cell plane)
connect to a central intracellular node k. The four adjacent intracellular nodes are along x
in the positive direction (node at xp) and negative direction (note xn). Similar nodes lie
along y. The resistance between node i and node xp is Rxp. Analogous notation is used
for all four intracellular paths. Transmembrane current Im between the intracellular node
k and adjacent extracellular node has capacitive and ionic components IC and Iion, where
the latter flows (symbolically) through resistorRm. Indices i and e signify intracellular and
extracellular, respectively, while superscripts indicate position, e.g., Φki is the intracellular
potential at node k. In computations by Spach and Heidlage, the extracellular potential
always is assigned a potential of zero. The arrows indicate directions of positive current
flow along x and y, or transmembrane.
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As in Chapter 6, one may substitute for IC , and obtain (similarly to (9.45))

∂V km(x, t)
∂t

=
1
Cm

[Ikm(x, t)− Ikion(x, t)] (9.45)

where the superscript k indicates that the calculation is for the kth node.

Total membrane current Im also is equal to the net current to k from adjacent intracellular
nodes. Because the cells form a two-dimensional grid, there are neighboring nodes along x and
along y, as shown diagramatically in Figure 9.22. In equation form, one has

Iim = (Ixni − Ixpi ) + (Iyni − Iypi ) (9.46)

where, for example, Ixni is the intracellular current from node xn to node i, and Ixpi is the
intracellular current from node i to node xp.

Thus, where the R values are the resistances to the adjacent node, and Φ are the potentials
at the adjacent segments,

Iim =
Φxni − Φki
Rxn

+
Φxpi − Φki
Rxp

+
Φyni − Φki
Ryn

+
Φypi − Φki
Ryp

(9.47)

Spach and Heidlage proceeded by assuming that Φe ≈ 0 at all extracellular nodes. That al-
lowed the conversion of every intracellular potential in (9.47) to the corresponding transmembrane
potential, so that, with Vm as the transmembrane potential,

Ikm =
V xnm − V km
Rxn

+
V xpm − V km
Rxp

+
V ynm − V km
Ryn

+
V ypm − V km
Ryp

(9.48)

The modifications in moving from the 1D model of chapter 6 to the 2D model summarized
above are straightforward but may seem simpler than is actually the case. Among the challenges
are the following:

With the small spatial discretization used to represent the tissue, e.g., on a 10-micrometer
grid, only a 2-mm square segment results in 40,000 elements, much larger than the several
hundred often used in 1D.

A central feature of the model is the detailed specification of the shapes and junctions of
the elements. A corollary of the opportunity for detail is that the resistances connecting
the elements along x and y vary depending on segment location, e.g., within the cell
versus adjacent to a boundary, or a gap junction. Thus specification of the geometry (and
verification that it has been specified correctly) is a major task.

Because of the small spatial size of an element, the time step required for stability also
is small, as one notes from the mesh ratio equation (6.58). Thus the simulation of a
propagation sequence can become a large-scale computing task, even though the overall
tissue size is small and the cell structure is only 2D.
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In view of issues of stability and computation time, careful attention must be paid to
the numerical methods, e.g., with these factors in mind Spach and Heidlage used an
Gauss–Seidel implicit method, rather than the explicit method of Chapter 6, to find trans-
membrane voltages at a following time step.

Such 2.5D models allow results that give considerable insight into the characteristics of real
cardiac tissue. Spach, Heidlage, and coworkers have used this kind of model to test how the
microscopic structural properties of cardiac muscle, including its anisotropic nature and detailed
arrangement of gap junctions, influence the propagation of depolarization, as reported in [36] the
paper cited and more recent ones, including the effects of changes seen with aging.

The model was used to demonstrate that cardiac muscle is discontinuous in nature because
of recurrent discontinuities of axial resistance (i.e., does not behave as does a continuous cable),
due to the cellular interconnections. More generally, it was used to demonstrate that it is not
accurate to think of 2D propagation in cardiac tissue as quantitatively equivalent to continuous
cables. A modified version of the model also showed that propagation is markedly influenced by
connective tissue separating excitable regions, even when such connective tissue is present on a
microscale.

The study of cardiac tissue electrophysiology often requires realistic cellular geometry and, in
particular, model details about cellular interconnections and fiber structure, including the effects
of connective tissue. With models that incorporate increasingly detailed cardiac cell structure
and interconnection, the simulation of activation becomes an alternative to the measurement of
isochrones and other experimental studies.

Simulation accuracy depends on an ability to include structural details, ionic behavior, etc.
Simulation has an advantage in that it describes the link between sources and the cellular structure
and electrophysiology and can be examined at multiple size scales, from submicron to centimeter,
with no change in prescribed conditions. Furthermore, the computer programs and data can be
utilized repeatedly for the study of arrhythmias, particularly fibrillation (arising from reentry),
and for determining the conditions under which these are triggered.9

9.2.3. Bidomain Model

The bidomain model provides a strategy for understanding larger-scale attributes of the
cardiac structure, with its huge number of individual cells, without having to describe that structure
in cellular detail. The bidomain model provides a way to incorporate average properties of the
intracellular and interstitial space along with the membrane, with its ionic properties, that separates
these spaces. As averaged fields are uniform and continuous, they can be described using partial
differential equations. Solutions to the partial differential equations can be found analytically for
particular cases, though others require numerical methods).10

The intracellular space of cardiac tissue, including the many intercellular junctions, forms a
singly connected, though complex, space. If one can forego an examination of field variations on
a cellular or subcellular scale, then such a space can be approximated by a uniform and continuous
region with averaged conductivity and smoothed fields. Anisotropy can be included by specifying
a conductivity tensor as a function of position. Similar comments apply to the interstitial space.
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It is convenient to assume that both the intracellular and interstitial regions occupy the entire
heart volume. Consequently, at any point within the model heart there will be both a corresponding
intracellular and interstitial bidomain potential.11

Bidomain mathematical description

A description of the bidomain model may best be provided by the following equations, which
give the intracellular current density, J i, and the interstitial current, Je, namely,

J i = gix
∂Φi
∂x

ax + giy
∂Φi
∂y

ay + giz
∂Φi
∂z

az (9.49)

and

Je = gex
∂Φe
∂x

ax + gey
∂Φe
∂y

ay + gez
∂Φi
∂z

az (9.50)

In (9.49) and (9.50) we have assumed that the intracellular and interstitial spaces are anisotropic
and that a total of six parameters are required to describe it. Usually, the principal axes in both
spaces correspond, since they both depend on fiber orientation.

It is also frequently assumed that the conductivities transverse to the fiber direction are
uniform (i.e., if the fiber lies along z, then gix = gey and gex = gey), which reduces the number
of conductivity variables to four, if the intracellular and interstitial anisotropy ratios are the same
(i.e., gix/gex = giy/gey = giz/gez = constant), the equations simplify to those for a single
domain (monodomain). This approximation is sometimes made for the insights that may be
gained while simplifying the problem considerably.

Dependable sets of cardiac conductivity values in vivo are not yet available, and the equal
anisotropy assumption cannot be fully critiqued. However, it seems likely that equal anisotropy is
at best a gross approximation, since intracellular and interstitial structural factors are only weakly
correlated. Moreover, the junctional resistance affects only the intracellular domain.

For propagating activity, an important constraint linking (9.49) with (9.50) is that the trans-
membrane current leaving one space must enter the other space to satisfy the conservation of
current. Thus we require

−∇ · J i = ∇ · Je = Iv (9.51)

where Iv is the transmembrane current per unit volume.

The conductivities in (9.49) and (9.50), designated gix, . . ., are “bidomain conductivities,”
that is, they are coefficients appropriate to the continuous tissue space. Suppose the actual tissue
were a uniform array of fibers oriented in the z direction. Suppose also that the microscopic
intracellular and interstitial conductivities were σi, σe, and the fibers occupy a fraction, F, of the
total volume (0 < F < 1). Then the bidomain conductivities giz and gez are

giz = σiF and gez = σe(1− F ) (9.52)

In this example, the bidomain conductivities take into account that the intracellular and
interstitial domains occupy the total tissue volume while they actually are associated with smaller
spaces, i.e., F or (1− F ).
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For tissues with a more complex structure, a determination of the bidomain conductivity will
be more difficult. Such a determination may require an investigation of the expected average
current–voltage values and then the bidomain conductivities necessary to realize them. These
considerations are the basis for Eq. (9.18).

Point stimulation of an isotropic bidomain

To provide some insight into the properties of the bidomain model we consider an important
example, the response of an isotropic bidomain to an interstitial point source. We also assume a
subthreshold stimulus and achievement of steady state. Under isotropic conditions, the current
and electric field are related by a scalar constant so that (9.49) and (9.50) become

J i = −gi∇Φi (9.53)

and
Je = −ge∇Φe (9.54)

where gi and ge are the intracellular and interstitial bidomain conductivities.

The introduction of an interstitial point current source I0 will require a modification of (9.51).
Using (9.53) and (9.54), gives the following:

∇ · Je = −ge∇2Φe = Iv + I0δ(r) (9.55)

while
−∇ · J i = −gi∇2Φe = Iv (9.56)

In (9.55) the point source location has been chosen at the coordinate origin. Since Vm =
Φi − Φe, multiplying (9.55) by ρe and (9.56) by ρi and adding gives

∇2Vm = (ρi + ρe)Iv + ρeI0δ(r) (9.57)

where ρi = 1/gi and ρe = 1/ge.

If Rm is the membrane resistance for a unit area of membrane, then at steady state im =
Vm/Rm, where im is the transmembrane current per unit area. Let β be the ratio of the total
tissue surface to the total volume occupied. Then, in the bidomain sense, the transmembrane
current per unit volume is Iv = imβ, or

Iv = β
Vm
Rm

(9.58)

Setting

ρm =
Rm
β

(9.59)

allows (9.57) to be written as

∇2Vm =
Vm
λ2 + ρeI0δ(r) (9.60)

where λ =
√
ρm/(ρi + ρe) is a space constant (for a three-dimensional isotropic bidomain).
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If the Laplacian is written in spherical coordinates using (2.7) and the radial symmetry is
recognized, than Vm varies with r only. Then (9.60) becomes

1
r2

∂

∂r

(
r2 ∂Vm

∂r

)
=
Vm
λ2 + ρeI0δ(r) (9.61)

We may solve (9.61) for r > 0 and introduce the source term through a boundary condition
at r = 0. Multiplying (9.61) by r allows one to write the homogeneous equation as

d2

dr2 (Vmr) =
(Vmr)
λ2 (9.62)

The solution to (9.62) is straightforward, namely,

(Vmr) = Ae−r/λ +Ber/λ (9.63)

Because we cannot have a solution in which the potential increases indefinitely with r, (9.63)
reduces to

Vm = A
e−r/λ

r
(9.64)

The boundary condition at r → 0 is that the current introduced into the interstitial space is
I0, because there is no radial current or electric field in the intracellular space at the origin, the
current being entirely interstitial at this point of application. Thus at r = 0,

∂Vm
∂r

=
∂Φi
∂r
− ∂Φe

∂r
= −∂Φe

∂r
(9.65)

Consequently,

−4πr2ge
∂Φe
∂r

∣∣∣∣r→0 = 4πr2ge
∂Vm
∂r

∣∣∣∣
r→0

= I0 (9.66)

Substituting (9.64) into (9.66) and solving for A gives A = −ρeI0/4π, and (9.64) becomes

Vm = −ρeI0
4π

e−r/λ

r
(9.67)

Starting with the differential equation for Φi in (9.56) and using (9.58), one can solve for Φi
following steps similar to that given above for Vm but now using (9.67). One obtains

d2

dr2 (Φir) = −ρiρe
ρm

I0
4π
e−r/λ (9.68)

The boundary condition at r = 0 is

∂Φi/∂r = 0 (9.69)
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and at r →∞ is

Φi → 0 (9.70)

Thus the solution, with integration constants evaluated from the boundary condition, is

Φi(r) = −ρtI0
4π

e−r/λ

r
+
ρtI0
4πr

(9.71)

where

ρt =
ρiρe
ρi + ρe

(9.72)

and ρt is the total resistivity of the medium in the absence of the membranes. It describes the
tissue, without membrane, homogenized into a monodomain.

Since Φe = Φi − Vm, then from (9.67) and (9.71) we have

Φe(r) =
ρtρe
ρi

I0
4π

e−r/λ

r
+
ρtI0
4πr

(9.73)

An examination of (9.71) and (9.73) shows a number of informative points:

The second term of (9.73) is similar to the term that is present in most earlier equations
for potentials, e.g., (2.21). Thus it is noteworthy that (9.73) contains an additional term,
the first term.

Both (9.71) and (9.73) contain a differential and a common component. The former [the
first terms in (9.71) and (9.73)] is identical in form to the solutions of the linear core-
conductor model. In this regard, compare these equations to (7.34). The close relationship
of this model’s result to that of the core-conductor model causes one to realize that the
core-conductor model can be considered to be a one-dimensional bidomain.

The common terms, the second terms in (9.71) and (9.73), describe the potential present
in a monodomain, that is, in a monodomain Vm = 0, and there is no distinction between
intracellular and interstitial potentials.

In this example, when r exceeds, say, 10λ the bidomain terms can be ignored and the
fields are described correctly by a monodomain model. Space constant λ is a measure of
the extent of the region over which current redistribution takes place and where Vm �= 0.

The 1/r factor in the above equations arises from the three-dimensional nature of the
problem, where current densities and other fields diminish at this rate as a result of a
uniform radial divergence.
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Figure 9.23. Cross-Section of the Human Torso. LN, lung; R, right heart cavity; L, left heart
cavity; AN, anterior of torso; PO, posterior of torso. Other points are labels of reference
sites. This Figure is a tracing from Section 26 in Eycleshymer AC, Shoemaker DM. 1970.
A cross-sectional anatomy. New York: Appleton-Century-Crofts, Prentice-Hall.

9.3. ELECTROCARDIOGRAPHY

Electrocardiography involves understanding cardiac electrical events by means of measure-
ments on the body surface. The goal of electrocardiography is to utilize body surface potentials,
available noninvasively, to evaluate the status of the heart, especially in response to clinical
questions.

Electrocardiography is made possible by the location of the human heart within the chest. An
example of the location of the heart and lungs inside the torso is shown in Figure 9.23. Equivalent
views are readily available from MRI. One sees on the cross-section that the heart is a large organ,
with dimensions greater than the distance from its surface to the body surface. It also is located
asymmetrically, both with respect to the heart, and with respect to the chest.

The implications of positioning are that electrodes on the chest are much closer to the heart,
and, conversely, the RV portions of the heart are closer to the body surface than are LV portions.
It is thus to be expected that electrical activity in the positions where the distances are relatively
small will generate larger signals on the body surface.

9.3.1. Standard Leads

The standard or limb leads were introduced originally by Willem Einthoven (“father of
electrocardiography”12).

One of the goals of the standard leads was to allow different investigators to compare results.
Originally, electrodes were placed at the extremities (wrists and ankles). Placement was not
critical since the extremities are, roughly, isopotential, and the available surface area was large.
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Figure 9.24. Significant Features of Standard (Scalar) Electrocardiogram. Durations given
are typical values.

The right leg was normally grounded to help reduce noise. The remaining extremity potentials
were paired to give the following three (lead) voltages:

VI = ΦLA − ΦRA (9.74)

VII = ΦLL − ΦRA (9.75)

VIII = ΦLA − ΦLA (9.76)

where RA is the right arm, LA the left arm, and LL the left leg.

Voltages such asVI are called lead voltages as distinct from electrode voltages, since each lead
voltage arises from a defined combination of electrodes in defined positions. VI = ΦLA − ΦRA
represents, for example, the potential of the right arm relative to that of the left arm, with the
resulting voltage designated the lead VI. A nominal lead voltage as a function of time is illustrated
in Figure 9.24. The initial deflection is designated the P-wave, and it arises from activation of the
atria. It initiates and consequently precedes contraction of the atria muscle.

The activation of the ventricles gives rise, normally, to the wave of largest magnitude and
is designated the QRS. Many clinical diagnoses are based on its morphology and beat-to-beat
timing. Recovery of the cardiac cells of the ventricles combines to produce the T wave. Atrial
repolarization is normally masked by the QRS.

The PR interval, the time from the beginning of the P wave to the onset of the QRS complex,
is a measure of AV conduction time and is useful clinically for this reason. The baseline is
established by the TP segment of the wave. The TP segment is the time from the end of T to the
beginning of the following P.

Normal ST segments, from the end of S to the beginning of T, are at baseline, while deviations
may be useful in clinical diagnosis. The QT interval gives the total duration of the ventricular
systole, while the heart rate is given by the reciprocal of the R–R interval.
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Since by Kirchhoff’s law the net potential drop around a closed loop is necessarily zero, then

(φLA − φRA) + (φRA − φLL) + (φLL − φLA) = 0 (9.77)

Equation (9.77) is clearly correct in its own right, since we assume each potential to be single
valued. Using (9.74)–(9.76), Eq. (9.77) can be written as

VI + VIII = VII (9.78)

so that only two of the limb lead measurements are independent.

9.3.2. Precordial Leads

Additional electrocardiographic data are obtained from leads placed on the chest (pre-
cordium). Such leads were introduced to sample the electrocardiographic field close to the
heart.13 (In fact, five out of the six standard locations are on the left upper thorax.)

Each precordial lead is measured against the Wilson’s central terminal (WCT) as a reference.
WCT is formed at the junction of three 5K resistors,14 the other end of each being connected to
one of the limb leads as illustrated in Figure 9.25.

Assuming the use of a potential measuring system with a very high input impedance, then
little net current is drawn from the CT and it then follows that the sum of the currents into the
CT from each limb must equal zero (Kirchhoff’s current law). Thus, if ΦCT denotes the central
terminal potential, then

ΦCT − ΦRA

5000
+

ΦCT − ΦLA

5000
+

ΦCT − ΦLL

5000
= 0 (9.79)

Solving for φCT gives

φCT =
φRA + φLA + φLL

3
(9.80)

Because this potential is the mean of the extremity potentials, it was felt that it was a good
“zero reference.” It is not clear what people meant by this statement historically. Perhaps it
meant that this potential, as an average of those measured in three directions from the heart, was
thus not solely dependent on any one direction.

Wilson’s central terminal addresses the fact that in humans no remote reference site is avail-
able, since electrical conduction is limited by the body surface’s interface with air. Consequently
some other electrical reference must be used. Wilson’s central terminal is chosen as an practical
alternative.

The most desirable condition is where the lead field of the active electrode(s) in the source
region is independent of the reference electrode shape or location, a condition that is satisfied by
a remote reference. Then the lead voltage is solely determined by the lead field configuration of
the active electrode(s). A less satisfying reference is one whose influence on the lead field in the
source region is small and where small perturbations in reference electrode location have a very
small and tolerable effect on the lead field.
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Figure 9.25. The Wilson Central Terminal (CT) is the common point connected through
5K resistors to RA, LA, and LL. It is the reference electrode for the precordial leads (Vi,
i = 1, 2, 3, 4, 5, 6). Note that since the limbs provide little opportunity for current flow
(being long and thin), the potential is approximately constant, so connection to extremities
may be made near the torso without affecting the measurements much.

The Wilson central terminal fulfills none of these conditions, but since it involves electrodes
at the extremities, whose location is definite, its contribution to a lead field and lead voltage is
definite and reproducible. The contribution should be dependable for a given subject but will be
less so in comparing subjects with different body shapes.

Three additional leads can be obtained by comparing each limb lead potential with the central
terminal voltage. For example, from (9.80) we have, for the right arm,

vR = φRA − φRA + φLA + φLL

3
=

2
3
φRA − φLA + φLL

3
(9.81)

If, in creating the CT voltage, the connection to RA is dropped, then in place of (9.81) we have

aVR = φRA
φLA + φLL

2
=

3
2
vR (9.82)
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where the final expression is found by comparison with (9.80). Here, aVR is referred to as an
augmented potential and is preferred over vR since it gives a 50% stronger signal (while having
precisely the same wave shape). The remaining two augmented leads are formed in the same
way (by comparing a limb lead ith voltage with that of the CT formed by dropping reference to
the ith limb lead). The three augmented plus six precordial plus three limb leads constitute the
standard twelve-lead system, the backbone of current clinical electrocardiography.

9.3.3. Body Surface Potential Maps

With the string galvanometer Einthoven could record only one lead at a time. So long as
successive heartbeats were similar, acquisition of additional leads could be obtained sequentially
leaving, however, some ambiguity on the relative timing of each lead. With the advent of electronic
amplifiers, early instruments continued the practice of containing a single amplifier, and the
technician would switch to the successive leads in the 12 standard leads recorded clinically.

Present-day devices utilize small and low-noise solid-state chips that enable simultaneous
recording of all leads. These same advances have also made possible simultaneous recording
from multiple electrodes covering the entire torso. An example is described in Figure 9.26, which
exhibits 140 leads. Assuming these signals are sampled 2000 times per second, the required data
storage rate is 0.28 Mbytes/sec.

The potentials measured at many points over the torso can be considered as samples of a
continuous surface distribution. The electrode spacing chosen in many systems is not uniform
but closer on the anterior surface, since spatial potential gradients are greatest here. The surface
potential distribution is usually displayed in the form of isopotential maps. Such maps may be
examined sequentially, searching for abnormal timing or morphology.

Because the potential at the torso is derived from sources throughout the heart, there is not a
one-to-one correspondence between patterns at the body surface, patterns at the epicardium, and
intramural source activity. Nevertheless, some regional information can be estimated based on
model studies and expected electrophysiological behavior. The possibility of obtaining regionally
specific information is one reason why such maps have attracted attention.

Body surface potential data may be used to reconstruct the signals that would result with any
lead system. But since the electrode positions probably do not coincide with the location of, say,
the standard 12 lead positions, interpolation will be necessary; for an adequately dense electrode
system this should introduce little error.

The body surface potential map consequently fulfills any and all lead systems in that it
obviously contains all the data that are available at the torso. In a sense it obviates the need for
further lead system development15 and shifts attention to possibilities in further processing and
analyzing these collected data to extract the maximum information about the heart.

At present, body surface potential data may be processed utilizing a number of proposed
algorithms to achieve such goals as the estimation of maps on the heart (where regional infor-
mation is much more accurately displayed), the susceptibility to arrhythmia, and the isochronal
distribution on the heart surface.
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Figure 9.26. Body Surface Electrode Array and Potential Maps of QRS and T at Six
Selected Time Instants. The electrodes and potentials on the anterior torso are displayed
in the map from the left edge to the center; the potentials over the back (from left to right)
continue in the map from the center to the right-hand edge. The map corresponds to the
torso cut along the right mid-axillary line and unrolled. The top of the grid is at the level
of the clavicles and the bottom at the level of the umbilicus. Shown is an average normal
map compiled from subjects in the age group 30–39. Isopotential lines are 0.1 mV apart
during QRS and 0.05 mV apart during T. From Green LS, Lux RL, Haws CW, Burgess
MJ, Abildskov JA. 1986. Features of body surface potential maps from a large normal
population. In Electrocardiographic body surface mapping, Ed RTh van Dam, A van
Oosterom. Dordrecht: Nijhoff, with the kind permission of Kluwer Academic Publishers.

9.3.4. Interpretation by Statistical Classification

The predominant mode of clinical interpretation of electrocardiograms is by measuring spe-
cific characteristics of a new recording (features such as rate of occurrence or absolute or relative
size of different deflections) and comparing these measurements to reference values stored in a
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database. The database gives the characteristics of the electrocardiograms of individuals whose
clinical status was determined by independent measurements or clinical evaluation. The new
recording can thereby be identified as closest to one of the previously identified groups.

ECG interpretation of this kind has been successful as related to gross classification (a new
set of recordings placed in one of ten or fewer cardiac disease categories), but this statistical
classification has not been as successful as a tool for precise evaluation. Limitations include
the natural variability of humans in both cardiac and torso function, but also the expense and
complexity of deriving well-documented subject groups across age, sex, and cardiac condition
of the subjects used in the reference data bases.

Classification by statistical grouping dates from the time of Einthoven or before, but has
become much more precise and much faster with the advent of computer systems. Reference
databases, how they are constructed, and the statistical measures used to compare new recordings
to characteristics used for reference are beyond the scope of this text. Pertinent information is,
however, readily available in ECG teaching material as well as from more specialized references.

9.3.5. Physical and Physiological Interpretation

Although comparison with previously recorded traces has been the primary mode of ECG
interpretation, investigators have always been interested in the actual physical or physiological
electrical sources within the heart that gave rise to a waveform recorded on the body surface.
Indeed, the ultimate achievement of electrocardiography would be a determination of the spatially
distributed electrical sources in the heart from measurements on the body surface. However,
electrical activity within the heart is not uniquely specified by the body surface potentials since
one can always add sources that generate no field, or a field below the noise level.

One can also describe an equivalent source lying at the surface of the heart that generates
potentials equivalent to those of the actual sources on the body surface. Such a source can be
uniquely specified by body surface potentials. This heart source generates external fields which
are identical to those generated by the actual primary sources.

While the inverse solution in the form of moving from potentials at the body surface to those
on heart surface would be unique if measurements were made in a noise-free manner, in fact the
body surface measurements do contain noise. The consequence is an ill-posed problem because
small errors at the torso surface tend to be magnified at the heart (because potential magnitudes
increase as the distance from the heart decreases).

Various approaches have been investigated to stabilize the inverse process, all of which
involve the use of a priori limitations on allowed cardiac outcomes. If done well, such constraints
reflect the expected behavior of the heart potential distribution [19].

An essential principle in the physical and physiological interpretation of electrocardiograms
is the conceptual separation of what the heart is doing electrically (“the heart vector”) from the
selection and positioning of electrodes on the body surface (“the lead vector”). Both of these
concepts are, at various times, infused with figurative meaning, but the core fact is that the signals
observed on the body surface depend somewhat separably on their electrical sources within the
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heart versus the influence of the intervening volume conductor between the heart and the body
surface, thus allowing these aspects to be examined independently.

A fundamental question is whether a physical inverse can be used to pinpoint the site of
origin of heartbeats that arise from sites in the ventricles, which are called ectopic sites. The
inverse determination of ectopic sites has been achieved successfully. Studies using epicardial
potentials showed that they can be determined to within 1 cm [29]. More recent model work
using dipole analysis to compare signals from a catheter with those arising from the ectopic site
show accuracies within 1 mm [2]. This level of precision would, if achieved in humans, allow
this kind of inverse solution to be useful in clinical procedures.

The heart vector

Since at any instant of time during activation of the heart the source is a distribution of double-
layer surfaces, a first approximation to the source could be found from a simple vector sum of
all elements. Such a process avoids recognizing that at most times the double-layer elements are
widely distributed. Rather, for simplicity, it treats all such elements as if they were at the same
location. The resultant is a single dipole, the heart dipole or heart vector [6].

The underlying double layers are created and undergo changes in an orderly, progressive
way, so the heart dipole is also expected to vary (both in magnitude and direction) in a smooth
manner. The idea that the heart behaves electrically as a dipole generator is central to clinical
models in electrocardiography. In fact, vectorcardiography is based entirely on an evaluation of
the locus of the tip of the heart dipole during the heart cycle. This space curve, called a vector
loop, is, indeed, smooth. Vectorcardiographic devices output projections of the vector loop on
the principal coordinate planes.

At any moment during cardiac activation, one or more open activation surfaces (isochrones)
can be identified and each considered (at least approximately) the site of a uniform double-layer
source. The sources associated with each such surface are dipoles oriented normal and outward
to the surface and lying in a relatively narrow radial region constituting the wave thickness, as
described in Figure 9.18. This thickness is normally ignored, as we have mentioned above. One
can characterize these source dipoles that are distributed in this way throughout the heart by a
density function J i, the dipole moment per unit volume as a function of position within the heart.

The heart vector (or heart dipole),H , defined in the previous paragraph is related to J i simply
by

H =
∫
J i dV (9.83)

or, component-wise,

Hx =
∫
Jix dV, Hy =

∫
Jiy dV, Hz =

∫
Jiz dV (9.84)

where H is the heart vector and J i = Jixax + Jiyay + Jizaz . Usually, H is considered fixed in
position and so is only a function of time; J i is a function of both position and time.

The “dipole hypothesis” refers simply to the idea that H(t) is a good representation of the
net source activity. The approximation clearly destroys spatial information, since the net source
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evaluated in (9.83) is found from component elements as if they were all at the same point. The
validity of such an approximation depends on the ratio of the extent of the source distribution
relative to the source field distance. Since the heart lies just beneath the anterior torso, one would
conclude that the approximation should be a poor one, yet surprisingly good results are usually
obtained.

A strong formal basis for understanding the heart vector has been provided by Geselowitz [22,
23]. The theoretical structure can be used to find the components of the heart vector independent
of its position within the torso, and to find the location within the torso where a single vector
provides the best fit to data observed on the body surface.

The lead vector

The voltage measured between two body surface electrodes is known as a lead voltage. For
a dipole heart source, it depends on the lead location, heart location, heart vector, and torso
volume inhomogeneities. Because the system (in spite of this complexity) is linear, one can split
the aforementioned influences into two parts, namely, the heart vector and everything else. The
“everything else” reflects the effects of geometry and inhomogeneities in conductivity.

A formal relationship can be developed in the following way. For a particular subject, the
heart vector location (usually the center of the heart) and lead position are chosen. We assume
first that the heart vector (dipole) is of unit magnitude in the x direction. Let the resultant lead
voltage be designated �x. In a similar way, a unit dipole oriented along y produces �y , and a unit
z dipole �z .

Based on linearity, it follows that for a heart vector described by

H = hxax + hyay + hzaz (9.85)

the lead voltage V� is given by (superposition)

V� = hx�x + hy�y + hz�z (9.86)

Equation (9.86) can be interpreted as the dot product between H and a vector � whose
rectangular components are �x, �y, �z , that is,

V� = H · � (9.87)

Thus we may consider the lead voltage to result from the projection of H on � times the
magnitude of �. This expression is in the promised form and demonstrates the lead voltage de-
pendence on the heart vector and a second vector (�) that reflects the geometry and conductivities.
The vector � is known as the lead vector. For a given lead location, if the heart vector position
is varied, then � for each such position will be different. By associating the vector � with each
point in space, a vector field (vector function of position) is generated.

While the above account depends on the approximate heart dipole model, it can be strength-
ened by considering H to represent a dipole source element, in which case V� can be found from
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Figure 9.27. The Einthoven Triangle. The sides of the equilateral triangle describe the lead
vectors for the limb leads, as shown. For the heart vector,H , its projections on the triangle
sides are labeled HI, HII, and HIII (choosing the subscript according to the respective
lead); the sign of the lead voltages is found from the dot product of these projections and
the corresponding lead vector (e.g., VI = HI · LI). Note that in the illustrated case VI is
positive, VIII negative, and VII positive. For simplicity in drawing, the lead vectors were
given unit magnitudes.

(9.87) by summing over all such source elements. In this case � is treated as a vector function of
position, as noted above. This view will be further elaborated in a subsequent section.

Interpretation of standard leads

Einthoven hypothesized that the lead vectors for the standard leads would form an equilateral
triangle. This is suggested by the physical position of each lead. The Einthoven triangle is
illustrated in Figure 9.27, where an arbitrary heart vector is also depicted at the center of the
triangle. (A rational basis for this arrangement will be given later in the chapter.)

According to (9.87), the lead voltages (VI, VII, VIII) are found by projecting the heart vector
on the respective lead vector (and multiplying by the lead vector magnitude). In the example
illustrated in Figure 9.27, since the heart vector points toward the left side of the body, the potential
of LA is positive, while RA is negative, so thatVI = φLA−φRA must be positive. This is correctly
evaluated by the dot product of H and the lead vector for lead I.

The geometrical relationship in Figure 9.27 leads to the expressions

VI = H cosα (9.88)

VII = H cos(60 + α) =
(
H

2

)
cosα−

(√
3

2

)
H sinα (9.89)

VIII = −H sin(30 + α) =
(
−H

2

)
cosα−

(√
3

2

)
H sinα (9.90)

whereH is the heart vector magnitude, while the angle it makes with the horizontal direction isα.
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Figure 9.28. Dipole Source I0d Giving Rise to Surface Potential Lead Voltage Vab. This
source–field relationship is examined by the application of reciprocity.

Note that these expressions satisfy the constraining relation (9.78), as indeed would any lead
vectors forming a closed triangle. The angle α is called the instantaneous electrical axis.

9.3.6. Reciprocity and the Lead Field

A valuable interpretation of the lead vector was developed by McFee and Johnston [27] based
on the application of reciprocity. We develop this result under somewhat more general conditions.
Though the concepts of the lead field were developed first for electrocardiography, they are much
more general concepts that can be a applied to the measurement of electrical signals of many
other kinds.

Suppose an arbitrarily shaped volume conductor contains a point source and point sink, as
described in Figure 9.28. The source is of magnitude I0 and located at r2. The sink (−I0) is at
r1. Their displacement d = r2 − r1 is assumed to be very small, so that the composite source
approximates a dipole. In the electrocardiographic sense this source could represent, say, a heart
vector given by

H = I0d (9.91)

The dipole generates a field that we designate as Φ1. The voltage that would be measured by lead
ab (that is, with the surface electrodes a and b), as shown in Figure 9.28, is then

Vab = Φ1(ra)− Φ1(rb) (9.92)

Using the lead vector concept we have

Vab = H · Lab (9.93)

where Lab is the lead vector for lead ab.
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Reciprocity condition

Now between input current points (pairs) and the output voltage points (pairs) we have a
linear system. As a continuum, it is a limiting form of a linear network. The reciprocity theorem
of network theory therefore applies. The theorem requires that if the current source and voltmeter
are interchanged, the voltmeter reading is unchanged.

Applied to Figure 9.28, reciprocity means the following. First recall that in the paragraphs
above a current was applied at r2 and r1 and a voltage measured between a and b. Suppose now
the reciprocal action is taken, and the current and voltage leads swapped. Thus a current I0 is
introduced at a and −I0 at b (i.e., we remove I0 from b), the reciprocity theorem says that the
voltage measured between r2 and r1 will be Vab [of (9.92)]. Designating Φ2 to be the potential
field arising from application of the currents +I0 at a and −I0 at b (referred to as reciprocal
energizing), then the reciprocity condition is expressed as

Vab = Φ2(r2)− Φ2(r1) (9.94)

Finding the lead vector

Since d is assumed small, the following Taylor series expansion can be terminated at the
linear term:

Φ2(r2) = Φ2(r1) +
∂Φ2

∂d

∣∣∣
r1

d (9.95)

or, based on the properties of the directional derivative given in the section entitled “Gradient” in
Chapter 1, we have

Φ2(r2) = Φ2(r1) +∇Φ2 · d (9.96)

Putting (9.96) into (9.94) gives
Vab = ∇Φ2 · d (9.97)

Now Φ2 arises from application of I0 at a and−I0 at b so, in view of linearity, a unit current
(instead of I0) would generate the field Φ0

2 where

Φ0
2 =

Φ2

I0
(9.98)

Then, in place of (9.97) we have
Vab = ∇Φ0

2 · I0d (9.99)

or, from (9.91),
Vab = ∇Φ0

2 ·H (9.100)

A comparison of (9.100) with (9.93) shows that the lead vector associated with lead a− b is
the gradient of the scalar potential set up by reciprocally energizing a − b using a unit current;
it is evaluated at the dipole source location. The field Φ0

2 is the lead field (of lead a − b), and
because of the way it is set up it is often possible to guess its structure, at least approximately.
The lead vector field,∇Φ0

2, is the current flow field associated with the scalar leads a to b (except
for a change in sign and scale, since J = σE = −σ∇Φ2).
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Lead field extended to multiple dipoles

If the actual source is not a single dipole but rather a realistic dipole distribution defined by
J i (x, y, z), then (9.100) can be applied to each dipole element J idV . Summing (superposition)
gives the total lead voltage

Vab =
∫
J i · ∇Φ0

2 dV (9.101)

In (9.101),∇Φ0
2 is evaluated at each point for which J i is nonzero, so∇Φ0

2 is regarded as a vector
function of position or vector field. Sometimes it is referred to as a lead vector field, as noted
above.

Lead field theory applied to lead I

We have noted that∇Φ0
2 is the lead field of the potential-detecting electrode(s). The applica-

tion of lead field theory to electrocardiography is illustrated in Figure 9.29, where the reciprocally
energized leads are VI = ΦLA − ΦRA. To obtain the lead field it is necessary to apply a unit
current to LA and remove a unit of current from RA. The reciprocal current density within the
torso is from LA to RA, but some bowing of flow lines is inevitable. The current, J , is described
by the expression

J = −σ∇Φ0
2 (9.102)

The lead vector [in (9.101)] is∇Φ0
2, found from (9.102) as

∇Φ0
2 = −J

σ
(9.103)

So in the sketch in Figure 9.29 it is −J (which is proportional to ∇Φ0
2) that is shown. This

drawing can be interpreted as a description of the lead vector field. We note that at the heart
center the direction is more or less horizontal (as approximated by Einthoven). But there is some
curvature, so the results in (9.101) and (9.103) are not surprising.

Lead system design

A valuable concept of lead field theory is its characterization of the lead voltage as a weighted
sum of the contributing sources. From (9.101), we note that the weighting function is∇Φ0

2.

For example, the reciprocal field from a point electrode varies as 1/r2. This field will weight
sources close to the electrode more heavily by a factor that is proportional to the inverse square of
the separation distance. Thus the field constitutes a quantitative description of the “sensitivity”
of the unipolar electrode.

For a closely spaced electrode pair, the field ∇φ0
2 will be a dipole field that varies as 1/r3.

In this case the weighting is even stronger in favor of closer source elements.

One can use (9.101) not only to assist in the interpretation of what is measured as Vab, but
one can also specify a desired and physically realizable∇Φ0

2 to obtain a particular property. Then
an electrode configuration that generates or approximates∇Φ0

2 can be sought, thus representing
a rational approach to electrode system design.
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Figure 9.29. Lead Field associated with lead I is proportional to the negative of the current
flow field arising with a unit current introduced at b and removed at a.

9.3.7. Isochronal Inverse Solution

Inverse solutions are estimates of objective information about the heart from measurements
on the body surface [34]. An illustration is the model introduced by van Oosterom and colleagues.
For simplicity, we assume the heart to be homogeneous and isotropic and to contain a uniform
double-layer source that initially is closed and expanding outward.

The potential at the body surface point y, assuming a double-layer magnitude of τ , is [from
(9.25)]

Φ(y) =
τ

4πσ
Ω (9.104)

So long as the activation wave is closed (i.e., Ω = 0) no potential is present, if all parts of the
closed surface have equal strength.

When breakthrough occurs because the excitation wave reaches the ventricular surface, the
solid angle departs from zero (possibly rapidly) and a potential is seen on and outside the heart.
The actual potential includes that computed from (9.104). Additional source terms arise from
secondary sources generated at the various boundaries between regions of different conductivity.
The heart–lung interface and the torso–air interfaces are known to be significant.

Because the system is linear, when the activation wave loses an area element ΔS in its
termination at the surface, the loss is the same as the introduction of a negative dipole element.
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Thus a potential over the heart surface can be written as [10, 11]

Φ(y, t) =
∫

heart
A(y, x)ΔS(x) (9.105)

where x locates the dipole (on the heart surface). A(y, x) is a linear function that determines
the potential at a body surface point y from the dipole element at x that accounts for the actual
geometry and conductivities.

If Si is the total portion of the closed surface intercepted by the epicardium and endocardium
(where breakthrough also occurs), then a summation of elements as identified in (9.105) gives

Φ(y, t) =
∫
si

A(y, x)d(x) (9.106)

This integral can be taken over the entire heart by including the Heaviside step function H(t),
which is zero until arrival of the activation wave when it equals one (i.e., when the surface
elemental dipole turns on). Thus

Φ(y, t) =
∫

heart
A(y, x)H(t− τ(x))d(x) (9.107)

where τ(x) is the arrival time of the wave at the heart surface point x. Isochrone intersections
with the heart surface are given by τ(x) = constant. Integration of (9.107) over the total activation
time (from 0 to 1) requires an integration of H(t− τ) only, and the result is

w(y) =
∫

heart
A(y, x)(T − τ(x))d(x) (9.108)

If (9.108) is separated into two integrals, that involving the constant T is equivalent to finding the
field from a uniform closed double layer and goes to zero. The result is

w(y) = −
∫

heart
A(y, x)τ(x)dx (9.109)

Equation (9.109) describes the time integral of the potential at body surface points as arising
from a spatial integral over the heart of activation time τ(x). The equivalent source in this
model is a dipole in the heart surface whose field is A(y, x). This contribution is turned on by
the expanding breakthrough periphery, and a contribution to W (y) is given as the breakthrough
periphery passes across x. The rime integral not surprisingly depends simply on the breakthrough
time τ(x).

The function w(y) can be evaluated from the body surface potential data at all N electrode
sites. From (9.109), one could write N equations in N unknown sample values of τ(xi), i =
1, . . . , N , and i(xi) determined in principle.

In this way, sample values of the continuous function τ(x) are found; with enough values
the continuous function can be evaluated. The procedure requires good knowledge of the volume
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conductor geometrical and conductivity values from which theA(x, y) are evaluated in a separate
calculation. Unfortunately, the matrix formed from A(y, x) is ill conditioned and regularization
procedures must be applied. However, as shown in Figure 9.30, good results have been achieved.

9.3.8. Realistic Heart-Torso Models

Although it is clear from the above that the Einthoven triangle model is rather crude, it played
a major role historically in unifying the concepts of electrocardiography, and it continues to have
value today in understanding electrocardiograms at the top level.

Much more realistic models are available today, including many of the heart structure itself.
Additionally, realistic torso models are currently available for computer simulation utilizing the
finite element and (to some extent) the boundary element methods. With these, the major organs
can be included as homogeneous regions of appropriate conductivity, and cardiac performance
can be evaluated in a much more detailed way. There has been a focus on inverse solutions that can
be verified, at least in principle, from cardiac measurements [4], rather than equivalent sources.
A further description of such models can be found in Gulrajani [16] and elsewhere [3, 17, 18, 20].

More realistic models also have exploited the convergence of advances in computing and
computer algorithms (e.g., Pollard, Hooke, and Henriquez [30, 7]) that allow elements with
thousands of elements to be represented. Also greatly improved is knowledge of the cardiac
3D anatomy, made possible through imaging modalities such as MRI. Moreover, there is the
opportunity to compare model results to experimental data acquired at high data rates on many
data channels simultaneously. Such models are used not only for electrocardiography but for
active modes of intervention, such as the response to electric shock as studied with a bidomain
model [1] and defibrillation [24].

Accuracy of forward simulations

Simulation of the cardiac body surface potentials may begin with measured isochrones ob-
tained from, say, a canine preparation using plunge electrodes. Such modeling experiments have
as their goal an examination and elucidation of the various factors which contribute to the re-
sulting surface potentials. Unfortunately, there is no experimental measurement of both plunge
electrode and body surface potentials recorded simultaneously, and consequently no way of fully
evaluating an aforementioned modeling effort.

One can readily list a number of factors that could be expected to affect the accuracy of the
above forward simulation. First, the plunge electrodes sample at only a relatively few points
throughout the heart, and hence isochrones and associated double-layer sources depend on inter-
polation and may contain significant error. The plunge electrode itself causes tissue damage and
additional error as a consequence of the presence of its conducting (or nonconducting) surface,
hence introducing false secondary sources. One can improve the sampling error with additional
electrodes, but this increases the fraction of damaged tissue.

A second factor affecting simulation accuracy concerns the description of the geometry
and conductivities of the constituents of the volume conductor, including intracavitary blood,
torso shape, thoracic organs, and spine [18, 25]. A number of imaging modalities are available
that can provide good geometrical values. Reported measurements of tissue conductivities vary
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Figure 9.30. Inverse Isochrones. Left and right ventricles: (1) simulated activation se-
quence, (2) activation sequence computed classically for unperturbed transfer matrix A,
(3) activation sequence computed classically for perturbed matrix A (A′ includes additive
noise), (4) inverse A′ using extra constraints. Step size is 5 msec. From Huiskamp G,
van Oosterom A. 1995. Four surfaces in electrocardiography. In Proceedings of the 22nd
international congress on electrocardiology. Ed A van Oosterom, TJ Oostendorp, GJH
Uijen. Nijmegen: University Press.
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considerably. In many cases measurements fail to take account of tissue inhomogeneity, anisotropy,
etc. [31]. Correct conductivity values, however, are important for a determination of both the
source strength as well as the generated fields.

Although typically ignored, further improvements in the model may be expected by including
heart tissue anisotropy and the complexity in the changes of fiber orientation. These will influence
both the description of the active source as well as the currents in the volume conducting tissue.

At present, no single example can be cited in which a fully satisfactory forward simulation,
based on intramural heart sources, has been achieved. However, there are some that give reason-
able results and provide useful insights. The value of a forward solution is its ability to identify
the significant factors that affect the resulting electrocardiogram and an ability to examine the
effects of changes in such factors as geometry, conductivity, and activation pattern.

While present models have shortcomings, they provide considerable insight into these influ-
ences [16].

9.4. NOTES

1. It is thought provoking to bring to mind some of the major aspects of cardiac function that are mentioned here only
minimally if at all, including the rapidly emerging field of cardiac genomics, cardiac neural interactions and control,
cardiac metabolism, and of course cardiac mechanical function.

2. This independence implies an advantage for the reader and student: the study of later topics in the chapter may benefit
from knowledge of earlier ones, but it does not require it, and in this text the reader may wish to focus on some
sections but not others.

3. The intercellular region is characterized by the presence of three types of structures. The most numerous is the inter-
mediate junction followed by the desmosome. Both appear to have the role of providing mechanical coupling between
adjoining cells, maintaining tissue integrity during the development of tension along the fiber axis during ventric-
ular contraction. Except at junctions, abutting cell membranes are separated by around 200

◦
A; however, filaments

bridge the intercellular space contributing mechanical strength and rigidity. The third structure is the gap junction,
responsible for intercellular communication, and the focus of attention in the topic of cardiac electrophysiology.

4. Trabecula tissue preparations are long relative to diameter (here, they were 1–3 mm long and 0.2–0.5 mm in diameter),
while constituent fibers are relatively uniform and parallel to the axis. Consequently, they constitute a multifibered
preparation similar to Purkinje strands or striated muscle bundles.

5. The holding potential of −42 mV suppresses the fast Na+ inward current, and what is seen is a Ca++ inward and
K+ outward current. This avoids the interference from the larger fast sodium sarcolemmal current.

6. The gap-junctional area is roughly 10% of the nexal area, but the latter is ten times greater than the smooth transverse
area due to folding. So we take the value of 56 μm2 as the actual area occupied by the gap junctions.

7. Muller and Markin [28] introduce a bidomain model (such models are described later in this chapter) of a uniform
two-dimensional cardiac tissue with anisotropic conductivities. They examine a uniform plane wave propagation
in an arbitrary direction and show it to satisfy the linear core-conductor model with an effective intracellular and
interstitial resistance value per unit length in the direction of propagation. If the fiber direction is x and propagation
makes an angle α with x, then ri = (gix cos2 α+ giy sin2 α)−1 and re = (gex cos2 α+ gey sin2 α)−1, where
ri and re are the aforementioned effective intracellular, interstitial resistances in the direction of propagation and the
g’s are the tissue bidomain conductivity tensor elements described in a later section.

8. A summary of cross-fiber measurements is given in Plonsey and van Oosterom [32]; none is completely satisfactory.
However, the expected trans-wave potential of≈ 40 mV appears to be consistent with a number of direct and indirect
measurements.

9. Under pathological conditions leading to slow conduction and block, a region may allow activation to loop back
to a previously depolarized site at which refractoriness has ended, permitting a second activation leading to an
uncontrolled loop. The ultimate consequence is a number of reentry loops no longer controlled from the SA node.
This may terminate spontaneously, repeat continuously (tachycardia), or go on to the lethal arrhythmia of fibrillation.
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10. Major contributions to the development of bidomain models by Tung (1978), Schmitt (1969), and Miller and
Geselowitz (1978) are cited by Gulrajani [16]. Spatial details can also be incorporated into bidomain models. The
point here is that the model can provide useful information about electrical events over a larger spatial scale on the
basis of average properties rather than requiring detailed specification.

11. A random intracardiac point must lie in either the intracellular or interstitial space, but such a point returns both a
bidomain intracellular and interstitial potential. This seeming paradox occurs because the bidomain describes fields
that are averaged over several cells. In the bidomain model at the aforementioned point, the bidomain potentials are
the averaged intracellular or averaged interstitial potentials over the region surrounding the point. Whether the actual
point is inside or outside a cell is thus inconsequential.

12. Among the first to measure the electrocardiogram was Augustus Waller using a Lippman electrometer. He published
his findings in 1887. Waller was a London physiologist and was interested in cardiac electrophysiology; he used his
dog, Jimmie, as a subject. (The dog became famous, but animal rights activists were critical.) On a visit to Einthoven
at the turn of the century, he was surprised to learn of the ECG’s clinical value, never having contemplated this in
his own work. Einthoven’s critical contribution was in the development of an improved string galvanometer, which
made conventional recording of the ECG in doctor’s offices possible. In addition, Einthoven developed a lead system
and additional framework for evaluating an electrocardiogram. Einthoven won the Nobel Prize in medicine in 1924.
An excellent history of electrocardiography has been provided by Johnson and Flowers [21]

13. VI is at the fourth right intercostal space at the sternal edge. V2 is at the fourth left intercostal space at the sternal
edge. V4 is at the fifth left intercostal space at the mid-clavicular line. V3 is midway between V2 and V4.V5 is at the
same level as V4 but at the anterior-axillary line. V6 is at the same level as V4 but at the mid-axillary line.

14. The 5 K value was chosen as a compromise. It was intended to be high in relation to skin-electrode resistances and
low in relation to the amplifier impedances of the day. Modern systems more frequently use higher resistor values,
perhaps 50K or even greater.

15. At least it does so in principle, though in practice the discussion shifts to how many leads are required to map the
torso.
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10
THE NEUROMUSCULAR JUNCTION

10.1. INTRODUCTION

It is a nerve bundle or nerve trunk that conveys excitatory impulses from the central nervous
system to a target muscle. Each nerve fiber is normally myelinated, but at its terminal end it
becomes unmyelinated. Also at the end the nerve fiber branches and each branch contacts a
single (specific) muscle fiber within the whole muscle.

This anatomical arrangement is illustrated in Figure 10.1, where a total of three muscle fibers
are shown being activated by a single nerve. The set of muscle fibers activated by one motor
neuron, as illustrated, constitutes a motor unit. The individual fibers of one motor unit are found
interdigitated with the fibers of other motor units.

The number of fibers in a motor unit may be small (around 5) for muscles with finely graded
performance. Conversely, the number may be large (around 150) for muscles requiring less
precision.

As shown in Figure 10.1, the muscle fibers are excited near their center. Thereafter action
potentials propagate in both directions from this site toward the respective ends.

Each unmyelinated terminal branch of a motor (nerve) fiber will have a diameter on the order
of 1.5 μm. The action potential propagating along this fiber does so because of the presence of
local circuit currents, as described for fiber propagation in Chapter 6.

If such a nerve fiber were to be directly joined to a muscle fiber of, say, 50μm in diameter, then
as the propagating action potential reached the nerve–muscle junction, the local circuit current
density set up in the muscle would be considerably reduced from that in the nerve. This reduction
would occur because the nerve and muscle must have the same total current, a consequence of
current conservation. However, since the muscle fiber/nerve fiber effective membrane area is at
least the ratio of their respective radii, namely, (50/1.5) = 33.33, the ratio of their current densities
must be in the reciprocal, that is, 0.03.

325
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Figure 10.1. Motor Nerve Showing Branching to Activate Three Muscle Fibers. The nerve
endings are unmyelinated, as shown. From Keynes RD,Aidley DJ. 1981. Nerve and muscle.
Cambridge: Cambridge UP. Reprinted with the permission of Cambridge University Press.

Because λ for the muscle is greater than for the nerve, the effective muscle/nerve area
ratio will be even larger. Thus the local circuit current generated by the nerve will result in a
hundredfold or so lower current density in the muscle (assuming the nerve to muscle ratio of
the product of diameter times length constant to be around 100). Consequently, the membrane
depolarization produced in the muscle by the nerve action potential would be reduced by 1/100
times the depolarization the nerve induces in itself.

Although a safety factor exists in both the nerve and muscle, it is typically less than 10.
Consequently, direct transfer of electrical activity from nerve to muscle cannot take place.

It is therefore no surprise to learn that the mechanism whereby the motor neuron stimulates
its target muscle is not electrical but depends, instead, on a chemically mediated action. This
chapter is devoted to the electrophysiology of the neuromuscular junction. In an engineering
sense one can think of the neuromuscular junction in the role of an impedance transformer (from
high-impedance nerve to low-impedance muscle).

The cell-to-cell coupling of the neuromuscular junction is an example of synaptic transmis-
sion of excitation from one cell to an adjoining cell. Such coupling arises not only between nerve
and muscle, but also muscle to muscle and nerve to nerve. In most cases transmission is based
on a chemical mediator, but there are examples where the coupling is electrical (as we found in
cardiac muscle where the synapse is the gap junction).

We have limited our consideration in this chapter to the neuromuscular junction because that
topic provides the needed background for the next two chapters. Actually, its general consid-
erations would also apply at neural–neural synapses as well. In fact, much of the accumulated
research on synaptic behavior has been derived from the study of the neuromuscular junction.

10.2. NEUROMUSCULAR JUNCTION

A sketch of a neuromuscular junction is shown in Figure 10.2 and a cross-sectional view of
a single nerve terminal is shown in Figure 10.3. Illustrated in both figures is the very ending of
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Figure 10.2. Neuromuscular Junction of Frog. (a) One portion of the junction. (b) General
position of endings of motor axon on muscle fiber, showing portion (a) as a small rectangle.
(c) Schematic drawing from electron micrographs of a longitudinal section through the
muscle fiber. 1, terminal axon membrane; 2, “basement membrane” partitioning the gap
between nerve and muscle fiber; 3, folded postsynaptic membrane of muscle fiber. From
Katz B. 1966. Nerve, muscle, and synapse. New York: McGraw-Hill. Copyright c©1966,
McGraw-Hill, with permission of the McGraw-Hill companies.

a single nerve branch at the muscle fiber it will activate. This region of neuromuscular contact
is known as an end plate. The nerve cell is actually separated from the muscle cell by a gap of
around 50 nm between their respective membranes. This neuromuscular structure exemplifies
the broader class of synaptic junction, which characterizes transfer of excitation from one cell to
another cell. The nerve lies in “synaptic gutters,” which are infoldings in the postsynaptic (muscle)
membrane. The length of a typical “gutter” is 100 μm, while its diameter is around 2 μm.

Within the nerve ending one sees the presence of spherical vesicles (around 50 nm in diameter)
that contain a chemical transmitter. When a nerve impulse arrives at the nerve ending, some of
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Figure 10.3. Details of the Neuromuscular Junction at a Single Nerve Terminal.

Figure 10.4. The End-Plate Potential Arising from the Neural Action Potential. The
EPP is from an intracellular recording, while the action potential is recorded separately
with extracellular electrodes. The latter is included for timing; its relative amplitude is
uncalibrated. From Brock LG, et al. 1952. The recording of potentials from motoneurons
with an intracellular electrode. J Physiol 117:431–460.

these vesicles will be caused to fuse with the end-plate membrane and then empty their contents
into the synaptic cleft (a process called exocytosis). The transmitter diffuses to the post-junctional
membrane, where it complexes with receptors resulting in permeability changes, giving rise to
the depolarization of the post-junctional membrane. This depolarization initiates the activation
of the entire post-junctional cell. A microelectrode placed in the post-junctional cell can measure
the ultimate effect, as shown in Figure 10.4.

In the general case of a synapse, an excitatory or inhibitory electrical response is elicited,
depending on the nature of the transmitter; the neuromuscular junction is always excitatory. A
typical EPSP, or excitatory postsynaptic potential, is illustrated in Figure 10.4; it follows the
(illustrated) nerve signal that gives rise to it. The neuromuscular (excitatory) transmitter, as
mentioned above, is acetylcholine (ACh).

The ACh channel is one of the earlier membrane channels to be studied with the patch elec-
trode to reveal single-channel behavior. In addition, its complete amino acid and gene sequences
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have also been completely determined. In fact, a functioning ACh channel has been obtained
by reinserting a purified macromolecule into a lipid membrane [6]. A model of this receptor is
shown in Figure 4.1.

This channel differs from ion channels that are voltage gated (discussed in Chapter 4) in
that gate opening and closing depends on a ligand (i.e., the transmitter ACh) rather than a volt-
age gradient. Other ligands include glutamate, glycine, and γ-aminobutyric acid, as well as
acetylcholine.

Figure 10.5 gives additional details on the acetylcholine receptor. In panel A, a three-
dimensional reconstruction of the channels is shown, adapted from Toyoshima C, Unwin N. 1982.
Ion channel of acetylcholine receptor reconstructed from images of postsynaptic membranes.
Nature 336:247–250. Panel B presents an AChR model consisting of the 5 subunits. The internal
pore admits Na+ and K+ ions, following binding of ACh to each of the α subunits. Panel C gives
the molecular structure of one of the two α subunits, which has four membrane spanning regions,
showing its five subunits consisting of two α plus β, γ and δ polypeptides. The channel protein
has a molecular weight of 280,000 Da. Channel opening and closing requires the binding of both
α units with an ACh molecule (i.e., two ACh required for each channel opening).

10.3. QUANTAL TRANSMITTER RELEASE

Even in the absence of stimulation of the presynaptic nerve, miniature end-plate potentials
(MEPP) of 0.5 mV per MEPP, appearing every second on the average, are seen. These potentials
are of interest, since they cast light on the mechanism of transmitter release and its take-up by
receptors. These potentials are blocked by curare, which is known to interfere with the ability of
postsynaptic receptors to respond toACh. The MEPP simply arises from the random subthreshold
release of ACh.

In fact, the aforementioned release is quantized, since each MEPP is of similar amplitude,
except for a rare occasion when an MEPP of double value arises. This effect is easy to understand,
since each vesicle holds about the same quantity of transmitter and therefore elicits a similar MEPP
(except when two vesicles are simultaneously released and a double amplitude MEPP is seen).

The less likely possibility that the receptor response is quantized was discarded when it was
observed that iontophoretic application of different quantities of ACh directly to the receptor
resulted in EPPs whose magnitudes are proportional to ACh size, as shown, for example, by
Kuffler and Yoshikami [3].

A postsynaptic potential waveform similar to the MEPP arises as a response to stimulation
when the end-plate region lies in a reduced Ca++ (and/or increased Mg++) medium, since
these ionic conditions greatly attenuate release of ACh, thereby permitting an examination of the
response from smaller numbers of ACh packets. In response to a nerve stimulus one may observe
no EPP (i.e., no end-plate potential, hence zero quantal release), or a response similar to an MEPP
(i.e., a single quantum of ACh), and responses that are small integral multiples of an MEPP.

The normal EPP is thus simply the sum of a large number of MEPPs, where the single
(isolated) MEPP arises from the release of a single quantum. (For human muscle, the average
number of ACh quanta is around 30.)



330 CH. 10: THE NEUROMUSCULAR JUNCTION

Figure 10.5. Details of the ACh Receptor. ACh binding to both α units is necessary for
gate opening. Also shown is the amino acid sequence of the α subunit and their membrane
crossings. Adapted from Beeson D, Barnard E. 1970. Acetylcholine receptors at neuro-
muscular junctions. In Neuromuscular transmission: basic and applied. Ed A Vincent
and D Wray. Manchester: Manchester UP. Reprinted with permission from McComas AJ.
1996. Skeletal muscle: form and function. Champaign, IL: Human Kinetics.
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10.4. TRANSMITTER RELEASE, POISSON STATISTICS

The picture of transmitter release arising from nerve stimulation suggests that a quantitative
description can only be given probabilistically. Since there are a large number of vesicles and
the probability of release of any one vesicle is small, the overall response to any stimulus can be
described by a Poisson distribution. The details are established as follows.

Suppose there are n release sites and that the probability of release at any specific site is
p, where p assumes the presence of a nerve stimulus and depends also on the concentration of
Ca++, Mg++, and other ions.

The probability of exactly x release sites (of n) is given by the binomial distribution

f(x) =
n!

x!(n− x)!
pxqn−x (10.1)

where q = 1− p and n is the total number of sites. This expression is derived by first noting that
the number of different ways x sites can be release sites and (n− x) non-release sites is

(
n

x

)
=

n!
x!(n− x!

(10.2)

Furthermore, the probability of realizing any one of the aforementioned isP xqn−x. Since (nx)
is the number of equally likely ways of realizing exactly x of n release sites, and each configuration
is statistically independent, then the probability of exactly x release sites is the product of (nx)
with P xqn−x, and this is given in (10.1).

If we consider n→∞, p << 1, np→ m, x << n (x remains small and independent of n),
then we have, approximately,

n(n− 1) · · · (n− x+ 1) � n · n · · ·n = nx (10.3)

Also, for p << 1, we have

q = (1− p) � e−p, q(n−x) � e(n−x)p � e−np (10.4)

The second expression in (10.4) follows, since we assume that n >> x. Consequently,

n!
x!(n− x)!

=
n(n− 1) · · · (n− x+ 1)

x!
=
nx

x!
(10.5)

and

f(x) =
nxpxe−np

x!
=
e−mmx

x!
(10.6)

wherem = np. The quantity m is the average quantal release per trial (under normal conditions).
The final result in Eq. (10.6) is a Poisson distribution.
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One can estimate m from experimental measurements by comparing the mean EPP amplitude
(proportional to m quanta) with the mean MEPP amplitude, where the latter arises from a single
quanta. Thus,

m =
mean amplitude of EPP

mean amplitude of MEPP
(10.7)

This result assumes that EPP is linearly proportional to quantal release. This assumption is
satisfactory for small amounts. For large release, a saturation effect is noted in the resulting EPP.
In this case a better estimate is given by

m =
ν

ν1

(
1− ν

V 0

)−1

(10.8)

where ν is the average EPP, ν1 is the average MEPP, and V0 is the maximum possible EPP. This
expression is described by Martin [5].

An alternate evaluation of m is to count the number of failures, n0, to elicit any response in
N trials, where N is reasonably large. Then, using (10.6), we have

f(0) ≈ n0

N
=
(
e−mmx

x!

)
x=0

= e−m (10.9)

Taking the log of (10.9) and solving for m yields

m = ln
(
N

n0

)
(10.10)

Because values of m found from (10.7) and (10.10) agree in experiments that have been
conducted, the process appears to be, indeed, Poisson. The factor m is referred to as the quantal
content.

The effect of elevating Mg++ or depressing Ca++ is to reduce p (increase q). The accuracy
of the Poisson model is diminished by temporal variations in n and spatial variations in p. The
above statistical behavior is usually studied in reduced Ca++ or elevated Mg++, to attenuate
release greatly so that observations are simplified.

The assumption that each quantum is associated with the release of the contents of a single
vesicle appears to be confirmed by direct experiments. If the presynaptic membrane is removed
andACh applied directly to the postsynaptic terminal, one can calibrate the amount ofACh needed
for an MEPP and thereby evaluate the amount of one quantum.

In the experiments of Kuffler and Yoshikami [3] it was determined that one quantum rep-
resented around 10,000 ACh molecules. This agrees, roughly, with the 6000 molecules of ACh
contained in a vesicle that is 50 nm in diameter. Since approximately 1700 ACh molecules
actually bind to receptor sites, the process may be said to be 10–20% efficient.
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While the transmitter content of a single vesicle and the MEPP it produces have been regarded
as fixed quanta in the foregoing discussion, in fact there are small variations in these quantities.
The result is that distributions in the EPP amplitudes in a large number of trials comprise a smooth
curve (with many peaks) rather than a discontinuous one. This fact does not alter the basic ideas
presented above but adds an additional complication in evaluating end-plate response.

10.5. TRANSMITTER RELEASE, Ca++ AND Mg++

The required presence of extracellular calcium for release of transmitter is demonstrated by
the absence of release when Ca++ is not present in the perfusate (even though postganglionic
cells could still be directly depolarized by ACh).

More recent experiments also demonstrate that intracellular calcium must bind to intracellular
membrane proteins (release sites) for release to take place. The pre-junctional terminal contains
large numbers of Ca++ channels, and these facilitate Ca++ entry near release sites.

Dodge and Rahamimoff [2] proposed a model in which it is assumed that Ca++ and Mg++

bind to a presynaptic structure, X , so that

Ca +X
←−→ CaX(K1) (10.11)

and
Mg +X

←−→ MgX(K2) (10.12)

Where K1 and K2 are dissociation constants, and CaX facilitates while MgX inhibits quantal
release.

IfX0 is the total amount ofX available both in its unbound and bound form, then by definition
(with [ ] denoting concentration),

[X0] = [X] + [CaX] + [MgX] (10.13)

or, rearranging, we have
[X] = [X0]− [CaX]− [MgX] (10.14)

From the law of mass action applied to (10.11) and (10.12),

[Ca][X0]− [CaX]− [MgX] = K1[CaX] (10.15)

and
[Mg][X0]− [CaX]− [MgX] = K2[MaX] (10.16)

Solving for [MgX] from (10.15) gives

[MgX] = −K1[CaX]
[Ca]

+ [X0]− [CaX] (10.17)

Substituting (10.17) into (10.16) results in

K1[Mg][CaX] = K2[X0][Ca]−K2[CaX][Ca]−K1K2[CaX] (10.18)
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Rearranging (10.18) leads to

[CaX]{K1[Mg] +K2[Ca] +K1K2} = K2[X0][Ca] (10.19)

Solving for [CaX], and then dividing numerator and denominator on the right-hand side by
K1K2, yields

[CaX] =
(

[X0]
K1

)
[Ca](

1 + [Mg]
K2

+ [Ca]
K1

) (10.20)

The concentration of [CaX] is a measure of the facilitation of transmitter release. From
(10.20), we note that it is reduced by [Mg], increased by [X0], and depends on the dissociation
constants K1 and K2. It also increases with an increase in [Ca++] by an amount n that depends
on Mg++ as well as the dissociation constants. This equation is in a form that is familiar in
enzyme kinetics.

Experimental evidence from Dodge and Rahamimoff [2], who developed the above expres-
sions, suggests that the dependence of EPP amplitude on [Ca++] can be given by

EPP amplitude = k[CaX]m (10.21)

where k and n are constant. Curve fitting leads to n = 4. Using (10.20) and (10.21) leads to

EPP amplitude = k

(
W [Ca]

1 + [Ca]
K1

+ [Mg]
K2

)4

(10.22)

where

W =
[X0]
K1

(10.23)

Taking the fourth root of (10.22) and inverting gives, finally,

1
EPP amplitude)1/4 =

1
K1k1/4W

+
1

K1/4W

(
[Mg]
K2

+ 1
)

1
[Ca]

(10.24)

so that (EPP amplitude)−1/4 is linear with [Ca]−1.
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Equation (10.24) fits the experimental data of Dodge and Rahamimoff [2] quite well (with
n = 3.8). These results support the notion that elevation of extracellular calcium concentrations
increases EPP amplitude, with magnesium playing an inhibitory role. That n has the value of
∼ 4 was interpreted by Dodge and Rahamimoff as requiring the simultaneous presence of four
calcium ions at each X receptor site to facilitate ACh release.

While the presence of extracellular calcium is required for ACh release, it is the intracellular
calcium that actually triggers it. A direct confirmation of the facilitative role of calcium can be
obtained by the use of a calcium-sensitive photoprotein aequorin. Measurement of the light signal
from the aequorin gives a quantitative measure of calcium entry into the presynaptic terminal of
a cell upon stimulation.

If Ca entry is blocked by depolarizing to a more positive potential than the calcium Nernst
potential ECa then the EPSP should be abolished. Depolarizations to greater than +130 mV do,
in fact, accomplish this, thereby confirming that it is the calcium entry resulting from the arrival
of the action potential at the end plate that is responsible for transmitter release.

10.6. POST-JUNCTIONAL RESPONSE TO TRANSMITTER

The postsynaptic membrane contains a localized region in which there are specialized ACh
receptors and associated channels (as described in Figure 10.5). The receptor density is estimated
at 104/μm2, which is an order of magnitude greater than that of sodium and potassium channels of
squid axon. ACh molecules released at the pre-junctional membrane diffuse across the synaptic
cleft and form a transmitter–receptor complex at the receptor sites that opens the associated
channels (specifically, the binding of twoACh molecules being required to open theACh channel).
When open, ionic flow can take place.

The behavior of the synaptic membrane is shown symbolically in Figure 10.6. A portion of
the postsynaptic membrane contains receptor channels. This portion is available for current flow
only when the channels are open (hence the inclusion of a switch that closes only during ACh
release).

The associated ion currents are described by the parallel-conductance model introduced in
Chapter 3. The current flow of the xth ion is Ix = gx(Vm−Ex), where Vm is the transmembrane
potential andEx is the Nernst potential. The remaining postsynaptic membrane is described by a
normal subthreshold passive muscle membrane with a resting conductance and resting potential
characterized by (gr, Er).

The conductance values for the receptor channels in Figure 10.6 are not to be confused
with those in excitable membranes but are unique to synaptic membranes, where they depend
on the properties of the ACh channel. One important difference is that the temporal behavior
of the synaptic conductance is a simple exponential decay. Magleby and Stevens [4] show that
Gs = ke−αt, where α = BeAVm . So the transmembrane potential affects only the decay rate.

As we know, the ACh channel is ligand (rather than voltage) sensitive. The binding of
ACh molecules to receptors occurs very rapidly and the conductance reaches its maximum value
essentially instantaneously.



336 CH. 10: THE NEUROMUSCULAR JUNCTION

Figure 10.6. Parallel-Conductance Model of Postsynaptic Membrane that is influenced by
transmitter, and remaining cell membrane (in resting state) [6]. The switch closes at the
point of arrival of ACh when the circuit describes the instant of maximum conductance.
From Junge D. 1981. Nerve and muscle excitation. Sunderland, MA: Sinauer Associates.
Based on Takeuchi A, Takeuchi J. 1960. On the permeability of end-plate membrane during
the action of transmitter. J Physiol 154:52–67.

In addition to the localized synaptic membrane, Figure 10.6 shows the remaining membrane
of the post-junctional cell described by the lumped elements Er and gr, which represent the
resting transmembrane potential and resting membrane conductance. This membrane is more
completely characterized by normally excitable properties, such as described in Chapter 5. The
model in Figure 10.6 requires inclusion of active elements when the transmembrane potential
approaches threshold.

Upon transmitter release, and hence the closing of the switch in Figure 10.6, the current, Is,
in the synaptic channels can be expressed as

Is = gK(Vm − EK) + gNa(Vm − ENa) + gCl(Vm − ECl) (10.25)

where EK , ENa, and ECl are the Nernst potentials of potassium, sodium, and chloride ions.

The EPP reversal potential (the voltage clamp value at which no current flows when the
transmitter is applied) is found by setting Is = 0 in (10.25) to yield

V rev
m =

gKEK + gNaENa + gClECl

gK + gNa + gCl
(10.26)

Experiments performed with different extracellular ion concentrations (i.e., with variations in
[K]e, [Cl]e, and [Na]e) permit gK, gNa, and gCl in (10.26) to be estimated.

Such experiments were performed by Takeuchi and Takeuchi [7] and show that for the frog
neuromuscular junction the reversal potential is independent of the chloride Nernst potential,ECl.
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Figure 10.7. Simplified Electrical Model of Postsynaptic Junction and Adjoining Cell
Membrane Following Release of Transmitter and Activation of Synaptic Channels. From
Junge D. 1981. Nerve and muscle excitation. Sunderland, MA: Sinauer Associates. Used
with permission.

It was assumed, consequently, that gCL ≈ 0. Changes in [Na]e and [K]e followed the predictions
of (10.26) provided gNa/gK � 1.29.

Both sodium and potassium permeabilities are elevated almost equally by ACh when acting
at the post-junctional membrane. The effect is a true depolarization of this membrane. The
specific change in ionic conductance depends on the species and tissue being studied.

Substances such as α-bungarotoxin and curare also combine with the postsynaptic receptors,
but do so without opening the channels. They consequently compete with the ACh for binding
sites and hence interfere with the normal functioning of the neuromuscular junction. This effect is
reflected quantitatively by reductions in the potassium and sodium conductances of the synaptic
region for the same amount of transmitter release.

If all elements in the network of Figure 10.6 are taken into account, then (since the total
current into any node must be zero to satisfy conservation of current)

gr(Vm − Er) + gK(Vm − EK) + gNa(Vm − ENa) = 0 (10.27)

and consequently

Vm =
grEr + gKEK + gNaENa

gr + gK + gNa
(10.28)

where Vm is the postsynaptic potential.

With the simplifying assumption that gK = gNa = gs/2 and (EK + ENa)/2 = Es [where,
based on (10.25),Es is the reversal potential], we get an alternate expression for the postsynaptic
potential, reflecting the simplified circuit in Figure 10.7, namely,

Vm =
Ergr + Esgs
gr + gs

(10.29)
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If gr and gs are approximately the same, then Vm will be the average of Er and Es. Since Es
is more positive than Er owing to the influence of ENa, the result is a depolarization of the cell
membrane that adjoins the synaptic area.

Putting together the various elements discussed in this chapter we have the following se-
quence:

1. The action potential on the motor neuron reaches its distal ending at the presynaptic
terminal, which is the interface with its target muscle.

2. The membrane depolarization resulting from the propagating action potential causes the
opening of voltage-gated Ca++ channels and an influx of Ca++, the Ca++ channels being
relatively dense at the terminal end.

3. The Ca++ molecules that arrive complex intracellularly with the release sites and result
in the fusing of synaptic vesicles with the terminal membrane.

4. Through the process of exocytosis,ACh from synaptic vesicles is released into the synaptic
cleft.

5. ACh diffuses across the synaptic gap to the postsynaptic ACh channels lying in the muscle
membrane. When a pair of ACh molecules bind with the channel protein, the channel
opens.

6. A consequence of ACh channel opening is that sodium and potassium are both free to flow
based on high and nearly equal conductances, thereby depolarizing the post-junctional
membrane and initiating an action potential in the muscle fiber.
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11
SKELETAL MUSCLE

The goal of the material in this chapter is to provide a very brief introduction to skeletal muscle,
its structure, and its electrophysiological and contractile properties.1

11.1. MUSCLE STRUCTURE

A whole muscle can be divided into separate bundles. Each bundle contains many individual
fibers. The fiber is the basic (smallest) functional unit (it constitutes a single cell). It is bounded
by a plasma membrane and a thin sheet of connective tissue, the endomysium. The bundles are
also surrounded by a connective tissue sheet, the perimysium, which delineates specific fascicles.
The whole muscle is encased in its connective tissue sheet, namely, the epimysium.

Most skeletal muscles begin and end in tendons. Muscle fibers lie parallel to each other, so
the force of contraction contributed by each is additive. The general features noted above are illus-
trated in Figure 11.1. In this chapter attention will be primarily directed to the electromechanical
properties of the single muscle fiber.

Each muscle fiber is made up of many fibrils, each of which, in turn, is divisible into indi-
vidual filaments. The filaments are composed of contractile proteins, essentially myosin, actin,
tropomyosin, and troponin.

Mature fibers may be as long as the muscle of which they are a part (tens of centimeters); they
vary in diameter from 10 to 100 μm. As noted above, each fiber contains myofibrils, which are
proteins and which lie in the cytoplasm. The cytoplasm also contains mitochondria, the SR and T
systems, plus glycogen granules. When examined under light microscopy (LM), the myofilaments
show characteristic cross-striations (banding), which are in register in all myofilaments (see
Figure 11.1.) It is the latter property from which skeletal muscle derives the alternate name of
striated (muscle).

The overall physical features of a muscle fiber are shown in Figure 11.2. This shows the
dense packing of myofibrils, the transverse tubular system (TTS), and the sarcoplasm reticulum

341
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Figure 11.1. Structure of a Whole Muscle and Its Components. The cross-striations are
visible under light microscopy. From Keynes RD, Aidley DL. 1981. Nerve and mus-
cle. Cambridge: Cambridge UP. Based on Schmidt-Nielsen K. 1979. Animal physiology.
Cambridge: Cambridge UP. Reprinted with the permission of Cambridge University Press.

(SR). Both the bounding membrane and the TTS membrane are excitable and play an important
part in the process whereby contraction is initiated.

11.2. MUSCLE CONTRACTION

Each mammalian muscle fiber is contacted by a single nerve terminal. The muscle fiber is
known as a twitch fiber, since the response to a single nerve stimulus is a twitch. The time to
reach the peak of a typical twitch contraction is around 200 msec, while recovery requires an
additional 600 msec.

In normal activity a muscle will shorten as it develops force (tension). However, experiments
are often carried out under conditions of constant muscle length (isometric) as well as under
conditions of constant muscle load (isotonic). To study behavior under isometric conditions, a
transducer is needed that converts force into an electrical signal while itself undergoing very little
deflection.

If a second stimulus is applied before the effect of the previous twitch has ended, then the sec-
ond (twitch) response will build on the residual of the first and summation results. Corresponding
to a long inter-stimulus interval, a “bumpy” response is seen. For increasing stimulus frequency,
a value will be reached where the bumps disappear and a smooth buildup to a maximum steady
level results, as illustrated in Figure 11.3. The frequency is known as the fusion frequency, and
the muscle is said to be in tetanus. The peak twitch tension to the maximum tetanus tension is
the twitch/tetanus ratio, which is about 0.2 for mammalian muscle.
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Figure 11.2. Magnified View of the Structure of a Single Muscle Fiber, with a cutaway
view of the myofibrillar structure. Each fibril is surrounded by a sarcoplasmic reticulum
(SR) and by the transverse tubules system (TTS), which opens to the exterior of the fiber.
From Krstic RV. 1970. Ultrastructure of the mammalian cell. Berlin: Springer-Verlag,
with permission.
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Figure 11.3. Tension versus Time for a Single Stimulus (twitch response) and for a train
of stimuli of increasing frequency b, c, d. From Keynes RD, Aidley DJ. 1981. Nerve
and muscle. Cambridge: Cambridge UP. Reprinted with the permission of Cambridge
University Press.

Mammalian muscle can be classified into fast glycolytic or type II fibers, and slow oxidative
or type I muscle.2 Fast (white) fibers contract and relax much more rapidly than slow (red) ones.
The former are found where rapid movement is encountered (e.g., muscles involved in fast running
and jumping), while the slow muscle is more involved in, for example, long-distance running or
postural movement.

The characteristics of the fast muscle include (1) larger diameter fibers, (2) greater developed
tension, (3) mainly dependent on glycolytic and less on oxidative metabolism, (4) contractions
of short duration, and (5) muscle fatigues rapidly and recovers slowly.

Distinguishing the slow muscle is (1) a smaller diameter fiber, (2) lower tension, (3) primarily
oxidative metabolism (hence more extensive vasculature and mitochondria), (4) long-duration
twitch, and (5) fatigues slowly and recovers quickly. All muscles are actually some combination
of the fast and slow muscle, each having their own particular characteristics.

The length–tension relation of skeletal muscle is illustrated in Figure 11.4. Under isometric
conditions, the total active (tetanus) tension depends on the (fixed) length of the fiber according
to the plotted data.

A passive tension is required to extend the muscle beyond its resting length (mainly because
of the need to stretch the connective tissue associated with the muscle). The passive tension is
measured on the muscle in the absence of stimulation.

The difference between the total active tension and the passive tension is a measure of the
contractile force derived from stimulation and is called the active increment. The latter quantity
reaches a maximum at the resting length and is lower for either greater or lesser lengths. An
explanation of this behavior is given in a subsequent section.
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Figure 11.4. Length–Tension Relationship for a Skeletal Muscle under Isometric Condi-
tions. From Keynes RD, Aidley DJ. 1981. Nerve and muscle. Cambridge: Cambridge UP.
Reprinted with the permission of Cambridge University Press.

11.2.1. Structure of the Myofibril

Each fiber contains a large number of cylindrical (protein) constituents called myofibrils.
The banded structure seen for the fiber as a whole is, in fact, a consequence of the Saffie banding
and alignment of the individual fibrils. The banding corresponds to the structure of the protein
components of the myofibril, namely, the thick and thin filaments.

The thick filaments are around 11 nanometers in diameter, while the thin filaments are around
5 nm in diameter.

The arrangement of these filaments is shown in Figure 11.5a, where it is seen that in the cross-
section they are interdigitated in a hexagonal array, while along the axis they lie in a recurring
pattern of overlapping and non overlapping regions. When viewed lengthwise, the banding effect
arises from the relative amounts of transmitted light permitted by the thick and thin filaments.

In Figure 11.6 we show both the structural organization of the thin and thick filaments and
the associated banding that would be observed in the LM. The two main bands are the dark A
band and the lighter I band. The bands alternate regularly along the myofibril. In the middle of
the I band is the Z line (dark line), while the middle of the A band has a lighter region, the H zone.
The H zone is bisected by a darker M line surrounded by a lighter region, the L zone (not always
seen). The repeating unit (Z–Z distance) is the sarcomere.

These characteristic bands of different light intensity derive from the underlying thin and
thick filament structure, the major elements of which can be recognized in Figure 11.6.

The dark A band arises from the overlapping thin and thick filaments, while the lighter H
zone reflects the presence of thick filaments alone.

The M line and L zone derive from the structural details of the thick filament at its center,
the M line from crosslinks at the center.
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Figure 11.5. Axial and Cross-Sectional View of a Portion of the Array of Thin and Thick
Filaments that constitutes a single fibril. The cross-section at (a) registers the presence of
both thin and thick filaments, while that at (b) thick filaments only, and at (c) thin filaments
only. From Aidley DJ. 1978. The physiology of excitable cells. Cambridge: Cambridge
UP. Reprinted with the permission of Cambridge University Press.

The L zone is due to the absence of projections on either side of the thick filament (to be
described later); the L zone is around 0.15 μm in width.

The Z line reflects the interconnection of the I filaments from the region to its left and its
right.

The above letters are derived from the German and reflect certain properties of their
designated regions. They are A = anisotropic (polarizes light), I = isotropic, Z = zwis-
chenscheibe, H = Henrens disc, and M = mittlemembrane

The thick filament is made up of myosin, a complex protein. Trypsin splits it into light
meromyosin (LMM) and heavy meromyosin (HMM). The latter has a short tail and two globular
heads; it has an ATPase behavior (i.e., it hydrolyzes ATP into ADP + P with the release of large
amounts of energy). The light meromyosin is rod-like and does not split ATP.

The thin filament is actin, which is also a protein. There are two forms, but neither has
ATPase behavior. (The important ATPase activity is actually confined only to the globular sub
fragments.) The LMM and the tail of the HMM are composed of two α-helices that coil around
each other. When combined in a solution, the actin and myosin form a complex called actomyosin
(a quite viscous material). A description of the myosin structure is given in Figure 11.7.

Glycerol-extracted fibers are prepared by soaking muscle fibers in 50% glycerol for several
weeks, a process that removes most sarcoplasmic material except for the contractile elements.
The fibers are found to be in rigor (they are stiff and resist contraction, a result of the formation
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Figure 11.6. Myofibrillar Structure and Associated Pattern Seen in a Light Microscope.
The banding nomenclature is given. The observed pattern of light intensity in (a) can be
explained by the underlying structure shown in (b). From Keynes RD, Aidley J. 1981.
Nerve and muscle. Cambridge University Press. (a) is based on a photograph by Dr. HE
Huxley. Reprinted with the permission of Cambridge University Press.

Figure 11.7. Different Components of the Myosin Molecule. Proteolytic enzymes cleave
the molecule into heavy meromyosin (HMM) and light meromyosin (LMM). The HMM
comprises a short segment of the α-helical rod (S2) and the two globular heads (S1), to
which the light chains are attached. The globular heads form the cross-bridges. Reprinted
by permission from McComas AJ. 1996. Skeletal muscle, Champaign, IL: Human Kinetics.
Based on Vibert P, Cohen C. 1988. Domains, motions, and regulation in the myosin head.
J Muscle Res Cell Motility 9:296–305, and Rayment I, et al. 1993. Structure of the actin–
myosin complex and its implications for muscle contraction. Science 261:58–65.

of cross-bridges between the actin and myosin). If ATP and magnesium are added, the fibers
become readily extensible due to the breakage of crosslinks by the ATP. If Ca++ is also added,
then contraction takes place.

In the transverse plane, the relative positions of the thin and thick filaments in a region of
overlap is as illustrated in Figure 11.8. One notes that each thick filament is surrounded by six
thin filaments, while each thin filament is surrounded by three thick ones. Hence, there are twice
as many thin as thick filaments.
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Figure 11.8. Transverse Plane View of the Thin and Thick Filament Structure in an axial
plane in which they overlap (see Figure 11.6).

In the ultrastructural studies of the myosin (thick) filament, one finds the occurrence of
projection pairs at a regular interval of 14.3 nm; however, successive pairs are found to be rotated
by 120◦. Consequently, when established, cross-bridges are then 14.3 nm apart, while an identical
repetition occurs every 43 nm. An illustration of this is given in Figure 11.9a.

One can derive the thick filament structure from an aggregation of myosin molecules, as
illustrated in Figure 11.10. Each projection is identified as a globular head pair of the myosin
molecule. Note the necessarily projection-free region in the center, which is the explanation for
the observed L zone. Note also the reversed orientation of molecules on either side of the center.

11.3. SLIDING FILAMENT THEORY

The idea that muscular contraction is a consequence of the contraction of protein units
patterned after that of a helical spring had to be abandoned when measurements revealed that the
A band does not change length during contraction or lengthening.

In fact, in frog muscle, as the sarcomere length is varied from 2.2 to 3.8 μm, the I filaments
remain essentially at 2.05 μm in length and the A filaments at around 1.6 μm. (The Z line is
≈ 0.05 μm wide, and each side of the I filament has a length of 1.0 μm, to account for the total
of 2.05 μm.)

As a consequence of the above, the sliding-filament model was advanced. According to this
idea, contraction involves the relative movement of the thin and thick filaments, as illustrated
in Figure 11.11, where contraction yields a reduced sarcomere length while the filaments are
unchanged in length.
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Figure 11.9. Models of the Structure of the Thick and Thin Filaments: (a) myosin; (b) F-
actin; (c) thin filament. In (a) the two globular heads of myosin, which split ATP, are shown
(a more detailed view is given in Figure 11.11). From Keynes RD, Aidley DJ. 1981. Nerve
and muscle. Cambridge: Cambridge UP. Reprinted with the permission of Cambridge
University Press. Based on Offer G. 1978. The molecular basis of muscular contraction.
In Companion to biochemistry, Ed AT Bull et al. London: Longman; Huxley HE, Brown
W. 1967. The low angle x-ray diagram of vertebrate striated muscle and its behavior during
contraction and rigor. J Mol Biol 30:383–434; and Huxley HE. 1972. Molecular basis
of contraction in cross-striated muscles. In Structure and function of muscle, 2nd ed., pp.
301–387. Ed GH Bourne. New York: Academic Press.

Figure 11.10. Huxley’s Suggestion as to How Myosin Molecules Aggregate to Form a
Thick Filament. See also Figure 11.2 for details of myosin structure. From Huxley HE.
1971. The structural basis of molecular contraction. Proc R Soc 178:131–149. Redrawn
in Aidley DJ. 1978. The physiology of excitable cells. Cambridge: Cambridge UP.

The sliding itself is thought to be produced by reactions between the projections on the
myosin filaments and active sites on the thin filament. Each projection first attaches itself to
the actin filament to form a cross-bridge, then pulls on it, causing the sliding of the actin, then
releases it, and finally moves to attach to another site which is further along the thin filament.

The sliding filament theory is generally (though not universally) accepted. Accordingly, one
expects isometric tension to depend on the degree of overlap in the thin and thick filaments. This
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Figure 11.11. This figure illustrates the sliding-filament model: (a) the muscle is elongated;
(b) the muscle is contracted. In each case the lengths of the thick and thin filaments are
unchanged.

Figure 11.12. Isometric Tension of a Frog Muscle Fiber, measured as a percentage of
its maximum value at different sarcomere lengths. The numbers 1–6 refer to the myofil-
ament positions illustrated in Figure 11.13. Note that the general shape is anticipated in
Figure 11.13. From Gordon AM, Huxley AF, Julian FJ. 1966. The variation in isometric
tension with sarcomere length in vertebrate muscle fibers. J Physiol 184:170–192. Re-
drawn by Aidley DJ. 1978. The physiology of excitable cells. Cambridge: Cambridge
UP.

result is supported by the study illustrated in Figures 11.12 and 11.13 and can be understood in
the following discussion.

Stage 1 (in Figures 11.12 and 11.13) refers to full extension of the myofibril. Using the
dimensions given above for the thin and thick filament lengths, the sarcomere length is 2.05 +
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Figure 11.13. Myofilament Arrangements at Different Lengths. The numbers are the
positions corresponding to the curve given in Figure 11.12. a = thick filament length (1.6
μm); b = thin filament length including z line (2.05 μm); c = thick filament region base
of projections (0.15 μm); and z = z line width (0.05 μm). From Gordon AM, Huxley
AF, Julian FJ. 1966. The variation in isometric tension with sarcomere length in vertebrate
muscle fibers. J Physiol 184:170–192. Redrawn in Aidley DJ. 1978. The physiology of
excitable cells. Cambridge: Cambridge UP.

1.60 = 3.65 μm, which is the sum of the length of the thin plus thick filament. There can be no
cross-bridges and the observed zero tension is explained on this account.

As the myofibril shortens so that the sarcomere diminishes from 3.6 to 2.2–2.25 μm (stage 2),
the number of cross-bridges increases linearly with decreasing length. Therefore, the isometric
tension should show a similar increase. In fact, such an increase in tension with decreased length
is seen in Figure 11.12. This linear behavior ends at stage 2, when the Z–Z distance equals 2.05
μm plus the L zone width (≈ 0.15 μm), or 2.20 μm.

With further shortening, the number of cross-bridges remains unchanged and a plateau in
tension is both expected and observed. Stage 3 is reached when the thin filaments touch. The
sarcomere equals the length of the thin filament, namely, 2.05 μm at this point.

From stage 3 to stage 4 one anticipates some internal resistance to shortening to develop,
since actin filaments now overlap.

Beyond stage 4 this overlap not only constitutes a “frictional” impediment, but it also in-
terferes with cross-bridge formation. When stage 5 (1.65 μm) is reached, the myosin filaments
hit the Z line and a further increase in resistance is associated with the deformation that results
beyond this point.
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Figure 11.14. Interaction of Actin and Myosin on a Molecular Level. From Huxley HE.
1975. The structural basis for contraction and regulation in skeletal muscle. In Molecular
basis of motility. Ed LMG Heilmeyer et al. Berlin: Springer.

The curve in Figure 11.12 shows a break point at stage 5 and a rapid decrease in tension with
further shortening. Zero tension is reached at a sarcomere length of 1.3 μm, which designates
stage 6.

The actin structure is described in Figure 11.9b,c and in Figure 11.14 as a double helix
involving chains of monomers. The thin filament is made up of actin, troponin, and tropomyosin,
as shown in Figure 11.9c. The thick filament is shown in Figure 11.14 as containing an S2
filament subunit and the S1 (globular head) subunits. The S1 subunits can rotate about their point
of attachment with S2. Together, S1 and S2 make up the heavy meromyosin (HMM) portion
of the myosin molecule; the remainder of the molecule is filamentary and constitutes the light
meromyosin (LMM) (see Figure 11.7).

Sliding is accomplished by the rotation of S1 about S2, as noted earlier. In the upper portion
of Figure 11.14, the left-hand cross-bridge has just attached while the S1 subunit of the right-hand
one has nearly completed its rotation. The lower diagram, which illustrates conditions a moment
later, shows the S1 subunit on the left-hand cross-bridge having rotated to cause the actin filament
to slide leftward; the right-hand cross-bridge is now separated.



BIOELECTRICITY: A QUANTITATIVE APPROACH 353

There are two S1 cross-bridges for each myosin molecule, and each cross-bridge is relatively
independent of the other, though each behaves as described here.

The biochemical events associated with these mechanical events can be described according
to the following sequence:

1. Myosin is released from a cross-bridge with actin. This results from the action of ATP
with which the myosin combines. That is,

AM + ATP→ A + M ·ATP

where A ≡ actin and M ≡ myosin).

2. ATP is split into ADP + P, while the myosin (S2) repositions for reattachment with the
thin filament. The products remain attached to the myosin, which now has a high affinity
for actin.

3. Myosin cross-bridges attach to a new actin monomer.

4. This results in products being released and the energy so derived utilized as the power
stroke (rotation of S2 and linear movement of actin). At this point, return to step 1.

While actin will react with pure myosin so as to split ATP in the absence of calcium ions,
when tropomyosin and troponin are also present, calcium ions are required. In the case of muscle,
the tropomyosin and troponin are, in fact, always present and appear to exert a regulatory (control)
role.

11.4. EXCITATION–CONTRACTION

The details of the process, starting with propagation of an action potential along a muscle
fiber and ending with contraction of the target muscle, can now be examined. The possibility that
the influx of calcium ions, associated with the membrane depolarization, is the primary initiator
of the contractile mechanism has to be discarded since only about a 0.2 picomole Ca++/cm2

influx is observed (frog sartorius). This amount corresponds to an increase in internal calcium
ion concentration of only 0.08 μmole (assuming a fiber diameter of 50 μm).

To better understand contemporary ideas, one must include the presence of the sarcoplasmic
reticulum (SR) and the transverse tubular system (TTS). The T-system lies transverse to the fiber
axis and consists of tubules that are open to the extracellular space and form a meshwork shaped
somewhat as the spokes of a wheel (described in Figure 11.2).

The TTSs are located at the Z lines of frog muscle and the A–I boundary in most other
striated muscle. The SR is in close proximity to the T-system but extends in the axial direction,
mainly. It constitutes a network of vesicular elements surrounding the myofibrils. It is not directly
connected to the TTS and is otherwise isolated from extracellular space.

Excitation propagating along the surface membrane of the muscle fiber passes the outside
opening of each of the many T-tubules. It is believed that this excitation can propagate inward,
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that the membranes defining the T-tubules are excitable in the usual way. The inward speed of
conduction has, in fact, been measured and is about 7 cm/sec (in a fiber 100 μm in diameter a
latency of 0.7 msec from outside to inside would consequently be observed).

The SR, while not continuous with the TTS, in places, is in close proximity via a structure
called “feet.” The SR sequesters Ca++ (which is pumped into the SR vesicles by an ATP-driven
calcium pump). This sequestration can reduce the calcium ion concentration in the muscle to a
point below that necessary for contraction (i.e., it results in the relaxation of the muscle).

Then activation results from the action potential propagating throughout the TTS, which in
turn results in a movement of ions to open the calcium channels in the SR membrane. This results
in a release of Ca++ from the SR into the myoplasm. The consequent contractile process then
arises as described earlier.

We assumed in the above that in the presence of tropomyosin and troponin Ca++ is required
for ATP to be split. The tropomyosin and troponin appear, in fact, to be a structural component of
the thin filament, as described in Figure 11.9c. The tropomyosin in the resting muscle is positioned
to prevent the myosin heads combining with the actin monomers, but it can be moved out of the
way by a conformational change in the troponin complex when calcium binds to troponin C.

11.5. NOTES

1. The interested reader can find further information in [1, 2, 3]. These works were the primary sources for the material
of this chapter.

2. A continuum of fiber types actually exists and this classification describes those at each end of this “spectrum.” Other
classification schemes have been proposed, but this choice identifies the basic differences that are found.
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12
FUNCTIONAL ELECTRICAL STIMULATION

12.1. INTRODUCTION

If a motor nerve is stimulated from an external electrode, the resulting action potential will
propagate to the innervated muscle and a twitch will be produced. The muscle responds to the
artificially initiated nerve signal just as it would a naturally occurring signal.1

For patients with, for example, spinal cord injury, signals originating in the brain may be un-
able to reach the desired motoneuron because of a transected cord. In this case, the affected muscle
is paralyzed although it may otherwise be healthy and capable of excitation and contraction. In
this situation an artificial signal initiated in the nerve will evoke a response. Devising strategies
for the stimulation of motoneurons or the muscle itself to effect desired muscle contraction is the
goal of functional neuromuscular stimulation (FNS), and the subject of this chapter.

This topic was selected for two reasons. First, it presents real human needs calling for
solutions in which biomedical engineering can play an important role. Second, it represents an
interesting and challenging application of much of the material presented in this text.

12.2. ELECTRODE CONSIDERATIONS

A key element in functional electrical stimulation (FES) is the initiation of an action potential
on a desired nerve, while at the same time refraining from stimulating other nerves nearby. To
work toward this goal requires consideration of the effect of electrode(s) size, shape, and location,
and the strength and waveform of the stimulating current. Of course, one also needs to know
the nerve geometry, its electrical properties, and that of the volume conductor. In addition to
depolarizing currents, hyperpolarizing signals must also be considered when the goal is to block
unwanted traffic or for prepolarizing purposes.

When a stimulating current is applied at or within a volume conductor, a solenoidal (closed
loop) current field is established. Within the wires carrying current to the electrodes and including
the electrodes themselves, current is in the form of a metal conduction current and the carrier is the

355
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Figure 12.1. Idealized Cross-Sectional View of the Metal–Tissue Interface of an Electrode
(cathode) under very low (zero) current conditions. From AM Dymond. 1976. Charac-
teristics of the metal–tissue interface of stimulation electrodes. IEEE Trans Biomed Eng
23:274–280. Reprinted with permission, copyright c©1976, IEEE.

(conduction) electron. Within the tissue, current is carried by ions, primarily sodium, potassium,
and chloride.

At the electrode tissue interface an electrochemical reaction is necessary that, in part, ex-
changes metal electrons for ions in solution. An important consideration is that the reaction not
produce products that are toxic to the tissue or have deleterious effects on the electrode itself.

12.2.1. Electrode–Tissue Interface

As illustrated in Figure 12.1, at the metal–electrolyte interface the battery (generator) is the
source of a net charge in the metal phase which is positive (at the anode) and negative (at the
cathode). In the electrolyte, an opposite charge develops that is separated from the electrode
itself by a molecular layer of water that is adsorbed on the metal surface. The charged layer in
the metal and the electrolyte constitutes a (charged) capacitance; the charges are held together by
electrostatic forces.

The magnitude of the layer’s capacitance depends inversely on the separation of the charged
surfaces, as is known from fundamentals of electricity. Since in this case the thickness is molec-
ular, the capacitance is remarkably high. An estimate may be found as follows.

Our model is highly idealized, but an order-of-magnitude estimate of capacitance can be
obtained by regarding the separation of capacitor “plates” to be the diameter of a water molecule
(0.35 nm) and assigning a relative permittivity, κ = 6, to the adsorbed water. This permits an
estimate of capacitance per unit area, C, as described in Chapter 2, and given by
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C =
ε0κ

d

=
6× 8.84× 10−6

3.5× 10−10

= 15.2× 104μF/m2

= 15.2μF/m2 (12.1)

where ε0 = 108/(36π) = 8.84 × 106 μF/m2. A capacitance of C = 10 to 20 μF/cm2 is seen
experimentally, but this close agreement with the above estimate is only fortuitous and not a
confirmation of the model.

The capacitance evaluated by (12.1) appears to be constant, but it is not found to be so in
practice. The reason is that κ and d depend on electrolyte concentration, electrode material,
electric potential, etc. This dependence can be recognized because, while the electronic charge
must reside at the electrode surface, the electrolyte charges need not (and will not) lie on a surface.

At low electrolyte concentration with a low density of charge carriers, a substantial thickness
of solution may be necessary to accumulate the required charge. (The charge density will be
greatest adjacent to the electrode where the electrostatic forces are greatest, while further away
the relative effect of thermal forces increases.)

The consequence is to introduce additional factors affecting the effective capacitance. A sim-
ple, but not completely correct, picture is given by two capacitors in series, the Guoy–Chapman–
Stem (GCS) model. One capacitor, CH , reflects a compact charge layer close to the electrode,
while the second, CD, reflects the diffuse charge layer; CH is relatively independent of potential,
while CD behaves in a complex way with potential [2].

The equivalent circuit describing an electrode lying in an electrolyte and a reference electrode
in the same medium consists of the aforementioned capacitance, a series resistance representing
the resistance of the electrolyte, and a resistance in parallel with the capacitance that reflects
electrode electrolyte charge movement, beyond that associated with charge–discharge of the
capacitance. This non-capacitive charge flow results from both reversible and nonreversible
electrochemical Faradic reactions [4].

A sketch of the electrode arrangement is given in Figure 12.2a, and the equivalent circuit is
shown in Figure 12.2b. In the latter, it is assumed that the reference electrode will ordinarily be
physically large; since its current density will therefore be very small, its contribution to the total
measured voltage (relative to the remaining factors) will be negligible and can be neglected.2

The membrane capacitance has, in effect, a point of voltage breakdown. Within this bound
the electrode behaves capacitively, which implies linearity and reversibility. Outside this range
the parallel resistance pathway of Figure 12.2b becomes effective.

The involvement of the parallel resistance signifies the occurrence of electrochemical pro-
cesses. Such electrochemical processes can be a problem if irreversible. A necessary condition
for reversibility is that reaction products remain at the electrode, hence available for a reverse
reaction.



358 CH. 12: FUNCTIONAL ELECTRICAL STIMULATION

Figure 12.2. (a) Apparatus used in biomedical studies of electrode impedance where
current I(t) and total electrode voltage V ′E(t) are monitored. (b) Equivalent circuit for
the system in (a). Rs is the solution resistance, C is the double-layer capacitance, and Z
is the Faradaic impedance (the latter consisting of charge-transfer resistance, diffusional
impedance, and reaction impedance). From Dymond AM. 1976. Characteristics of the
metal–tissue interface of stimulation electrodes. IEEE Trans Biomed Eng 23:274–280,
copyright c©1976, IEEE.

Irreversibility is assured if reaction products are able to diffuse away. The negative implica-
tions will be discussed presently.

When a stimulating current is introduced into a region containing nervous tissue, the passage
of the current through the membranes of the nerve fibers results in a transmembrane potential
(which may be depolarizing or hyperpolarizing). For subthreshold conditions, where the nerve
membrane is linear, the tissue can be described with a linear electrical network.

Under these conditions the induced transmembrane potential will be proportional to the
stimulating current amplitude. Usually, the applied current is maintained at a constant value, in
which case the induced (transient) transmembrane potential will depend on the RC character of
the nerve membrane.

The response to a current pulse is an RC transient at the electrode–tissue interface. This
transient is depicted in Figure 12.3. Both the constant current pulse and the electrode voltages
are shown. (Figure 12.2 gives related nomenclature.) In Figure 12.3, V0 is the voltage across the
electrolyte (IRs), while VE is the voltage building up across the capacitance. At the termination
of the current pulse IRs = V0 is instantly ended, and the remaining voltage (VE) leaks off slowly.
The charging time constant is quite short compared to that under discharge.
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Figure 12.3. Voltage Waveform Observed between Test Electrode and Reference Electrode
in response to the constant current pulse shown. Vo is the voltage across the electrolyte
path (IRs), while VE is that across the electrode–electrolyte capacitive interface. From
Mortimer JT. 1981. Motor prostheses. In Handbook of physiology, Section I: The nervous
system, Vol. II, Motor control, Part I, pp. 155–187. Bethesda, MD: American Physiological
Society.

12.2.2. Electrode Operating Characteristics

Reversible–irreversible electrode analysis placed within a graphical framework was used
to analyze electrode performance, in a plan developed by Mortimer [1]. A modified version is
illustrated in Figure l2.4.

In Figure 12.4 the relationship between VE and Q/A is described as linear in the central
region, where the slope could be interpreted as the effective electrode capacitance (per unit area).
The width of this region depends on the electrode material, its surface treatment, and on the
electrolyte. In this region metal electrons pile up on the electrode considered as one plate of a
capacitor.

While this capacitance is large, the maximum charge remains in the linear region and proves
to be inadequate to achieve tissue activation. Exceeding this limit drives the operation beyond
points I or II, or both, and hence introduces Faradaic conditions, i.e., electrochemical reactions.
Increasing anodic potential drives the electrode state beyond point I in Figure 12.4 and causes
electrochemical reactions of the kind that may result in electrode damage.

As an illustration, for the type of reaction (shown for a stainless steel electrode)

Fe→ Fe++ + 2e− (12.2)

the result is the dissolution of the iron, and the process is irreversible. For cathodic potentials
driven beyond II (in Figure 12.4) the reactions may be of the form

2H2O + 2e− → H2 ↑ OH− (12.3)

This reaction also is irreversible. The resulting increase in pH can result in tissue damage
(though some buffering can take place).

On the other hand, for a platinum electrode, the anodic reaction may be

Pt + H2O→ PtO + 2H+ + 2e− (12.4)
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Figure 12.4. Idealized Representation of Relationship between Electrode Potential VE
and Charge Density (charge per unit of real electrode area, Q/A). Charge injection in the
central region involves processes that are capacitive and therefore completely reversible.
Charge injection in regions to right of point I or left of point II involve electrochemical
reactions. These are reversible if, by driving current in the opposite direction, no new
species are introduced. Irreversibility involves diffusion of new chemical species away
from the electrode. Modified from Mortimer JT. 1981. Motor prostheses. In Handbook
of physiology, Section I: The nervous system, Vol. II, Motor control, Part I, pp. 155–187.
Bethesda, MD: American Physiological Society.

the result being the replacement of a platinum molecule by platinum oxide. No new chemical
species results in the bulk medium (in this case, PtO remains bound to the electrode).

The lack of a new chemical species characterizes a reversible process. Reversibility is
demonstrated by a reversal of the reaction in (12.4), which is achieved by passing current in the
opposite direction. An example of a reversible cathodic reaction (with a platinum electrode) is

Pt + H+ + e− → Pt−H (12.5)

known as H-atom plating [25]. Here, again, no new chemical species is introduced into the bulk
solution.

For monophasic stimulation, we normally have a continual buildup of charge at the electrode
interface since this charge leaks away very slowly during typical inter-pulse intervals. For anodic
pulses, the buildup of charge reaches point I (in Figure 12.4), from which point further pulses
cause chemical reactions associated with the loss of the additional charge.

The operating point then centers at point I, so that any and all positive excursions result
in chemical reactions (which may be irreversible). An equivalent consequence of monophasic
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Figure 12.5. Balanced-Charge Biphasic Stimulation. (a) Stimulus waveform with zero net
charge transfer per cycle [“period”>> (Dp+τ+Ds)]. (b)Variation in electrode potential,
for conditions where charge is accommodated entirely within capacitive region. I and D
refer to current pulse amplitude and pulse duration. Subscripts P and S refer to primary
and secondary stimulus pulses, respectively. Parameter τ is the time delay between the end
of the primary pulse and the beginning of the secondary pulse. Balanced charge requires
that IPDP = ISDS . Points 1–7 in (a) correspond to points in (b). From Mortimer JT.
1981. Motor prostheses. In Handbook of physiology, Section I: The nervous system, Vol.
II, Motor control, Part I, pp. 155–187. Bethesda, MD: American Physiological Society.

cathodic pulses takes place, driving the operating point to II. This results no matter how small the
injected charge is. Consequently, monophasic stimulation is rarely used.

The monophasic accumulation of charge can be avoided by using biphasic stimulation. In
the ideal case, the charge density introduced in each phase is less than the reversible limit and
the total process is then reversible and repetitive. (This condition is termed balanced-charge
biphasic.)

The primary pulse is the initial one, and the effects of charge introduction are countered by
the following secondary pulse. No imbalance can be tolerated, since it would be cumulative in
time and lead to a drift toward I or II in Figure 12.4. Imbalance can be avoided by applying
current to the electrodes through a series input capacitance, which ensures a balanced charge. A
single balanced cycle is illustrated in Figure 12.5.

If incomplete balance does not exist, or if the primary and secondary pulses are frankly
unequal, then the operating point will drift toward I or II, as noted above.
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Figure 12.6. Behavior When Qp = −5 Units and Qs = 4. Owing to charge imbalance
I, cathodic unit is lost beyond II.

Steady-state operation then involves some irreversible behavior. Suppose, for example, that
Qp = −5 units and Qs = 4 units.

In this case the steady-state operating point moves to a position 4 units to the right of II (see
Figure 12.6). We can check this by noting that Qp enters the region of chemical reaction where
1 unit ofQ/A is irreversibly lost per cycle (say, driving 2H2O + 2e− → H2 + OH−). WhenQs
is applied, a reversible change occurs moving the state of the process 4 units ofQ/A to the right
of II (to the initial, operating point). The cycle repeats indefinitely.

This process may be tolerated, since buffering of OH− by the blood is possible, within limits.
The advantage is that, to this extent, one can use a larger stimulus.

12.3. OPERATING OUTSIDE REVERSIBLE REGION

Whether the goal of operating within the reversible region can be achieved depends on
whether this allows a high enough current density to stimulate the desired nerve fibers. Normally,
operating within this limit is not possible. Several actions that can be taken when this condition
is not satisfied including the following.

12.3.1. Imbalanced Biphasic Stimulation

Some irreversible cathodic behavior can be tolerated because of buffering by the blood of
the OH− products of the electrochemical processes. Thus, some increase in the stimulus into
the irreversible region may be acceptable. Note that a comparable anodic irreversibility is never
tolerated, since the result is irreparable electrode damage.

12.3.2. Expanding Capacitive Region

An expansion of the capacitive region can be achieved (to some extent) by adding dielectric
to the electrode or by roughening its surface. The latter effect increases its surface area, while
keeping its geometric area unchanged. (The ratio of real to geometric area is the roughness factor.)
Anodized sintered tantalum has a roughness factor of 10–100, as does tantalum pentoxide.
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Current from a rough surface will not have a microscopic uniform density, as surfaces near
the bottom of valleys contribute relatively little current. That is, the roughness factor may greatly
exaggerate the ratio of reversible total current under rough to smooth conditions [11].

By covering the electrode with a high dielectric (insulating) film, one can ensure the absence
of oxidation–reduction reactions at the interface (in effect, the capacitance may be increased by a
factor of 5–10). Eventually, with increasing current, dielectric breakdown is reached and, unlike
the breakdown of the aforementioned water layer, dielectric breakdown will be irreversible. Thus,
operation is strictly limited by the capacitive region. A discussion of the capacitive electrode is
given by Guyton and Hambrecht [10].

Animal studies show that there are additional factors that contribute to neural damage. Dam-
age is observed even though a stimulus is capacitively coupled and charge is balanced. Such
neural damage appears to arise from sustained hyperactivity of the axons. In general, these ad-
ditional effects come from the passage of currents through the tissue rather than from actions at
the electrode–electrolyte interface [1].

12.4. ELECTRODE MATERIALS

In choosing the material for an electrode, factors of importance include the following:

1. Passive compatibility of the material with tissue.

2. Extent of reversible behavior (capacitative region and region of reversible electrochemical
reactions).

3. Mechanical compatibility with the tissue.

The materials most in use are platinum, platinum-iridium, and 316 stainless steel (SUS 316L).
These materials have a history of satisfactory behavior. The charge storage capacity of platinum
is stated to be 2.1 μC/mm2 generally, but for applications in the cerebral cortex a lower limit
of 0.3 μC/mm2 is recommended. For 316 stainless steel, 0.4–0.8 μC/mm2 (geometrical area)
appears to be the limit.

Mechanical compatibility is important, and stabilization of the implant is highly desired,
based on tissue growth. This can be enhanced by use of porous electrodes, where the tissue
can more readily grow into it. It is desired to have good stabilization, but also not too thick
an encapsulation since this increases the voltage necessary to achieve the same current. The
electrode shape also is important; helical wires help convert the forces of bending into torsion,
which is much more easily tolerated, and with a greatly improved life.

In the following subsections we list particular applications and the electrode type often
chosen. In each case, special requirements may suggest an electrode type other than that listed.
Additional discussion of electrode types is given later in the chapter.
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12.4.1. Brain (Surface Electrodes)

(a) Passive Implants. Surface electrodes can be placed on the brain with a minimum resulting
trauma. The end result is encapsulation with a greater thickness on the superficial side (≈ 400
μm) than on the side in contact with the brain (thickness of around 160 μm).

(b) Active Implants. Mainly platinum is used. Based on blood–brain barrier breakdown
studies, only the lowest values of balanced charge biphasic stimulation tested (with an upper
limit of 0.3 μc/mm2) were found safe. Ta–Ta2O5 electrodes have a roughness factor of 100 and
were found safe at 0.934 μc/mm2 (geometric area).

If the difference in material is ignored in the above comparison, one notes that the high
roughness factor of 100 stands in marked contrast to the improvement by a factor of only 3
in use of the roughened electrode. The explanation is probably, as mentioned earlier, that the
(rough) surface current density is nonuniform close to the electrode surface. Since portions of the
roughened area carry little current, then while they add to the true area (increasing the roughness
factor) they do not significantly add to the effective capacity of the electrode [11].

12.4.2. Nerve (Cuff Electrode)

Cuff electrodes are insulating hollow cylinders with embedded (internal) circular electrodes.
The cuff is placed around the nerve to be stimulated. This particular configuration essentially
confines the stimulating current to the target nerve alone, and there is no extraneous excitation.
Furthermore, the concentration of current flow minimizes the total current required for stimulation
(hence, it reduces the electrode current density).

Transmembrane (stimulating) current is maximally enhanced in the nerve by a closely fitting
cuff; however, this is poorly tolerated by the nerve trunk and mechanical trauma dictates a loose-
fitting cuff.

12.4.3. Muscle (Coiled Wire Electrode)

Since the current required to stimulate the motor nerve is very much lower than that required
for direct simulation of the muscle, one may choose to stimulate either the peripheral nerve or
the nerve in the vicinity of the neuromuscular junction. The latter site avoids possible injury
to the peripheral nerve and also permits a higher degree of selectivity, since the nerve fibers
are arborized within the muscle. Because intramuscular electrodes are subject to considerable
bending and flexing, they are most satisfactory when made of stainless steel helical coils. A
specific practical design is one in which insulated wire (except for the tip) is wound on a ≈ 100
μm-diameter mandril and introduced into the muscle with a hypodermic needle. The electrode
tip is formed into a barb, so that when the needle is removed the electrode remains in place.

(a) Passive Implants. These become encapsulated, usually with only a mild foreign-body
response. For a 200-μm-diameter coil formed from 45-μm-diameter 316 stainless steel,
a capsule thickness of from 50 to 300 μm develops.

(b) Active Implants. Active implants must be subdivided as follows:

(1) Monophasic: Some irreversible cathodic processes are tolerated if charge injection
is sufficiently low (≤ 0.2 μC/mm2 per pulse at a stimulation rate of 50 Hz). The afore-
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mentioned implies that an average hydroxy lion generation rate of 10 μA/mm2 could be
buffered by the blood.

(2) Balanced-charge biphasic: A density of 0.1–2.0 μC/mm2 for stimulus current should
be satisfactory for minimizing electrode corrosion, under balanced charge conditions.
However, beyond a primary pulse charge density≥ 0.4μC/mm2 some degree of electrode
corrosion may be seen.

(3) Imbalanced biphasic: Because of blood buffering one can operate with a 0.6 μC/mm2

primary, cathodic, pulse followed by an anodic, secondary, pulse of 0.4 μC/mm2. The
imbalance permits an incremental stimulus intensity of 50%. At 50 Hz and for a typical
coiled wire electrode with an area of 10 mm2, the above conditions can be achieved with a
current of 20 ma for 300 μsec (primary pulse) and 20 ma for 200 μsec (secondary pulse).
A motor axon within 1–2 cm of a point-source electrode should be easily stimulated under
these conditions. The net cathodic imbalance is 0.2 μC/mm2, and for 50 Hz and an area
of 10 mm2 we evaluate

0.2× 10−6 × 10× 50 = 100μC/sec (12.6)

or 10 μA/mm2, and this is believed to represent the maximum that is tolerable.

12.5. NERVE EXCITATION

To evaluate the capabilities of an electrode system to stimulate a nerve, we must consider
the geometry of both the electrical conductivities of the medium in which the nerve fibers and
electrode(s) lie and the nonlinear behavior of the excitable membranes. Most systems have
been evaluated experimentally. Only very simple configurations have been modeled and studied
through simulation.

For the stimulation of a single myelinated nerve fiber by a pair of electrodes that directly
contact the nerve, once can use the linear core-conductor model (Chapter 6) as the basis for a
model, as shown in Figure 12.7. In the internodal region the transmembrane admittance, being
very low because of the myelin sheath, can to a good approximation be set equal to zero. The
model consequently admits transmembrane current only at the nodes, and this is reflected in the
detailed structure of Figure 12.7.

For subthreshold conditions, Zm (membrane impedance) is composed of a parallel Rm and
Cm, but near and beyond threshold a Hodgkin–Huxley type circuit is required. For the node
of Ranvier, a modification of the Hodgkin–Huxley network, due to Frankenhaeuser and Huxley
(FH) [5], is frequently used. In the model of Figure 12.7, excitation occurs under the cathode if
the stimulating current is large enough.

The strength–duration curve [see Eq. (7.7)] can be found experimentally or approximated
from the equation for the threshold current, Ith(t). As symbolized here, it is given by (7.8):

Ith =
IR

(1− e−Kt) (12.7)

where IR is the rheobase current (that current magnitude that will cause the transmembrane
potential to reach the excitation threshold at infinite time). K can be regarded as an experimentally
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Figure 12.7. Linear Core-Conductor Model of a Myelinated Fiber. Since transmembrane
current is assumed to flow only at the nodes, the axial resistances (R0, Ri) are finite (and
not infinitesimal) and represent the axial resistances in the internode. The Figure depicts
the condition where subthreshold stimulating current is introduced at two separated nodes.

determined constant that depends on the membrane as well as the electrode/nerve geometry,
conductivities, etc.

This relationship was discussed in Chapter 7, along with its approximate nature (it neglects
accommodation) and recognition that the nodal membrane elements form a network, etc. Reilly
[23] evaluated τm = 1/K = 92.3 μsec compared to RmCm = 66 μsec. The τm was the
least-squares error between (12.7) and the measured strength–duration curve.

One can also obtain a measured τm from the ratioQmin/Imin = (IR/K)/IR ·T [an expres-
sion obtained from (12.7) giving this result for small t). Time constant τm was determined to be
92 μsec. The desirability of minimizing charge injection associated with a stimulating pulse has
been discussed in terms of minimizing adverse electrode and/or tissue reactions.

So in the present context, Eq. (12.7) can be examined with minimum charge injection as a
goal. The total charge per pulse, Qth, can be found from (12.7) as

Qth = Itht =
IRt

(1− e−Kt) (12.8)

where t is the pulse duration. If this is very long (t→∞), then

Qth = IRt (12.9)

For very short pulse durations t→ 0, e−Kt → 1−Kt, so

Qth =
IR
K

= Qmin (12.10)

Since the minimum current, Imin, is the rheobase current IR, thenQmin/Imin = 1/K = τm. The
conclusion that minimum charge,Qmin, equals IR/K can be confirmed by evaluating dQth/dt,
and showing that it goes to zero when t → 0 (so Qth = IR/K is, in fact, the minimum charge
that results in excitation).
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In general, for a pulse duration t and the corresponding current amplitude that just excites,
we have from (12.8) and (12.10)

Qth

Qmin
=

Kt

1− e−Kt (12.11)

which gives a measure of the charge injection in excess of the minimum when t ≥ 0.

When Ith = IR, the current is rheobase. The minimum time for excitation when Ith = 2IR
is called the chronaxie, tc. From Eq. (12.7), we can evaluate tc since

1− e−Ktc =
1
2

(12.12)

The solution of Eq. (12.12) for tc is

tc =
ln 2
K

(12.13)

For t = tc, Eq. (12.11) gives

Qth

Qmin
|t=tc =

Ktc
1− e−Ktc = 2 ln 2 = 1.39 (12.14)

or a 39% excess charge.

Substitution of (12.13) into (12.11) yields a more general result:

Qth

Qmin
=

ln(2)(t/tc)
1− 2−(t/tc)

(12.15)

A plot of Eq. (12.15) is given in Figure 12.8. Note that the percent excess charge increases
rapidly beyond t = tc. The use of narrow pulses appears highly desirable, based on this criterion.
For the McNeal model, discussed in the next section, and based on the Reilly simulation [23],
the chronaxie is (ln 2)τm = 0.693× 92 = 64 μsec.

An integrated overall system for measurement and stimulation, including both electrodes and
amplifiers, is described by Pancrazio et al. [21].

12.5.1. Secondary Pulse Considerations

The injected primary current pulse is designed to achieve nerve excitation. It is followed
by a secondary pulse solely to achieve reversibility. Since it is desirable to design the primary
pulse so that it results in excitation with relatively little excess charge, the immediate injection
of a secondary pulse, which is necessarily hyperpolarizing, can interfere with the initiation of an
action potential.

The waveform of an action potential resulting from a stimulus where the strength duration
is just beyond threshold has the configuration shown in Figure 12.9, and shows an initial dip. If
the secondary pulse is applied during this dip, then the action potential may be extinguished. To
avoid this problem, either the stimulus strength of the primary pulse must be increased or a delay
must be introduced between primary and secondary pulses.
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Figure 12.8. Charge Injected to Reach Membrane Threshold in Excess of Theoretical
Minimum as a Function of Pulse Duration. Pulse duration (t) has been normalized to the
chronaxie value (tc). See Eq. (12.5), where percent excess charge is a function of (t/tc)
and is equal to [0.693(t/tc)/(1− 2−t/tc )− 1]100%.

The former option is disadvantageous, since it results in an increase in the injected charge. In
this example, a 100-μsec delay resulted in only a 10% reduction in the monophasic force arising
from the (compound) action potential. Note that for the two shortest delays shown in Figure 12.9
the action potential is extinguished. There is no penalty for inserting a delay, since even with a
value of 100 μsec the electrochemical remedy afforded by the secondary pulse (i.e., reversibility)
does not significantly reduce the activation.

12.5.2. Excitation of Myelinated Nerve

The excitation of a single myelinated nerve fiber from a point current source has been ex-
amined through the use of models of a type introduced by McNeal [18]. The model assumes
that transmembrane current flows between the intracellular and extracellular medium only at the
nodes.3

Furthermore, since conditions are sought where the most proximal node will just fire, the
more distal nodes will consequently be subthreshold and can be approximated by a passive RC
network.4

This model is shown in Figure 12.10. The nodal model just beneath the stimulating electrode,
since it will be followed to the point of threshold, is that of Frankenhaeuser and Huxley.

The applied potential field at the extracellular nodes/sites is approximated by that which
exists in the absence of the fiber, based on the argument that the fiber is of small size and of
relatively high resistance.5
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Figure 12.9. TransmembraneVoltage Response of Myelinated Nerve to Short Pulse Stimuli.
Shown is the effect of an increasing delay between primary and secondary pulses. Vertical
calibration bar is 20 mV, and the horizontal bar is 50 μsec. Reprinted with permission from
van den Honert C, Mortimer JT. 1979. The response of the myelinated nerve fiber to short
duration biphasic stimulating currents. Ann Biomed Eng 7:117–125, copyright c©1979,
Biomedical Engineering Society.

Figure 12.10. Model to Study Response of Myelinated Nerve Fiber to a Point-Source
Stimulus. Source is 1, 2, or 5 mm from nerve [18]. The central node is described by
Frankenhaeuser–Huxley equations, while lateral nodes are assumed to remain subthreshold
and to be adequately described by RC elements. Based on McNeal D. 1978. Analysis
of model for excitation of myelinated nerve. IEEE Trans Biomed Eng BME-23:329–377.
Copyright c©1978, IEEE.
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If the current at the point electrode is I0, then the potential field, from (2.21), is simply

Φe =
I0

4πσr
(12.16)

The continuity of current at the node n (the central node) gives

Φi,n−1 − Φi,n
ri

+
Φi,n+1 − Φi,n

ri
− Cn dVn

dt
−
∑

Ii = 0 (12.17)

Rearranging, we have

dVn
dt

=
1
Cn

[
1
ri

(Φi,n−1 − 2Φi,n + Φi,n+1)− 1
ri

(Φe,n−1 − 2Φe,n + Φe,n+1)
]

−ΣIi
Cn

(12.18)

which is similar to (6.50). Using the model of Figure 12.10, McNeal [18] studied the effect of
electrodeposition, through its effect on Eq. (12.16), and fiber diameter, through its affect on ri
in Figure 12.10. The fiber diameter also indirectly affects the structure of the myelinated fiber,
since the internodal spacing in micrometers is assumed equal to 100D, where D is the diameter
in micrometers.

Some results of this simulation are given here in Figures 12.11 and 12.12. In Figure 12.11 the
effect of source–nerve separation on the minimum diameter that can be stimulated successfully
is described. We note that for a stimulating current strength of 5 mA and for a 1-mm electrode–
nerve spacing, fibers whose diameter exceed 1.5 μm will be excited. For a 2-mm electrode–nerve
spacing, fibers whose diameters are in excess of 5 μm will have action potentials elicited. Finally,
only fibers whose diameters exceed 18 μm can be excited when the point source is moved to a
distance of 5 mm from the nerve fiber.

In Figure 12.12 we reproduce the curves for stimulus current threshold versus diameter of
fiber for different pulse widths, as found from the McNeal model [18]. One notes again that
for an increase in diameter there is an increase in excitability. But for long-duration pulses the
variation in threshold with diameter is small. If the goal is to control the degree of recruitment
through variation in pulse width, then short-duration current pulses give greater controllability.

We have already explained that muscle excitation is accomplished through excitation of its
motor neuron rather than directly. Figure 12.13 gives strength–duration curves that are typical of
nerve and muscle, and these demonstrate the greater excitability of the nerve. For pulse durations
of 100 μsec, for example, the current required for direct muscle stimulation is around 20 times
greater than that for stimulation of the associated motoneuron.

12.5.3. Nerve Trunk Anatomy

The anatomy of a peripheral nerve trunk is described in Figure 12.14. Such trunks contain
both efferent fibers (signals to muscle and other organs) and afferent fibers (incoming sensory
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Figure 12.11. Effect of Increasing Separation between Electrode and Axon on Stimulus
Threshold to Fiber Diameter Relationship. The stimulus pulse width is fixed at 100 μS.
Calculated by Mortimer [19] from the model by McNeal [18]. From Mortimer JT. 1981.
Motor prostheses. In Handbook of physiology, Section I: The nervous system, Vol. II,
Motor control, Part I, pp. 155–187. Bethesda, MD: American Physiological Society.

Figure 12.12. Stimulus Threshold as a Function of Nerve Diameter for Several Values of
Stimulus Pulse Width. Stimulus–fiber distance is 2 mm. Calculated by Mortimer [19] using
the model of McNeal [18]. From Mortimer JT. 1981. Motor prostheses. In Handbook of
physiology, Section I: The nervous system, Vol. II, Motor control, Part I, pp. 155–187.
Bethesda, MD: American Physiological Society.
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Figure 12.13. Strength–Duration Relationship for Nerve Excitation (indirect muscle exci-
tation) and Direct Muscle Excitation. During these experiments, evoked muscle response
was held constant at small fraction of total possible muscle force. The stimulus was deliv-
ered through an intramuscular electrode before and after administration of curare. (Data are
representative of those collected from laboratory experiments and are, in principle, identical
to the type of curves classically presented for innervated and denervated muscle.) From
Mortimer JT. 1981. Motor prostheses. In Handbook of physiology, Section I: The nervous
system, Vol. II, Motor control, Part I, pp. 155–187. Bethesda, MD: American Physiological
Society.

and other signals). In Figure 12.14a the many fascicles are shown, each of which is bounded by a
multi-laminated perineurium and all of which lie in loose connective tissue, the epineurium (epi).

The outer layers constitute the epineural sheath. Figures 12.14b,c show individual nerve
fibers, with the former being unmyelinated and the latter myelinated nerve. The Schwann cells
(Schw), the myelin sheath (my), the axon (ax), and node of Ranvier (nR) are also labeled.

The nerve composition of individual fascicles is not constant, but continually changes in the
course from spinal cord to muscle and other end organs. This change is necessary since, at the
periphery, where fascicles exit to innervate specific muscles, its nerves must contain all innervating
fibers. On the other hand, at the spinal roots a multi-segmental arrangement of fascicles must be
accommodated [16].

12.6. STIMULATING ELECTRODE TYPES

Peripheral stimulation of muscle by means of intramuscular or epimysial electrodes has the
advantage of a high degree of selectivity, because the electrodes lie at or near the target muscle
whose activation is desired. While described as muscle electrodes, in fact it is not the muscle but
rather the peripheral nerve which is excited.
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Figure 12.14. Microanatomy of Peripheral Nerve Trunk and Its Components. (a) Fascicles
surrounded by a multi-laminated perineurium (p) are embedded in a loose connective tissue,
the epineuium (epi). The outer layer of the epineurium is condensed into a sheath. (b) and
(c) illustrate the appearance of myelinated and unmyelinated fibers, respectively. Schw,
Schwann cell; my, myelin sheath; ax, axon; nR, node of Ranvier. From Lundborg G. 1988.
Nerve injury and repair. London: Churchill-Livingston, by permission of the publisher.

Such electrodes have important disadvantages, however. The intramuscular electrodes are
subject to mechanical forces that may result in electrode (wire) breakage. Both intramuscular and
epimysial electrodes have varying geometrical relationships to the muscle, and the muscle’s size
and shape is continually changing during activity. As a result, the motor units that are stimulated
will vary with time giving rise to what is called length-dependent recruitment. In view of their
negative features, nerve electrodes are generally preferred. On the other hand, the electrode
position makes it unlikely that they will cause neural damage.

In the following sections we consider several neural electrode types. Brief comments on
their advantages and disadvantages of each type are included [20].

12.6.1. Cuff

This consists of circular wire electrodes embedded in the inner wall of an insulating hollow
cylinder. The cuff electrode is placed in the tissue with the nerve trunk along the axis. They are
relatively easy to implant and provide excellent confinement of the stimulating field. The result is
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a low stimulus current requirement and good isolation from surrounding excitable tissue. It also
uniquely permits generating a hyperpolarizing block, as part of achieving a natural recruitment
order, among all other electrode configurations. Their possible disadvantage is their bulk. Some
additional details on the cuff follow later in the chapter.

12.6.2. Epineural

These are flat electrodes backed by insulating material that can be sutured to the epineurium.
Compared to the cuff, they will not compress the nerve trunk and may provide greater flexibility
in activating more than one fascicle by choice of the number of electrodes and their parameters.

12.6.3. Intraneural

The electrode consists of fine wires with uninsulated tips. The implant procedure is delicate;
however, specific motor units may be chosen, giving rise to flexibility in muscle contraction. In
addition to the implantation of an electrode array, electrode wires can be inserted percutaneously.
While eliminating the need for a surgical procedure, such wires are more susceptible to breakage
and infection.

12.7. ANALYSIS OF ELECTRODE PERFORMANCE

In the following subsections we consider several topics that provide more depth in analyzing
the performance of several types of electrodes.

12.7.1. Cuff Electrodes

Cuff electrodes are efficient configurations for nerve stimulation, since excitatory current is
concentrated within a confined region surrounding the nerve whose excitation is desired. The
arrangement, furthermore, reduces the likelihood of unwanted excitation of other nerves in the
vicinity. While near the spinal cord, nerve bundles (motoneurons) contain fibers with different
targets, and stimulation results in a diffuse response.

Near the periphery, nerve bundle fascicles tend to be selective to specific muscles and parts
of muscles. At this point it may be difficult to discriminate among them with surface electrodes,
but with a multiple cuff, a multi-groove electrode [13], or a multiple contact electrode [9], one
can obtain selective stimulation of individual fascicles. The major disadvantage in the use of the
cuff or cuff-type electrode is that a surgical procedure is required for their installation.

The bipolar configuration is illustrated in Figure 12.15 and gives rise to two basic current
pathways, namely, internal and external. For sites 1 and 4, these currents add to the desired hyper-
polarization and depolarization achieved mainly by the internal component of current described
in Figure 12.15.

The depolarization at 2 and hyperpolarization at 3 are anomalous, however. The region at
2 is described as a virtual cathode (i.e., depolarization occurs in the region as if an overlying
cathode were present).

The region at 3 is, conversely, described as a virtual anode. These above-mentioned apparent
cathode and anode, under the right conditions, can excite and/or block and hence become factors
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Figure 12.15. External paths 1 and 2 illustrate current that flows from anode to cathode
around the outside of the cuff. Components will also enter the nerve and result in a virtual
cathode and anode. External path 3 describes current from anode to cathode within the cuff
but which does not enter the nerve; it will be greater for cuffs that fit loosely. The internal
current illustrates the component lying within the cuff that links with the nerve; this is the
desired depolarizing or hyperpolarizing pathway.

Figure 12.16. Ladder Network Model of the System, Including Current Pathways External
to Electrode Cuff. A quantitative analysis of nerve response to current stimulation can be
obtained from this approximating model (which lumps the internal and external paths into
the two shown).

in the performance of the cuff electrode. These virtual sites are enhanced in importance when
the bipolar electrode separation is large compared with the distances from each electrode to the
nearest end of the cuff (conditions that enhance the external relative to the internal path).

The separation of the applied current into two parts is also described in Figure 12.16, which
shows a path that first enters the intracellular space, flows distally, and then emerges flowing
around the outside of the cuff; its path then continues as a mirror image. This single path is an
illustration of the multiple current paths for the external currents in Figure 12.15.

An external path that flows within the cuff but does not link the membrane, shown in
Figure 12.15, is not shown in Figure 12.16. It is noteworthy only in that it increases the total
current supplied by each electrode and hence moves the operating point toward the irreversible
region.
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Figure 12.17. Transmembrane Current Distribution for Axon in a Cuff-Type Electrode.
Outward current results in local depolarization of axon. The rectangular region represents
the insulator portion of the electrode with axon located along the horizontal axis of the graph.
Nodes of Ranvier are located at dot marks along the horizontal axis. Node separation in the
model is 2.5 mm. The anode is located at the point indicated byA, and for the closely spaced
case the cathode is located at point C1, a distance of 2.5 mm. The cathode is located at C2
for the 20-mm separation case. The solid line is the transmembrane current distribution for
case C1. The dashed line is the current distribution for case C2. Adapted from Karkar M.
1975. Nerve excitation with a cuff electrode—a model. MS thesis, Case Western Reserve
University, Cleveland, OH. Also Mortimer JT. 1981. Motor prostheses. In Handbook of
physiology, Section I: The nervous system, Vol. II, Motor control, Part I, pp. 155–187.
Bethesda, MD: American Physiological Society.

Figure 12.16 can be analyzed quantitatively to find regions of depolarization and hyperpo-
larization and their magnitudes as a function of current stimulus and cuff geometry. This analysis
can be undertaken for both active and passive nodal membrane models. The aforementioned adds
to the desired internal pathway, shown.

A quantitative analysis of the transmembrane current based on a steady-state linear core-
conductor model was performed using the model described in Figure 12.16 for closely and
widely spaced electrodes within a fixed cuff [12]. The result is illustrated in Figure 12.17, which
describes the transmembrane current under large and small spacings. Near the anode, A, the
current behaves as it would for a monopolar electrode, when the cathode is at C2 (wide spacing
and dotted curve). We note an influx of current near A while an outflow occurs lateral to A.

The outflow near the real cathode C2 results in cathodal depolarization. However, note that
depolarization is also exhibited to the left of A, and this marks the presence of a virtual cathode.
Usually, the virtual cathode is weaker than the real cathode, as it is here (though the difference is
not great). For the wide-spaced cathode C2 the depolarization under the virtual cathode is much
greater than for the narrow-spaced C1; these considerations suggest a preference for C1.
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Figure 12.18. Steady-State Model of Myelinated Nerve Fiber in a Cuff Electrode. Applied
potential is V0 and 9 nodes lie between electrodes. An (anti)-symmetrical solution is
assumed from the symmetrical structure and (anti)-symmetrical excitation. (Two nodes are
missing on the left.)

A plan for analysis of the response of the myelinated fiber, shown in Figure 12.18, under
subthreshold or even near-threshold conditions will recognize the following elements:

The electrodes are assumed to lie at nodes that are separated here by nine internodal
spaces. The network continues for three nodes beyond the electrodes, which represents
the distance from each node to its respective end of the cuff.

The external resistance (per unit length) is RE ; its value is that expected from a uniform
field in the extracellular space within the cuff.

The intracellular resistance (per unit length) isRI , while R is the transmembrane resistance
per node.

The extracellular pathway is introduced by assuming the leftmost and rightmost extra-
cellular node to be connected together [both sites should be set at the (same) reference,
zero, potential].

The behavior of the network in Figure 12.18 can be described by writing a series of loop
and nodal equations.

The McNeal approach, wherein a myelinated fiber is placed in an applied field evaluated
in the absence of the fiber, is embodied in Figure 12.18.

Note that the elements above still neglect the membrane capacitance. Consequently, analysis
based on those factors alone does not allow one to explore the transient response. Thus one cannot
develop strength–duration relationships.

The network can be further simplified by the model given in Figure 12.19. This model
neglects the external path and hence cannot examine the virtual anode and cathode. However, it
can generate order-of-magnitude figures for the steady-state depolarization and hyperpolarization
of cathode and anode, respectively.

For a surface electrode designed to excite a nerve oriented at right angles to the surface, such
as illustrated in Figure 12.20, the induced transmembrane potential is as shown in Figure 12.21.
This result is for a surface anode relative to a remote reference electrode. These results may
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Figure 12.19. Nerve Network Model Approximation to the cuff electrode model described
in Figure 12.17.

Figure 12.20. Current Path for a Surface Electrode (anode) relative to a remote reference,
in the vicinity of a neuron oriented normal to the surface.

seem a bit surprising until the current pathways themselves are examined and the transmembrane
potential produced by them is evaluated.

For example, the anodal extracellular current flow, as shown in Figure 12.20, is radially
outward from the surface electrode. So far as the nerve cell is concerned, some of this current
will enter the neuron in the region of the cell body (proximal end) and leave in the more distal
region. Consequently, a hyperpolarization arises near the surface and depolarization in the distal
region.
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Figure 12.21. Transmembrane Potential Along Nerve Cell (with geometry as described in
Figure 12.20). Stimulating electrode is located at zero, and indifferent electrode is located
a great distance to the right Note that the change in transmembrane potential reverses sign
at distance r to the right of the stimulating electrode. Adapted from Marks WB. 1977.
Polarization changes of stimulated cortical neurons caused by electrical stimulation at the
cortical surface. In Functional electrical stimulation. Ed JB Reswick, FT Hambrecht. New
York: Marcel Dekker. Described in Mortimer JT. 1981. Motor prostheses. In Handbook
of physiology, Section I: The nervous system, Vol. II, Motor control, Part I, pp. 155–187.
Bethesda, MD: American Physiological Society.

Marks [17] shows that the changeover from hyperpolarization to depolarization occurs at a
fixed distance r (see Figure 12.21). Since distal elements of a neuron are more excitable than
proximal ones, anodal stimulation may give a lower threshold than cathodal stimulation (observe
the latter by reversing the sign in Figure 12.21), a seemingly anomalous result.

12.7.2. Recruitment

We review below the two basic muscle fiber types introduced in the previous chapter.

1. FG. Fast-twitch glycolytic fibers are characterized by metabolism being mainly glycolytic
rather than oxidative and by a very-short-duration twitch. With repeated stimulation they fatigue
rapidly and then recover slowly. The force produced has a high peak value (1.5–2.0 kg/cm2).
The fusion frequency is ≈ 40 Hz. Innervated by large-diameter nerve fibers, the FG fiber is also
of large diameter.

2. SO. The slow oxidative fiber has a high capacity for oxidative and low capacity for
glycolytic metabolism and has a twitch contraction that is relatively long in duration. Its cross-
section is the smallest, and it is innervated by the smallest-diameter nerve fibers. Upon repetitive
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Figure 12.22. Approximate Cuff–Electrode Network for evaluating the induced (stimulat-
ing) transmembrane potential of a typical myelinated fiber.

stimulation, these fibers fatigue relatively slowly and recover rapidly. The peak force developed
by fibers of this type is relatively low (0.6–2.0 kg/cm2). The fusion frequency is ≈ 10 Hz.

In mixed muscle, motor units producing the greatest force are innervated by axons of large
diameter and motor units producing the smallest force are innervated by axons of small diameter.
Under natural conditions small motor units are recruited before the large motor units. Thus the
natural recruitment order begins with the small-diameter SO units, and ends with recruitment of
the large-diameter and concomitant large force provided by the FG motor units.

We consider in contrast, below, the behavior of the three main electrode configurations for
functional neuromuscular stimulation.

12.7.3. Nerve Cuff Electrode

Since the field between the bipolar electrodes within the cuff is approximately uniform, we
can imagine each fiber subject to the same driving potential (VE) as illustrated in Figure 12.22.
If D is the intracellular diameter and ρi the specific intracellular resistance, then the intracellular
axial resistance per unit length, obtained from the formula for resistance of a uniform circular
cylinder, is

Ri =
4ρi
πD2 Ω/cm (12.19)

The nodal transmembrane resistance (assuming that the specific resistance is a property of
the membrane and independent of fiber diameter) is

RN =
rm
πDl

Ω/node (12.20)

where rm is the membrane leakage resistance (Ω cm2) and l is the node width.

From the circuit in Figure 12.22 we obtain the transmembrane potential to be, roughly,

Vm =
(

RN
2RN + LRi

)
Vpeak (12.21)
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where the peak value of Ve, the applied voltage, is the designated Vpeak, and where L is the
electrode spacing.

If LRi >> RN , then

Vm ≈
(
Vpeakrm

4lρiL

)
D (12.22)

For the cuff electrode, the largest-diameter fibers will experience the largest induced voltage and
therefore be excited most easily. Thus, at low stimulus levels only FG units will be activated and
the whole muscle behavior will be dominated by FG properties. And even at higher stimulus
levels, if the FG population is relatively large, it will tend to dominate the overall performance.

12.7.4. Surface Electrode

The stimulating current density from a surface electrode decreases with increasing distance
(roughly as 1/R due to the radial flow pattern noted earlier). Consequently, superficial fibers
tend to be excited first. These turn out to be the FG fibers, and they will be excited ahead of the
deeper, more fatigue-resistant fibers. An analytic consideration for fibers of varying diameters
with a fixed electrode fiber distance follows.

We first note that the transmembrane potential induced in an unmyelinated fiber by an external
point source consists of both depolarized and hyperpolarized regions. These regions are identified
in Figure 12.23. In this Figure we note a large depolarization beneath the cathode (electrode) from
current leaving the fiber’s intracellular space, while laterally there is hyperpolarization resulting
from the current necessarily entering the intracellular space (the anode being located remotely).

Using the McNeal model, Reilly [24] demonstrated that (peak depolarization)/(peak hyper-
polarization) is 4.2–5.6. For increasing stimulus current, an excitation threshold is reached at the
position of peak depolarization. But for a yet further increase in stimulus, a point is eventually
reached where lateral propagation is blocked by the large hyperpolarization, and the system no
longer responds functionally to the stimulating field.

This possibility of block is described in Figure 12.24, where, for example, with an electrode–
fiber distance of 0.75- and 9.6-μm-diameter fibers, a current threshold of 0.65 mA is seen. How-
ever, if the current exceeds 1.4 mA, a lateral propagating action potential will be blocked and
hence, functionally, no excitation will be available. The shaded region in Figure 12.24 describes
the fixed (finite) region of excitation.

For a point source–fiber distance of h = 0.75 mm and a stimulus strength 4.0 mA > |I0| >
2.5 mA, the 9.6 μm-diameter fibers will be stimulated while the larger 38.4-μm fiber will be
stimulated and blocked.

The larger-diameter fiber is first stimulated at I0 ≥ 0.3 mA, while the smaller fibers require
I0 ≥ 0.65 mA. This comparison suggests the threshold stimulus is proportional to 1/

√
D. In fact,

the relationship can be demonstrated more generally as follows. If the more accurate expression

Im =
a

2ρi
∂2Φi
∂x2

replaces (6.29), then (6.31) becomes, where the intracellular resistivity is here designated by ρi:
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Figure 12.23. Induced Transmembrane Potential with a Point-Source Electrode for (B)
anodal and (C) cathodal stimulation. The depolarized regions are shaded. (A) describes
the applied field over the surface of the axon with anodal stimulation (the field would
have the opposite sign for cathodal stimulation). The electrode position is shown in (D).
The border between hyperpolarizing and depolarizing regions of 70.5◦ is independent of
fiber parameters or extracellular conductivity. The reader can generate this Figure using
(7.86). From Rattay F. 1987. Ways to approximate current–distance relations for electrically
stimulated fibers. J Theor Biol 125:339–349.

∂Vm
∂t

=
1
Cm

(
a

2ρi
∂2Vm
∂x2 +

a

2ρi
∂2Φe
∂x2 − Ii

)
(12.23)

A scale transformation (with new variables designated by a superscript asterisk) is

x =
√
ax∗, h =

√
ah∗, I0 =

√
aI∗0 , Φ∗e =

I∗0
4πσ
√
h∗2 + x∗2

(12.24)

which converts (12.23) into

∂V ∗m
∂t

=
1
Cm

(
1

2ρi
∂2V ∗m
∂x∗2

+
1

2ρi
∂2Φ∗e
∂x∗2

− I∗i
)

(12.25)

This demonstrates that a curve, such as that given in Figure 12.24, can be treated as a
“universal curve” with regard to fiber diameter. It can be interpreted for another fiber diameter
by applying the scale transformation given in (12.24), whereby spatial scaling goes as

√
a and
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Figure 12.24. Stimulation with a Monopolar Electrode arises for points lying in the shaded
areas. The inner scales are for a fiber diameter of 9.6 μm, while the outer are for a diameter
of 38.4μm. For a stimulus of –4.0 mA and d = 9.6μm [line (a)], the lower and upper limit
of the electrode–fiber distance, while still achieving excitation, is roughly 0.75–1.6 mm.
For the same stimulus with d = 38.4 μm [line (b)] the interval is roughly 0.9–2.5 mm,
and hence more distant fibers are reached. Line (c), for a fixed distance, shows the upper
and lower stimulus current magnitude for excitation. Computation was conducted with the
Hodgkin–Huxley membrane model, T = 27◦C, ρe = 300 Ω cm, and a square pulse of 100
msec duration was chosen. From Rattay F. 1987. Ways to approximate current–distance
relations for electrically stimulated fibers, J Theor Biol 125:339–349.

stimulus current as
√
a. In fact, this scaling is evident in the comparison between the 9.6- and

38.4-μm fibers, where the scaling goes as
√

(4) = 2. While recruitment for this geometry goes
as the square root of the radius (and not the radius itself), it is still opposite to the natural order.

12.7.5. Intramuscular Electrode

The intramuscular electrode lies deep within a muscle. The current density arising from
stimulation decreases with distance from the electrode (by roughly 1/distance), so that for each
set of nerve fibers of given diameter a spherical region can be defined within which these fibers
will be at or above threshold and outside of which excitation will not occur. Activation of all
corresponding muscle fiber types (FG and SO) can be described in this way.
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Note that the spherical region has a larger radius for the FG fibers because their motor neurons
have the largest diameters. Thus more of these fibers will be recruited, and the overall behavior
will tend to reflect their properties.

The outcome in each case discussed above is to reverse the natural order or fiber-type recruit-
ment. That is, for low levels of stimulus it is the FG motor units, generally desired for heavy tasks
and which fatigue rapidly, that are stimulated. As a consequence, delicate tasks, which normally
require low-torque and fatigue-resistant SO fibers, will fail to be recruited at low stimulus levels.
If recruited units are inappropriate for patient use, then use of FNS will probably be unsuccessful.

12.7.6. Recruitment Regimen

For FNS, recruitment can be effected by amplitude modulation or by pulse width modulation.
The preference is for the latter, because it tends to operate independently of electrode–muscle
separation and because it results in minimum injection of charge. The muscle force developed
for increasing amounts of charge injection is irregular, since it reflects recruitment of different
families of fibers at increasingly high levels, and the distribution of these fibers is nonuniform.

One of the major problems in FNS is that of muscle fatigue, particularly arising from the
early recruitment of FG fibers. Improved performance can be achieved by a method known as
sequential activation or the roundabout technique, which involves implanting several electrodes
into separate regions of the muscle.

If, say, the fusion frequency is ff , and if there are n electrodes stimulating n separate portions
of the muscle, a fused contraction of the whole muscle will result if each electrode is stimulated
at ff/n and a phase shift of 360◦/n is introduced between electrodes. The result is a fused force,
yet each fiber group, since it is stimulated below its own fusion frequency, has a much improved
fatigue resistance. Overlap of regions needs to be carefully avoided, since such a region will
fatigue more quickly (being, in effect, stimulated at a higher rate).

A graded contraction can be obtained with either amplitude or frequency modulation. The
range of operation with this can be from the lowest level to the point where overlap exceeds an
acceptable limit.

The presence of any significant overlap means that the overall performance is limited by a
fraction of the muscle being excited at a higher rate efficiency is increased by frankly exciting
the entire muscle at this higher rate. One possible regimen adapted is that shown in Figure 12.25.
The lowest force is brought about by pulse width modulation. The “switch point” is at the point
of significant overlap, where further increase in force is obtained by an increase in stimulus
frequency.

A more desirable approach to recruitment is based on mimicking the natural order. In one
method, two stimulating electrodes are placed within a cuff. The proximal stimulus is very strong
and excites all fibers within the nerve (or muscle). The second electrode is hyperpolarizing and
hence will first block propagation on the large-diameter FG fibers, allowing propagation of the
small SO fibers. For increasing hyperpolarization, propagation continues but only on decreasing-
diameter fibers. In this way a normal recruitment order is achieved [14].
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Figure 12.25. Force Characteristics of Muscle Controlled by Pulse-Width Modulation and
Pulse-Rate Modulation. Numbers shown in brackets indicate pulse width, in μsec, for each
of three electrodes in that particular force level [19]. Since the fusion frequency is 18 Hz,
the minimum stimulus frequency for this three-electrode arrangement is one-third of 18,
or 6. At the switch point, overlap has reached a level where a further increase in force is
achieved by an increase in frequency.

The hyperpolarizing pulse waveform must be designed with a ramp structure at the pulse
termination to avoid anode-break excitation, a so-called “quasi-trapezoidal” pulse [6]. In the
stimulation of mixed nerve diameters in a nerve bundle, since small-fiber internodal spacing is
less than for large-diameter fibers, the closest node to a stimulating electrode is then more likely
from fibers of small diameter, where the stimulating field strength is greater. This factor works
to improve the likelihood of stimulation of the SO fibers before the FG.

12.8. CLINICAL APPLICATIONS

FNS is an important tool in restoring some degree of function in cases of spinal cord injury
(SCI), stroke, cerebral palsy, etc. It is a valuable technique that inserts artificial electrical stimuli
where natural signals from the brain have been blocked from reaching either intact motoneurons
or their target muscle. An increasing number of individuals have one or another prosthetic device
contributing a functional neuromuscular stimulation (FNS), thus demonstrating their effectiveness
and acceptance over ever increasing periods of time.

The value of FNS is depicted in Figure 12.26 (from David Gray). This Figure describes
performance levels for five important life activities and is given for individuals undergoing a
traumatic injury from the period just following the injury and the subsequent degree of recovery.
In each case an assistive device is shown to restore an otherwise unreachable independence, thus
demonstrating its importance.
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Figure 12.26. Potential Optimal Effects of Medical Rehabilitation and the use of assistive
technologies in improving the lives of people with disabilities. Pekham PH, Gray DB. 1996.
Functional neuromuscular stimulation (FNS). J Rehab Res Dev 33(2):ix–xi.

An examination of the clinical details is beyond the scope of this book. For the reader wishing
to pursue this topic, the sources in the References section should be helpful.6

12.9. FRANKENHAEUSER–HUXLEY MEMBRANE

In a fashion similar in form to the Hodgkin and Huxley membrane model, the Frankenhaeuser–
Huxley membrane model is described by a set of mathematical equations that is partly basis on
analysis of the structure, and partly a mathematical embodiment of experimental results. The
Frankenhaeuser–Huxley (FH) equations [5] have been used preferentially to describe the nodal
currents in myelinated nerve. The FH model makes use of GHK current expressions such as
(5.91), which were presented in Chapter 5. In the F–H model the total membrane current in-
cludes potassium (IK), sodium (INa), nonspecific delayed (Ip), and leakage current components
(IL). Thus total membrane current is given by

Im = IK + INa + Ip + IL (12.26)

The equations that describe the potassium behavior suffice to illustrate this model.7 As used in
the FH model, the GHK current equation (5.91)with potassium valence zK = +1 gives

IK = PK
V 2
mF

2

RT

[K]o − [K]ieVmF/RT

1− eVmF/RT (12.27)

The potassium permeability is evaluated from its maximum value, P̄K, and gating variable
n as

PK = P̄Kn
2 (12.28)
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Figure 12.27. I–V Curve for the Potassium Channel as described by the GHK Current
Equation. Parameter values are given in (12.32).

where n satisfies (5.14), namely,

dn

dt
= αn(1− n)− βn (12.29)

The rate constants are, in turn, evaluated (empirically) from

αn = 0.02(vm − 35)
(

1− e 35−vm
10

)−1
(12.30)

and

βn = 0.05(10− vm)
(

1− e vm−10
10

)−1
(12.31)

In the above equations, as elsewhere in the text, Vm = Φi − Φe, and vm = Vm − Vrest.

An open-channel “instantaneous” current–voltage curve from (12.27) is useful to describe
its departure from linearity. We take n = 1 (so that the macroscopic equations describe the single
open channel) and use values for a nodal membrane from Frankenhaeuser and Huxley [16] (also
summarized in Schoepfle et al. [l2]), namely,

[K]o = 2.5 mM, [K]i = 120 mM, T = 295.18 K,

Vrest = −70 mV, P̄K = 1.2× 10−3 cm/sec (12.32)

for which Figure 12.27 results. Noteworthy is the rectification property of the GHK formulation.

12.10. FES OUTLOOK

The material in this chapter (and this text) has presented selected topics of established value
from a broad field of study. Research still is moving rapidly in gaining understanding and
developing bioelectric devices for recognized applications such as management of the cardiac
rhythm, limb movement, and bladder control.

Present research is rapidly pushing in new directions, such as deep brain stimulation, e.g.,
reports by Grill and coworkers [15,8]. This text has only touched the surface of this very deep
pool, partly known and with much still to be learned.
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12.11. NOTES

1. The material in this chapter was greatly influenced by [19].

2. The electrode/electrolyte behavior described here is quite idealized. In reality, it depends on many variables including
the electrode material, surface preparation, electrolyte temperature, current level, and frequency. Most effects are
nonlinear and the values of R and C in the above model depend nonlinearly on all the aforementioned.

3. This is a conventional assumption based on the high resistance of the myelin sheath (containing, as it does, the high-
resistivity lipid membrane as discussed in Chapter 5). It assumes, also, that all transmembrane ion channels lie in the
nodes. While potassium channels do not satisfy this assumption [16], the initiation of the action potential (i.e., via
stimulation) can be examined with membrane models that contain sodium and leakage channels only.

4. With the great increase in computer power since McNeal’s paper, this simplification should be viewed historically;
today, it would be simpler and more accurate to describe all nodal membranes with an active model.

5. This argument is not correct. It can be shown that the axial secondary sources arising from the axial transmembrane
potential gradient produce little effect on the extracellular field, but this is not true of transverse secondary sources.
For a uniform applied field, they contribute to a doubling of the field at the fiber surface (no matter how small the
fiber diameter). However, what is important here is the axial field variation, which is little affected.

6. In addition, two pertinent rehabilitation journals may be helpful: the Journal of Rehabilitation and Development and
IEEE Transactions on Neuroscience and Rehabilitation Engineering.

7. A complete description of the FH model is included in Johnson [3], Rattay and Aberham [22], and Frijns, Mooij,
and ten Kate [7]. There one finds FH model equations and reference values, somewhat updated from the original FH
publication [5], e.g., in the adjustments for temperature.
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13
EXERCISES

The following sections provide exercises for some of the material in each of the chapters in the
text.

13.1. EXERCISES, CHAPTER 1: VECTOR EXERCISES

1. Vector u has x, y, z components (3.9,6). Vector v has x, y, z components (5,3,2). What is the
magnitude (a) of u? and (b) of v?

2. Vector u has x, y, z components (1,5,7). Vector v has x, y, z components (5,1,1). What is the
dot product of these two vectors?

3. Vector u has x, y, z components (1,7,6). Vector v has x, y, z components (7,3,5). What is the
cosine of the angle between these two vectors?

4. In the following questions, A and B are the described vectors and ax, ay , and az are unit
vectors along the rectangular coordinate axes x, y, z.

A = 1ax + 2ay + 3az B = 4ax + 5ay

a. What is the dot product of A and B?

b. What is the magnitude of A?

391
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c. What is the angle between A and B?

d. What is the area of the triangle formed by A,B, and a line connecting their endpoints
(assuming each begins at the origin)? (Use the cross product.)

5. Consider the following two vectors:

A = 4ax + 2ay − 2az, B = 2ax − 5ay − az

a. What is the dot product of the vectors?

b. Are the two vectors are orthogonal (perpendicular)?

6. A five-sided prism has its corners at (0,0,0), (2,0,0), (0,2,0), (0,2,3), (0,0,3), and (2,0,3).

a. Make a vector for each edge of the prism.

b. Use the cross product to find the vector area of the triangle formed by the first two edges.
The magnitude of the vector will be the area of that face. Set the order of multiplication
so that the direction is that of the outward normal.

c. Do all five sides have the same area?

d. Is the total surface area (sum of sides) of the prism zero?

e. Is the total vector area (sum of sides) of the prism zero?

7. Throughout an unbounded region φ is given by φ = x4.

a. At x = 1, what is the x component of the gradient of φ?

b. the y component?
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8. Throughout an unbounded region φ is given by φ = x5.

a. At x = 1, what is the x component of the gradient of φ?

b. the y component?

9. Throughout an unbounded region φ is given by φ = x7. At x = 1, what is the Laplacian of φ?

10. The following questions require consideration of a function, φ(x), that is defined as follows:
For x ≤ −1, φ is −1. For −1 < x < 1, φ equals x3. For x ≥ 1, φ is 1.

a. Draw the graph of this function, with axes x and φ.

b. On a distinct axis below the graph, indicate the regions where ∇φ, the gradient of φ, is
zero, positive, or negative.

c. On another axis, indicate the regions where the divergence of the gradient (∇2φ) is zero
or nonzero.

11. In the following, consider the scalar field Ψ to be defined by Ψ = 1/r, where r is the distance
from the origin to an arbitrary (x, y, z).

a. Compute the gradient of Ψ. Since the gradient is a vector, it can be expressed in terms of
components of unit vectors ax, ay , and az .

b. In a sentence, describe the direction in which the gradient (∇Ψ) points. Is it toward
(x, y, z)? Perpendicular to r? Other?

12. Consider the scalar function Ψ = x2yz.

a. Find the gradient of the scalar function

b. Find the directional derivative of Ψ in the direction given by the following unit vector:
3/
√

50 ax + 4/
√

50 ay + 5/
√

50 az .
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c. Evaluate the derivative at the point (2,3,1).

13. Using the dot product, square both sides of the equationC = A+B. What is the relationship
between the result and the law of cosines?

14. For Φ = 2x3y2z4, find ∇2Φ for any x, y, z.

15. Define R as R =
√

(x− x′)2 + (y − y′)2 + (z − z′)2.

a. Is ∇(1/R) = ∇′(1/R)?

b. For any f(R), is ∇f(R) = −∇′f(R)?

16. Prove that ∇ · (Φ∇Ψ−Ψ∇Φ) = Φ∇2Ψ−Ψ∇2Φ.

17. Consider the vector function A, where

A = x2ax + (xy)2ay + 24x2y2z3az

a. Find the divergence of the function.

b. Evaluate the volume integral of ∇ · A throughout the volume of a unit cube centered at
the origin.

c. Evaluate the outflow of A over the surface of the unit cube.

d. Compare the results for the preceding parts. Does Gauss’s law hold for this function?
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18. Prove that ∫
V

Ψ∇ · F dV =
∫
s

ΨF · dS −
∫
V

F · ∇Ψ dV

This equation is the vector equivalent of integration by parts.

19. Green’s second identity relates two scalar fields, φ and ψ:∫
V

(ψ∇2φ− φ∇2ψ) dV =
∮
s

(ψ∇φ− φ∇ψ) · dS (1)

a. Derive the equation that results if φ = 1 (i.e., a constant) in (1).

b. What is the name of the equation that is the result of part (a)?

c. Derive the equation that results if one sets ψ = 1 in (1).

20. Does the following function satisfy Laplace’s equation, if h2 = �2 + k2?

φ = sin(kx) sin(�y) e−hz

21. Calculate the following surface integrals for a constant vector K. Surface S is an arbitrary
closed surface, and r is a vector arising from the volume within the surface.

a.
∮
K · dS.

b.
∮
r ·KdS.

22. A triangle’s corners are 3 points equally spaced on a unit circle. The circle lies in the (x, y)
plane at z = 0. The triangle’s vector points in the +z direction. With respect to a field point
at (0,0,-0.75), what is the solid angle of this triangle?

Use the centroid method to compute the solid angle. The centroid method is the name of
the approximate method that assumes that distance r is the same to all points in the triangle.
It is called the centroid method because the approximate r value usually is computed as the
distance from the field point to the center (centroid) of the triangle.
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23. A triangle’s corners are 3 points equally spaced on a unit circle. The circle lies in the (x, y)
plane at z = 0. The triangle’s vector points in the +z direction. With respect to a field point
at (0,0,-0.75), what is the solid angle of this triangle? Use the triangle method to compute
the solid angle.

Exercises 24–26 deal with the solid angle from a square formed in the xy plane. The surface
vector for the square points in the positive z direction. Corners of the square have (x, y, z)
coordinates of

• (1, 1, 0)

• (−1, 1, 0)

• (−1,−1, 0)

• (1,−1, 0)

24. The observer is located at field point (0, 0,−20). What is the solid angle of the square, as
seen by the observer?

25. The observer is located at field point (−20,−20,−20). What is the solid angle of the square,
as seen by the observer?

26. The observer is located at field point (0, 0, 4). What is the solid angle of the square, as seen
by the observer?
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13.2. EXERCISES, CHAPTER 2: SOURCES AND FIELDS

The following guidelines apply to all exercises unless otherwise specified. The conducting
medium is uniform, homogeneous, and of infinite extent. Conductivity σ = 0.01 S/cm. A
given potential, often designated Φ, extends throughout the medium. A set of three numbers in
parentheses, such as (3, 2, 1), comprise the (x, y, z) coordinates of a point of interest. For the
value of the permittivity of free space, use ε0 ≈ 10−9/36π Farads/meter.

1. The resistivity of a medium is 100 Ωcm.

a. What are the corresponding units for conductivity?

b. In these units, what is the value of the conductivity?

2. Potential φ = k/r exists throughout an infinite medium with uniform conductivity σ. In the
equation for φ, k (= 2 mV-cm) is a constant, and r (in cm) is the distance from the origin.
What is the current source density at (5,2,1)?

3. Point source Io = 12.57 mA is located at coordinates (0, 0, 0) cm. The surrounding medium
has a conductivity of 0.1 S/cm. An imaginary sphere centered on the source point is described
by the equation x2 + y2 + z2 = 1 cm2. What is the magnitude of the current density at any
point on the sphere? Give a numerical answer, and its units.

4. Throughout a uniform medium the potential in millivolts is given by

Φ = k(xy + z2)

If k is a constant with magnitude 1, and the conductivity σ in S/cm is 0.2, then

a. Give an expression, with units, for the density of current J ;

b. Determine the magnitude of J at x = 1, y = 2, and z = 3 cm.

5. Suppose potential φ in millivolts is given by the expression

φ = k(x3 − x2)
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where x is in cm and k = 1 mV-cm. Where in the medium does the net source equal zero?
(Give the x value.)

6. A point current source at (1, 0,−1) cm has a strength of 1 mA, with a conducting medium
that has resistivity 100 Ωcm.

a. What is the potential at point (3,2,2)? (Give units.)

b. What is the current density at this point? (Give units.)

7. A point current source with magnitude of 4π microamperes is located at the coordinate origin.
The resistivity is 50 Ωcm. What is the resulting potential at (5,5,0) cm?

8. A point current source Io is placed at (2,7,10) cm in a uniform homogeneous medium of
infinite extent. What is the relationship between the magnitudes of current density at point A
and point B, if A is located at (1,5,7) cm and B at (3,9,13) cm? (That is, is the current density
at A less than, equal to, or greater than that at B?)

9. Current density J μA/cm2 (microamperes/cm2) and two geometric vectors U and V cm are:

J = 2ax + 3ay + 4az

U = 3ax + 4ay

V = 2ax + 3az

a. What is the magnitude of the current density?

b. What is the vector area of the triangle formed by U and V if two sides, each beginning at
the origin, are formed by these vectors, and the third side by joining their end points?

c. What is the current through the triangle?
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10. Potential from E: Stimulus electrode E supplying current Io is located at coordinates (e, h, 0).
Imagine the x axis to be a fiber of very small diameter. The distance from electrode E to
position x along the fiber is r. What is the potential φ(x) along the surface of the fiber (i.e.,
along the x axis)? Answer with a mathematical expression that is a function of electrode
position e, h, and axial position x.

11. Activating function from E: Stimulus electrode E supplying current Io is located at coordinates
(e, h, 0). The distance from electrode E to position x along the fiber is r. A stimulus current,
applied as in the preceding question, creates potential φ(x) along the x axis. What is A(x),
the second derivative with respect to x of the potential φ(x)? The result should be an equation
that is a function of e, h, and x. (Here this result is called A(x), from “activating function,”
because of related work in a later chapter.)

12. In a homogeneous passive medium, can the conductivity be negative?

13. In the following analysis of a potential field, the potential is given by

Φ = k tanh(x)

where k = 1 millivolt and x is in mm. Unless stated otherwise, assume the region of interest is
x = −4 to x = 4 cm. (The hyperbolic tangent function is used here because of the similarity
of its wave shape to that of the rising phase of an action potential, studied in a later chapter.)

a. Find an expression for∇Φ as a function of x.

b. Find an expression for J as a function of x.

c. Find an expression for∇ · ∇Φ as a function of x.

d. Find an expression for∇2Φ as a function of x.

14. Use the results from the preceding question to make calibrated graphs. Let the x axis be
about 6 inches long and the vertical axis about 6 inches high, so that the results can be easily
visualized. Use multiple graphs as needed.

a. Plot Φ as a function of x,
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b. Plot the gradient of Φ as a function of x.

c. Plot the divergence of the gradient as a function of x.

15. Determine, either by reading the plots or analytically:

a. At what x value does the gradient of Φ reach its highest value?

b. At what x value is the slope of Φ at its maximum value?

c. What is the numerical value of the maximum slope?

16. On a plot of Φ(x), and at the correct x coordinates:

a. Draw arrows identified as J that show the direction of current, at the edges of the plot and
at values of x that correspond to peak magnitudes of J .

b. Draw an encircled plus sign to identify where the current sources are maximum.

c. Draw an encircled minus sign to identify where the current sinks have largest magnitude.

17. Ratios: Point current sources of 8 and –8 mA are located at z = 2 mm on the z axis and
y = −2 mm on the y axis, respectively. At (4,0,0) potential φ1 and current density J1 are
computed for a medium with resistivity of 100 Ωcm. With the resistivity made twice as much
(200 Ωcm), potential φ2 and current density J2 are found, for the same point.

a. What is the ratio φ2/φ1?

b. What is the ratio |J2|/|J1|?

c. What is the dot product of unit vectors in the directions of J1 and J2? (i.e., are they in
the same direction).



BIOELECTRICITY: A QUANTITATIVE APPROACH 401

18. Answer the series of questions (13–16) if

φ = k e−(x−1)2/2

19. Divergence: The current density J in μA/cm2 is

J = k(|x| ax + |y| ay + |z| az)

where k is a constant with magnitude 1 and x, y, z are in cm.

a. What are the units of k?

b. What is the magnitude of the divergence of J at (1,1,1) cm? Include units.

c. Is the divergence of J at the origin less than zero, zero, or greater than zero?

20. A dipole is at the center of the coordinate system and in the z direction. Its strength is 5 mA-
cm. The dipole lies in a uniform conducting medium of unlimited extent that has resistivity
100 Ωcm. Determine the voltage (the potential difference) of point A at coordinates (cm) of
(10,10,10) with respect to point B at (10,10,0).

21. Voltage between two electrodes: A stimulus is given between two electrodes. One serves
as a current source and the other as a sink. Each electrode is a spherical gold conductor
that has a radius of 1.5 mm. The two electrodes are separated by 4 cm, center to center.
The stimulus produces a rectangular current pulse of duration 2 milliseconds and current
amplitude of 15 milliamperes. (The current is injected at the source electrode and withdrawn
at the sink electrode.) The medium has a resistivity of 75 Ωcm. During the stimulus, what is
the voltage between the electrodes? Assume that there is good contact between the electrodes
and medium, with no voltage lost across a boundary layer.

22. A current source of density of Iv = 1 ma/cm3 is uniformly distributed in a spherical region
of radius 1.0 cm centered at the origin. The potential field arising from this source is given by

Φ = (3a− br2)/(6σ) 0 ≤ r ≤ 1

Φ = c/(3σr) r ≥ 1
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where the conductivity σ = 10−2 S/cm and r is in cm. Constants a, b, c have magnitude one
and dimensions such that Φ is in mV.

a. What are the units of constants a, b, c?

b. Evaluate ∇2Φ at r = 0.5 cm.

c. Evaluate ∇2Φ at r = 1.5 cm.

d. What is the voltage (difference in potential) between a point at r = 0.5 cm and one at
r = 1.5 cm?

e. In a sentence or two, explain the different results of parts b and c.

23. Assume that the potential Φ has units of mV and is given by

Φ = k(x3)

where x is in cm, and k is a constant with magnitude 1 and suitable units. Consider the range
−2 < x < 2.

a. What are suitable units for k?

b. What expression gives the electric field versus x?

c. What expression gives the current source density versus x?

d. Interpret the meaning of (c) in one or two sentences. Are there sources? If so, where and
of what sign?

24. Point current sources of 8 mA and –8 mA are located at z = 2 mm on the z axis and y = −2
mm on the y axis, respectively. The medium has a resistivity of 100 Ωcm.

a. What is the electrical potential at point (4,0,0) cm, relative to a potential of zero at infinity,
if the potential is computed as the sum from two monopoles?
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b. What is the electrical potential at point (4,0,0) cm, relative to a potential of zero at infinity,
if the potential is computed as the sum from two monopoles?

c. What is the difference in the result from [a] versus [b]?

d. Find the current density at the point x = 4, y = z = 0 cm.

25. For an arbitrary spherical surface located in a source- free region, confirm that the average
value of potential over the spherical surface equals the value of potential at the center.

26. Two point sources have magnitudes +Io and −Io. These sources are located at (0, 0, 1) and
(0, 0,−1) mm, respectively; Io = 1 nA, and the conductivity is .01 S/cm.

a. What is the potential at (5,0,0) cm, when the result is computed as the sum of the potentials
from each monopole?

b. Expressed as a dipole vector, what is the source?

c. What is the vector from the center of the dipole to (5,0,0) cm?

d. What is the potential at (5,0,0) cm, computed from the dipole?

27. Two adjoined fish tanks, each a vat of saltwater, are separated by a very thin uniform insulator
(of only 100

◦
A thickness). The insulator is flat with parallel sides. The dielectric constant of

the insulator is 2. What is the capacitance across each square centimeter of the insulator?

28. For the two-box geometry of Figure 2.7,Ri = 100 Ωcm,Re = 600 Ωcm, a = 10 μm, b = 20
μm, L = 100 μm, Rm = 10000 Ωcm2, and Cm = 1.2 μF/cm2. Consider current flow in the
direction ax.

a. What is the axial resistance RS of the small box, in Ohms?

b. What is the axial resistance of the big box,RB , in Ohms (excluding the small box within it)?
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c. What is the conductance of the two boxes, taken together as a parallel combination?

29. For the two-box geometry of Figure 2.7,Ri = 100 Ωcm,Re = 400 Ωcm, a = 10 μm, b = 20
μm, L = 100 μm, Rm = 10000 Ωcm2, and Cm = 1.2 μF/cm2. Along the x axis, what is:

a. ri, the resistance per unit length of the small box?

b. re, the resistance per unit length of the big box?

c. rm, the membrane resistance per unit length?

d. cm, the membrane capacitance per unit length?

30. For the two-box geometry, a current I = 10 mA is applied across the membrane separating
the small box from the big box. Ri = 100 Ωcm, Re = 400 Ωcm, a = 10 μm, b = 20
μm, L = 100 μm, Rm = 10000 Ωcm2, and Cm = 1.2 μF/cm2. The current is applied
uniformly through all parts of the membrane. When the current starts, the voltage V across
the membrane is zero.

a. Per square centimeter, what is the applied membrane current?

b. What is the steady-state voltage VSS across the membrane.

c. How long does it take (in seconds) for the voltage to rise from zero to half the final voltage?

31. Consider the small box, surrounded by the membrane, in isolation. A voltage of 100 mV is
applied across two parallel plates, one underneath the bottom of the box and the other lying on
top of the box. Box measurements are Ri = 100 Ωcm, Re = 400 Ωcm, a = 10 μm, b = 20
μm, L = 100 μm, Rm = 10000 Ωcm2, and Cm = 1.2 μF/cm2. Both plates are outside the
membrane but in good contact everywhere on the bottom or top, respectively. What is the
steady-state current?

32. A large thin sheet of conducting material has conductivity σ Siemens/cm2. There is a point
current source at the center of the sheet of magnitude I0 and a distal sink (also of magnitude
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I0). Derive an expression for the electrical potential variation near the source. (Assume that
the current is radial and two- dimensional.)

33. Two conducting, concentric spheres are separated by a thin insulator. The inner sphere has an
outer radius of 10 micrometers. The insulator is only 50

◦
Athick, and has a dielectric constant

of 3. What is the capacitance between the spheres?

34. For a uniform conducting medium of infinite extent, the flow lines of current density are given
by the differential equation

dx

Ex
=
dy

Ey
=
dz

Ez

For a dipole p oriented along the z axis and located at the origin, find the equation f(y, z) =
constant that gives the pattern of currents in the x = 0 plane.

35. Four point charges lie in the xz plane as follows:

+Q at (d, 0) and at (0, d)
−Q at (0, 0) and at (d, d)

Show that for r >> d the potential Φ is

Φ = −3Qd2xz

4πε0r5

where

r =
√
x2 + y2 + z2
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13.3. EXERCISES, CHAPTER 3: BIOELECTRIC POTENTIALS

In the following questions, give a numerical answer with one percent accuracy, with units, unless
otherwise instructed.

1. What is the (net) amount of positive charge in the positive ions of 90 grams of table salt?
Assume the salt is fully dissociated. A mole of salt weighs 58.5 grams.

2. A voltage of 0.3 volts is uniformly applied across a width of 70
◦
A, within a conducting solution.

The conducting ions come from 42 grams of table salt, fully dissociated. The electric field
exerts a strong force on the ions. What is the force that the resulting electric field would place
on the (net) positive charge in the positive ions? Compute the force in pounds, using the fact
that 1 Newton is 0.2248 lbs-force.

3. The “mobility” of ions quantifies their movement when they are in an electric field. The units
of mobility are (m/sec)/(V/m). (One might think of these units as velocity per unit of electric
field.) Suppose a uniform field is created by placing a voltage of 1 Volt across a distance of
3 m. The temperature is 30◦C, and the diffusion coefficient is 1.33E-9 m2/sec. What is the
corresponding mobility of sodium ions?

4. If the temperature is 7◦C, what is the value of RT/F ?. Use a precise conversion between
degrees Celsius and Kelvin, and use precise values of R and F so as to find a result within
0.3%. Compare the result to the one in the table in the text, and explain the difference.

5. For a temperature of 8◦C, estimate the root-mean-squared (rms) velocity of sodium ions.
Begin analysis at a macro level with the energy in a mole of ions. Find the average energy of
an ion. To avoid the complexity of a fluid, assume the energy of the ions is entirely kinetic
energy, as in a gas. The mass of a sodium ion is approximately 3.82E-26 kg. (Velocity in
m/sec can be converted to miles per hour by multiplying by 3600 sec/hour and then dividing
by 1850 m/mile.)

Exercises 6–8: The Nernst–Planck Equation. Solutions to each of these questions can be found
by reference to the chapter. These questions are emphasized because they are the foundation for
many other and thus are worth committing to memory.
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6. Begin by stating equations for (1) flow due to diffusion, and (2) flow due to an electric field.

a. Derive the Nernst–Planck equation.

b. Show that the units balance.

7. Write the Nernst–Planck equation. For each variable or constant, give its units.

8. In the Nernst–Planck equation, the term (−DiFZi)ZiCi(F/RT )∇Φ gives the flow in re-
sponse to an electric field. What is the expression for the conductivity σ? (Be sure to get the
sign correct).

Exercises 9–15. Concentration cells.

Exercises 9 to 15: Concentrations and Flux: Two chambers numbered 1 and 2 have the following
dimensions (see the figure). Dimension L is 100 microns, and W is 100 microns. Height H
(out of surface) is 100 microns. The dotted lines show the edges of a boundary layer that has a
thickness of 40

◦
A. (The dotted lines identify the position of a transition region, not a physical

boundary.) The temperature is 300 degrees Kelvin, and the diffusion coefficient DK is 1.96E-5
cm2/sec. Within either chamber the concentration and electric potential are uniform, though
different between chambers. The K+ concentrations are K1 in chamber 1 and K2 in chamber 2.
A linear change occurs in concentration and potential across the transition region. The potential
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difference is the voltage V , where V = φ1 − φ2. Note the polarity, i.e., a positive value for V
occurs when the potential in chamber 1 is the higher.

9. Concentration K1is 0.22 mM and K2is 0.02 mM. V is –0.04 Volts.

a. At x = 0, what is IDK , the potassium current along x due to diffusion?

b. At x = 0, what is IEK , the potassium current along x due to the electric field?

10. Concentration K1is 0.4 mM and K2is 0.02 mM. What is concentration K1 in moles/cm3?

11. Concentration K1is 0.2 mM and K2is 0.02 mM. How many K+ ions are then in volume 1?
Respond in units of moles.

12. Concentration K1is 0.4 mM and K2is 0.02 mM. Voltage V is 0. What is jDK (the particle
flux) along the x axis?

13. Concentration K1is 0.4 mM and K2is 0.02 mM. Voltage V is 0. What is the flow of particles
iDK , in moles/sec?

14. ConcentrationK1is 0.4 mM andK2is 0.02 mM. Voltage V is 0. What is the mean velocity of
K+ ions at x = 0, the center of the transition layer. Assume that at x = 0 the concentration
of K+ ions is the average of that in chambers 1 and 2.

15. Concentration K1is 0.4 mM and K2is 0.02 mM. Voltage V is 0. How long will it take for the
concentration of K+ on side 1 to decline by 10%? Assume that throughout this interval flow
maintains its initial value.

Exercises 16-21: Equilibrium Voltages across Membranes. Two compartments A and B are sepa-
rated by a thin membrane. Transmembrane voltages are measured as the potential in compartment
A minus that in B.
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Exercises 16–20: The membrane is indicated by the dashed line.
No flow occurs across the outer boundary.

Exercises 16–21: Concentrations (mM)a

Ion A B

K+ 280 10
Na+ 61 485
Cl− 51 485

a mM means millimoles per liter.

16. Only sodium may cross the membrane separating the two compartments. The temperature is
24◦C. What is the equilibrium potential?

17. Only potassium ions may cross the membrane. The temperature is 18◦C. What is the
equilibrium potential?

18. Only Cl−ions may cross the membrane. The temperature is 36◦C. What is the equilibrium
potential?

19. The transmembrane potential is 1 millivolt, and the temperature is 18◦C. How many ion
species (Na+, K+, or Cl−) are NOT in equilibrium? (Allow a small tolerance for round-off.)

20. The temperature is 36◦C, and the transmembrane potential is –60 millivolts. How many ion
species are NOT in equilibrium? (Allow a small tolerance for round off.)
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21. The concentrations of K+, Na+, and Cl− in millimole/liter in compartment A are: 120,
16, and 18, respectively. The concentrations of K+, Na+, and Cl− in millimole/liter in
compartment B are: 4, 140, and 120, respectively. The temperature is 26◦C. Assume that
you can arbitrarily and independently modify the membrane conductance for K+, Na+, and
Cl− from 0 to infinity. What is the (maximum) range of transmembrane voltages that you
can achieve by such tuning? [Hint: the range is given as: max(Vm)-min(Vm)].

22. Assume that a membrane functions like a parallel plate capacitor having the same surface
area, and assume the membrane is a nonconducting lipid with a relative permittivity of 3.

a. The capacitance of a particular biological membrane is 1.1 microFarads per square cen-
timeter. What is the effective membrane thickness?

b. A membrane has an effective thickness of 23
◦
A. What is this membrane’s capacitance per

unit area, Cm?

Exercises 23–29: Cardiac Cell. A cardiac cell is satisfactorily represented by the shape of a brick
with edges defined by a length, width, and depth. In these questions the membrane is considered
passive in that it has unchanging values of membrane resistivity (in Ωcm2) and capacitance
(microFarads per cm2). The cell’s surface area is taken to be that of the four sides excluding the
ends (width by depth). In some cases it is necessary to select from among the given parameters
those needed to answer the question. Abbreviation μm is used as an abbreviation for micrometer.

23. The cell’s length, width, and depth are 100, 9, and 11 μm, respectively. What is the cell’s
surface area? (Compute the area as the total membrane surface of all four sides, ignoring the
small area at the ends of the brick.)

24. The cell has length, width, and depth of 116, 7, and 12 μm, respectively. Membrane ca-
pacitance (microFarads per cm2) is 1.1. What is the cell’s capacitance? (That is, what is
the capacitance of the inside with respect to the outside, considering the surface to behave
uniformly.)

25. The cell has length, width, and depth of 112, 5, and 11 μm, respectively. At rest the membrane
resistivity (Ωcm2) is 20,000. What is the cell’s membrane resistance? That is, what is the
resistance from inside to the outside of the cell, at rest?
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26. A cardiac cell has length, width, and depth of 90, 5, and 8 μm, respectively. At rest the
membrane resistivity (Ωcm2) is 20,000 and capacitance (microFarads per cm2) is 1.1. Suppose
an amount of charge is instantly moved across the membrane and changes the transmembrane
voltage by 20 millivolts. How much charge moved?

27. A cardiac cell has length, width, and depth of 106, 6, and 11 μm, respectively. At rest the
membrane resistivity (Ωcm2) is 10,000 and its capacitance is 1.1 microFarads per cm2. What
is the cell’s membrane conductivity, in Siemens/cm2?

28.A cardiac cell has length, width, and depth) of 82, 12, and 5 μm, respectively. At rest the
membrane resistivity (Ωcm2) is 20,000 and the capacitance is 1 microFarad per cm2. If the
cell membrane functions as a passive, parallel resistor–capacitor combination, what is the
time constant of this cell?

29. A cardiac cell has length, width, and depth of 80, 5, and 12 μm, respectively. At rest the
membrane resistivity (Ωcm2) is 20,000, and the capacitance is 1.1 microFarads per cm2.
Suppose the membrane instantly acquires enough charge to rise from its resting potential by
20 millivolts. If the cell remains passive, i.e., continues to have the same membrane resistance
and capacitance, how long will it take for the 20 milliVolt initial rise to decay to 1 mV?

30. What are suitable units for each of the following:

a. J , the current flux?

b. j, the particle flux?

c. C, the capacitance?

d. D, the diffusion coefficient?

e. φ, the electric potential?

f. μ, the mobility of an ion in response to an electric field?
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Exercises 31–33: Segment of Nerve Fiber (Equations). A short segment of nerve fiber is cylin-
drical, being d cm in diameter and L cm in length. Assume there is no variation of membrane
potential along the axial coordinate. The temperature is T degrees Kelvin.

� The membrane capacitance is Cm microFarads per cm2.

� The transmembrane potential Vm is in millivolts.

� Equilibrium potentials EK, ENa, and EL are known, with values in millivolts.

� Membrane conductances are gK, gNa, and gL ms/cm2for ions of K+, Na+, Cl− respec-
tively.

� In these exercises the conductances are constants.

Give the equation that might be used to answer the exercise as a line in a standard computer
language, such as the C language. Show multiplication explicitly with an asterisk. Preserve
upper and lower case letters as given in the exercise or text; that is, do not consider upper and
lower case letters to be equivalent.

31. What is JK, the current density across the membrane of K+ ions?

32. What is JNa, the current density of Na+ ions?

33. What is JL, the current density for Cl− and other leakage ions?

Exercises 34–45: Short Nerve Segment. These exercises involve a short segment of an unmyeli-
nated nerve. Each nerve segment has a circular cross-section with diameter d and length L. The
temperature is 300 degrees Kelvin, and the membrane capacitance is 1.2 microFarads per cm2.
The transmembrane potential (inside potential minus outside) is clamped to –40 millivolts. There
is no variation of membrane potential along the axial coordinate. Use the parallel-conductance
model for analysis, as needed. Membrane conductances are: gK 0.375, gNa 0.01 mS/cm2, gL
0.57 mS/cm2. The membrane conductances are assumed to be constants, in these exercises. If
more values are given than are needed to find the answer, a part of the exercise is selecting the
relevant information.

Concentrations (mM)

Ion Intra Extra

K+ 280 10
Na+ 50 437
Cl- 51 485
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34. What is the resting potential?

35. What is EK, the equilibrium voltage for K+ions?

36. What is ENa, the equilibrium voltage for Na+ions?

37. What is EL, the equilibrium voltage for Cl−ions?

38. What is JK, the current density for K+ions?

39. What is JNa, the current density for Na+ions?

40. What is JL, the current density for Cl−ions?

41. What is dVm/dt, the time rate of change of transmembrane potential Vm, at time t0+, if t0+

is the time immediately following the instant when the voltage clamp is removed?

42. A segment of nerve is 7 μm in diameter and 0.7 cm in length. Membrane conductances are
gK 0.2, gNa 0.25, and gCl 0.4 mS/cm2. What is Jion, the total ionic current density? Find the
total as the sum of J’s for K+, Na+, and Cl−ions.

43. A segment of nerve is 8 μm in diameter and is 1.5 cm in length. The transmembrane potential
Vm is –40 millivolts. The membrane conductances are: gK 0.375, gNa 0.02, and gCl 0.57
mS/cm2. The resting potential is –34.7 mV. What isEL, the equilibrium voltage for Cl−ions?

Ex. 43 Concentrations (mM)

Ion Intra Extra

K+ 300 35
Na+ 90 450
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44. A segment of nerve has a diameter of 5 and is 1.1 cm in length. The transmembrane potential
is –40 millivolts. The extracellular potassium concentration has risen to 50 mM. What is the
resting potential?

45. In a short segment of nerve, the transmembrane potential Vm is –56 millivolts. Values of
conductances are gK 0.375, gNa 0.06, and gL 0.8 mS/cm2, and here membrane conductances
are constant. What is dVm/dt, the rate of change of transmembrane potential Vm?

Examplus giant nerve: This entirely imaginary nerve is referenced in the three exercises that
follow. In Examplus K+

e = 10 mM, Na+
e = 500 mM, K+

i = 300 mM, and Na+
i = 50 mM.

46. For Examplus, if the membrane is permeable to potassium only, what transmembrane poten-
tial, Vm, will exist at equilibrium?

47. For Examplus, if the membrane is permeable to sodium only, what transmembrane potential,
Vm, will exist at equilibrium?

48. For Examplus, if the membrane is permeable both to potassium and to sodium, what infor-
mation does the Nernst equation provide about the magnitude of the current flow from the
intracellular to the extracellular space?

Aplysia cell. Aplysia cells have been used in a number of electrophysiological studies.

49. In an Aplysia cell, values used with the parallel conductance model are:

EK = −83.9 mV, ENa = 52.2 mV, ECl = −56.7 mV
gK = 0.177 μS, gNa = 0.116 μS, gCl = 0.707 μS

a. What is the resting potential?

b. If [K]e is increased tenfold, how is the result in (a) changed?
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The remaining exercises touch on a variety of topics related to material in this chapter.

50. Write the Nernst–Planck equation. Which constant stands for the amount of charge in a mole
of ions?

51. The diffusion coefficient is a measure of how rapidly a particle moves due to (random) thermal
motion (the diffusion process). Thus the presence of the diffusion coefficient in the Nernst–
Planck equation in the term of the equation dealing with flow due to diffusion is not surprising.
But why does it also appear in the other (electrical) term? Explain in a sentence.

Exercises 52–55: Capillary Membrane and Donnan Equilibrium. Movement across capillary
membrane is an important topic that is not the focus of this text but that does have closely related
aspects, a few of which are explored in these exercises. A membrane is at a Donnan equilibrium
when the ion flow at rest of all permeable ions is zero. (Before the advent of intracellular
electrodes, many theories assumed the existence of a Donnan equilibrium across active and
passive membranes.)

52. What must be true of the resting transmembrane potential and the Nernst potential of all ions,
at a Donnan equilibrium? That is, given the ion composition of Table 3.1, why cannot nerve
and muscle membranes be at a Donnan equilibrium?

53. A cell lies in an extensive, uniform, extracellular medium. The intracellular and extracellular
space contain KCl, NaCl, and possibly NaX and KX (only). The membrane is permeable to
Na+, K+, Cl−, but not to X−. The system is at a Donnan equilibrium.

a. What does X− represent and what is the likely reason it is impermeable?

b. What is the basic constraint, and what is the relationship satisfied by ionic concentrations
that arise in the Donnan equilibrium? [Hint: What must be true of permeable ion Nernst
potentials?]

c. Given that [K+]e = 50 mM, [K+]i = 5 mM, [N+]e = 35 mM, and [Cl−]e = 0.85 mM;
determine the remaining ionic constituents.

d. Determine the transmembrane potential.
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54. The capillary endothelium, while restraining the movement of protein, permits the free flow
of water and solute. A Donnan equilibrium of diffusible ions comes about as a result.

a. Based on this information, complete Table 13.1.

b. What is the transcapillary potential?

Table 13.1. Ion, Plasma, and Interstitial Fluid, for Exercise 54

Ion Plasma Water Interstitial fluid

Na+ 150 mM 144 mM
K+ 4.0
Cl− 114
HCO−3 28

55. The red blood cell is permeable to anions (only), since passive cation flux is balanced by
active transport. The major anions are Cl− and HCO−3 , and these reach a Donnan equilibrium
(see Exercise 31). Assume that

[Cl−]cell

[Cl−]plasma
= 0.63

a. What is the distribution of bicarbonate ion?

b. What is the membrane potential (give polarity)?
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13.4. EXERCISES, CHAPTER 4: CHANNELS

Exercises 1–5: Open and closed channels. Use data from Table 4.1 as needed. Abbreviation μm
stands for micrometers (sometimes called microns).

1. Assume the membrane of frog skeletal muscle is at rest, and that, at rest, only potassium
channels are open, with probability 0.06. What is the resistance of 0.5 cm2 of this membrane?

2. During the upstroke of an action potential in squid giant axon, the probability of a sodium
channel being open changes. At rest the probability of an open channel is 0.01, while at the
peak of an action potential it is 0.2. Consider 0.6 mm2 of cell membrane. On the average,
how many channels change from closed to open as the membrane moves from rest to peak,
i.e., during the upstroke of the action potential?

3. The membrane of the squid giant axon has a resting membrane resistance of 1,400 Ωcm2. If
potassium channels are the only contributor to the resting membrane resistance, what fraction
of the potassium channels are open?

4. A frog skeletal muscle cell is at rest, with a rate of potassium channel opening of 2E-4 msec−1,
and a rate of potassium channel closing of 0.3 msec−1. The cell has the shape of a brick with
edges (length, width, and depth) of 2,000, 20, and 30 μm. Suppose potassium channels at the
density given in Table 4.1 exist on the cell surface over all sides and ends. What is the steady
state number of open potassium channels, at rest, on the average?

5. Suppose a frog skeletal muscle cell is satisfactorily represented in the shape of a brick with
edges (length, width, and depth) of 2,000, 25, and 10μm. At rest the rate of potassium channel
opening is 0.005, and the rate of channel closing is 0.48 msec−1. The resting membrane
voltage is –96 mV, and the temperature is 28 degrees C. What is the (macroscopic) potassium
current in at rest?

Exercises 6–13 involve the probabilities of channels being open and closed. In all questions,
the number of channels is N , the probability of an open channel is p, the probability of a closed
channel is q, and the channel density is D.
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6. What is the formula for the expected number of open channels?

7. What is the formula for the expected number of closed channels?

8. What is the sum p+ q?

9. What is the formula for the standard deviation of the number of open channels?

Exercises 10 to 13: Imagine that it becomes possible to design cells of varying size. A cell is
to be designed that is spherical, with a membrane that has stable number of open channels. To
this end, the number of channels must meet the following condition: The standard deviation of
the number of open channels may be no more than one percent of the expected number of open
channels.

10. In terms of p and q, give the formula for M , where M is the minimum number of channels
that the cell must have.

11. Give a formula for A, where A is the minimum surface area that the cell must have to hold
the required number of channels.

12. Give a formula for a, where a is the minimum radius that the cell must have to hold the
required number of channels, at density D.

13. What is the minimum radius that the cell must have to hold the required number of channels?
(Give the value of the radius a, in μm.)

a. Probability p is fixed at 0.05 and D is 200 channels per μm2.

b. D is 200 channels per μm2, and p varies from .05 to .95. (Radius a must cause the
condition to hold for any p.)
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Exercises 14–35: Model Cell in a Voltage Clamp. These exercises are framed mostly in terms
of a fictitious model cell. The reason such a cell is used here is to focus on the main ideas of this
chapter within a relatively simple quantitative framework. With some increase in complexity, the
exercises can be brought closer to reality by substituting experimental values from Tables 3.1 and
4.1 and using actual cell dimensions.

The model cell has a surface area of 600 μm2, a channel density D = 40 channels per μm2, and
a conductivity for a single open channel of γ = 10 pS. The cell surface holds distinct populations
of channels for potassium and sodium ions, but both populations have the same density D and
conductivity γ. The cell’s resting potential Vr is –60 mV. Surrounding concentrations create a
potassium equilibrium potential EK of –80 mV and a Na+ equilibrium potential of +60 mV.

The solutions that are provided make use of the α and β rate constants and the structure of the
Hodgkin–Huxley model. Correspondingly, in these exercises, find the rate constants αn and
βn as needed by converting absolute membrane voltages Vm to voltage offsets from the resting
potential, vm = Vm − Vr. Then use vm in the reference equations for α and β.

Rate coefficients α and β in the Hodgkin– Huxley Model: The values of αn and βn are based
on curve-fitting to experimental data for potassium channels. A similar plan is used for sodium
channels. The equations for αn and βn and their place in the overall HH mathematical model
are presented in Chapter 5. Here what is needed for these exercises are those equations in
computational form. They are

$an=.01*(10.-$vm)/(exp((10-$vm)/10)-1);

$bn=0.125*exp(-$vm/80);

$am=0.1*(25-$vm)/(exp((25-$vm)/10)-1);

$bm=4*exp(-$vm/18);

$ah=0.07*exp(-$vm/20);

$bh=1/(exp((30-$vm)/10)+1);

Computational variables an and bn correspond to αn and βn, and similarly for m and h. Note
that the transmembrane voltage, vm, the argument to the expressions, is specified relative to the
membrane’s rest voltage, i.e., vm = Vm − Vr. All a’s and b’s have units of msec−1.

Evaluations of the model cell involve times t1, steady state in phase 1, ta, immediately after
the voltage transition, tb, which is 0.5 msec after the voltage transition, and t2 in the phase 2
steady-state.

When an exercise asks for a potassium or sodium current, find that current by performing the
following steps: Find the number of open channels, the resulting membrane conductivity, and
the driving voltage (e.g., Vm − EK) for the ion species.

Exercises 14 to 23: Examine the K+ channels in the model cell. The cell is subject to a voltage
clamp with V 1

m of –40 mV and V 2
m of 0 mV.
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14. During the steady state of phase 1, what is:

a. The probability p1 that a K channel is open?

b. The expected number of open K+ channels?

c. The fluctuation in the number of open channels, if the fluctuation is considered to be four
times the standard deviation?

d. During steady state for phase 1, what is the cell’s K+ current?

15. During steady state in phase 2, what is:

a. The probability p2 that a K+ channel is open?

b. The expected number of open K+channels?

c. The K+ current for the cell?

16. As judged by the results of exercises 14 and 15, if V 2
m > V 1

m is the K+ current in phase 2, is
it also greater than that of phase 1?

17. Compare the number of open channels at phase 1 in steady state to the number of open channels
in phase 2 at steady state. What is the ratio of the expected numbers of open K+channels
N2

open/N
1
open?

18. Compare the cell’sK+ current (I1
K) in phase 1 at steady state to theK+ current (I2

K) in phase
2 at steady state. What is the ratio I2

K/I
1
K?

19. Consider the time t = ta, which is just after the voltage transition but prior to any time having
elapsed during phase 2. At t = ta, what is the cell’s K+ current?

20. Why is the ratio found in exercise 18 different from the ratio found in exercise 19?
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Exercises 21–26: Again examine the potassium channels and currents in the model cell, this time
with V 1

m of –55 mV and V 2
m of 55 mV.

21. At steady state in phase 1, what is:

a. The probability p1 that a K+ channel is open?

b. The expected number of open K+ channels?

c. The fluctuation in number of open channels, if the fluctuation is considered to be four
times the standard deviation?

d. During steady state for phase 1, what is the cell’s K+ current?

22. During steady state in phase 2 what is:

a. The probability p2 that a K+ channel is open?

b. The expected number of open K+ channels?

c. The cell’s K+ current?

23. As judged by the results of exercises 21 and 22, if V 2
m is greater than V 1

m, are more K+

channels open?

24. Quantitatively compare the number of open channels during the steady state of phase 1 to the
number open in the steady state of phase 2. What is the ratio of the expected numbers of open
K+ channels N2

open/N
1
open?

25. Compare theK+ current at steady state in phase 1 (I1
K) to that at steady state in phase 2 (I2

K).
What is I2

K/I
1
K?
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26. Compare the IK current at time t = ta, IaK , evaluated immediately after the transition of Vm,
to I1

K , the current just before. What is the ratio IaK/I
1
K?

27. In a few sentences, explain why there is a difference between the answers to Exercises 25 and 26.

Exercises 28–30 inquire about currents for sodium ions (Na+) as well as potassium ions. Sodium
ions cross the membrane in different channels than those of potassium. For Na+ the probability
that a channel is open is m3h. Gating variables m and h have values determined by equations
of the same form as used for gating variable n for potassium; however, their α and β values are
different. Time t1 is a time during the steady state of phase 1, and time t2 is during the steady
state of phase 2.

28. In the model cell, examine Na+ and K+ currents with V 1
m of –57 mV and V 2

m of –20 mV.

a. At t1, what is I1
K?

b. At t1, what is I1
Na?

c. At t2, what is I2
K?

d. At t2, what is I2
Na?

29. In the model cell, examine Na+ and K+ currents with V 1
m of –58 mV, and V 2

m of –30 mV.

a. At t1, what is I1
K?

b. At t1, what is I1
Na?

c. At t2, what is I2
K?

d. At t2, what is I2
Na?

30. As judged by the results of Exercises 28 and 29, is |IK| > |INa| in all cases?



BIOELECTRICITY: A QUANTITATIVE APPROACH 423

Exercises 31–35 include K+ and Na+ currents as before, and add the evaluation of both at a
time tb, less than a millisecond after the voltage transition. The addition is of interest in two
ways, first, in how the calculation is done, and second, in the nature of the outcome, especially
as compared to the preceding exercises.

31. The number of channels that are open, No, is given in equation (4.11) as a function of time
t after a voltage transition at t = 0. That equation includes undetermined constant A, to be
found from the boundary condition. [Equation (4.12) shows the particular form of (4.11) that
results for the boundary condition of all channels closed at t = 0.] Define N1 as a constant
equal to the number of open channels at the end of phase 1.

a. Give an equation for N1 in terms of quantities known in phase 1.

b. Derive an equation for No(t) in phase 2 that depends on N1 and that contains no unde-
termined parameters. The goal is to have an equation that can be used to find the number
of open channels in phase 2 at times before phase 2’s steady state.

32. In the model cell, evaluate the requested currents if V 1
m is –55.5 mV, and V 2

m is –24.5 mV.

a. At t1, what is I1
K?

b. At t1, what is I1
Na?

c. At time tb, what is IbK?

d. At time tb, what is IbNa?

e. At t2, what is I2
K?

f. At t2, what is I2
Na?

33. The model cell is clamped with V 1
m of –59 mV and V 2

m of –15 mV. Evaluate the requested
currents.

a. At t1 and for K+, what is I1
K?
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b. At t1 and for Na+, what is I1
Na?

c. At time tb and for K+, what is IbK?

d. At time tb and for Na+, what is IbNa?

e. At t2 and for K+, what is I2
K?

f. At t2 and for Na+, what is I2
Na?

34. As judged by the results of exercises 32 and 33, does INa ever have the same sign as IK?

35. As judged by the results of Exercises 32 and 33, is it always true that |IK| > |INa|?

Exercises 36–40 explore quantitative aspects of the extraordinary experimental techniques used
for the study of channels.

36. Based on the γK value found from Figure 4.9 (265 pS), evaluate the minimum gigaseal
resistance that gives S/N ≥ 30. Assume that Δf = 1 kHz, T = 293 K, and for the size
signal take Vm = 50 mV.

37. From Eq. (4.5) and assuming Qg = 10 × ε (electronic charge), plot the fraction of open
channels as a function of Vm (–100 mV < Vm < 50 mV). Choose T = 293 K.

38. When a microelectrode is inserted into the intracellular space of a cell, current from the
electrode to that space may pass through the electrode resistance, as desired, or through the
capacitance across the electrode wall. Figure 13.1 describes the physical arrangement (left)
and the equivalent circuit (right). Although the capacitance is distributed along the length of
the electrode that penetrates the cell, a simple lumped capacitance is frequently assumed, as
shown in the figure (right). An estimate of the capacitance per unit length can be obtained by
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Figure 13.1. Microelectrode–Tissue Capacitance.

assuming the tip to be cylindrical, in which case the “well-known” formula is

C

�
=

2πεrε0

ln(D/d)
(13.2)

where εr is the relative permittivity of the glass wall, ε0 the permittivity of free space, D the
outer diameter, and d the inner diameter of the micropipette tip. If D = 1.3 μm, d = 1.0
μm, εr = 1.8, σ = 0.5 S/cm, and � = 2 mm, determine C. Estimate the resistance of the
microelectrode assuming the internal wire to end 2.1 mm from the tip. What is the electrode
time constant? Comment on its significance in the measurement of time-varying voltage and
current.

39. Consider a channel of 5
◦
A radius and 100

◦
A long. Assuming ohmic behavior, evaluate the

channel conductance (assume the medium is Ringer solution with a resistivity of ρ = 60
Ωcm). Now, in addition to the channel’s resistance, an additional resistance arises due to the
“access resistance” of the surrounding medium. Assume that the current approaches and leaves
the channel via radial paths and with a uniform current density on concentric hemispherical
surfaces with origin at the center of the terminal aqueous channel surface. Find the value
of the resistance from the channel to a reference electrode at infinity. (In finding the result,
it is useful to picture the current flow as passing through a series of hemispherical surfaces,
with the smallest having the same radius as the channel, and successive hemispheres growing
larger to infinity.)

40. In the use of fluctuation analysis of single-channel measurements, the presence of thermal
noise sets a limit on the resolution of the rate constants associated with open and closing of
channel gates. This is illustrated in the following example: Consider recording from a 1-μm2

patch with resting membrane resistance of 1000 Ωcm2 and bandwidth of 2000 Hz. Evaluate
σ2 from (4.2) and compare σ with typical single-channel currents (where σ2 is the mean-
square noise power).
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Exercises 41 to 43 ask about the structure of channels as determined from their nucleotide
sequence.

41. Use GenBank (or similar source) and identify, for humans, the DNA nucleotide sequence for
a gene for a potassium channel in human nerve. Give its accession number, chromosome
location, and gene complexity, as measured by length in base pairs.

42. Repeat exercise 41 for a sodium channel.

43. Based solely on the gene complexity as indicated by length, which gene has the most complex
structure, that for the potassium channel or that for the sodium channel?
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13.5. EXERCISES, CHAPTER 5: ACTION POTENTIALS

Exercises 1–25 deal with the Hodgkin–Huxley membrane model. The earlier exercises deal with
individual elements of the model, while later exercises deal with larger-scale composite events.
Exercises requiring computer code for their solution are included thereafter. Many of these
exercises refer to an HH membrane defined by the set of parameters given in Table 13.2.

Table 13.2. HH Membrane and Environmental Parameters

ḡK 36 mS/cm2 maximum K+conductivity
ḡNa 120 mS/cm2 maximum Na+ conductivity
gL 0.3 mS/cm2 leakage conductivity
Cm 1.0 μF/cm2 membrane capacitance
EK -72.1 mV K+ Nernst potential
ENa 52.4 mV Na+ Nernst potential
EL -49.2 mV leakage Nernst potential
Vr -60 mV resting potential
Is 0 μA/cm2 stimulus current
Im 0 μA/cm2 total membrane current for patch if no stimulus

Table 13.3. HH State Variables, Set A

Vm -11.5 mV transmembrane potential
n 0.378 — gating probability n
m 0.417 — gating probability m
h 0.477 — gating probability h

1. Conductivity and current: Write a formula that can be used to determine each of the quantities
listed. The result should be a function of the parameters given in Table 13.2 and state variables
of Table 13.3. It may also be a function of one of the preceding items, e.g., the formula for
IK may include gK.

a. gK, the K+ conductivity.

b. gNa, the Na+ conductivity.

c. IK, the K+ current.



428 CH. 13: EXERCISES FOR CHAPTER 5: ACTION POTENTIALS

d. INa, the Na+ current.

e. IL, the leakage current.

f. Iion, the total ionic current.

g. Vdot ≡ V̇m ≡ dVm/dt, the time derivative (recall that Newton’s calculus used a dot over
a variable to signify a time derivative) of Vm at t = t0. Include stimulus current Is in the
expression.

2. Channel probabilities n,m, and h: Write a formula that can be used to determine the value of
each one of the quantities listed. The result should depend on the parameters given in Table
13.2, the state variables of Table 13.3, and the results of any preceding items on the list.

a. vm, the transmembrane potential relative to the resting value.

b. αn, the rate constant for n for opening channels.

c. βn, the rate constant for n for closing channels.

d. αm, the rate constant for m for opening channels.

e. βm, the rate constant for m for closing channels.

f. αh, the rate constant for h for opening channels.

g. βh, the rate constant for h for closing channels.

h. ṅ ≡ dn/dt at t = t0, the time derivative of n evaluated at t = t0.

i. ṁ ≡ dm/dt at t = t0, the time derivative of n at t = t0.

j. ḣ ≡ dh/dt at t = t0, the time derivative of n at t = t0.
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3. Time shift Δt: Write formulas for the changes in Vm and probabilities n, m, and h during an
interval Δt beginning at time t = t0. Also give formulas for the new values. Assume that Δt
is small enough that derivatives retain their initial values throughout the interval.

a. ΔVm, the change of Vm from t = to to t = t0 + Δt.

b. Δn, the change of probability n from t = to to t = t0 + Δt.

c. Δm, the change of probability m from t = to to t = t0 + Δt.

d. Δh, the change of probability h from t = to to t = t0 + Δt.

e. Vm(t0 + Δt), the value of Vm at (t0 + Δt).

f. n(t0 + Δt), the value of n at (t0 + Δt).

g. m(t0 + Δt), the value of m at (t0 + Δt).

h. h(t0 + Δt), the value of h at (t0 + Δt).

4. Applied membrane current. In Table 13.2 a value of stimulus current IS = 0 was given. That
choice resulted in a changing value of Vm, as found in the preceding exercise. Suppose that
one wishes to apply a stimulus to maintain Vm at a constant value, i.e., make V̇m = 0. Write a
suitable formula for the stimulus current IS that must be applied across the membrane. (Such
a current is applied, for example, in a voltage clamp.)

Exercises 5–8 ask that numerical values be found for the quantities defined by the formulas found
in the preceding exercises, 1 to 4.

5. Conductivity and current: Find the numerical value (with units) of each of the following,
using the parameter values given in Table 13.2 and the values for the state variables of set
A, which are given in Table 13.3. For this illustrative example, use Δt equal to 50 μsec. A
Δt of 50 μsec works well for hand calculations and for initial computer runs done for testing
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algorithms. When accurate results become the goal, a smaller Δt of 1 to 10 μsec is more
frequently chosen, because the time integration is then done more precisely. In these initial
exercises the emphasis is on instruction, so a larger Δt is used, thus making the nature of the
step by step evolution more obvious.

a. gK, the K+ conductivity.

b. gNa, the Na+ conductivity.

c. VK, the transmembrane voltage relative to EK.

d. VNa, the transmembrane voltage relative to ENa.

c. IK, the K+ current.

d. INa, the Na+ current.

e. IL, the leakage current.

f. Iion, the total ionic current.

g. Vdot ≡ V̇m, the time derivative of Vm, evaluated at t0.

6. Channel probabilities n, m, and h: Find values for each of the quantities listed. The result
should depend on the parameters given in Table 13.2, the state variables of Table 13.3, and,
as needed, the results of any preceding items on the list.

a. vm, the transmembrane potential relative to the resting value.

b. αn, the rate constant for n for opening channels.

c. βn, the rate constant for n for closing channels.

d. αm, the rate constant for m for opening channels.
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e. βm, the rate constant for m for closing channels.

f. αh, the rate constant for h for opening channels.

g. βh, the rate constant for h for closing channels.

h. ṅ ≡ dn/dt at t = t0, the time derivative of n at t = t0.

i. ṁ ≡ dm/dt at t = t0, the time derivative of n at t = t0.

j. ḣ ≡ dh/dt at t = t0, the time derivative of n at t = t0.

7. Time shift Δt: Use the results of Exs. 5 and 6 to find values for each of the following for the
interval Δt beginning at time t = t0. Assume that Δt is small enough that derivatives retain
their initial values throughout the interval.

a. ΔVm, the change of Vm from t = to to t = t0 + Δt.

b. Δn, the change of probability n from t = to to t = t0 + Δt.

c. Δm, the change of probability m from t = to to t = t0 + Δt.

d. Δh, the change of probability h from t = to to t = t0 + Δt.

e. Vm(t0 + Δt), the value of Vm at (t0 + Δt).

f. n(t0 + Δt), the value of n at (t0 + Δt).

g. m(t0 + Δt), the value of m at (t0 + Δt).

h. h(t0 + Δt), the value of h at (t0 + Δt).
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8. What stimulus current must be applied across the membrane to keep the transmembrane volt-
age constant, if Vm and all other parameters have the values given in the preceding exercise?
That is, what stimulus current is necessary to prevent the change in Vm that was found in the
previous exercise? Give the value of the needed stimulus current, in microAmperes per cm2.

Table 13.4. HH State Variables, Set B

Vm –11.5 mV Transmembrane potential
n 0.759 — gating probability n
m 0.955 — gating probability m
h 0.104 — gating probability h
Im 0 mA total membrane current if no stimulus

Exercises 9–12 use set B of the state variables, as given in Table 13.4. The questions are
otherwise the same as in Exs. 5–8. These set B exercises are included because the numerical
results are materially different from those of set A. They allow an interesting qualitative as well
as quantitative comparison.

9. Conductivity and current: Find the numerical value (with units) of each of the following,
using the parameter values given in Table 13.2 and the values for the state variables given in
Table 13.4. For this illustrative example, use Δt equal to 50 μsec.

a. gK, the K+ conductivity.

b. gNa, the Na+ conductivity.

c. VK, the transmembrane voltage relative to EK.

d. VNa, the transmembrane voltage relative to ENa.

c. IK, the K+ current.

d. INa, the Na+ current.

e. IL, the leakage current.
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f. Iion, the total ionic current.

g. Vdot ≡ V̇m, the time derivative of Vm, evaluated at t0.

10. Channel probabilities n, m, and h: Find values for each of the quantities listed. The result
should depend on the parameters given in Table 13.2, the state variables of Table 13.4 and, as
needed, the results of any preceding items on the list.

a. vm, the transmembrane potential relative to the resting value.

b. αn, the rate constant for n for opening channels.

c. βn, the rate constant for n for closing channels.

d. αm, the rate constant for m for opening channels.

e. βm, the rate constant for m for closing channels.

f. αh, the rate constant for h for opening channels.

g. βh, the rate constant for h for closing channels.

h. ṅ ≡ dn/dt at t = t0, the time derivative of n evaluated at t = t0.

i. ṁ ≡ dm/dt at t = t0, the time derivative of n at t = t0.

j. ḣ ≡ dh/dt at t = t0, the time derivative of n at t = t0.

11. Time shift Δt: Use the results of Exs. 9 and 10 to find values for each of the following for
the interval Δt beginning at time t = t0. Assume that Δt is small enough that derivatives
retain their initial values throughout the interval.

a. ΔVm, the change of Vm from t = to to t = t0 + Δt.
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b. Δn, the change of probability n from t = to to t = t0 + Δt.

c. Δm, the change of probability m from t = to to t = t0 + Δt.

d. Δh, the change of probability h from t = to to t = t0 + Δt.

e. Vm(t0 + Δt), the value of Vm at (t0 + Δt).

f. n(t0 + Δt), the value of n at (t0 + Δt).

g. m(t0 + Δt), the value of m at (t0 + Δt).

h. h(t0 + Δt), the value of h at (t0 + Δt).

12. What stimulus current must be applied across the membrane to keep the transmembrane
voltage constant? That is, what stimulus current is necessary to prevent the change in Vm
that was found in the previous exercise? Give the value of the needed stimulus current in
milliamperes per cm2.

13. The above results show that ΔVm for the state variables of set A (Ex. 8) has the opposite
sign from the ΔVm as found for the state variables of set B (Ex. 12), that is, in one case
Vm is going up, while in the other it is going down. How does this happen? Vm itself is the
same in both cases, so Vm’s value cannot be the factor that makes the difference. Answer this
question in a sentence or two, making specific reference to all three of the individual ionic
currents, and the total ionic current, comparatively.

Exercise 14 deals with special cases of α, a particularly pernicious source of errors in automated
computation.

14. Special cases for α: Two of the equations for α have special cases for particular values of
vm. Each equation has a denominator that goes to zero at a particular vm. Examine each
equation listed near the value given. (It may be helpful to use a power-series expansion of eu

for u near to zero.) Find a simplified form of the equation for each α that applies for vm near
the given value of vm. The simplified form should make clear the value of α at and near the
special vm value.
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a. n: find an equation for αn near vm = 10.

b. n: determine αn at vm = 10.

c. m: find an equation for αm near vm = 25.

d. m: determine αm at vm = 25.

Figure 13.2. Schematic of Membrane Stimulation. The figure provides a schematic drawing
of the stimulator (circle) and its connection to source and sink electrodes (dotted lines).
Current Is flows from these electrodes from the source to the sink. At the membrane,
charges move through the several kinds of ion channels, symbolized by the thin lines, or
accumulate on the membrane surfaces, thus increasing the transmembrane voltage. Note
that Vm has a positive value when the membrane is more positive on the inside than on
the outside, and the current has a positive value when it flows from inside to outside. This
schematic figure may be compared to the diagram of the experimental setup in Figure 5.7.

Exercise 15 deals with the initial depolarizing current, a stimulus current. Stimuli are analyzed
at length in a later chapter. Here the topic is examined only as needed for some relatively simple
exercises.

15. Suppose one considers again Eq. (5.39) from the text, which is essentially

Cm
dVm
dt

+ Iion = Im

A stimulus is applied to a membrane having the characteristics of Table 13.2. Thus Im = Is
(and thereby has a nonzero amplitude), and during the period the stimulus is applied. By
the convention used here, the stimulus starts at t = t0. Unless specified otherwise, Is = 50
μA/cm2, and the membrane is at rest. Examine the instant after the stimulus begins.
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a. What is dVm/dt?

b. What is dVm/dt if Is = −50 μA/cm2 ?

c. What is ΔVm for the first 100 msec after the stimulus starts, if dVm/dt retains its initial
value throughout that interval?

d. What is dVm/dt if the membrane is in state A (i.e., as given in Table 13.3)?

e. What is dVm/dt if the membrane is in state B (i.e., as given in Table 13.4)?

Computer-based Exercises 16–25 ask that computer code be written to replicate and extend the
calculations done above. While the examples that are included have been done with C++, any
available computer language or programming system may be used and should obtain virtually the
same results, if sufficient precision is maintained in each numerical step. Numerical calculations
have been a part of bioelectricity throughout its history. At first calculations were done by
hand, then with mechanical calculators, and then with modern digital computers as these became
available. Because natural systems involve many subunits operating simultaneously (the heart
has about a billion cells), the demands on computer systems made by realistic simulations often
have been among the most intense of any field of study.

Exercises 16–20 focus on developing a computer program for performing Hodgkin–Huxley
calculations for periods of time that include many Δt cycles.

16. Examine the results of exercise 14. Write a computer procedure that, given vm, computes α
and β for n, m, and h.

a. Give a listing of the code needed. It should handle satisfactorily the special cases of vm.

b. Use the code to make an 8-column table, where the columns are (1) the line number, (2)
the vm value, (3)–(8) α and β for n, m, and h. Let the rows extend from vm of 0 up to
vm of 50, in 5 mV steps.

17. Write a computer program that begins with the data given in Table 13.2 and the state variables
of set A (Table 13.3). Write code that finds and displays the results of all parts of Exs. 4–8.
After completing the program, use it again with the state variables changed to those of set
B (Table 13.4), but no other changes. The computer program then should find the results of
Exs. 9–12.
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18. Write a computer program that begins with the following input values.

Membrane v17.1 March 28, 2005 RB

deltaTime: 50 microseconds

StimAmplitude: 200

StimDuration: 150

HH: EK -72.100 ENa 52.400 EL -49.187

HH: gbarK 36.0 gbarNa 120.0 gL 0.3

HH: n 0.31768 m 0.05293 h 0.59612

HH: Cm 1.00 Temper 6.30

HH: gK 0.367 gNa 0.011

HH: Vm -60.000 Vr -60.000

Write code so that the program operates cyclically through successive Δt intervals. Print an
output table corresponding to the output table below. Compare carefully the results for all
lines, but compare results especially carefully for lines 5 and 8.

The output table is constructed in the following way: The value of loopcnt (column 1) is the
number of computation loops completed by the program. The corresponding time, given in
integer microseconds, is shown in column 2. Note that the time origin is selected so that the
first stimulus occurs at a time of zero; however, some calculation prior to that time is useful
to establish the baseline.

The stimulus current at each moment is tabulated in column 3. A nonzero value of stimulus
current is present in the output table when the stimulus will be nonzero during the subsequent
Δt. Thereby, the total current is listed as nonzero at time zero and zero at 150 microseconds,
when the stimulus ends.

The vm value in the 4th column produces the n, m, h values in columns 6, 7, and 8. The
vm time derivative vdot (5th column) is determined in the program once vm, n, m, and h are
known.

Output Table, deltaTime=50 usec

loopcnt time Is Vm vdot n m h

0 -200 0.0 -60.000 -0.0 0.31768 0.05293 0.59612

1 -150 0.0 -60.000 -0.0 0.31768 0.05293 0.59612

2 -100 0.0 -60.000 -0.0 0.31768 0.05293 0.59612

3 -50 0.0 -60.000 -0.0 0.31768 0.05293 0.59612

4 0 200.0 -60.000 200.0 0.31768 0.05293 0.59612

5 50 200.0 -50.000 193.2 0.31768 0.05293 0.59612

6 100 200.0 -40.339 187.5 0.31934 0.06726 0.59343

7 150 0.0 -30.965 -16.1 0.32308 0.09804 0.58617

8 200 0.0 -31.769 -3.2 0.32925 0.14894 0.57257

19. Continuing from Ex. 18, extend the duration of the time period that is simulated.

a. After 200 μsec, does Vm continue to become more negative, as vm does between 150 and
200 microseconds?
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b. What is Vm at 1000 μsec?

20. Reduce Δt. Begin with these membrane parameters:

Membrane v17.1 March 28, 2005 RB

deltaTime: 50 microseconds

StimAmplitude: 200

StimDuration: 150

HH: EK -72.100 ENa 52.400 EL -49.187

HH: gbarK 36.0 gbarNa 120.0 gL 0.3

HH: n 0.31768 m 0.05293 h 0.59612

HH: Cm 1.00 Temper 6.30

HH: Vm -60.000 Vr -60.000

21. Compare program results at 700 μsec from the start of the stimulus for two choices of dt, to
see how much the results change. Compute the difference as the value when Δt = 2 minus
that when Δt = 50.

a. Vm.

b. n.

c. m.

d. h.

Use these values to start the simulation:

deltaTime: 2 or 50 microseconds

StimAmplitude: 200

StimDuration: 150

EK -72.100 ENa 52.400 EL -49.187 mV

gbarK 36.0 gbarNa 120.0 gL 0.300 mS/cm2

n 0.31768 m 0.05293 h 0.59612

Vm -60.00 Vr -60.00 MV

Cm 1.00 uF/cm2

T 6.30 degrees C
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Exercises 22–27 focus on using a computer program to understand what happens in a membrane
that is characterized by the Hodgkin–Huxley equations.

22. Is there a linear relationship between stimulus and response: Rerun the computer code from
Ex. 20, for 2000 μsec. Then make two additional simulation runs, one with a stimulus
amplitude of half as much and the other for a stimulus amplitude of twice as much. Compare
the three outputs (original stimulus amplitude, half, twice). Determine if the output (vm) is
proportional to the input (to the stimulus amplitude) for the time periods identified. Linearity
means that when the input has k times the amplitude, then the output wave shape is unchanged
and has k times the amplitude. (The response can be linear even though the output wave shape
is different from that of the input.) Here there are several outputs, but in this exercise examine
vm. Consider the response to be linear if vm is scaled (within a tolerance of 10%) by the
same factor as the stimulus, for the time period identified.

a. For t ≤ 100 μsec.

b. For t > 200 μsec.

23. Threshold: Use repeated computer runs to find the threshold amplitude that produces an
action potential. Limit the range of evaluation to integer values of the stimulus amplitude, in
units of μA/cm2. Determine the “just-above-threshold" stimulus amplitude for a stimulus of
150-μsec duration that is minimally sufficient to produce an action potential. That is, when
this stimulus amplitude is reduced by one μA/cm2, no action potential follows.

a. What is the just-above-threshold stimulus amplitude, in μA/cm2?

b. What is the just-above-threshold membrane voltage, i.e., vm when the stimulus (that is
just-above-threshold) ends?

Exercises 24 through 27 focus on the time elapsed between the start of the stimulus and sub-
sequent events of membrane excitation and recovery. To complete each exercise, perform a
simulation with the same starting conditions as in exercise 20, except as otherwise given. Answer
the question by inspecting results at each 50 μsec multiple.

24. Time to peak: How long is the time interval from the start of the stimulus to the peak of the
subsequent action potential? For simplicity, judge the peak to occur when vm reaches its
largest positive value when tabulated every 50 μsec. The stimulus amplitude, in μA/cm2, is

a. 50

b. 200

c. 500
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25. Time to return to initial conditions: How much time elapses from the start of the stimulus
to the time when the membrane is stable within the initial-condition envelope? Here “stable
within" means values within the envelope that do not spontaneously move outside the envelope
thereafter. Assume that the membrane is within the initial-condition envelope when the values
of vm are within 0.1 mV of the initial value, and n, m, and h are within .01 of their initial
values.

26. Leakage gL: Leakage conductivity gL seems uninteresting because "leakage" is not gated
and not specific to movement of a named ion species. Nonetheless, the value of gL has
ramifications. In this exercise, some are explored. Reduce the value of gL to 0.01 mS/cm2,
keeping the other membrane parameters the same as in Table 13.2. With the new, lower value
for gL, determine the following:

a. According to the parallel-conductance equation, a constraint among ICl, IK, and INa
exists at rest. Making use of this constraint, find the new value for EL that is required to
maintain the same resting potential, with the new gL.

b. With the new values of gL and EL used in place of those of Table 13.2, how long now is
required, from the start of the stimulus, for the membrane to return to stability within the
initial-condition envelope? (See Ex. 24.) Stimulus: Is = 200 μA/cm2 for 150 μsec.

27. AP from 2nd stimulus: How long must one wait after an initial stimulus to give a second
stimulus that leads to an action potential? Evaluate with the HH model. Give the first
stimulus under the same conditions as Ex. 20. Measure the stimulus interval as the time from
the start of the first stimulus to the start of the second stimulus. To simplify this exercise, limit
consideration to intervals that are integer multiples of 50 μsec. Set a program flag, INaflag,
to 1 when −INa exceeds IK, and set it to zero otherwise. Judge an action potential to occur
when INaflag changes from 0 to 1.1 What is the earliest time that a 2nd stimulus can be given,
and produce a 2nd action potential, if

a. the stimulus current is Is = 50μA/cm2.

b. the stimulus current is Is = 200μA/cm2.

c. the stimulus current is Is = 500μA/cm2.

1 This condition is an arbitrary one chosen for use in this simulation exercise. In an experimental study, a condition
might be based on v̇m. If the preparation were a fiber, a condition might be based on whether the stimulus produced a
propagated response.
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28. Sketch an action potential for nerve.

a. Indicate periods of rest and action.

b. On the sketch, indicate the periods when sodium current has higher magnitude than
potassium or leakage.

c. On the sketch, indicate the periods when potassium current has twice or more the magni-
tude of leakage.

d. On the sketch, use labeled arrows to identify a time when n has the value of n∞ and n
at rest. In two sentences, justify using n∞ as the value of n at rest by explaining the
circumstances when doing so is acceptable, and when not.

Voltage Clamp Exercises. The voltage clamp experimental setup provided an innovative platform
for determining membrane properties. Understanding the voltage clamp allows one to review
carefully the experimental data from which membrane properties are understood, and also allows
one to enjoy some concepts that have been abstracted from the voltage clamp experiments.

29. Which one of the following is the objective of the voltage clamp:

a. Confuse students by introducing an unnecessarily large number of electrodes.

b. Hold membrane current constant while measuring changing Vm.

c. Hold Vm constant to stabilize the membrane current and thereby get an accurate measure-
ment.

d. Hold Vm constant and measure membrane current with time.

e. Obtain a dynamic record of changes in Vm with membrane current.
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30. In a few sentences, explain how a voltage clamp experiment is conducted: What is controlled,
and how, and what is measured?

31. A voltage clamp from rest (Table 13.2) to vm = 20 mV is applied to a resting squid axon.
What is the ratio of the potassium conductance that results after a long time divided by the
potassium conductance just after the voltage transition. (Provide this ratio based on analysis
using the HH equations. A computer simulation is unnecessary.)

32. The voltage clamp experiment allows an evaluation of the dynamics of channels and gates.

a. In a few sentences, describe what “gates” are all about, and why gating variables such as
m are raised to powers.

b. For current IK, the differential equation that describes changes in the fraction of open
potassium gates (n4) requires that n satisfy

dn

dt
= αn(1− n)− βnn

In a sentence or so, describe the significance of each variable and term on the right of this
equation.

Exercises 33 to 37 refer to Figure 5.7. These exercises provide an opportunity to review the
particulars of the experimental arrangement created for the voltage clamp.

33. Current is generated between which pair of electrodes?

34. The membrane voltage is measured between which pair of electrodes?

35. The membrane current is measured between which pair of electrodes?
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36. The measurement between the electrodes used for getting the membrane current actually
provides the measured value of the voltage between the electrodes. What other experimental
measurement must be available to allow the investigators to learn the membrane current?

37. The value described as being measured in Ex. 35 can also be calculated from the following
data, derived from [6]:

a. radius to electrode C = 2mm.

b. radius to electrode D = 12mm.

c. conductivity of extracellular medium = 0.01 S/cm.

d. width of space-clamped region = 7 mm.

Exercises 38–42 refer to Figure 5.9, which shows ionic current following a voltage clamp. For
37 and 38 focus on the 91-mV trace. For 40–42 focus on the 117-mV trace.

38. The flow of what ion dominates the curve during the period from 1 to 2 msec?

39. In which direction is the net current flow from 1 to 2 msec?

40. Which ion dominates the curve during the period from 3 to 4 msec?

41. Why does this trace fail to fall below the horizontal axis?

42. What is the time period during which Na+ flow dominates this trace?
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Exercises 43–47 picture a voltage clamp that shifts from Vm at –60 mV to Vm = 15 mV. At first
the clamp is performed with the normal composition of [Na]i = 15 mM and [Na]o = 180 mM.

43. The early current is carried by which ion, and crossing in which direction?

44. The steady-state current is carried by which ion, and crossing in which direction?

45. If the voltage clamp is repeated such that the sodium current is abolished, what extracellular
medium changes are necessary? (Be specific and quantitative.)

46. If the voltage clamp at Vm = 15 mV is conducted with 10% sodium seawater ([Na]o = 18.0
mM), how does the sodium current magnitude and time course compare with that under
normal conditions? (Be specific and quantitative.)

47. How does the potassium ion flow compare during the voltage clamp under normal, zero
sodium flux, 10% sodium seawater conditions?

Analytical and numerical questions arising from the voltage clamp are presented in the next
set of exercises.

48. Make plots of all the quantities listed over a vm range of 0 to 100, with a resolution of 1 mV
or less.

a. αm versus vm.

b. βm versus vm.

c. αh versus vm.
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d. βh versus vm.

Inspect these plots to answer the following questions.

e. The units ofαm are msec−1, e.g., “per msec.” Note that sometimesαm has a value greater
than 1. It would seem that, if αm is greater than 1, m will increase beyond unity within a
millisecond. However, because m is a probability, that is not possible. Explain.

f. Explain the significance of the h-related curves having lower magnitudes than the m
related curves, in general.

g. For a given value of vm (choose examples), what is the significance of α having a greater
value than β, or vice versa.

49. A membrane that follows the HH rules is subject to a voltage clamp. The clamp begins at the
tissues resting potential of vm = 0 mV and then abruptly shifts vc = 100 mV more positive,
where it remains constant. Find:

a. The analytic solution of the equation for dm/dt.

b. The analytic solution of the equation for dh/dt.

c. Write a program that plots m3h as a function of time. The answer to this exercise is the
resulting plot. Note that this plot is proportional to the value of gNa as a function of time.
That is, it shows how the sodium conductance changes as a function of time. As such, it
should be quite similar to one of the plots shown in the text.

50. This exercise deals with potassium and sodium conductances. In all graphs below, be sure
to make a calibrated time scale. The conductance axes need not be calibrated absolutely, but
should be consistent in relative magnitude from graph to graph.

a. Draw graphs of voltage versus time that describe the potassium conductance following
a voltage step from rest to a clamped transmembrane potential of (a) about 30 mV from
rest, and (b) about 90 mV from rest.

b. Draw graphs of voltage versus time that describe the sodium conductance following a
voltage step from rest to a clamped transmembrane potential of (a) about 30 mV from
rest, and (b) about 90 mV from rest.
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In a few sentences, summarize the circumstances when the sodium conductance exceeds the
potassium conductance, in terms of voltage level and time.

51. The following whimsical exercise allows one to explore an HH-type mathematical model
that has a different outcome: The current flow during the action potential of the very short-
lived creature Giganticus was studied by George and Gimmy (GG), who developed the GG
equations. These started with the familiar form:

I = INa + IK + IL + IC

GG found that in the special habitat of Giganticus, the following unusual relationships applied:

I, IL, IK = 0, INa = gvm

with g = 2, and vm = −10 at t = 0. Analytically, find the solution for vm(t).

a. Although GG believed they had solved the puzzle of Giganticus, they wished to confirm
the result by a numerical method that would begin with the same information used in Ex.
12, get an expression for dvm/dt, and use it to find vm(t) numerically.

b. Show the equation for dvm/dt.

c. Being somewhat naive, GG chose a value of Δt of 2 msec. What were the values of vm
that were computed for 2 and 4 msec?

Electrophysiology Experiments (Exercises 52–60): These exercises explore the electrophysi-
ological characteristics of HH membranes through a series of simulated experiments framed in
terms that might have been used in an experimental electrophysiology laboratory. Performing the
experiments requires one to have a simulation program for a Hodgkin–Huxley membrane, such
as the simulation program developed in the exercises above.

52. Threshold and strength–duration. Start with a simulation duration of 10 msec and a stimulus
duration of 20 μsec (microseconds). Increase the stimulus amplitude until an action potential
is produced.

a. Find the threshold—the amplitude that just produces an action potential, while a decrease
to 90% of that amplitude fails. What is this amplitude?

b. What happens to the timing of the action potential for amplitudes just above threshold?

c. Increase the duration to 50 μsec and again find the threshold. Then do the same for a
duration of 100, 200, 500, and 1000 μsec. Plot these points as a strength–duration curve.
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53. Membrane conductances. Determine the membrane conductances as a function of time, from
the time of the start of the stimulus to the end of the first action potential.

a. What are the resting values of the conductances gNa and gK? (Use the tabular form of
output to get numerical values.)

b. Plot the changes in these conductances during and following the action potential. Be sure
to use a large vertical scale. Consider log as well as linear calibration for the scale. What
are the largest values the conductances reach?

c. By what factors does each one change during the action potential? (make a ratio of the
largest value over the smallest value).

54. Refractory period. Set the stimulus duration to 20 msec. Set the stimulus to start at time
zero, with a duration and amplitude adjusted to produce an action potential within 1 msec
after the stimulus begins. At 8 msec, initiate a second stimulus pulse with the same duration
and amplitude.

a. What kind of response does the 2nd stimulus produce?

b. By looking at the time course of the membrane conductances, can you tell why the response
is different from the response to the first stimulus?

c. Find the threshold stimulus amplitude at 8 msec. Also, find the threshold stimulus for
delays of 6, 7, 10, and 15 msec.

d. Does the threshold stimulus for the second action potential have a simple relationship to
the delay? What is the relationship?

55. Temporal summation. Use a simulation duration of 10 msec. Decrease the amplitude of both
stimuli to about 60% of the stimulus threshold (for membrane at rest).

a. What happens when the delay time of the second stimulus is reduced to 1 msec?

b. By looking at the time courses of the conductances, can you explain why a second sub-
threshold stimulus could cause an action potential after the first one failed?

c. Increase the time until the onset of the 2nd stimulus. At what interval does neither stimulus
produce an action potential?
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56. Anode break excitation. Shut off both stimulus pulses by setting their amplitudes to zero.
Change the initial membrane potential to −− 105 mV.

a. Record what happens during the first 10 msec. This phenomenon is called “anode-break
excitation” because excitation occurs after shutting off a hyperpolarizing (anodal) pulse
of current if the amount of hyperpolarization is sufficiently large.

b. Study the membrane conductance and describe why this excitation occurs.

57. Constant stimulus current. Apply a stimulus that has 50-msec duration and describe what
happens during the first 50 msec following the stimulus onset,

a. if the stimulus has an amplitude of 10 μA/cm2.

b. if the stimulus has an amplitude of 50 μA/cm2.

c. For part (b), how does the action potential waveform compare with normal ones.

58. Temperature effects. observe the effects of increasing the temperature from 6.3◦C to 12.6◦C,
and then to 26◦C (approximately room temperature).

a. Does the duration of the action potential change? (Measure the duration as the time
interval when Vm ≥ −40mV .)

b. Does the stimulus threshold change?

c. Does the refractory period change? (Compare the responses to a 2nd stimulus at 8 msec,
as done in the refractory period exercise above.)

59. Ionic concentrations. Try varying the external medium by changing the parameters. Describe
qualitatively the result of each of the following:

a. Double [Na]i

b. Double [K]e

c. Increase [K]e times 10.
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13.6. EXERCISES, CHAPTER 6: IMPULSE PROPAGATION

Exercises 1–3 deal with elements of the core-conductor model, and their units.

1. In the core-conductor model, what units often are used for each of the following:

a. cm, the core-conductor’s membrane capacitance.

b. rm, the core-conductor’s membrane resistance.

c. ri, the core-conductor’s intracellular resistance.

d. Ri, the intracellular resistivity.

2. Consider a cylindrical HH fiber at rest. The radius of the membrane is 30 micrometers.
Extracellular currents flow to twice the membrane radius. The extracellular resistivity is 50
Ωcm. The intracellular resistivity is three times that of the extracellular. The membrane
capacitance is 1 μF/cm2. The HH resting conditions apply. The fiber is passive. Find each
of the following, in suitable units, using the linear core-conductor model:

a. What is the membrane resistivity, Rm?

b. What is the membrane resistance rm?

c. What is the intracellular resistance per unit length ri?

d. What is the extracellular resistance per unit length re?

3. A cylindrical fiber’s membrane has a certain radius. The intracellular volume is within this
radius. The extracellular volume is outside the membrane extending to a radius of twice this
amount. (The membrane itself is considered to have negligible thickness relative to these
dimensions.) The membrane resistance at rest is 2,000 Ωcm2, and the membrane capacitance
is 1.2 μF/cm2. The intracellular resistivity is 100 Ωcm, and the extracellular resistivity is
40 Ωcm. The radius is 50 μm. Find each of the following, in suitable units. Use the linear
core-conductor model.

a. What is the membrane resistance per unit length?
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b. What is the membrane capacitance per unit length?

c. What is the intracellular resistance per unit length?

d. What is the extracellular resistance per unit length?

Exercises 4 and 5 deal with the relations among transmembrane potential, axial current, and
transmembrane current.

4. A cylindrical fiber is represented by the core- conductor model. Known quantities are the
following: the transmembrane potential, Vm(x), the fiber’s radius a, and intracellular and
extracellular resistances ri and re. Note that ri and re are in “unit length” form. At the time
of interest, there is no stimulus of any kind. Write the mathematical expression by which
each of the following can be found, from the known quantities.

a. Intracellular axial current Ii.

b. Extracellular axial current Ie.

c. Transmembrane current (per cm2) Im.

5. A cylindrical fiber is represented by the core- conductor model. The upstroke of the trans-
membrane potential is given by a template function as Vm(x) = 50 tanh(x) (x in mm). The
fiber’s radius is a, and the intracellular and extracellular resistances are ri and re. (Note
that ri and re are in “unit length” form.) Vm is understood to be the spatial distribution of
Vm at one moment during propagation of an action potential. At this time, which is after
propagation began, there are no stimuli. Give the mathematical expression for the answer,
and plot normalized wave shapes, (wave shapes having peaks scaled to ±1), for each part
below.

a. Plot Vm(x) from x of –4 to 4 mm. Which direction would this action potential be moving?

b. Find and plot Ii(x). At its peak, which is the direction of the current?

c. Find and plot Ie(x). At its peak, which is the direction of the current?
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d. Find and plot Im(x). Interpret the sign of the peaks in relation to the direction of AP
movement.

Exercises 6–11 focus on finding the transmembrane current.

Figure 13.3. Fiber Model for Propagation. The fiber is represented by a network of
electrical components. The continuous fiber lies along the x axis. There is a resistive
extracellular path (along top line) with resistance per length re, a resistive intracellular path
(along bottom line) with resistance per length ri, and a discrete set of membrane crossings.
The fiber is divided into N segments, with crossings numbered 0 to N . Often instruction
examples limitN to five or fewer, but more realistic analysis frequently uses a much larger
number of segments, perhaps 100 to 1000 or more.

6. Figure 13.3 shows a circuit-element representation of a fiber, divided into discrete elements.
The fiber is represented with the core-conductor model. In the representation, the transmem-
brane pathways (rectangular boxes) are numbered starting with 0 at the left end of the fiber.
The transmembrane voltages (in units of millivolts) are v0–v4. Along the longitudinal intra-
cellular path, each segment’s internodal resistance is R ohms. Along the extracellular, it is
r ohms. At the time of interest, Vm varies along the fiber. There are no stimuli at this time.
Answer each part by giving the mathematical expression for the transmembrane current in
terms of R, r, and v0–v4. Note the lower-case v, i.e., deviation from baseline.

a. What is the transmembrane current along transmembrane pathway 1?

b. What is the transmembrane current along transmembrane pathway 2?

c. What is the transmembrane current along transmembrane pathway 3?
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7. In the fiber of Figure 13.3 and Ex. 6, what is the transmembrane current (per cm2) along
pathway 3?

8. What is the transmembrane current I0 (mA) along crossing 0?

9. What is the transmembrane current I0
m (per cm2) along pathway 0?

Table 13.5. Hodgkin–Huxley Membrane, Resting Values

Name Value Units Description

Vr -60 mV transmembrane resting voltage
Vm -60 mV transmembrane voltage at rest
[Na]i 49.5 mM Internal sodium concentration
[Na]e 437.0 mM External sodium concentration
[K]i 397. mM Internal potassium concentration
[K]e 20. mM External potassium concentration
EK -72.100 mV potassium equilibrium potential
ENa 52.4 mV sodium equilibrium potential
EL -49.187 mV leakage equilibrium potential
Cm 1.0 μF/cm2 Membrane capacitance
T 6.3 degrees C Membrane temperature
n 0.31768 – gating probability n
m 0.05293 – gating probability m
h 0.59612 – gating probability h
gNa 120.0 mS/cm2 Max Na conductance (a constant)
gK 36.0 mS/cm2 Max K conductance (a constant)
gL 0.3 mS/cm2 Leakage conductance (a constant)
gNa 0.011 mS/cm2 Na conductance
gK 0.367 mS/cm2 K conductance

10. Figure 13.3 shows the core-conductor model for a fiber of radius a cm. In this exercise the
radius is 10 micrometers. Assume extracellular current flows according to the core- conductor
model between radius a and radius 2a. Each node is separated from the next by λ/20, where
λ =

√
rm/ri. Here the fiber is at rest (Table 13.5). The extracellular specific resistance is

50 Ωcm. The intracellular specific resistance is three times the intracellular. The stimulus
current is zero. The transmembrane voltages are:

Node Vm

0,2,4,... -59 mV

1,3,5,... -61 mV
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a. What is the transmembrane current (per cm2) for crossing 0?

b. For crossing 1?

c. How much is Δx?

11. Suppose one again considers the question asked in Ex. 10 with everything the same except
for a new set of transmembrane voltages. Here the transmembrane voltages are

Node Vm

0,2,4,... -54 mV

1,3,5,... -66 mV

a. What is the transmembrane current (per cm2) for crossing 0?

b. For crossing 1?

Exercises 12–15 focus on transmembrane potential changes with time.

12. Suppose, in the questions posed in Ex. 4, other quantities are known for the cylindrical fiber,
including ionic current, Iion(x), and the membrane capacitanceCm. For a particular point xo
along the fiber, what is the rate of change (with time) of the transmembrane potential? The
answer will be a mathematical expression that is a function of time t.

Exercises 13 and 14: These exercises imagine circumstances built around the grid representation
of a fiber, as shown in Figure 13.3. The exercises picture the voltages across all the transmembrane
pathways as fixed, except for crossing 3. Those crossings to the left of crossing 3 are clamped
to one transmembrane voltage, and those to the right of crossing 3 are clamped to another. At
crossing 3 the transmembrane voltage starts at the resting voltage. Then, over time, the voltage
changes.

The questions ask, in various forms, what happens at crossing 3. In particular, they ask one
first to find the time when the rate of change of the transmembrane potential at crossing 3 is a
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maximum.2 Then the values of several other quantities are asked, for the time when ∂V 3
m/∂t is

at its maximum. (Superscripts such as the numeral 3 identify the crossing’s number.)

Finding solutions for Exercises 13 and 14 will require the student to have (or create) a computer
program that can follow V 3

m(t) as it changes. Such a program will be an extension of a program
that can find a patch action potential (Chapter 5). It will not need to be a full-blown program for
finding propagating action potentials, as Vm changes, with time, at only one location.

Details of the preparation simulated in exercises 13 and 14 are:

distance between xmem crossings 0.10 cm

intra resistance per cm 10,000,000 ohms/cm

extra resistance per cm 10,000,000 ohms/cm

and

0.32 initial value of n

0.052 initial value of m

0.6 initial value of h

36 mSm/cmˆ2 Max potassium conductance

120 mSm/cmˆ2 Max sodium conductance

0.3 mSm/cmˆ2 Max Leakage conductance

1 $\mu$F/cmˆ2 membrane capacitance

-72.1 mV potassium equil potential

52.4 mV sodium equil potential

-49.2 mV Leakage equil potential

-60 mV resting potential

As a compromise between solution accuracy and length of calculation, use Δt = 20 microseconds.
A smaller time step, such as Δt = 1 microsecond will make the calculation, and especially the
localization in time of the peak derivative more precise, but also will make the calculation more
lengthy. (Often time is kept as an integer value.) Use the HH membrane model and the core-
conductor model as a basis for the calculations required to answer the questions.

13. Determine the maximum dVm/dt under the following conditions.

Vm node 2 -18 millivolts unchanging

Vm node 3 -60 millivolts initial

Vm node 4 -60 millivolts unchanging

a. Within 0.02 msec, when does the maximum dVm/dt occur?

b. What is the maximum dVm/dt value?

2 The maximum dVm/dt time point often is measured in experimental studies and used as a fiducial point. Here one
is asked to locate the maximum value of dVm/dt that occurs at any time in the interval from 0.10 to 10 msec, with the
time interval 0 to 0.10 excluded so as to avoid misleading numerical transients that may occur during the first time step.
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c. What is Vm at the time of the maximum dVm/dt?

d. What membrane current Im is present at the time of the maximum dVm/dt?

e. What membrane ionic current Iion is present at the time of the maximum dVm/dt?

14. This question is the same as the preceding one, except that the transmembrane voltages are
as follows. Note that Vm on the left is much higher in this exercise.

Vm node 2 40 millivolts unchanging

Vm node 3 -60 millivolts initial

Vm node 4 -60 millivolts unchanging

a. When does the maximum dVm/dt occur?

b. What is the maximum dVm/dt value?

c. What is Vm at the time of the maximum dVm/dt?

d. What membrane current Im is present at the time of the maximum dVm/dt?

e. What membrane ionic current Iion is present at the time of the maximum dVm/dt?

15. Stability. In a simulation of a cylindrical HH fiber, investigators have a concern about fluc-
tuations in Vm that are not meaningful. In their problem, the radius of the membrane is 30
micrometers. The fiber is divided into segments having an axial length of 5.761 micrometers.
Extracellular currents flow to twice the membrane radius. The extracellular resistivity is 10
Ωcm. The intracellular resistivity is three times that of the extracellular. The membrane ca-
pacitance is 1 μF/cm2. At the start of the simulation, the HH resting conditions apply (Table
13.5).

a. What is the mesh ratio?

b. Does the mesh ratio indicate the likelihood of stability or instability?

c. If the calculation turns out to be unstable, what will be the manifestation of that problem?
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d. What step might be taken to improve the likelihood of a stable calculation?

e. Does instability in fact occur?

For Exercises 16–26, assume that the upstroke of a uniformly propagating action potential is
described by the Vm template equation (13.3):

Vm(x, t) = 50 tanh
[
t− (x− x0)

θ

]
(13.3)

In (13.3) Vm is in mV, t is time in msec, and x is distance along the axis in mm. Distance x0 is
a constant, in mm, and θ is the velocity of propagation, in mm/msec (i.e., in m/s). Assume the
fiber radius is 50 μm, the intracellular resistivity 100 Ωcm, and the extracellular resistivity 0.

Use of mathematical functions such as hyperbolic tangent to create artificial Vm waveforms as a
function of time and space is useful, in that the template function can be used to give one insight
across a wide range of responses in space and time, and as calibration waveforms for equipment
or display. One can regenerate them much more quickly than experimental measurements, even
with HH simulations. Even so, one must keep in mind that the waveforms may be similar to real
action potentials in some respects but differ markedly from real action potentials in other respects.
For example, the wave shape defined in (13.3) does not show effects at fiber ends, with stimuli, or
in response to changes in rate of stimulation. Also, the tanh waveform is unnaturally symmetric.
Further, the tanh template function as given models only the action potential upstroke; thus it
leaves out the recovery phase. Even so, in part because of the simplification that it embodies, use
of the template waveform allows other fundamental relationships in time and space to stand out,
and thus to be more evident to the student.

16. Using Eq. (13.3) with the assumptions of the core-conductor model. derive an equation for
the longitudinal current Ii(x, t).

17. Using Eq. (13.3) with the assumptions of the core-conductor model, derive an equation for
the longitudinal current Ie(x, t).

18. If x0 = 2 mm and θ = 2 m/sec, plot Vm(t) as it will be seen at x = 10 mm.

19. If x0 = 2 mm and θ = 2 m/sec, plot Vm(x) as it would exist at t = 3 msec.
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20. Under the same conditions as in Ex. 19, plot Ii(x).

21. Under the same conditions as in Ex. 19, plot Ie(x).

22. Under the same conditions as in Exs. 19–21, make a diagram of a fiber and draw on it arrows
indicating by their position and direction for the following:

a. membrane current im due to Na.

b. Ii.

c. membrane current through the membrane capacitance.

d. Ie.

23. If x0 = 10 mm and θ = −2 m/sec, plot Vm(x) as it would exist at t = 3 msec.

24. Under the same conditions as in Ex. 23, plot Ii(x).

25. Under the same conditions as in Ex. 23, plot Ie(x).

26. Under the same conditions as in Exs. 23–25, make a diagram of a fiber and draw on it arrows
indicating by their position and direction:

a. membrane current im due to Na.

b. Ii.

c. membrane current through the membrane capacitance.
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d. Ie.

Exercises 27–36, Electrophysiological Experiments: These exercises correspond to possible
procedures in an experimental study, and are framed in similar language. Performing the exper-
iments requires a simulation program for propagation using the Hodgkin–Huxley equations.

Replicate the classical Hodgkin–Huxley results for the giant axon of the squid by using the follow
ing fiber parameters:

Fiber characteristics.

Assume a cylindrical fiber as described in the text.

Length 30 cm

Nodes 0 to 600 spaced .05 cm along axial direction.

Radius a 300 um Extracellular current flows to 2a.

Ri 30 ohm-cm so ri = 0.1061e5 ohm/cm

Re 20 ohm-cm so re = 0.2357e4 ohm/cm

Set temperature to 6.3◦C initially. For comparative results, recall that 12.6 and 18.9◦C correspond
to some HH results, and 25◦C is roughly room temperature.

Unless given otherwise, stimulate the fiber with a pair of extracellular electrodes, one at the left
end (crossing 0) and the other at the right end (crossing 600). Make the stimulus current equal
in magnitude, opposite in sign, at every moment. Choose the polarity so that the stimulus at the
left end depolarizes the fiber.

One may wish to compare results to the simulation results given in the simulation figures of
Chapter 6, which were based on the parameters above.

The following electrophysiological experiments are similar to those for a membrane patch (Chap-
ter 5). It is useful to compare the results, as that demonstrates the powerful changes produced by
the fiber’s geometry.

27. Time Step. Determine a suitable value for Δt, using the fiber parameters above, and the mesh
ratio.

28. Threshold and strength–duration. Start with a simulation duration of 10 msec and a stimulus
duration of 100 microseconds (μsec). Increase the stimulus amplitude until an action potential
is produced. Judge the presence of an action potential by whether one later appears at the
midpoint of the fiber.

a. Find the threshold—the amplitude that just produces an action potential, while a decrease
to 50% of that amplitude fails. What is this amplitude?
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b. What happens to the time interval between the start of the stimulus and the midpoint of
the action potential’s upstroke, for stimulus amplitudes just above threshold?

c. Increase the duration to 200 μsec and again find the threshold. Then do the same for a
duration of 500 and 1000 msec. Plot these points as a strength–duration curve.

d. Compare the strength–duration curve obtained above to that for a patch (Chapter 5).
Explain the differences that are present.

29. Membrane conductances. Determine the membrane conductances as a function of time, at
the left end, center, and right end of a fiber, from the time of the stimulus throughout an action
potential.

a. Plot the changes in these conductances during and following the action potential. Use a
large vertical scale, and consider a log scale. What are the largest values the conductances
reach, at any one of the three sites?

b. Are the conductance waveforms the same at all three sites?

c. By what factors does each one change during the action potential? (make a ratio of the
largest value over the smallest value).

30. Refractory period. Set the stimulus duration and amplitude to produce an action potential
within 1 msec of the start of the first stimulus, and set the stimulus duration to the time for
propagation from one end of the fiber to the other, plus 20 msec. Initiate a second stimulus
pulse with the same duration and amplitude, but starting at 8 msec.

a. Does the 2nd stimulus produce a propagating action potential, as judged by what happens
at the middle of the fiber?

c. If necessary, increase the stimulus amplitude of the stimulus at 8 msec, until it does
produce a propagating action potential, as observed at the center of the fiber.

d. With the stimulus determined in part C, is the time interval between the upstroke of the
first and of the second action potentials, as observed at the center of the fiber, 8 msec?
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31. Temporal summation. Use a simulation duration of 10 msec. Decrease the amplitude of both
stimuli to about 60% of the stimulus threshold (for membrane at rest).

a. What happens when the delay time of the second stimulus is reduced to 1 msec?

b. By looking at the time courses of the conductances, can you explain why a second sub-
threshold stimulus could cause an action potential after the first one failed?

c. Increase the time until the onset of the 2nd stimulus. At what interval does neither stimulus
produce an action potential?

32. Anode break excitation. Set the stimulus duration to 5 msec. Set the stimulus magnitude in
such a way that the hyperpolarizing electrode stimulus displaces the transmembrane potential
to approximately −105 mV.

a. Record Vm(t) throughout the hyperpolarizing stimulus and during the first 10 msec after
the stimulus ends, at the hyperpolarized end of the fiber. (The phenomenon seen is called
“anode-break excitation” because excitation occurs after shutting off a hyperpolarizing
(anodal) pulse of current if the amount of hyperpolarization is sufficiently large.)

b. List values for n, m, and h, and values for conductances gK and gNa, at the start and at
the end of the hyperpolarizing stimulus. Give values for IK and INa immediately before
and after the stimulus, when the transmembrane is (or returns to) its resting value.

c. Based on the data in parts A and B, explain why anode-break excitation occurs.

33. Constant stimulus current. Apply a stimulus that has an extended duration of 50 msec duration.
Set the magnitude high enough to initiate an action potential.

a. What happens if the stimulus has a minimal amplitude?

b. What happens if the stimulus has a 5 times this amplitude?

c. How do the wave shapes compare with those of normal action potentials.
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34. Temperature effects. Describe the effects of increasing the temperature to temperatures of
6.3, 12.6, 18.9, and 25◦C. (All are within the physiological range for squid.)

a. Make a table showing the propagation velocity at the center of the fiber, as compared to
the temperature.

b. Make a table showing the threshold stimulus amplitude as a function of temperature, for
a stimulus duration of 200 μsec.

c. Describe the results of [A] and [B] in a few sentences. What effects were observed as
temperature changed?

35. Ionic concentrations. Vary the ionic concentrations in the external medium. Describe quali-
tatively the result of each of the following. In particular, and describe any changes in initial
conditions or in response to a stimulus of 200 μsec duration that would have twice threshold
amplitude with standard concentration values.

a. Double [Na]i.

b. Double [K]e.

c. Increase [K]e times 10.

36. Spatial extent. Simulate the propagation of two successive action potentials on a squid axon
fiber.

a. How short an interval can there be and still excite a second action potential, as judged at
node 0?

b. How short an interval can there be and still excite a second action potential, as judged at
the center of the fiber?

c. Use the stimulus interval and amplitude that results in two action potentials at the center
of the fiber. Plot the spatial distribution Vm(x) at that time. How many action potentials
exist along the fiber at that time?
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13.7. EXERCISES, CHAPTER 7: ELECTRICAL STIMULATION OF EXCITABLE
TISSUE

Exercises 1–4 deal with stimulation terminology and units. In 1–3 fill in the blank with the one
word needed.

1. Examining a stimulus–duration curve, one sees a curve that is high when durations are near
zero, but declining to a low value as duration increases to its the longest practical value. The
limiting low value is called: .

2. In a preparation with no spatial variation, to a good approximation an action potential will
follow if the stimulus brings the voltage above a certain value.

3. With a long stimulus the transmembrane potential needs to reach only a minimum value, at
the end of the stimulus, and only a minimal amplitude of the stimulus current is required to
produce this transmembrane potential. Suppose one wishes to reach the same transmembrane
voltage, but more quickly, and thus a stimulus current of twice the minimal amount is used.
Then is the time duration required for the stimulus to reach the same
transmembrane potential at the end of the stimulus.

4. Give suitable mks units for each of the following:

a. chronaxie

b. rheobase

c. threshold

Exercises 5–10 deal with a spherical cell that responds to stimulation according to the model
given in the text. An important characteristic of the model is that spherical symmetry causes
the intracellular stimulus to produce a uniform transmembrane current everywhere on the mem-
brane. The cell’s membrane has membrane resistance of R (Ωcm2) and membrane capacitance
C (μF/cm2). An experimenter tests the cell and finds that as the stimulus duration becomes very
long, the minimal stimulus that produces an action potential has stimulus current magnitude a
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μA/cm2. This applied current produces a transmembrane voltage ofW mV at the end of the stim-
ulus. A 2nd stimulus is applied after the membrane has returned to rest. The above conditions
apply to all exercises 5 to 10 unless noted otherwise.

5. A stimulus of shorter duration, 0.5 msec, also produces an action potential, if it has a sufficient
current magnitude. In the 2nd stimulus, what is the magnitude of the minimal transmembrane
current required to produce an action potential? Give the formula, including any conversion
factors needed for the answer to be expressed in μA/cm2.

6. A stimulus of duration 3 msec also produces an action potential, if it has a current magnitude
i. In the 2nd stimulus, what is the magnitude of the threshold transmembrane voltage?

7. By changing the stimulus duration over a range of times the investigator finds that the mem-
brane has a time constant of U msec. A stimulus of shorter duration, 1.5 msec, also produces
an action potential, if it has a sufficient current magnitude. What is the formula for the mem-
brane capacitance, in terms ofU andR? Include any conversion factors needed for the answer
to be expressed in μF/cm2.

8. A stimulus of shorter duration, 4 msec, also produces an action potential, if it has a current
magnitude i. What is the magnitude of the transmembrane resistance? Respond with a
formula for R. Include any conversion factors necessary for the result to be expressed in
Ωcm2.

9. A stimulus of shorter duration, 1.5 msec, and strength i also produces an action potential.
A separate series of measurements by the investigator showed that the time constant of the
membrane to be M milliseconds. How much is rheobase? Respond with a formula based on
the known quantities. Include any conversion factors needed for an result in millivolts.

10. A stimulus of very short duration d msec requires a stimulus current of magnitude at least
i μA/cm2 to induce an action potential. A stimulus of intermediate duration, D msec also
produces an action potential if the current is I μA/cm2 or more. Following the experiment,
the investigator spoke with the flowers on the Duke campus (smile) and learned that the cell’s
time constant τ could be found from the above data and compared to the expected value.
What is the formula that gives the time constant?
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Exercises 11–14 are numerical questions about an idealized spherical cell. Investigation of the
response to stimuli of the spherical cell used transmembrane stimulation, with a current source
inside the cell and current sink outside. Spherical symmetry was preserved. The cell responded
according to the model described in the text. Each question provides several items of numerical
data and anticipates a numerical answer in specific units.

11. With a long stimulus, the lowest stimulus current that would produce an action potential had
magnitude 2 μA/cm2, and the transmembrane voltage at the end of that stimulus was 20
millivolts. For shorter stimuli, the investigator set a stimulus duration and then carefully tried
stimuli of different current magnitudes until the current was found that produced, at the end
of the stimulus, the threshold voltage for an action potential. What was rheobase for results
of:

duration current
(msec) (μA/cm2)

1 21.016
3 7.716

12. With a long stimulus, the lowest stimulus current that would produce an action potential had
magnitude 10 μA/cm2, and the transmembrane voltage at the end of that stimulus was 20 mV.
For shorter stimuli, the investigator set a stimulus duration and then carefully tried stimuli
of different current magnitudes until the current was found that produced, at the end of the
stimulus, the threshold voltage for an action potential. What is the membrane resistance (in
Ωcm2), if other results were:

duration current
(msec) (μA/cm2)

1 25.414
3 12.872

13. With a long stimulus, the lowest stimulus current that would produce an action potential had
magnitude 10 μA/cm2, and the transmembrane voltage at the end of that stimulus was 20
millivolts. Moreover, the membrane was found to have a time constant of 2.4 msec. Using
shorter stimuli, the investigator set a stimulus duration and then carefully tried stimuli of
different current magnitudes until the current was found that produced, at the end of the
stimulus, the threshold voltage for an action potential. What stimulus current is needed for a
stimulus duration of 0.2 msec, if other results were as shown in the table. Give a numerical
answer, in μA/cm2.
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duration current
(msec) (μA/cm2)

1 29.346
3 14.015

14. With a long stimulus, the lowest stimulus current that would produce an action potential had
magnitude 10 μA/cm2, and the transmembrane voltage at the end of that stimulus was 20
millivolts. For shorter stimuli, the investigator set a stimulus duration and then carefully tried
stimuli of different current magnitudes until the current was found that produced, at the end
of the stimulus, the threshold voltage for an action potential. What is the membrane time
constant, for the results given in the table. Answer in msec, within 5%.

duration current
(msec) (μA/cm2)

1 25.414
3 12.872

15. Using a conventional strength–duration curve

Ith =
IR

1− e−Kt
determine the expression for minimum charge injection to reach a stimulus threshold Vt.

16. A spherical cell has a radius of 100μm. Its membrane has a specific capacitance of 1.0μ
F/cm2 and a leakage resistance of 2000 Ωcm2. A current of strength 0.0005 μA is introduced
intracellularly and flows outward to a distant grounded electrode in the surrounding uniform
unbounded medium. The pulse duration is 2 msec. Calculate and plot the transmembrane
potential for the period 0–5 msec.

Cylindrical Fiber Exercises 17–19 deal with parameters of a cylindrical fiber. Solve each one
using the core-conductor model. Unless otherwise specified, extracellular currents extends to
twice the membrane radius, and the membrane has Hodgkin–Huxley (HH) characteristics.
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17. In a cylindrical HH fiber at rest, what is the space constant? The radius of the membrane is
30 micrometers. Extracellular currents flow to twice the membrane radius. The extracellular
resistivity is 50 Ωcm. The intracellular resistivity is three times that of the extracellular. The
membrane capacitance is 1 μF/cm2. The standard HH resting conditions apply. The fiber is
passive.

18. Find the space constant, for the data given in the table.

150 mem radius microns
200 width microns (of segment)
200 intra resistivity Ωcm
50 extra resistivity Ωcm
0.9 mem capacitance μF/cm2

1,300 mem resistivity Ωcm2 (at rest)

19. Find the time constant of the cylindrical fiber that has the following characteristics. Extracel-
lular currents extend to twice the membrane radius.

50 mem radius microns
500 width microns (of segment)
100 intra resistivity Ωcm
50 extra resistivity Ωcm
1.2 mem capacitance μF/cm2

1,500 mem resistivity Ωcm2 (at rest)

20. For a fiber under subthreshold conditions, and making reasonable assumptions, how does the
time constant depend on fiber radius?

Field Stimulation Exercises deal with stimuli from locations at a point away from the fiber
membrane.

21. Within a large 3D volume (Figure 13.4), stimulus electrodeE produces extracellular potential
P = S/r at position x. Along the fiber:

a. In terms of S, x, e, h, what is the potential P (x)?

b. What is the activation function A(x)?
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c. If e = 0 and h = 1, what is the value of the activating function at x = 0? Be sure to
verify the sign of the result.

Figure 13.4. One Field-Stimulus ElectrodeE, located above a fiber. ElectrodeE is located
at coordinates x = xe and y = H . The fiber (thicker line) lies along the horizontal axis at
y = 0. From the perspective of the stimulus, the fiber is considered so small that it does
not affect the potential field created by the stimulus. P (x) is the potential at coordinate
position x along the x axis at y = 0. Distance r is the straight-line distance between the
electrode and the position x, while d is its x component, i.e., the distance between xe and
the site of interest, x.

22. A unipolar electrode is located at e = 5 cm, h = 1 cm. A small fiber lies along the x axis in
a medium of infinite extent. That is, the electrode is a current source. Consider the section
of the fiber lying between x = 0 and x = 10 cm. One approach is to graph A(x) from x = 0
to x = 10.

a. The potential from the electrode is +S/r. That is, the electrode is a current source. How
many cm of the 10 cm length has an activating function that has a positive sign? Give a
numerical answer, in centimeters, within 5

b. The potential from the electrode is −S/r. That is, the electrode is a current sink. How
many cm of this 10 cm length has an activating function that has a positive sign?

c. Can one conclude from the results of parts a and b that a source electrode will be a more
effective stimulus than a sink?

23. Within a large 3D volume, electrodes D and E are located at (x, y) coordinates (d, g) and
(e, h) respectively, as shown in Figure 13.5. The distance from electrode D to position x
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along the fiber is q, and from electrode E is r. The extracellular potential P at position x
produced by a stimulus current at D is S/r and from E is −S/r.

a. Suppose coordinates d and e are zero, and g = 2h. What is A(x) at x = 0?

b. If e is zero and g equals h, what is the formula for A(x) at x = 0?

Figure 13.5. Two Electrodes above a Fiber. Electrodes D and E are at (x, y) coordinates
(d, g) and (e, h), respectively. Distances q and r separate them from position x, where
potential P (x) is to be determined. The fiber to be stimulated is considered to lie along
the horizontal axis at y = 0, and to be small enough as to have no effect on the externally
applied field.

24. Suppose a fiber’s transmembrane potentials are all at rest, e.g., at –70 mV. To initiate exci-
tation in the fiber, potentials within a small region of the fiber must be elevated to a higher
transmembrane potential, e.g., –25 mV. The activating function is used as an indicator of the
effect of a stimulus on the fiber. When looking for a region where excitation is likely to be
initiated, one looks for a region where the activating function is (which one): (a) A(x) > 0,
or (b) A(x) < 0.

Exercises 25 and 26 ask about extrema. An extremum is either a local maximum or a local
minimum. In these exercises, the ends of the interval are not extrema. An effective way to solve
these problems is to graph the function.
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25. A bipolar stimulus pair is located perpendicular to the axis of the fiber. The closer pole is the
sink, and the more distant pole is the source. The sink is 1 cm from the fiber, and the source
sink pair is separated by 1 mm. In other words, electrode E in the figure is the sink and D is
the source. Electrode coordinates are: e = 5, d = 5, h = 1, and g = 1.1. Between 0 and 10
cm, how many extrema are present?

26. A bipolar stimulus pair is located parallel to the axis of the fiber, centered over x = 5.
Electrode E, the sink, is closer to the origin. The closer pole is the sink and the more distant
pole is the source. The center of the source–sink pair is 1 cm from the fiber, and the source
sink pair is separated by 2 mm. That is, in the figure electrode E is the sink and D is the
source. Electrode coordinates are: e = 4.9, d = 5.1, h = 1, and g = 1, all in cm. Between
0 and 10 cm, how many extrema are present?

27. Consider a unipolar electrode E (Figure 13.4). The electrode is a current sink. Consider the
section of the fiber lying between x = 0 and x = 10 cm.

a. Electrode E is located first at e = 5 cm, h = 1 cm. Determine many cm of this 10cm
length has an activating function that has a positive sign. Call this amount length one
(L1).

b. The electrode is now moved away from the fiber, so that e = 5 cm and h = 2 cm. Again
determine how many cm of the 10 cm length has a positive sign. Call this amount L2.

What is the ratio of L2/L1?

28. A bipolar stimulus pair is located perpendicular to the axis of the fiber. The closer pole is the
sink and the more distant pole is the source. The sink is 1 cm from the fiber, and the source
sink pair is separated by 1 mm. That is, in the figure electrode E is the sink and D is the
source.

a. First locate the electrode such that the electrode coordinates are: e = 5, d = 5, h = 0.9,
and g = 1.1. Inspect the graph of the activating function along the fiber, between 0 and
10 cm and determine what length of that 10 cm has a positive activating function. Call
this amount length 1 (L1).

b. Move the electrode so that e and d remain the same but h = 1.9 and g = 2.1. Again
determine the length with a positive activating function. Call this amount length 2 (L2).

What is the ratio L2/L1 = 2?
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Figure 13.6. Two Electrodes above a Fiber. The inter-electrode axis is normal to the fiber
axis. Distance h is the vertical (y-axis) distance to the center of the electrode pair. The
electrodes are separated by distance w. Distance r is the distance from the center of the
pair to position x along the fiber, which is considered to lie along the x axis at y = 0. If the
two electrodes are close enough together, relative to the other dimensions of the problem,
then their effects approach those of a mathematical dipole.

29. Consider the geometry of a bipolar stimulus oriented normal to a fiber, as given in Figure 13.6.
The stimulus electrodes and fiber lie within an unbounded space of resistivity 50 Ωcm. Sup-
pose distance h = 1 cm and separation w = 0.2 cm. Electrode coordinate e is 0 cm. The
electrode closest to the x axis is the sink, and the more distant electrode is the source. The
stimulus current is 25 mA. What is A(x) at x = 0.3 cm?

The following exercises deal with elements of a stimulator design, which thereafter are brought
together into exercises in design format.

30. Batteries often are specified by the voltage and by theirAmpere-hour rating. How much energy
can this battery supply? For simplicity, ignore some of the complexities of real batteries and
assume the battery retains its full voltage until its Ampere-hour capacity is fully used. Give
a numeric answer, in Joules.

a. Suppose a 7.5-volt battery is rated at 0.3 Ampere- hours.

b. Suppose a 1.5-volt battery is rated at 0.4 Ampere- hours.
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31. Stimulators may be implanted in children and used for a lifetime. If a stimulator gives 2
stimuli per second (on average), how many stimuli does it deliver in total over a period of

a. 50 years.

b. 90 years.

32. What is the initial change of vm, with time, at this site, due to the stimulus? The fiber has a
50 μm radius, an intracellular resistivity of Ri = 100 Ωcm, and a capacitance of 1 μF/cm2.

a. A stimulus produces an activating function value of 7 mV/cm2 at a certain site on a fiber
of 50 μm radius. The fiber is immersed in a large volume having resistivity of 50 Ωcm.

b. A stimulus produces an activating function value of 6 mV/cm2 at a certain site. The fiber
is immersed in a large volume having resistivity of 140 Ωcm.

33. A bipolar stimulus electrode (as in Figure 13.6) has two electrodes, a source and a sink. What
voltage between the electrodes is required to produce this stimulus current? Current is in-
jected at the source electrode and removed at the sink electrode. The medium is effectively
unbounded. (For simplicity, ignore electrode–electrolyte voltages, resistances, or other ef-
fects, assume the each electrode is not large enough to modify the field produced by the other,
and ignore any complications from whatever structures hold the electrodes in place.)

a. Each electrode is a spherical conductor that has a radius of 0.15 centimeters. The two
electrodes are separated by 4 cm, center to center. The stimulus produces a rectangular
current pulse of duration 4 milliseconds and current amplitude 25 milliamperes. The
medium has a resistivity of 50 Ωcm.

b. Each electrode is a spherical conductor that has a radius of 0.1 centimeters. The two
electrodes are separated by 3 cm, center to center. The stimulus produces a rectangular
current pulse of duration 1 milliseconds and current amplitude 25 milliamperes. The
medium has a resistivity of 25 Ωcm.

34. What is the magnitude of the stimulus current that the stimulator gives on each stimulus, if
the battery is able to energize 1,000,000,000 stimuli? Suppose the battery can supply 1,000
Joules before the energy in the battery is consumed. Suppose further that the battery is used
to provide energy to a bipolar stimulus electrode. (Such a battery might exist in a pacemaker.)
The voltage between the electrodes produces the stimulus current into the conductive medium.
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Ignore electrode–electrolyte aspects. Batteries tend to change their voltage over time, as they
discharge. Ignore this aspect and assume the battery retains the same voltage throughout its
life until all its energy is used. The stimulus produces a rectangular current pulse of duration
4 milliseconds and amplitude Io milliamperes, into an effectively unbounded medium. Every
current pulse has the same current as every other. Thus, since each stimulus interval consumes
a certain amount of energy, there are only so many stimuli that can be given before the energy
in the battery is entirely consumed.

a. The bipolar stimulus electrode uses a voltage of 210 millivolts between the source and sink
electrodes, which have a radius of 0.1 centimeters. The voltage between the electrodes
produces the stimulus current into the conductive medium.

b. Suppose the battery can supply 1,500 Joules. The bipolar stimulus electrode uses a
voltage of 150 millivolts between the source and sink electrodes, which have a radius of
0.1 centimeters.

Stimulator Design Exercises: Consider each of the stimulator designs given in Exercises 32–34.
In each case, the electrode geometry is that of a bipolar stimulus oriented normal to a fiber, as
given in Figure 13.6. Each stimulus electrode is spherical.

In each design, state whether the design meets requirement 1, requirement 2, both, or neither. A
design meets a requirement if the design fulfills the condition.

35. The electrode radius is 0.01 cm. The stimulus electrodes and fiber lie within an unbounded
space of resistivity 50 Ωcm. Distance h is 0.6 cm and separation w is 0.3 cm. Electrode
coordinate e is 0 cm. The electrode closest to the x axis is the sink, and the more distant
electrode is the source. The stimulus current is 0.01 A and the stimulus duration is 0.002 sec,
and the number of stimuli per second is 2. Function P (x) is the electric potential produced
by the stimulus, as a function of coordinate x.

The fiber to be stimulated lies along the x axis. The fiber has a radius of 0.02 cm, an
intracellular resistivity of 100 Ωcm, and a membrane capacitance of 1 μF/cm2.

Requirement 1: The stimulus voltage (voltage required between the stimulus electrodes to
produce the specified stimulus current) must be less than 10 volts.

Requirement 2: Initial dvm/dt directly under the stimulus electrode must be 25 mV/msec or
more.
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36. Consider the following stimulator design. Its geometry is that of a bipolar stimulus oriented
normal to a fiber, as given in Figure 13.6. Each stimulus electrode is spherical, with a radius
of 0.01 cm. The stimulus electrodes and fiber lie within an unbounded space of resistivity
50 Ωcm. Suppose distance h is 0.6 cm and separation w is 0.3 cm. Electrode coordinate e
is 0 cm. The electrode closest to the x axis is the sink, and the more distant electrode is the
source. The stimulus current is 0.01 A and the stimulus duration is 0.002 sec, and the number
of stimuli per second is 2. Function P (x) is the electric potential produced by the stimulus,
as a function of coordinate x.

The fiber to be stimulated lies along the x axis. The fiber has a radius of 0.02 cm, an
intracellular resistivity of 100 Ωcm, and a membrane capacitance of 1 μF/cm2.

Requirement 1: The stimulus voltage (voltage required between the stimulus electrodes to
produce the specified stimulus current) must be less than 5 volts.

Requirement 2: Initial dvm/dt directly under the stimulus electrode must be 25 mV/msec or
more.

37. Consider the following stimulator design. Its geometry is that of a bipolar stimulus oriented
normal to a fiber, as given in Figure 13.6. Each stimulus electrode is spherical, with a radius
of 0.01 cm. The stimulus electrodes and fiber lie within an unbounded space of resistivity
50 Ωcm. Suppose distance h is 1 cm and separation w is 0.3 cm. Electrode coordinate e is
0 cm. The electrode closest to the x axis is the sink, and the more distant electrode is the
source. The stimulus current is 0.01 A and the stimulus duration is 0.002 sec, and the number
of stimuli per second is 2. Function P (x) is the electric potential produced by the stimulus,
as a function of coordinate x.

The fiber to be stimulated lies along the x axis. The fiber has a radius of 0.0025 cm, an
intracellular resistivity of 100 Ωcm, and a membrane capacitance of 1 μF/cm2.

The power source is a 1 Ampere-hour battery.

Requirement 1: An initially positive dVm/dt occurs from directly under the stimulus electrode
at least half a space constant along the fiber in both +x and −x directions.

Requirement 2: The stimulator’s will have lifetime of 1 year or more.

38. Consider the following stimulator design. Its geometry is that of a bipolar stimulus oriented
normal to a fiber, as given in Figure 13.6. Each stimulus electrode is spherical, with a radius
of 0.01 cm. The stimulus electrodes and fiber lie within an unbounded space of resistivity
50 Ωcm. Suppose distance h is 1 cm and separation w is 0.3 cm. Electrode coordinate e is
0 cm. The electrode closest to the x axis is the sink, and the more distant electrode is the
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source. The stimulus current is 0.01 A and the stimulus duration is 0.002 sec, and the number
of stimuli per second is 2. Function P (x) is the electric potential produced by the stimulus,
as a function of coordinate x.

The fiber to be stimulated lies along the x axis. The fiber has a radius of 0.0025 cm, an
intracellular resistivity of 100 Ωcm, and a membrane capacitance of 1 μF/cm2.

The power source is a 3 Ampere-hour battery.

Requirement 1: An initially positive dVm/dt occurs from directly under the stimulus electrode
at least half a space constant along the fiber in both +x and −x directions.

Requirement 2: The stimulator’s will have lifetime of 1 year or more.

39. Waveform dilemma. An early derivation (“derivation one”) in this chapter finds the pattern
of transmembrane voltage versus distance that results from the stimulus, at steady state.
The pattern shows that a single extracellular stimulus just outside the membrane of a 1D
cylindrical fiber results in monophasic wave shape vm(x). A derivation in a later section
of the chapter (“derivation two”) gets quite a different result after staring from a beginning
point that seems only slightly different. Specifically, derivation two shows that an single
point-source extracellular stimulus a distance from the fiber produces a biphasic waveform
(triphasic if the stimulus is away from fiber ends) for vm(x).

The two waveforms resulting from the two derivations are not compatible, i.e., they are quali-
tatively different to the degree that there is no possibility that one can become the other through
scaling. At first, it would seem that the difference might be explained as the consequence,
in the second derivation, of moving the stimulus away from the fiber. However, note that in
derivation two the distance from the fiber is a parameter h, and h may be chosen to be a low
value, so that the stimulus is placed just outside the fiber membrane, a location that seems
very similar to that of derivation one. When the stimulus of derivation two is located just
outside the membrane, the multiphasic nature of the resulting vm(x) pattern not only does
not disappear but becomes more pronounced, thus emphasizing its incompatibility with the
result of derivation one.

Are both of these derivations correct? If so, explain what it is about the fundamental assump-
tions that are the starting points of each derivation that causes such qualitatively different
results to come about.

Pacemaker Design: Stimulators are used for a large number of experimental and clinical pur-
poses. The following design problem asks you to design a stimulator for clinical use. Some of the
considerations of real stimulator designs are present. Conversely, there are many ways in which
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the clinical problem has been simplified to make it easier to address using material presented
here. The first exercise asks that any solution be found that meets the requirements, while the
following exercise asks for the lowest cost solution, where “cost” is defined within the exercise.

40. You are to design a nerve pacemaker. The nerve pacemaker is to be implanted, and must
function correctly for a minimum of one year without requiring battery replacement. To
perform satisfactorily, the pacemaker must deliver a stimulus to the nerve that will cause
a nerve action potential to result 10 times each second throughout the year of use. The
pacemaker must not miss an interval when it should deliver a stimulus.

Your design should consist of values for the following:

1. The initial battery energy, a single number in units of Joules.

2. The initial battery voltage, a single number in units of Volts.

3. The nominal stimulus duration, in seconds.

Parameters. Since the pacemaker must be designed and built before the patient whom it will
serve has been identified, the precise characteristics of the nerve and its environment are not
known precisely. Parameters have the nominal values given in Table 13.6.

Table 13.6. Parameters for Pacemaker Design

Ri 100 Ωcm
Re 10 Ωcm
Rm 104 Ωcm2

Cm 1 μF/cm2

a 50 μm (radius)

Because the nerve fiber of the person in whom the pacemaker will be implanted may vary
appreciably from the nominal characteristics above, the pacemaker must allow for them.
In a particular patient, it may be that no abnormalities (parameter variations) occur, that
abnormalities occur one at a time, or that abnormalities occur in some combination. The
pacemaker characteristics must allow for any of these possibilities. For simplicity, assume
that if a variation occurs, then any one parameter has one of the following values: (1) its
nominal value; (2) its nominal value plus 20%; (3) its nominal value minus 20%.

Conditions. The threshold voltage VT is assumed to be 25 mV. To pace the fiber, vm must
rise to VT at a point one λ from the pacing site within 0.05 sec.
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The fiber to be paced is infinitely long, and pacing is in the center.

Assume that all battery energy is delivered as pacing pulses, i.e., none is used for other
purposes.

Any abnormality or combination of abnormalities remains the same for the whole year.

Assume that re << ri.

The battery voltage for any pacing pulse should be computed as the initial battery voltage times
the fraction of the initial battery energy left after all previous pulses have been completed.
Assume the battery voltage to be constant throughout any one pacing pulse.

The stimulus current for any pacing pulse should be computed as the current that would leave
a spherical electrode of 25μm radius if the electrode was placed in an infinite medium having
resistivity Re and energized by the battery voltage. Note that the battery voltage will be a
function of time, so the stimulus current will be also.

Duration. Stimulus duration will be assumed to be the nominal value assigned by you.
However, the design of the pacemaker to be used is “smart” and can determine when the
stimulus will not be strong enough to cause an action potential (i.e., will not reach the threshold
voltage before chronaxie). When the pacemaker so determines, it will change the duration of
the stimulus so that the new stimulus duration is 2 times what it was before. If the stimulus
is still insufficient, the stimulus duration will be doubled again, etc., until the duration is
sufficient to make an action potential.

Find any stimulator design that meets the requirements above. A stimulus design consists of
the specification of its battery capacity and its stimulus voltage,

41. Continue with the stimulator design started in the preceding exercise.

Cost. Two major features affect the cost of the pacemaker device you will design. These
are battery capacity (in Joules), and stimulus current (specified in amperes). The cost is
proportional to C1 times battery capacity plus C2 times stimulus current. (For simplicity
in this exercise, both battery capacity and stimulus current are to be constants specified
as part of the design, not functions of time or functions of other membrane parameters.)

The cost of the stimulus is related to the stimulus voltage because higher voltages require
physically larger components. Not only are these more expensive in themselves, but
more expensive surgical procedures are required for pacemaker implantation. To take all
these costs into account, the pacemaker’s cost is, for the purpose of this problem, made
proportional to the initial stimulus voltage.
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Assignment. Consider how to design the best stimulator (i.e., the one that has the lowest cost
but still meets all the requirements). Use the specific cost equation given by the instructor,
which will include values for constants C1 and C2. Determine its battery capacity and its
stimulus voltage, and enter these in the space provided for them on the design sheet for
your team.

Evaluation. Evaluation of your design will be by means of the following procedure:

At the deadline for receiving designs, the parameters of your design and its cost will be
listed. After the deadline, the design team will no longer be allowed to make any further
revisions in the design that was submitted.

The teacher (or assistants) may or may not independently check the design submitted.
The teacher will accept suggestions from students in the class or other members of the
teaching staff as to ways in which particular designs may have design errors.

Design Failures

Battery failure. This error will be considered to occur if, under any allowed sequence of
events, the battery capacity is insufficient to power the stimulator for a full year.

Insufficient stimulus voltage. This failure will be considered to occur if, under any
allowed sequence of events, the design is found to provide insufficient stimulus
voltage to pace the nerve.

Rankings. Designs that have no failures will be ranked in order of cost. Designs with failures
will be ranked below those with no failures in an order determined by the instructor’s
judgment of overall quality.
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13.8. EXERCISES, CHAPTER 8: EXTRACELLULAR FIELDS

Prologue: As instructed in the exercises that follow, use the following template function to
define Vm(x, t):

Vm(x, t) = b+ a[tanh(u1)− tanh(u2)] (13.4)

where u1 and u2 are
u1 = s1[(t− t1)− |x− x0|/θ] (13.5)

u2 = s2[(t− t2)− |x− x0|/θ] (13.6)

Parameter values are given in Table 13.7.

Table 13.7. Action Potential Template

Name Value Units Description

t1 2 milliseconds upstroke center time delay
t2 5 milliseconds downstroke center time delay
x0 0 millimeters site of excitation origin
θ 4 mm/ms speed of propagation
s1 2 ms−1 rate of upstroke
s2 0.5 ms−1 rate of downstroke
a 50 millivolts AP amplitude
b -60 millivolts AP baseline

The radius of the fiber is 50 μm. The fiber’s axis lies along the x axis and extends a long
distance on both directions. The fiber membrane resting resistance is Rm = 1500 Ωcm2. Ri
is 1000 Ωmm, and Re is 400 Ωmm. The extracellular space is unbounded.

In the exercises below, for simplicity include only the portion of the fiber for which x > 0,
unless otherwise instructed. In all plots, include a calibrated vertical axis, and be sure the plot
size is large enough to allow reading the magnitude of every extrema in the curve. If tabulating
Vm, use about 20 points per millimeter (spatial) or 20 points per millisecond (temporal) to
have enough resolution to compute derivatives accurately. Answering many of the questions
without undue tedium requires a computing environment that allows both calculation and
plotting.

Comment for Students: Past experience suggests that no single step in answering these
exercises is especially difficulty, yet often students observe that finding the answers takes
longer and is much more confusing than it seems at first that it should. Sometimes one has
the feeling of never quite being in control of all the different parts of the question and how
the parts come together. In part the intrinsic difficulty occurs because one has to evaluate
changes in space and changes in time, which are linked but different. Additionally, usually
there are a series of steps that have to join together in just the right way. Finally, the actual
amount of computation often is greater than at first is apparent, especially when many input
values combine to produce a single point on an output curve. The best strategy is to think
about and write out the underlying mathematics (not just the computational procedure), to
follow the math systematically, and to be patient.
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Figure 13.7. Action potential as a function of distance x along the fiber. The triangle was
made by overlaying the action potential with three lines, one for the baseline and the other
two at peak activation and repolarization slope.

Exercises 1–6 involve Vm(t) and Vm(x). These exercises compare the one to the other in
several ways, and also allow practice in manipulating the tabulated data of each. Completing
these exercises requires a computer system to tabulate the function and make the plots.

1. Inspect Vm(x) in Figure 13.7. This figure plots the function defined in the prologue. For
what time t does this plot result? Estimate by looking at the equations in the prologue
and verify by making a confirming plot.

2. Plot Vm(t) at x = 24 millimeters. Make the horizontal axis extend from zero to 20
milliseconds.

3. In a few sentences, explain the differences seen in the wave shape of Vm(x) as compared
to that of Vm(t), as plotted.

4. Plot V̇m(t) = dVm(t)/dt at x = 24 millimeters, from zero to 20 milliseconds, and give
the number value for V̇ max

m , the peak value of the time derivative. (The use of the dot
notation for time derivatives is customary in electrophysiology.)
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5. The location and magnitude of monopolar or dipolar lumped sources as given in the text
of the chapter depends on idealizing the action potential into a triangulated shape. That
requires determining straight lines matching the maximum activation slope and recovery
slope, and matching the baseline. Often these lines are determined graphically; however,
with Vm(x, t) given here as a noise-free mathematical function, the lines also can be
determined from tabulated data for Vm(x). Each straight line can be expressed in the
standard form y = ax+b. Consider Vm(x) as shown in Figure 13.7 and do the following:

a. Create a list of values of x and Vm(x). From these data determine the point of greatest
slope of the Vm(x) curve during activation. For this point, give the x position at which
it occurs, the value of Vm, and the value of dVm/dt.

b. Find the linear equation that fits the data of part a.

c. Find the same data as in a, for the point of greatest slope during recovery.

d. Find the linear equation that fits the data of part c.

e. Find the point of intersection of the two lines. Specifically, find the x and Vm coordi-
nates of the point of crossing.

f. Find the x coordinates of the points where the activation line and the recovery line
cross the baseline (–60 mV).

You may be able to answer these questions with purely analytical methods instead of
numerical ones.

6. Make the value of θ twice that given in the Table 13.7 for the template function for
Vm(x, t) of the prologue. (Although Vm(x, t) here is given as a mathematical function,
measured action potentials show similar kinds of changes.) Then answer each of the
following. With θ doubled:

a. Find and plot Vm(x) for 10 msec.
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b. Compare the waveform from part A to that of exercise 1. In a sentence or two, describe
the differences observed.

c. Find and plot Vm(t) for the same position used in exercise 2.

d. Compare the waveform from part C to that of exercise 2. In a sentence or two, describe
the differences observed.

In Exercises 7–13, begin with the action potential template as defined in the prologue.

7. Plot Ii(x) at t = 10 msec on a horizontal axis from 0 to 50 millimeters. One way to do
this exercise is to differentiate Vm(x) analytically and find im(x) numerically; another
is to differentiate Vm(x) numerically.

8. Plot im(x) at t = 10 msec on a horizontal axis from 0 to 50 millimeters.

9. Interpret the results of Exercises 7 and 8 in terms of the locations and relative magnitudes
of monopolar sources and sinks. Draw two horizontal lines and label them 0 to 50 mm.
(a) Over one, place arrows indicating distributed dipole sources. (b) Over the other, place
plus and minus signs to show the source and sink distribution. In each case, a nice touch
is to make the source larger where its magnitude is greater.

In Exercises 10–13, find extracellular potentials by using the distributed monopole sources
(i.e., not lumped sources).

10. For t = 10 msec, find the extracellular potential Φe. Include units.

a. At the point x = 34, y = 0.100 millimeters.

b. At the point x = 34, y = 1.00 millimeters.
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11. Plot Φe(x) [note: function of distance] along a line parallel to the fiber axis but distance
h away. Let the horizontal axis extend from –50 to 50 millimeters.

a. For h = 100 micrometers.

b. For h = 1000 micrometers.

12. Plot Φe(t) [note: function of time] for a point at x = 24, y = h mm. Let the horizontal
axis extend from 0 to 25 msec.

a. For h = 100 micrometers.

b. For h = 1000 micrometers.

13. In a few sentences, explain the relationship between the solutions of Exercises 10 and 11.

Figure 13.8. Action potential as a function of distancex along the fiber. The action potential
was constructed using the template function. This figure is a triangulation of Figure 13.7.

For Exercises 14–21 use Figure 13.8, which is a triangulated version of Figure 13.7.
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In Exercises 14–17, use lumped monopolar sources.

14. Carefully examine the triangulated action potential as shown in Figure 13.8 and give
a value for each of the following quantities, with units. As these values are used in
subsequent exercises, you may wish to enlarge the figure so as to measure it more precisely.
[Because there is a template function for Vm, another possibility for answering each part
is to examine the data for a digitized version of the action potential, to locate the points
of maximum slope during the activation and recovery phases, and to find the points of
intersection of the lines thereby defined. (See Ex. 5 above.) The figure then can be used
to check the answers obtained analytically.]

a. Activation slope Amax.

b. Recovery slope Bmax.

c. Peak-to-peak voltage of triangularized AP, Vpp.

d. Width wa.

e. Width wr.

f. Points of intersection x1, x2, x3.

15. Determine the strength and location of each of the three monopole lumped sources. Be
sure to include the location (x coordinate) magnitude, sign, and units of each one.

16. Computations of extracellular potentials from membrane currents can be placed into a
matrix format:

[Pe] = [H][Im] (13.7)

Here matrix [Im] is a column vector containing the values of lumped sources 1 to 3 for
time t. Matrix [H] is set of coefficients by which each source must be multiplied to find
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one of the extracellular potentials. [Pe] is a column vector giving the set of extracellular
potentials. Matrices [H] and [Pe] have one row for each extracellular potential to be
found. Suppose there are three extracellular potentials to be found, at three field points.
The three field points have x positions 30, 31, and 32 mm. They are located at a distance
h away from the fiber axis.

a. Define each of the 9 elements of [H] defined in terms of rij , where rij is the distance
from field point i to monopolar source j.

b. Find matrix [H] (numerical values) for h = 100 micrometers.

c. If the monopole sources have values of 3, –4, and 1 mA, respectively, what are the
values of the extracellular potentials at each of the 3 field points?

17. Plot Φe(x) along a line parallel to the x axis at distance y = h with z = 0 (i.e., plot
Φe(x), as it is generated at distance h away from the fiber axis, from the three lumped
monopole sources). Let the horizontal axis extend from x = 0 to x = 50 millimeters.
Calibrate the vertical axis, and make each plot large enough that the magnitudes of the
peaks can be read from the graph. Compare to the plots for Φe(x) as determined from
the distributed sources, as in Ex. 11. Make plots for:

a. h = 100 micrometers.

b. h = 1000 micrometers.

c. h = 10000 micrometers.

In Exercises 18–20, use lumped dipolar sources.

18. What are the magnitude, location, orientation of:

a. a single dipole that lumps activation?



BIOELECTRICITY: A QUANTITATIVE APPROACH 485

b. a single dipole that lumps recovery?

19. Plot Φe(x), as it is generated from the two lumped dipoles that were found in Ex. 17.
Determine values along a line parallel to the x axis at y = h millimeters and z = 0 (i.e.,
plot Φe(x) along a line parallel to the fiber axis, but distance h away from the axis). Make
the plots from x = 0 to x = 50 millimeters. Calibrate the vertical axis, and make the
vertical size large enough that the magnitudes of each peak can be read from the graph.

a. For h = 100 micrometers.

b. For h = 1000 micrometers.

20. Plot Φe(t), as it is generated from the dipole sources, for a point at x = 12, y = h mm.
Let the horizontal axis extend from 0 to 25 msec [note: function of time].
a. For h = 100 micrometers.

b. For h = 1000 micrometers.

Extensions: Exercises 21–24 involve questions that can be answered through straightforward
extensions of the material examined so far.

21. Collision: For this exercise, modify the description in the prologue so that action potentials
are correctly generated as functions of time and space if the fiber described in the prologue
is simultaneously stimulated at x = ±100 mm (leading to a collision of excitation waves
near x = 0). Note that θ is 4 mm/msec for the fiber.
a. Plot Vm(t) at x = ±8 mm and x = 0 mm.

b. Plot Vm(x) at t = 20 ms and t = 24 ms.

c. Plot Ii(t) at x = ±8 mm and at x = 0 mm.

d. Plot φe(t) at x = ±8 mm and at x = 0 mm.
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Figure 13.9. A monophasic action potential is approximated as triangular; the latter is
described above. Along the horizontal axis, x is given in millimeters. The fiber extends
well beyond the region shown and is cylindrical with a radius of 50 micrometers. The
intracellular and extracellular resistivities are 90 and 30 Ωcm, respectively. The action
potential is propagating along the fiber with a velocity of 4 m/sec.

22. Many times measurements of nerves and muscles show the effects of multiple simultane-
ously active fibers. Here suppose three long cylindrical fibers of the kind described in the
prologue have parallel axes and are arranged at equal angles around a central axis, within
a large volume conductor, as illustrated in Figure 13.9. The axis of each fiber is d = 75
micrometers from a mathematical axis at the center of the group. Fiber 1 is the AP of
the prologue, while fibers 2 and 3 are delayed by 3 and 6 milliseconds, respectively. All
three fibers have the same propagation velocity. What is Φe(t) at a point on the central
axis? To make the question easier, suppose there is no interaction among the fibers, so
that the observed waveform is the summation of the potentials from each fiber found as
if that fiber were in the volume alone.

23. Examine Figure 13.10. What is the corresponding plot of Φe(x) at a distance of 1 mm
from the axis of this fiber? Assume the fiber parameters (though not the action potential)
are those given in the prologue.

24. Examine Figure 13.11. Assume the peak of this fiber is at x = −100 mm at t = 0 ms.

a. Plot Φe(t) at x = 0 mm at a distance of 1 mm from the axis of the fiber.

b. Make a table that shows the magnitude and timing of every extrema (positive or negative
peak) of the waveform plotted in part A.
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Figure 13.10. A monophasic action potential is approximated as triangular; the latter is
described above. Along the horizontal axis, x is given in millimeters. The fiber extends
well beyond the region shown and is cylindrical with a radius of 50 micrometers. The
intracellular and extracellular resistivities are 90 and 30 Ωcm, respectively. The action
potential is propagating along the fiber with a velocity of 4 m/sec.

Figure 13.11. This propagating action potential is approximated with a triangular wave-
form, as shown. The axon on which it is propagating has a diameter of 45μm. Propagation
is in the +x direction with a velocity of 5 m/sec. The extracellular conductivity σe = 0.05
S/cm, while the intracellular conductivity is σi = 0.01 S/cm. (The extracellular medium
is unbounded.) Assume that the same Vm(t) occurs at every position, offset in time.
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The text and exercises above have shown that potentials at points away from the fiber can
be found if one knows the electrical events along the fiber. (Such a calculation is sometimes
called a forward problem. The question naturally arises as to whether one can do the reverse.
That is, given measurements at a distance, can one compute the electrical sources of the
fiber? In some respects, this is the question naturally asked with clinical or experimental
measurements, where waveforms at a distance are measured in order to figure out, as best
possible, what is happening in the active tissue underneath. Broadly, such calculations are
called remote sensing or inverse problems. There is a large mathematical and engineering
literature on such subjects. The following two exercises are tiny steps in this direction, within
the present context.

25. Inverse 1: Can the observations of the extracellular potentials be used to compute the
magnitude of the sources along the membrane? That is, in Ex. 16 one had

[Pe] = [H][Im] (13.8)

so by inverting matrix [H] one gets

[Im] = [H]−1[Pe] (13.9)

where [H]−1 is the matrix inverse of matrix [H]. Find the inverse of matrix [H] as
determined in exercise 16B.

26. Inverse 2: Test the matrix inverse found in exercise 25.

a. Use the values of the extracellular potentials for the three defined field points (as found
in Ex. 16c) together with [H]−1. Compute the values of the monopolar lumped
sources.

b. Use the values of the extracellular potentials for the same three field points as found
from the fully distributed set of im(x) values. (These values should be improved
versions of the extracellular potentials at the field points.) Again perform the inverse
calculation and compute the values of the monopolar lumped sources.

c. In a few sentences, comment on the differences (if any) in the solutions to parts a and b.

Exercises 27–30 extend the theory developed in the text.
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27. Evaluate the discontinuity in the electric field and its normal derivative along the axis of
a single-layer disc of radius a. [Follow the method developed for a double-layer disc.]
Describe the membrane source of an active cell as the sum of a single- plus double-
layer component. (Note that these are true and not equivalent sources, as they give both
intracellular and extracellular fields.)

28. Change a and b in the derivation in the text for the potential from a cell. Rather than
(8.62) use

a = 1/r b = Φ (13.10)

What is the new equation for φe that results?

29. Lone Cell’s Potentials: A lone cell is immersed within an medium of infinite extent.
The conductivity inside the cell is 0.005 S/cm, and the conductivity outside the cell is
0.02 S/cm. The cell has a cross-section that is square (on the x, y axes) to an excellent
approximation, with an edge length of 15 micrometers on the sides of the square. The
cell length (along z) is 100 micrometers. The cell is centered at the coordinate origin.

Suppose the cell depolarizes sequentially in the +z direction. At the moment of interest
the cell is in the process of becoming depolarized. At the more depolarized end (the
portion with z negative), the intracellular potential is 0.02 V. At the less depolarized
end (the portion with z positive) the intracellular potential is –0.06 V. The intracellular
potential changes linearly, to a good approximation, from one end to the other. At all
points around the cell, approximate the potential just outside the cell as 0 V.

There are two extracellular electrodes. Electrode A is located at coordinates (0, 0, 0.01)
cm, while electrode B is at (0, 0,−0.01) cm. What is the voltage between the two
extracellular electrodes?

Voltage polarity: the voltage is positive when the potential at electrode A is greater than
the potential at electrode B.

30. Use the results of the preceding exercise to approximate φe just outside the cell. Then
use these values to correct the calculation of VAB . What is the peak magnitude of the
correction?

31. Design Problem: Extracellular Detection Design

Overview.A cylindrical fiber of radius a is excited at both ends simultaneously. The fiber
is more than 100λ long. Excitation propagates toward the center. At any point along
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the fiber, the time course of the action potential’s upstroke has the shape of

Vm(t) = 50 tanh(t) (13.11)

where Vm is in mV and t is in msec. Of course, the absolute timing of the upstroke
depends on the x position along the strand.

The cylindrical fiber is located in a conducting medium of infinite extent. At the center
of the fiber (x = 0), the positive electrode of a voltmeter is placed on the outer surface
of the fiber, and at the same x position the negative electrode is placed at a distance of
10a from the axis of the fiber. Voltage Φe is measured between these two electrodes.

The electrodes will be used to monitor Φe and thereby detect when excitation reaches
the center. Since little noise is present, a simple signal detection plan will be used.
Specifically, the monitor will decide that excitation has reached the fiber’s center when
the detected voltage reaches 3 mV.

Other Information.The fiber hasRm = 103 Ωcm2, intracellular conductivity 0.02 S/cm,
and extracellular conductivity 0.04 S/cm.

An experimental trial under the conditions described in this design found that measured
velocity θ was 0.4 m/sec when radius a was 20 μm.

Cost.The cost of the fiber is $1 per micron times the radius of the fiber.

Objective.Design a fiber (by selecting its radius) that minimizes the cost while meeting
the signal detection criterion.

Supporting Information.To provide confidence in your design, supply on the answer
sheet a calibrated graph that gives Φe as a function of time.
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13.9. EXERCISES, CHAPTER 9: CARDIAC ELECTROPHYSIOLOGY

1. Cardiac electrophysiology (as presented in this chapter) has some aspects in common with
the electrophysiology of nerve (as presented in earlier chapters), but also has substantial
differences. Which of the following statements are correct?

a. Nerve analysis often deals with membrane excitation in one spatial dimension, whereas
cardiac often deals with excitation in two or three spatial dimensions.

b. Nerve analysis includes electrically active membrane (generates action potentials), whereas
cardiac membrane is passive (generates no action potentials).

c. Nerve cells often are much longer than are cardiac cells.

d. Potentials around nerve can be measured outside nerve cells, whereas potentials outside
the heart are too small to be measured.

e. Nerve cells generate action potentials through movement across the membrane of sodium
and potassium ions, as well as other ions, and action potentials in cardiac cells also involve
the movement of sodium and potassium, as well as others.

2. Cardiac structure: Which statements are correct?

a. Human hearts have four chambers.

b. Action potentials, an electrical event, trigger contraction, a mechanical event.

c. Excitation in the ventricles is more nearly apex to base than base to apex.

d. The base of the ventricles is the part that adjoins the atria.
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e. In a normal heart, blood flow is principally from the ventricles to the atria.

f. Each of the cardiac chambers initiates its own excitation.

g. Connexons serve to join the ventricles to each other.

h. Gap junctions serve mainly to replace missing cells.

i. The SA node is a specialized region of the left ventricle.

3. Figure 9.1 shows the atrioventricular node as one part of the overall cardiac structure.
Compared to the rate in the atria, excitation moves through the AV node:

a. just slightly slower.

b. much more slowly.

c. about the same speed.

d. slightly faster.

e. much faster.

4. Cardiac action potentials: Please refer to Figure 9.2 and the associated text. Check the
responses that are correct. The terminology is standard for action potential description.

a. Phase 0 corresponds to activation.
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b. Phase 1 corresponds to rapid recovery.

c. Phase 2 corresponds to the plateau.

d. Phase 3 corresponds to recovery.

e. Phase 4 corresponds to rest or slow depolarization.

f. All action potentials have all 5 phases.

g. The two action potentials in parts a and b extend across the same range, peak to peak.

h. Phase 1 corresponds to activation.

i. It is significant that the sinus node action potential has a rising baseline.

5. Cardiac cell connections. Please refer to Figure 9.3 and the associated text. To how many
cells does cell A connect?

6. Intercellular junctions: Please consider Figure 9.4 and the associated text. Suppose the
channel connecting one cell to the next is cylindrical. Suppose it has the diameter given in
the text and the length given in the figure. Suppose the fluid in the channel has a resistivity
100 Ωcm. What is the resistance from one cell to the next?
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7. Isochrones: Isochrones of ventricular excitation are shown in Figure 9.12. Each isochrone
is marked by a number. By what factor must the isochrone number be multiplied to convert
it to a time, in seconds?

Figure Precision. A number of the questions that follow ask for values to be read from Figure
9.10 in the text. At the printed size here, the figure may be too small to read the calibration ac-
curately, so large variances are given in the answer key. However, the experimental uncertainty
is much less. Here one can achieve better resolution by enlarging the figure (perhaps with a
photocopier) so as to better see the size of calibration marks, or (even better) by consulting the
figures in the original sources, as cited.

In the next two exercises, refer to Figure 9.10 and respond based on those data.

8. Time of first: Examine the sequence of excitation. The time of excitation for the first lead
to be excited is what? (Assume scale starts at time zero.)

9. Time of last: The time of excitation for the last lead to be excited is what? (Assume scale
starts at time zero.)

10. Examine Figure 9.5 showing stimulation of a Purkinje strand. Check each box that is
correct.

a. Part b of the figure shows that membrane capacitance plays little role in the response.

b. Part a of the figure involves the length of the fiber affected by a point stimulus.

c. Part b of the figure involves time of response to the stimulus.

d. Part b of the figure shows the amount of inductance in the fiber loop.

e. Part a of the figure shows the temperature where effects are maximal.
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11. Membrane resistance: A cell is 100 μm long. It has a square cross-section with a side of 8
μm. Excluding the ends, what is the resistance between the inside and outside of the cell
if the membrane has Rm of 10,000 Ωcm2?

12. Magnitude of vm: By inspecting a suitable figure, estimate the peak-to-peak magnitude of
a cardiac action potential.

In Exercises 13–17, consult Figure 9.10 showing waveforms from a plunge electrode across
the cardiac wall.

13. Velocity in the ventricular wall: Assume the electrode is perpendicular to the direction of
propagation. Evaluate the recordings at a site that is a good approximation to outward,
uniform propagation. Estimate the outward velocity of propagation,

14. Wave thickness: Assume the electrode is perpendicular to the direction of propagation.
Evaluate the recordings at a site that is a good approximation to outward, uniform propa-
gation. Estimate the thickness of the excitation wave.

15. Extracellular potential: Assume the electrode is perpendicular to the direction of propaga-
tion. Evaluate the recordings at a site that is a good approximation to outward, uniform
propagation. Estimate the magnitude of the change in extracellular potential from the
leading edge to the trailing edge of the excitation wave.

16. Unipolar magnitude: What is the largest voltage magnitude, relative to baseline, observed
on any unipolar recording?

17. Bipolar magnitude: What is the largest voltage observed on any bipolar recording?

18. Differential equation: Two ventricular cells are connected by junctional resistance q. The
cells are surrounded by a large, common extracellular volume of fluid that has a near-
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zero potential. Both cells have membrane resistance p and capacitance c for the cell as a
whole. The first cell has transmembrane potential u, and a constant voltage well above
baseline. The second has transmembrane potential v, which is zero at time t = 0. Because
of the transmembrane potential difference, potential v will rise as time passes. Write the
differential equation for v in the form

dv/dt+ av = b

where a and b are constants. For the questions below, determine the constants in the
expression. Define the ratio R = p/(p+ q) and use R in the expressions requested if the
ratio is present.

a. What is constant a?

b. What is constant b?

19. Solution to DifEQ: Again consider two ventricular cells connected by junctional resistance
q, as in the preceding exercise. Note that the second has transmembrane potential v, which
is zero at time t = 0. Because of the transmembrane potential difference, potential v will
rise as time passes. Write the differential equation for v, and solve the equation. Write the
solution in the form

v = a[1− exp(−t/b)]
where a and b are constants. Enter the expression required by each of the parts that follow.
Define the ratio R = p/(p+ q) and use R in the expression if the ratio is present.

a. What is constant a?

b. What is constant b?

20. Purkinje fibers are (select those that apply):

a. located on the epicardium.

b. nerve cells.

c. conduct action potentials.

d. contract when stimulated.
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e. modified cardiac cells.

21. Connexon selectivity: When current flows from one cell to another through gap junctions,
which charged particles carry the charge? Select all eligible.

a. K+ ions.

b. Na+ ions.

c. Cl- ions.

d. Ca++ ions.

e. Charged DNA.

22. Consider a cardiac cell that has the shape of a brick. The cell lies within an extensive
extracellular medium that remains near 0 Volts. The cell has capacitance and resistance
with respect to the extracellular medium, and an intracellular connection between the two,
within an extensive extracellular medium that remains near 0Volts. The cell has capacitance
and resistance with respect to the extracellular medium. Suppose the cell has the following
characteristics.

a. The cell length is 100 μm.

b. Both cell width and height are 10 μm..

c. Cm is 1E-6 F/cm2..

d. Rm is 10,000 Ωcm2.

e. The cell’s threshold voltage is 0.01 Volts.
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Which of the following statements apply?

a. At threshold, the required charge is 4.2E-13 Coulombs.

b. The cell’s volume is 1E-8 cm3.

c. The cell’s surface area is 4.2E-5 cm2.

d. The resistance (of the whole cell) across the membrane is 2.381E8 ohms.

e. The capacitance of the cell is 4.2E-11 Farads.

The next several exercises assume the following context. One or more cardiac cells are within
an extensive extracellular medium that remains near 0 Volts. Each cell is shaped like a brick,
with square cross-section. The cells have capacitance and resistance with respect to the ex-
tracellular medium. When the number of cells is greater than one, the cells have the same
dimensions and are side by side, and there are intracellular connection between them. When
the membrane resistance is not given, the resistance is assumed large enough that its presence
may be ignored. Conversely, when a membrane resistance is given, it should be taken into
account. The membrane capacitance is 1E-6 Farads per cm2. In some exercises an intervention
is applied to the first cell, and the question asks about the second or subsequent cell. In such
cases, assume that the transmembrane voltage of the second (or subsequent) cell is initially
zero (relative to rest).

23. Suppose the cell length is 100 μm, and an edge of the cross-section is 8 μm long. Suppose
a heart has a volume equal to that of a cube of length 8 cm on a side. How many cells are
in the heart? Estimate the number of cells as the number required to make the aggregate
cell volume equal to 80% the heart volume.

24. Picture a number of cells each having cell length 100 μm and edge length 42 μm. Suppose
cells are placed side by side. Suppose excitation moves in the transverse direction, and the
transverse velocity is 10 cm/sec. On the average, how much time is required for excitation
to move from one of these cardiac cells to the next?
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25. Rise of v2
m: The capacitance of each cell is 7.1E-11 Farads. Suppose there is a constant

current of 2.032E-8 Amperes along the intracellular path between the first and the second
cell. The current lasts for 1.4E-4 seconds. By how much does vm of cell 2 rise?

26. Junction R: The capacitance of each cell is 7.65E-11 Farads. The cell length is 120 μm.
Both cells have a square cross-section, with 15 μm edges. There is a constant voltage dif-
ference between the first and second cells of 0.05 Volts. That is, the transmembrane voltage
of the first cell rises along with that of the 2nd cell, so as to maintain this voltage difference.
The current lasts for a time equal to the average transverse cell-to-cell propagation time,
for a transverse velocity of 10 cm/sec. What is the necessary junctional resistance for the
voltage in a second cell to rise from zero to a triggering level of 0.04 Volts in the time
available?

27. Cell 2 vm with lower Rm: Two brick- shaped cells have length 100 μm and a square
cross-section of edge length 10 μm. Both cells have Cm of 1E-6 F/cm2 and Rm of 500
Ωcm2. Cell 1 has transmembrane voltage 0.1 V. At time t = 0, cell 2 has voltage v of 0
Volts. Cell 2 is connected to cell 1 through a junctional resistance of 10,000,000 Ω. Cell 2
remains passive. At the end of time 1E-4 sec, what is its transmembrane voltage?

28. Cell 2 vm with higher Rm: Two brick- shaped cells have length 100 μm and a square
cross-section of edge length 10 μm. Both cells have Cm of 1E-6 F/cm2 and Rm of 10,000
Ωcm2. Cell 1 has transmembrane voltage 0.1 V. At time t = 0 cell 2 has voltage v of 0
Volts. Cell 2 is connected to cell 1 through a junctional resistance of 10,000,000 Ω. Cell 2
remains passive. At the end of time 1E-4 sec, what is its transmembrane voltage?

29. Cell 2 time to threshold: Two brick-shaped cells have length 100 μm and a square cross-
section of edge length 10 μm. Both cells have Cm of 1E-6 F/cm2 and Rm of 1,500 Ωcm2.
Cell 1 has transmembrane voltage 0.1 V. At time t = 0 cell 2 has voltage vm of 0 Volts. Cell
2 is connected to cell 1 through a junctional resistance of 10,000,000 Ω. Cell 2 remains
passive until it reaches its voltage threshold, which is 0.04 Volts. How long is required for
cell 2 to reach its threshold?

30. Nominal velocity: Two brick-shaped cells have length 80 μm and a square cross-section
of edge length 10 μm. Both cells have Cm of 1E-6 F/cm2 andRm of 20,000 Ωcm2. Cell 1
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has transmembrane voltage 0.1 V. At time t = 0 cell 2 has voltage vm of 0 Volts. Cell 2 is
connected to cell 1 through a junctional resistance of 2,000,000 Ω. Cell 2 remains passive
until it reaches its voltage threshold, which is 0.04 Volts. The “propagation time” for cell
2 is the time required to reach this threshold. What is the average transverse propagation
velocity from cell 1 to cell 2? Estimate the average transverse velocity as the cell’s edge
length divided by cell 2’s propagation time.

31. Velocity variations: In this exercise examine changes in velocity that result from each of a
series of variations in cell parameters. In each part, estimate the velocity if other parameters
the estimation procedure remain the same as in the preceding question, except for the value
specified.

a. Increase cell size. Cell length is 160 μm and edge length 20 μm.

b. Decrease Rm to 1,000 Ωcm2.

c. Increase junctional resistance to 4,000,000 Ω.

d. Decrease voltage threshold to 0.02 Volts.

32. Which (one or more) of the following increases the velocity? Assume that other factors
remain constant, and that each item is changed alone.

a. Increasing membrane resistance Rm.

b. Increasing junctional resistance Rj .

c. Increasing the voltage threshold Vt.

d. Increasing the temperature.
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e. Increasing cell length L.

33. Math terms: A series of statements about math operations “del” (∇) and “del dot” (∇·)
follow. Check the statements that are true.

a. In the heart, current has a direction.

b. The equation V = r, where r is the 3D distance from the origin, is a scalar function.

c. The math operation “del dot” can be used on V , if V = r.

d. Geometrically, the “del” and “del dot” functions refer to the same thing.

e. In electric fields, the potential function is usually a vector.

f. In typesetting, the upside-down triangle is called “nabla.”

g. If the current is described as a vector function, then the “del dot” operation is larger at
points where the current originates.

h. The math operation “del” can be used on V , if V = r.

i. Given a vector function, one can use either “del” or “del dot” on it.
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34. Bidomain equations: Refer to the equations below. Then select those of the following
statements that are true:

J i = gix
∂Φi
∂x

ax + giy
∂Φi
∂y

ay + giz
∂Φi
∂z

az (13.12)

Je = gex
∂Φe
∂x

ax + gey
∂Φe
∂y

ay + gez
∂Φi
∂z

az (13.13)

−∇ · J i = ∇ · Je = Iv (13.14)

giz = σiF and gez = σe(1− F ) (13.15)

a. The “divergence” operation on (13.12) will locate where current enters or leaves the
intracellular space.

b. The bar over the J on the left of (13.12) and (13.13) indicate that these are vector
functions.

c. Use of the “del” math operation on (13.12) and (13.13) is sensible.

d. Equation (13.12) is about the intracellular current.

e. Equation (13.13) is about the extracellular current.

f. The equality in (13.14) implies that currents in the intracellular and extracellular regions
are equal and opposite.

g. Equation (13.15) says that voltages in the bidomain are less than those in the actual
tissue.

Context for Exercises 35–42. Consider a three-dimensional grid of spherical cells, each
surrounded by an interstitial region. The cells all have radius a and membrane resistance Rm.
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Assume that the interstitial space has, on average, the same volume as that left between a
spherical cell and a surrounding cube of edge length 2a. For the physical (as distinct from
bidomain) regions, the extracellular resistivity is Re, and the intracellular resistivity is Ri. A
unipolar electrode injects current at the coordinate origin. (Unipolar injection means that in
concept current is injected at one point and flows in all directions to a current sink a long
distance away.)

35. gi: For a = 12 μm, Rm = 8, 000 Ωcm2, Re = 100 Ωcm, and Ri = 200 Ωcm. What is
the intracellular conductivity gi?

36. F : For a = 20 μm, Rm = 8, 000 Ωcm2, Re = 100 Ωcm, and Ri = 200 Ωcm. What is
fraction F ?

37. β: For a = 17 μm, Rm = 8, 000 Ωcm2, Re = 100 Ωcm, and Ri = 200 Ωcm, what is
β, the surface-to-volume ratio? Note that the volume used to find β is the total membrane
surface area of all cells divided by the total volume, i.e., including both intracellular plus
interstitial (extracellular) volumes.

38. ρe: For a = 12 μm, Rm = 8, 000 Ωcm2, Re = 100 Ωcm, and Ri = 200 Ωcm, what is the
bidomain interstitial resistivity ρe?

39. λ: For a = 8 μm, Rm = 8, 000 Ωcm2, Re = 100 Ωcm, and Ri = 200 Ωcm, what is the
space constant, λ?

In Exercises 40–47, use the following values: cells have radius a = 10 μm, and membrane
resistance Rm = 20, 000 Ωcm2. The resistivities are Ri = 200 Ωcm and Re = 50 Ωcm. Use
the bidomain model for analysis.

40. λ: In this 3D cellular structure, what is λ?
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41. φe: If the amount of current introduced at the electrode is 0.002 Amperes, what is the
extracellular potential at a point 0.5 cm from the site of current injection?

42. φ2
e: If the amount of current introduced at the electrode is 0.002 Amperes, what is the

extracellular potential at a point 0.2 cm from the site of current injection?

43. vm: If the amount of current introduced at the electrode is 0.002 Amperes, what is the
transmembrane potential at a point 0.1 cm from the site of current injection?

44. v2
m: If the amount of current introduced at the electrode is 0.002 Amperes, what is the

transmembrane potential at a point 0.2 cm from the site of current injection?

45. φi: If the amount of current introduced at the electrode is 0.002 Amperes, what is the
intracellular potential at a point 0.1 cm from the site of current injection?

46. φ2
i : If the amount of current introduced at the electrode is 0.002 Amperes, what is the

intracellular potential at a point 0.2 cm from the site of current injection?

47. Two Electrodes: Two electrodes, separated by a distance of 0.5 cm, have been introduced
into the interstitial space of the bidomain. The electrodes function as a source–sink pair.
The amount of current introduced at the source electrode is 0.002 Amperes, and the amount
of current introduced at the sink electrode is –0.002 Amperes. Consider the transmembrane
voltages along the line connecting the two electrodes. What is the transmembrane potential
at a point 0.1 cm from the source electrode? Use the bidomain model, and assume the
solution is a linear combination.

48. Compare values of vm, φi, and φe made in the vicinity of the point of unipolar injection
of current Io into a 3D bidomain of large extent. Io is positive, and measurement position
1 is closer to the electrode tip than is measurement position 2. Consider the sign and the
magnitude. Select the statements that are true.

a. vm is more positive at the closer measurement position.
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b. φi is more positive at the closer measurement position.

c. At the closer measurement position, φi is greater in magnitude than φe.

d. The magnitude of φe is larger at the closer measurement position.

e. The magnitude of vm is larger at the closer measurement position.

f. At all positions, vm = φi − φe.

g. The magnitude of φi is larger at the closer measurement position.

49. Design 1 OK? Imagine that a three-dimensional mesh of cardiac cells is composed of brick-
shaped cells, each surrounded by an interstitial region. Cells have a square cross-section,
with an edge E of 12 micrometers and a length L of 100 μm. Cells are (on the average)
within a geometrical block that also is brick shaped, with dimensions 1 μm greater in
L and E. The membrane resistance for a unit area is 20,000 Ωcm2. For the physical (as
distinct from bidomain) space, the extracellular resistivity is 100 Ωcm, and the intracellular
resistivity is 200 Ωcm. A stimulus design calls for a stimulus current (unipolar electrode)
of –0.002 Amperes. (An important simplification is this exercise is the use of a stimulus
of long duration and resulting vm values for steady state.) The design is judged successful
if all of the following requirements are satisfied:

a. Requirement 1: In the region of the tissue with radii r of 0.1 and 0.2 cm, the magnitude
of vm is nowhere greater than 300 mV, so as to avoid tissue damage from electroporation.

b. Requirement 2: In the region of the tissue between r of 0.1 and 0.2 cm from the stimulus
site, the magnitude of vm is everywhere greater than 40 mV, so as to produce an action
potential.
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c. Requirement 3: The change in transmembrane voltage due to the stimulus, vm, has a
positive sign.

Select which of the following statements are true, and state whether the design is successful:

1. Requirement 1 is satisfied.

2. Requirement 2 is satisfied.

3. Requirement 3 is satisfied.

50. Design 2 OK? Reconsider the previous design when the membrane resistance has decreased
to 2,000 Ωcm2. Again select which requirements are satisfied, and whether the design is
successful.

1. Requirement 1 is satisfied.

2. Requirement 2 is satisfied.

3. Requirement 3 is satisfied.

Exercises 51–56: Coordinate systems used to represent cardiac activity within the human
torso often are defined as follows. The origin is located at the center of the heart. The x axis
is the direction between the left and right arms (positive toward the left arm). The y axis is
perpendicular, in the direction from the feet toward the head. The z axis is perpendicular to
the x and the y axes, and positive z is in the direction frontwards from the chest. Suppose,
at a certain moment, a sheet of cardiac excitation in the right ventricle has the shape of a
triangle. One corner is located near the base at (0, 0, 1) cm. Another corner is near the cardiac
apex, at (4, 0, 0) cm. A third corner is located at (0, 3, 0) cm. The direction of excitation is
perpendicular to the surface, generally outward, roughly in the positive direction.

Potentials from the excitation wave are to be observed at a “precordial lead” located at
point is located on the chest at (0, 0, 2) cm.

Assume potentials can be found as those arising from such an excitation wave when it
is within an infinite medium with extracellular resistivity 60 Ωcm. The transmembrane
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voltage is –90 mV prior to excitation and +30 mV after excitation. That is, it will be –90
mV on the leading edge of the excitation wave and +30 mV on the trailing edge. The
intracellular resistivity is 200 Ωcm. About 80% of the cardiac volume (along the excitation
wave) is intracellular.

For reference, standard results give:

φe(P ) =
1

4πF
ρe

ρi + ρe
Δvm

∫
S

�ar · �an
r2 dS (13.16)

51. F : What is the value of parameter F ?

52. Δvm: What is the value of Δvm as defined in the reference equation?

53. Ω: What is the value of the solid angle of the excitation wave, with respect to observer
position?

54. ρi: What is the value of ρi?

55. ρe: What is the value of ρe?

56. φe: What is the value of φe?

ECG Values: Coordinate systems used to represent cardiac activity within the human torso
often are defined as follows. The origin is located at the mid-chest level, in the center of the
torso. The x axis extends in the direction from the right toward the left arm. The y axis extends
perpendicularly from foot to head. The z axis extends outward from the chest.

Suppose that within such a coordinate system an electrode on the right arm has (x, y, z) co-
ordinates (−20, 4, 0), the left arm (20, 4,−0), and an electrode on the left leg has (x, y, z)
coordinates (20,−50, 0).
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Suppose that at a certain moment an excitation wave has the form of a sheet of area 25 cm2,
located in the LV base. The sheet is centered at (x, y, z) coordinates (3, 0,−3) and the vector
perpendicular to the sheet has components (0,−1, 0).

Assume the excitation wave is located within an infinite medium having intracellular resistivity
of 200 Ωcm and extracellular resistivity of 50 Ωcm. (Ignore conductivity boundaries.) The
intracellular volume uses fraction 0.8 of the total space.

The polarized region of the LV has a transmembrane voltage of –0.08 Volts, and the depolarized
region behind the excitation wave has a transmembrane voltage of 0.04 V.

Estimates of voltages at points on the body surface based on information about excitation
within the heart may be based on the following equation, which includes the most fundamental
aspects of the cardiac excitation wave, and the pertinent geometry:

φe(P ) =
1

4πF
ρe

ρi + ρe
Δvm

∫
S

�ar · �an
r2 dS (13.17)

It is important to keep in mind some substantial simplifications that use of the above equation,
in the context of electrocardiography, implicitly adopts. Among these limits are the relatively
simple form used to represent the cardiac excitation wave, the use of an infinite conductive
medium for the volume conductor (thus avoiding taking into account the limited conductive
region of the torso), and the omission of homogeneity boundaries within the torso (such as the
lungs). These approximations have a substantial effect on the computed voltages, so they are
not good estimates of values that would be measured. Nonetheless, they do provide insight
into some of the underlying determinants of ECG voltages, and the relative potentials seen in
one circumstance as compared to another.

57. LL: Estimate the potential at the left leg electrode, for this moment in time, relative to the
potential at infinity.

58. Lead II, LV: Estimate the voltage of lead II of the ECG, for this moment in time.

59. Lead II, RV: Suppose that at another moment an excitation wave, located in the anterior
RV, has the form of a sheet of area 10 cm2. The sheet is centered at (x, y, z) coordinates
(1, 2,−3) and the vector perpendicular to the sheet has components (−0.58, 0.58, 0.58).

60. Provide a computer code that evaluates equation (13.17) and computes the numerical value
of VII for the preceding exercise.
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Electrocardiography nomenclature and practice.

61. Make a table. On different rows, show each of the lettered waveforms of an ECG. In
different columns, give the cardiac source (e.g., “atrial repolarization”), the approximate
magnitude when observed on the body surface (in microvolts), and approximate duration.

62. What is the approximate peak-to-peak noise magnitude of a measured ECG trace under
good (but not extraordinary) laboratory conditions?

63. What is the RMS noise magnitude that corresponds to the peak-to-peak value given in
Ex. 62?

64. In a few sentences, explain the advantages and the potential problems of using amplifier
filters to reduce the noise.

65. Why is safety a special concern in ECG recording?

66. Explain in a few sentences what Wilson’s central terminal is.

Exercises 67–70 require an ECG model based on cross- sectional anatomy. Determine the
relevant data from Figure 9.23.

67. Suppose you are at pointAN on the surface. Suppose that the RV free wall, as seen from point
AN , appears to be an elliptical surface with one diameter as shown in the figure, and another in
the head-to-toe (superior–inferior) direction. Compute the (approximate) solid angle formed
by the plate as seen from AN .
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68. Again for the RV free wall with the same assumptions as Ex. 67, compute the solid angle
at point LM.

69. Suppose an electrode pair is connected with the negative lead to Wilson’s central terminal
and the positive lead to the chest at point AN . A mostly positive deflection is observed. It
is known that the deflection comes either from the RV free wall or the LV free wall. Which
does it come from, and why?

70. In the same context as Ex. 69, suppose a mostly positive deflection is observed at point
LM. It is known that the deflection comes either from the RV free wall or the LV free wall.
Which does it come from, and why?

71. A cardiac strand consists of 8 parallel “fibers,” each containing 15 cells, and lies in an
unbounded homogeneous uniformly conducting medium. Each cell is 100 μm long and
10 μm in diameter. Since each fiber is close to the unbounded extracellular medium, it can
be described by a linear core-conductor model with re = 0. The myoplasmic resistivity of
each cell is 300 Ωcm and the specific resistance of the end-to-end gap junction is 3 Ωcm2.
If an electrotonic measurement of the Colatsky–Tsein type is made, what effective single
fiber intracellular resistivity would be obtained? AssumingRm = 1000 Ωcm2, what is the
effective rm Ωcm for the strand? What value of λ should be measured?

72. A dipole whose strength and direction is 1.5 ax (mA-cm) is located at x = 1.0 cm, y =
z = 0. A similar dipole (same strength and orientation) is located at x = −1.0, y = z = 0.
Consider that each represents the net electrical activity in different regions of the heart
(possibly the right and left ventricles). The heart dipole model assumes that the same
field could be generated by a single dipole equal to the vector sum of the components. In
this case its magnitude would be 3.0 ax and its position would be the origin (i.e., a mean
position).

a. Calculate the field as a function of r for θ = 30◦ (measured from the x axis) from the
two aforementioned component dipoles and from the approximating single dipole. Plot
these fields for comparison.

b. At what range of r is the error less than 5%? Assume the extracellular medium is uniform,
infinite in extent, and that the conductivity is 0.01 S/cm.

73. Consider the data of van Oosterom (Figure 9.10), where the electrode separation is 1 mm.
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a. What is the velocity of propagation?

b. The magnitude of the bipolar signal is seen to be around 15 mV while the potential
profile shows an intrinsic deflection of around 30 mV. What is a possible explanation?

74. The heart vector has the values given in Table 13.8 for patient A.

a. Plot the frontal (xy) plane vector loop for the given data.

b. Plot the sagittal (yz) plane vector loop for the given data.

c. What would be the value of VI at each sequential instant of time? (Make an estimate of
the lead vector first.)

Table 13.8. The Heart Vector, with Time

Time(sec) Hx Hy Hz

0.01 −0.08 −0.06 −0.22
0.02 −0.10 −0.02 −0.62
0.03 1.12 0.70 −0.4
0.04 2.1 1.72 0.68
0.05 1.3 1.48 1.54
0.06 0.62 1.13 0.61
0.07 −0.05 0.43 0.25
0.08 0 0 0

75. Distributed cardiac potentials. The following exercise is devoted to the introduction of
equations that describe the relationship between fields on the surface of the heart and those
on the surface of the body. These equations form the basis of the forward problem (i.e.,
the determination of body surface potentials from heart potentials) and the inverse problem
(finding heart potentials from body surface potentials). The execution of solutions based
on realistic geometry, regularization (for the inverse), using finite- or boundary-element
methods lies outside the scope of this introductory text. Several additional references to
the literature may be consulted (e.g., [29]–[31]).

Green’s theorem applied to body volume. Green’s theorem is

∫
∀
(A∇2B −B∇2A)dV =

∫
s

(A∇B −B∇A) ds (13.18)
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where A and B are any twice-differentiable scalar functions. Surface S encloses volume
V, and vector dS points outward from the volume. (Note that if A = 1, Green’s theorem
reduces to Gauss’s law, from whence it came.) Let us set

A = 1/r B = σφ (13.19)

where r is the magnitude of a vector directed from an arbitrary field point b to an element
of integration, φ is an electric potential function, and σ is the conductivity. Note that φ,
r, and σ vary with position throughout the volume. Substituting the choices for A and B
in (13.19) into Green’s theorem (13.18) and choosing V to be the volume bounded by the
body surface (SB), lungs (SL), and heart (SH), as illustrated in Figure 13.12, what is the
equation that results?

Figure 13.12. Human cross-sectional anatomy in schematic form, with math symbols
added.

Simplification of volume integral. Simplify the volume integral of the answer to part a to
place it in the form of the potential at a particular point, and a delta function. What equation
results?

Simply surface integrals. The two integrals over the lung surface in the result of part a can
be combined, since they are taken over the same surface. In doing so we select the surface
normal to be outward. What equation results?

Place in solid-angle form. Further simplify the result of part C so that

a. In the integrals over H choose the surface normal to be outward,
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b. Expand the ∇(1/r) operations as

∇
(

1
r

)
= −ar

r2 (13.20)

where the negative sign on the right arises because the vector ar extends from the
field point b to the (integration) source point.

c. Present the result more compactly by making use of the definition of the solid angle:

dΩ =
r · n
r2 dS (13.21)

What equation for the body surface potential is the result? This equation should give the
potential at point b on the body surface as a function of integrals of potential over the body,
lung, and heart surface, and an additional integral of the gradient of potential over the heart
surface.

Lung conductivity. How does the result of part d simplify if the conductivity inside and
outside the lung are the same?
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13.10. EXERCISES, CHAPTER 10: THE NEUROMUSCULAR JUNCTION

1. It is stated in the text that calcium influx is terminated when Vm is raised beyond 130 mV.
What is the mechanism? Assuming the external calcium concentration to be 10.5 mM, what
is the internal concentration?

2. In an experiment on frog muscle, the average EPP magnitude was determined to be 0.40 mV,
while the average MEPP was 0.25 mV. What was the mean number of quanta released per
impulse?

3. Assuming a Poisson distribution for the experiment described in Ex. 2, make a table showing
the number of instances of 0, 1, 2, and 3 quanta released after 250 trials.

4. Boyd and Martin [7] performed 198 trials of nerve stimulation and measured the quantal
release for each. These are given in the table below.

Table 13.9. Table for Exercise 4

Quanta released Number of
per stimulus cases observed

0 18
1 44
2 55
3 36
4 25
5 12
6 5
7 2
8 1
9 0

a. Determine the mean number of quanta released per stimulus.

b. With the above value, determine the number of cases expected from a Poisson process for
each quanta release case. Do the Boyd and Martin data fit the Poisson distribution?
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5. A vesicle in the neuromuscular junction can be considered spherical with a radius of 250
◦
A .

Its ACh content has a concentration of 150 mM/liter. How many ACh molecules does this
correspond to?

6. For a frog neuromuscular junction, the parameters in Figure 10.7 could be Er = −90 mV,
gr = 5× 10−6 S, Es = 0.20 mV, and gs = 5× 10−5 S.

a. Calculate the amplitude of the end-plate potentials under these conditions.

b. What is the reversal potential?

c. If EK = −90 mV, what is ENa, assuming gK = gNa in the activated synaptic membrane?

7. For gK = gNa in the end-plate region activated by ACh and with EK = −95 mV and
ENa = 50 mV,

a. what is the reversal potential?

b. If gNa/gK = 1.29 (rather than unity), what is the reversal potential?

8. Using Eq. (10.22), plot the EPP amplitude as a function of [Ca++] (for concentration 0 to
1.0 mm) and for [Mg++] = 0.5, 2.0, and 4.0 mM. In (10.22) take K1 = 1.1 mM, K2 = 3.0
mM, k2 = 1.0, and W = 1.14 (V 1/4 mM). Compare these results with those measured by
Dodge and Rahamimoff [4].
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13.11. EXERCISES, CHAPTER 11: SKELETAL MUSCLE

1. Describe the differences between a whole muscle, a muscle bundle, muscle fibers, and muscle
fibrils.

2. Describe the difference between a muscle contraction carried out under isometric as compared
to isotonic conditions.

3. Enumerate the specific experimental findings that support the sliding filament theory. De-
scribe briefly each finding and then summarize why it supports the theory.

4. From the viewpoint of the sliding filament theory, explain whether (and if so, why) isometric
tension should vary as a function of sarcomere length. (That is does can be seen in Figure
11.12.)

5. This chapter mentions several roles played by ATP. Describe each briefly.

6. Describe the transverse tubular system, and make a sketch of its structure.

7. Describe the sarcoplasmic reticulum, and make a sketch of its structure. What is the apparent
role of excitation–contraction coupling?
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13.12. EXERCISES, CHAPTER 12: FUNCTIONAL ELECTRICAL STIMULATION

1. Consider an external point-source stimulus to a nerve trunk, which includes nerve fibers of
various diameters.

a. Which size fiber is the first to be excited, as the stimulus current is increased in magnitude?

b. Will the stimulus first initiate contraction in an FO or an SO muscle fiber?

c. How does the order found in the preceding part compare to the natural order?

2. Consider the cleft separating pre- and post- junctional membranes in the neuromuscular
junction.

a. The cleft is around in width?

b. The main effect of complexing of transmitter at the post-junctional site on the sodium,
potassium, and chloride conductance is (roughly) ?

3. An action potential is elicited on a space-clamped squid axon. Based on Hodgkin–Huxley
theory,

a. Plot the changes that take place in Vm(t), gNa(t), and gK(t).

b. In a few sentences, describe the time relationship of the rise and fall of gNa(t) as compared
to timing of the other two.

4. In the post-junctional membrane, if the Nernst potentials of sodium and potassium areENa =
60 m V and EK = −80 m V, what will be the value of Vm as a result of transmitter action?

For Exercises 5–8, consider a bipolar nerve cuff electrode with an electrode spacing of 6 mm. We
wish to estimate the induced stimulating voltage in a selected fiber of a nerve bundle (trunk). We
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assume that the external path can be neglected and that only the transmembrane nodal elements
directly under the electrodes need be considered.

The extracellular resistance per internode (within the cuff) = 6000 Ω/internode, while the inter-
stitial resistance per internode = 8000 Ω/internode. The intracellular resistivity is 120 Ωcm, the
transmembrane nodal resistance for the single axon of interest, whose intracellular diameter is
18 μm, is 18.5 MΩ. The internodal distance is 2 mm and a node lies under each electrode. The
bipolar electrode is driven to 50 mV.

5. Consider the sequence of depolarization for the described electrode and stimulus.

a. Under which electrode, anode (+), or cathode (–), will depolarization first occur?

b. Will depolarization ever occur under the other electrode?

6. Draw an equivalent circuit and label elements with the proper resistances.

7. Calculate the transmembrane potential depolarization produced.

8. If an accurate study of strength–duration were desired, what additional details should be
added to the model?

In Exercises 9–14, use the following data unless other values are given. A coiled stainless steel
electrode has an area of 0.4 mm2 and is to be used at a stimulus rate of 50 Hz. The current
stimulus pulse has a magnitude of 15 mA.

9. If the maximum safe charge injection is O.35 μC/mm2, what maximum pulse duration is
permitted for balanced-charge biphasic conditions?

10. From the strength–duration data given below, will the design conditions in Ex. 9 be satisfac-
tory? If not, what changes could be made?

11. The width of the reversible region of stainless steel is about 0.6μC/mm2. If loss of reversibility
is associated with a voltage that breaks down the electrode capacitive dielectric and the latter
is 4.0 volts, what is the effective capacitance/cm2?
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12. Schaldach3 designed a cardiac pacemaker electrode formed of tantalum–tantalum pentoxide
(2 mm diameter and 3 mm long), and placed it at the end of a transvenous catheter. The
roughness factor is 12.5 and the electrode–tissue capacitance is 0.75 μF/mm2 (geometrical
area). Breakdown voltage is 2 volts and reversibility is assumed in the absence of breakdown
for balance charge biphasic rectangular pulses.

a. What is the maximum current (pulse duration is 250 μsec)?

b. Correspondingly, what is the charge density?

c. What is the total charge per phase?

d. How does the capacitance compare with the double-layer capacitance of an untreated
tantalum? Assume that the same data given above are applicable.

13. A coiled stainless steel electrode has an area of 2 mm2 (and is to be used at a stimulus rate
of 40 Hz).

a. What average (primary) safe current can be used, assuming the primary pulse duration is
to be 225 μsec?

b. What maximum duration of secondary pulse will lie within the buffering capacity of the
system? (Assume values from Mortimer in Chapter 12.)

14. To avoid dissolution of iron, stainless steel electrodes should be operated so that the charge
density per phase is less than around 0.4 μC/mm2. But, according to McHardy et al.
[McHardy J, Geller D, Brummer SB. 1977. An approach to corrosion control during electrical
stimulation. Ann Biomed Eng 5:144–149.], a stimulating current of 1.6 mA/mm2 (average
primary current, assumed rectangular) can be used (cathodic then anodic) at 50 Hz with no
corrosion if an excess of cathodic charge of (only) 0.002 μC/mn2 per phase is used! They
remind us that reversibility could be maintained even in the region where electrochemical
reactions take place, were it not for loss of reaction products by diffusion. The excess ca-
thodic reaction arising in their system offsets this diffusion (provides additional products) to

3 Schaldach M. 1971. New pacemaker electrodes. Trans Am Soc Artif Internal Organs 17:29.
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obtain reversibility in the anodic region—the frank lack of reversibility in the cathodic region
is offset by buffering.

a. What is the net cathodic current density and what percentage is it of the average cathodic
current?

b. By what factor is the charge density per phase improved over balanced biphasic stimula-
tion?

For Exercises 15–18, useTable 13.10 along with the following data. The maximum anodic charge
injection is 0.35 μC/mm2, and the maximum excess cathodic average current is 10 μA/mm2. A
coiled stainless steel electrode has an area of 0.4 mm2 and is to be used at a stimulus rate of 40
Hz. Maximum safe charge injection is 0.375 μC/mm2.

Table 13.10. Threshold Strength–Duration

Ith (mA) Duration(μ sec)

15.000 10
9.470 16
6.150 25
3.940 40
2.720 60
1.740 100
1.190 160
0.875 250
0.674 400
0.575 600
0.520 1000

15. For a design with balanced-charge biphasic stimulation:

a. What pulse amplitude and duration will give good operation?

b. Explain your choice in part a.

16. Reconsider the design of the preceding exercise.

a. Can operation be improved with imbalanced-charge biphasic conditions?

b. If so, what are the design conditions?



BIOELECTRICITY: A QUANTITATIVE APPROACH 521

17. For a bipolar cuff electrode within which a nerve trunk lies, as the stimulus current is increased:

a. Which size fiber is the earliest to be excited?

b. Will this initiate contraction in an FO or an SO muscle fiber?

c. How does the order of the previous part compare to the natural order?

18. If a single motor neuron is excited by a single stimulus:

a. Then a mechanical response from the innervated motor unit is known as .

b. Electrical propagation along the membrane of the fiber reaches its target by spreading
through ; ions are released to catalyze the contractile
machinery.

Exercises 19–22 consider a bipolar nerve cuff electrode with electrode spacing of 7.5 mm. We
wish to examine the induced voltage in a selected fiber in the nerve trunk. The extracellular
resistance per internode within the cuff is 7500 Ω per internode. The total interstitial resistance
per internode is 10.000 Ω/internode. The intracellular resistivity is 140 Ωcm. The transmembrane
resistance at a single node of the fiber of interest, with an intracellular diameter of 25 μm, is 20
MΩ. The bipolar (cuff) electrode delivers 40 mV. The internodal distance is 2.5 mm. Assume
that the external current pathway can be neglected, and that the transmembrane current is mainly
through the internodes directly beneath the electrodes.

19. Under which electrode [anode (+) or cathode (–)] will hyperpolarization take place?

20. Draw an equivalent circuit and label elements with proper resistance values.

21. Calculate the magnitude of the hyperpolarization that is produced.



522 CH. 13: EXERCISES FOR CHAPTER 12: FUNCTIONAL ELECTRICAL STIMULATION

22. If the model was improved so that the external current pathways were included, what inter-
esting transmembrane potential(s) could be determined?

Figure 13.13. The upper portion is the physical arrangement of the cuff electrode surround-
ing a whole nerve (consisting of myelinated fibers). The lower portion is the suggested
equivalent electrical circuit.

23. A cuff electrode is depicted in Figure 13.13. A resistive model can give some order-of-
magnitude insight into its operation, as follows. The extracellular and interstitial resistance
may be found from the cylindrical resistance formula (both are assumed to have the same
resistivity), while current can enter and leave the intracellular space only through the nodal
resistance (see Figure 12.27). The results are the approximate circuit shown. The data are
given in Table 13.11.

a. For cuff diameters of 1.05, 1.1, 1.3, 1.5, and 1.9 mm, determine the electrode voltage
needed to produce an excitatory voltage (assume 10 mV).

b. Determine the electrode current and the total charge (200 μsec pulse) in each case.

c. If the electrode area is 2.5 mm2. determine the charge density.
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Table 13.11. Data for Cuff Electrode

Value Units Description
−44 % of nerve trunk

that is intracellular area
70 % of axon is intracellular area

(remainder is myelin sheath)
18 mm nerve trunk diameter
1.0 mm electrode separation
2.0 mm internodal distance
300 Ω-cm ρe
110 Ω-cm ρi
30 mS/cm2 nodal membrane conductance

per unit area
2.5 μm nodal gap width
20 μm single fiber (axon) diameter

d. Would this be satisfactory for reversible operation? [Hint: Determine the number of fibers
(closest integer)].

e. Evaluate the extracellular resistance for an 18-mm path.

f. Evaluate total interstitial resistance for an 18-mm path,

g. Evaluate total intracellular resistance for an 18-mm path.

h. Assume the transmembrane current occurs only at nodes beneath electrodes, and evaluate
total transmembrane resistance.

24. Write computer code, and use a computer language suited for your environment, for the mem-
brane model portions of a fiber simulation, assuming the membrane follows the Frankenhaeuser–
Huxley equations. Specifically, write code to:

a. Initialize the necessary FH variables.

b. Compute the membrane currents for the current membrane state.

c. Advance the values of the gating variables.
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materials, 363
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performance, 374
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wave thickness, 282
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extracellular
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electrical model, 156
axial current and membrane currents, 160
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axial currents, 160
axial currents and transmembrane potentials, 162
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extracellular potentials φe, 164
input impedance, 217
membrane current equation, 171
membrane current from Φi, 163
membrane current from Vm, 163
membrane currents, 163
total membrane current, 170

fiber equations, 194
fiber stimulation, 196
field stimulation, 214
field stimulus of fiber, 206
fields, 25
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fields from sources, 27
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Green’s first identity, 14
Green’s Second Identity, 15
Green’s Theorem, 15

H

heart vector, 310
heart-torso models, 318
Hodgkin–Huxley, channels, 92

I

Impulse Propagation, 155
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Laplacian, 10
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membrane currents
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membrane ionic current, 170
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parallel conductance model, 62
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Poisson distribution, 331
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Poisson’s equation, 26
post-junctional response to transmitter, 335
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propagation, 155
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discretized, 172
equations discretized, 173
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mathematics during action potentials, 169
membrane ionic current, 170
myelinated nerve, 183
numerical action potentials, 172
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single fiber, 166
total membrane current, 170
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quadrupole source density, 249
quantal transmitter release, 329
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reciprocity, 314
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saltatory propagation, 184
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